2 * Copyright (C) Gabriel Fernandez 2017
3 * Author: Gabriel Fernandez <gabriel.fernandez@st.com>
5 * License terms: GPL V2.0.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/clk.h>
21 #include <linux/clk-provider.h>
22 #include <linux/err.h>
24 #include <linux/mfd/syscon.h>
26 #include <linux/of_address.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/regmap.h>
31 #include <dt-bindings/clock/stm32h7-clks.h>
33 /* Reset Clock Control Registers */
36 #define RCC_D1CFGR 0x18
37 #define RCC_D2CFGR 0x1C
38 #define RCC_D3CFGR 0x20
39 #define RCC_PLLCKSELR 0x28
40 #define RCC_PLLCFGR 0x2C
41 #define RCC_PLL1DIVR 0x30
42 #define RCC_PLL1FRACR 0x34
43 #define RCC_PLL2DIVR 0x38
44 #define RCC_PLL2FRACR 0x3C
45 #define RCC_PLL3DIVR 0x40
46 #define RCC_PLL3FRACR 0x44
47 #define RCC_D1CCIPR 0x4C
48 #define RCC_D2CCIP1R 0x50
49 #define RCC_D2CCIP2R 0x54
50 #define RCC_D3CCIPR 0x58
53 #define RCC_AHB3ENR 0xD4
54 #define RCC_AHB1ENR 0xD8
55 #define RCC_AHB2ENR 0xDC
56 #define RCC_AHB4ENR 0xE0
57 #define RCC_APB3ENR 0xE4
58 #define RCC_APB1LENR 0xE8
59 #define RCC_APB1HENR 0xEC
60 #define RCC_APB2ENR 0xF0
61 #define RCC_APB4ENR 0xF4
63 static DEFINE_SPINLOCK(stm32rcc_lock
);
65 static void __iomem
*base
;
66 static struct clk_hw
**hws
;
68 /* System clock parent */
69 static const char * const sys_src
[] = {
70 "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
72 static const char * const tracein_src
[] = {
73 "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
75 static const char * const per_src
[] = {
76 "hsi_ker", "csi_ker", "hse_ck", "disabled" };
78 static const char * const pll_src
[] = {
79 "hsi_ck", "csi_ck", "hse_ck", "no clock" };
81 static const char * const sdmmc_src
[] = { "pll1_q", "pll2_r" };
83 static const char * const dsi_src
[] = { "ck_dsi_phy", "pll2_q" };
85 static const char * const qspi_src
[] = {
86 "hclk", "pll1_q", "pll2_r", "per_ck" };
88 static const char * const fmc_src
[] = {
89 "hclk", "pll1_q", "pll2_r", "per_ck" };
91 /* Kernel clock parent */
92 static const char * const swp_src
[] = { "pclk1", "hsi_ker" };
94 static const char * const fdcan_src
[] = { "hse_ck", "pll1_q", "pll2_q" };
96 static const char * const dfsdm1_src
[] = { "pclk2", "sys_ck" };
98 static const char * const spdifrx_src
[] = {
99 "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
101 static const char *spi_src1
[5] = {
102 "pll1_q", "pll2_p", "pll3_p", NULL
, "per_ck" };
104 static const char * const spi_src2
[] = {
105 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
107 static const char * const spi_src3
[] = {
108 "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
110 static const char * const lptim_src1
[] = {
111 "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
113 static const char * const lptim_src2
[] = {
114 "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
116 static const char * const cec_src
[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
118 static const char * const usbotg_src
[] = {"pll1_q", "pll3_q", "rc48_ck" };
121 static const char * const i2c_src1
[] = {
122 "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
124 static const char * const i2c_src2
[] = {
125 "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
127 static const char * const rng_src
[] = {
128 "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
131 static const char * const usart_src1
[] = {
132 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
134 /* usart 2,3,4,5,7,8 src */
135 static const char * const usart_src2
[] = {
136 "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
138 static const char *sai_src
[5] = {
139 "pll1_q", "pll2_p", "pll3_p", NULL
, "per_ck" };
141 static const char * const adc_src
[] = { "pll2_p", "pll3_r", "per_ck" };
143 /* lptim 2,3,4,5 src */
144 static const char * const lpuart1_src
[] = {
145 "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
147 static const char * const hrtim_src
[] = { "tim2_ker", "d1cpre" };
149 /* RTC clock parent */
150 static const char * const rtc_src
[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
152 /* Micro-controller output clock parent */
153 static const char * const mco_src1
[] = {
154 "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
156 static const char * const mco_src2
[] = {
157 "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
160 static const char * const ltdc_src
[] = {"pll3_r"};
162 /* Gate clock with ready bit and backup domain management */
163 struct stm32_ready_gate
{
164 struct clk_gate gate
;
168 #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
171 #define RGATE_TIMEOUT 10000
173 static int ready_gate_clk_enable(struct clk_hw
*hw
)
175 struct clk_gate
*gate
= to_clk_gate(hw
);
176 struct stm32_ready_gate
*rgate
= to_ready_gate_clk(gate
);
178 unsigned int timeout
= RGATE_TIMEOUT
;
180 if (clk_gate_ops
.is_enabled(hw
))
183 clk_gate_ops
.enable(hw
);
185 /* We can't use readl_poll_timeout() because we can blocked if
186 * someone enables this clock before clocksource changes.
187 * Only jiffies counter is available. Jiffies are incremented by
188 * interruptions and enable op does not allow to be interrupted.
191 bit_status
= !(readl(gate
->reg
) & BIT(rgate
->bit_rdy
));
196 } while (bit_status
&& --timeout
);
201 static void ready_gate_clk_disable(struct clk_hw
*hw
)
203 struct clk_gate
*gate
= to_clk_gate(hw
);
204 struct stm32_ready_gate
*rgate
= to_ready_gate_clk(gate
);
206 unsigned int timeout
= RGATE_TIMEOUT
;
208 if (!clk_gate_ops
.is_enabled(hw
))
211 clk_gate_ops
.disable(hw
);
214 bit_status
= !!(readl(gate
->reg
) & BIT(rgate
->bit_rdy
));
219 } while (bit_status
&& --timeout
);
222 static const struct clk_ops ready_gate_clk_ops
= {
223 .enable
= ready_gate_clk_enable
,
224 .disable
= ready_gate_clk_disable
,
225 .is_enabled
= clk_gate_is_enabled
,
228 static struct clk_hw
*clk_register_ready_gate(struct device
*dev
,
229 const char *name
, const char *parent_name
,
230 void __iomem
*reg
, u8 bit_idx
, u8 bit_rdy
,
231 unsigned long flags
, spinlock_t
*lock
)
233 struct stm32_ready_gate
*rgate
;
234 struct clk_init_data init
= { NULL
};
238 rgate
= kzalloc(sizeof(*rgate
), GFP_KERNEL
);
240 return ERR_PTR(-ENOMEM
);
243 init
.ops
= &ready_gate_clk_ops
;
245 init
.parent_names
= &parent_name
;
246 init
.num_parents
= 1;
248 rgate
->bit_rdy
= bit_rdy
;
249 rgate
->gate
.lock
= lock
;
250 rgate
->gate
.reg
= reg
;
251 rgate
->gate
.bit_idx
= bit_idx
;
252 rgate
->gate
.hw
.init
= &init
;
254 hw
= &rgate
->gate
.hw
;
255 ret
= clk_hw_register(dev
, hw
);
275 struct composite_clk_cfg
{
276 struct gate_cfg
*gate
;
277 struct muxdiv_cfg
*mux
;
278 struct muxdiv_cfg
*div
;
280 const char * const *parent_name
;
285 struct composite_clk_gcfg_t
{
287 const struct clk_ops
*ops
;
291 * General config definition of a composite clock (only clock diviser for rate)
293 struct composite_clk_gcfg
{
294 struct composite_clk_gcfg_t
*mux
;
295 struct composite_clk_gcfg_t
*div
;
296 struct composite_clk_gcfg_t
*gate
;
299 #define M_CFG_MUX(_mux_ops, _mux_flags)\
300 .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
302 #define M_CFG_DIV(_rate_ops, _rate_flags)\
303 .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
305 #define M_CFG_GATE(_gate_ops, _gate_flags)\
306 .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
308 static struct clk_mux
*_get_cmux(void __iomem
*reg
, u8 shift
, u8 width
,
309 u32 flags
, spinlock_t
*lock
)
313 mux
= kzalloc(sizeof(*mux
), GFP_KERNEL
);
315 return ERR_PTR(-ENOMEM
);
319 mux
->mask
= (1 << width
) - 1;
326 static struct clk_divider
*_get_cdiv(void __iomem
*reg
, u8 shift
, u8 width
,
327 u32 flags
, spinlock_t
*lock
)
329 struct clk_divider
*div
;
331 div
= kzalloc(sizeof(*div
), GFP_KERNEL
);
334 return ERR_PTR(-ENOMEM
);
345 static struct clk_gate
*_get_cgate(void __iomem
*reg
, u8 bit_idx
, u32 flags
,
348 struct clk_gate
*gate
;
350 gate
= kzalloc(sizeof(*gate
), GFP_KERNEL
);
352 return ERR_PTR(-ENOMEM
);
355 gate
->bit_idx
= bit_idx
;
362 struct composite_cfg
{
363 struct clk_hw
*mux_hw
;
364 struct clk_hw
*div_hw
;
365 struct clk_hw
*gate_hw
;
367 const struct clk_ops
*mux_ops
;
368 const struct clk_ops
*div_ops
;
369 const struct clk_ops
*gate_ops
;
372 static void get_cfg_composite_div(const struct composite_clk_gcfg
*gcfg
,
373 const struct composite_clk_cfg
*cfg
,
374 struct composite_cfg
*composite
, spinlock_t
*lock
)
376 struct clk_mux
*mux
= NULL
;
377 struct clk_divider
*div
= NULL
;
378 struct clk_gate
*gate
= NULL
;
379 const struct clk_ops
*mux_ops
, *div_ops
, *gate_ops
;
380 struct clk_hw
*mux_hw
;
381 struct clk_hw
*div_hw
;
382 struct clk_hw
*gate_hw
;
384 mux_ops
= div_ops
= gate_ops
= NULL
;
385 mux_hw
= div_hw
= gate_hw
= NULL
;
387 if (gcfg
->mux
&& cfg
->mux
) {
388 mux
= _get_cmux(base
+ cfg
->mux
->offset
,
391 gcfg
->mux
->flags
, lock
);
395 mux_ops
= gcfg
->mux
->ops
?
396 gcfg
->mux
->ops
: &clk_mux_ops
;
400 if (gcfg
->div
&& cfg
->div
) {
401 div
= _get_cdiv(base
+ cfg
->div
->offset
,
404 gcfg
->div
->flags
, lock
);
408 div_ops
= gcfg
->div
->ops
?
409 gcfg
->div
->ops
: &clk_divider_ops
;
413 if (gcfg
->gate
&& cfg
->gate
) {
414 gate
= _get_cgate(base
+ cfg
->gate
->offset
,
416 gcfg
->gate
->flags
, lock
);
420 gate_ops
= gcfg
->gate
->ops
?
421 gcfg
->gate
->ops
: &clk_gate_ops
;
425 composite
->mux_hw
= mux_hw
;
426 composite
->mux_ops
= mux_ops
;
428 composite
->div_hw
= div_hw
;
429 composite
->div_ops
= div_ops
;
431 composite
->gate_hw
= gate_hw
;
432 composite
->gate_ops
= gate_ops
;
442 #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
444 static unsigned long timer_ker_recalc_rate(struct clk_hw
*hw
,
445 unsigned long parent_rate
)
447 struct timer_ker
*clk_elem
= to_timer_ker(hw
);
449 u32 dppre_shift
= clk_elem
->dppre_shift
;
453 timpre
= (readl(base
+ RCC_CFGR
) >> 15) & 0x01;
455 prescaler
= (readl(base
+ RCC_D2CFGR
) >> dppre_shift
) & 0x03;
462 else if (timpre
&& prescaler
> 4)
465 return parent_rate
* mul
;
468 static const struct clk_ops timer_ker_ops
= {
469 .recalc_rate
= timer_ker_recalc_rate
,
472 static struct clk_hw
*clk_register_stm32_timer_ker(struct device
*dev
,
473 const char *name
, const char *parent_name
,
478 struct timer_ker
*element
;
479 struct clk_init_data init
;
483 element
= kzalloc(sizeof(*element
), GFP_KERNEL
);
485 return ERR_PTR(-ENOMEM
);
488 init
.ops
= &timer_ker_ops
;
490 init
.parent_names
= &parent_name
;
491 init
.num_parents
= 1;
493 element
->hw
.init
= &init
;
494 element
->lock
= lock
;
495 element
->dppre_shift
= dppre_shift
;
498 err
= clk_hw_register(dev
, hw
);
508 static const struct clk_div_table d1cpre_div_table
[] = {
509 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
510 { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
511 { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
512 { 12, 64 }, { 13, 128 }, { 14, 256 },
517 static const struct clk_div_table ppre_div_table
[] = {
518 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
519 { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
523 static void register_core_and_bus_clocks(void)
526 hws
[SYS_D1CPRE
] = clk_hw_register_divider_table(NULL
, "d1cpre",
527 "sys_ck", CLK_IGNORE_UNUSED
, base
+ RCC_D1CFGR
, 8, 4, 0,
528 d1cpre_div_table
, &stm32rcc_lock
);
530 hws
[HCLK
] = clk_hw_register_divider_table(NULL
, "hclk", "d1cpre",
531 CLK_IGNORE_UNUSED
, base
+ RCC_D1CFGR
, 0, 4, 0,
532 d1cpre_div_table
, &stm32rcc_lock
);
536 hws
[CPU_SYSTICK
] = clk_hw_register_fixed_factor(NULL
, "systick",
539 /* * APB3 peripheral */
540 hws
[PCLK3
] = clk_hw_register_divider_table(NULL
, "pclk3", "hclk", 0,
541 base
+ RCC_D1CFGR
, 4, 3, 0,
542 ppre_div_table
, &stm32rcc_lock
);
545 /* * APB1 peripheral */
546 hws
[PCLK1
] = clk_hw_register_divider_table(NULL
, "pclk1", "hclk", 0,
547 base
+ RCC_D2CFGR
, 4, 3, 0,
548 ppre_div_table
, &stm32rcc_lock
);
550 /* Timers prescaler clocks */
551 clk_register_stm32_timer_ker(NULL
, "tim1_ker", "pclk1", 0,
554 /* * APB2 peripheral */
555 hws
[PCLK2
] = clk_hw_register_divider_table(NULL
, "pclk2", "hclk", 0,
556 base
+ RCC_D2CFGR
, 8, 3, 0, ppre_div_table
,
559 clk_register_stm32_timer_ker(NULL
, "tim2_ker", "pclk2", 0, 8,
563 /* * APB4 peripheral */
564 hws
[PCLK4
] = clk_hw_register_divider_table(NULL
, "pclk4", "hclk", 0,
565 base
+ RCC_D3CFGR
, 4, 3, 0,
566 ppre_div_table
, &stm32rcc_lock
);
569 /* MUX clock configuration */
570 struct stm32_mux_clk
{
572 const char * const *parents
;
580 #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
583 .parents = _parents,\
584 .num_parents = ARRAY_SIZE(_parents),\
585 .offset = _mux_offset,\
586 .shift = _mux_shift,\
587 .width = _mux_width,\
591 #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
592 M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
594 static const struct stm32_mux_clk stm32_mclk[] __initconst = {
595 M_MCLOC("per_ck", per_src
, RCC_D1CCIPR
, 28, 3),
596 M_MCLOC("pllsrc", pll_src
, RCC_PLLCKSELR
, 0, 3),
597 M_MCLOC("sys_ck", sys_src
, RCC_CFGR
, 0, 3),
598 M_MCLOC("tracein_ck", tracein_src
, RCC_CFGR
, 0, 3),
601 /* Oscillary clock configuration */
602 struct stm32_osc_clk
{
611 #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
615 .gate_offset = _gate_offset,\
616 .bit_idx = _bit_idx,\
617 .bit_rdy = _bit_rdy,\
621 #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
622 OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
624 static const struct stm32_osc_clk stm32_oclk
[] __initconst
= {
625 OSC_CLKF("hsi_ck", "hsidiv", RCC_CR
, 0, 2, CLK_IGNORE_UNUSED
),
626 OSC_CLKF("hsi_ker", "hsidiv", RCC_CR
, 1, 2, CLK_IGNORE_UNUSED
),
627 OSC_CLKF("csi_ck", "clk-csi", RCC_CR
, 7, 8, CLK_IGNORE_UNUSED
),
628 OSC_CLKF("csi_ker", "clk-csi", RCC_CR
, 9, 8, CLK_IGNORE_UNUSED
),
629 OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR
, 12, 13, CLK_IGNORE_UNUSED
),
630 OSC_CLKF("lsi_ck", "clk-lsi", RCC_CSR
, 0, 1, CLK_IGNORE_UNUSED
),
633 /* PLL configuration */
634 struct st32h7_pll_cfg
{
642 struct stm32_pll_data
{
644 const char *parent_name
;
646 const struct st32h7_pll_cfg
*cfg
;
649 static const struct st32h7_pll_cfg stm32h7_pll1
= {
651 .offset_divr
= RCC_PLL1DIVR
,
653 .offset_frac
= RCC_PLL1FRACR
,
657 static const struct st32h7_pll_cfg stm32h7_pll2
= {
659 .offset_divr
= RCC_PLL2DIVR
,
661 .offset_frac
= RCC_PLL2FRACR
,
665 static const struct st32h7_pll_cfg stm32h7_pll3
= {
667 .offset_divr
= RCC_PLL3DIVR
,
669 .offset_frac
= RCC_PLL3FRACR
,
673 static const struct stm32_pll_data stm32_pll
[] = {
674 { "vco1", "pllsrc", CLK_IGNORE_UNUSED
, &stm32h7_pll1
},
675 { "vco2", "pllsrc", 0, &stm32h7_pll2
},
676 { "vco3", "pllsrc", 0, &stm32h7_pll3
},
679 struct stm32_fractional_divider
{
689 void __iomem
*freg_status
;
691 void __iomem
*freg_value
;
700 struct stm32_pll_obj
{
702 struct stm32_fractional_divider div
;
703 struct stm32_ready_gate rgate
;
707 #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
709 static int pll_is_enabled(struct clk_hw
*hw
)
711 struct stm32_pll_obj
*clk_elem
= to_pll(hw
);
712 struct clk_hw
*_hw
= &clk_elem
->rgate
.gate
.hw
;
714 __clk_hw_set_clk(_hw
, hw
);
716 return ready_gate_clk_ops
.is_enabled(_hw
);
719 static int pll_enable(struct clk_hw
*hw
)
721 struct stm32_pll_obj
*clk_elem
= to_pll(hw
);
722 struct clk_hw
*_hw
= &clk_elem
->rgate
.gate
.hw
;
724 __clk_hw_set_clk(_hw
, hw
);
726 return ready_gate_clk_ops
.enable(_hw
);
729 static void pll_disable(struct clk_hw
*hw
)
731 struct stm32_pll_obj
*clk_elem
= to_pll(hw
);
732 struct clk_hw
*_hw
= &clk_elem
->rgate
.gate
.hw
;
734 __clk_hw_set_clk(_hw
, hw
);
736 ready_gate_clk_ops
.disable(_hw
);
739 static int pll_frac_is_enabled(struct clk_hw
*hw
)
741 struct stm32_pll_obj
*clk_elem
= to_pll(hw
);
742 struct stm32_fractional_divider
*fd
= &clk_elem
->div
;
744 return (readl(fd
->freg_status
) >> fd
->freg_bit
) & 0x01;
747 static unsigned long pll_read_frac(struct clk_hw
*hw
)
749 struct stm32_pll_obj
*clk_elem
= to_pll(hw
);
750 struct stm32_fractional_divider
*fd
= &clk_elem
->div
;
752 return (readl(fd
->freg_value
) >> fd
->fshift
) &
753 GENMASK(fd
->fwidth
- 1, 0);
756 static unsigned long pll_fd_recalc_rate(struct clk_hw
*hw
,
757 unsigned long parent_rate
)
759 struct stm32_pll_obj
*clk_elem
= to_pll(hw
);
760 struct stm32_fractional_divider
*fd
= &clk_elem
->div
;
765 val
= readl(fd
->mreg
);
766 mask
= GENMASK(fd
->mwidth
- 1, 0) << fd
->mshift
;
767 m
= (val
& mask
) >> fd
->mshift
;
769 val
= readl(fd
->nreg
);
770 mask
= GENMASK(fd
->nwidth
- 1, 0) << fd
->nshift
;
771 n
= ((val
& mask
) >> fd
->nshift
) + 1;
776 rate
= (u64
)parent_rate
* n
;
779 if (pll_frac_is_enabled(hw
)) {
780 val
= pll_read_frac(hw
);
781 rate1
= (u64
)parent_rate
* (u64
)val
;
782 do_div(rate1
, (m
* 8191));
788 static const struct clk_ops pll_ops
= {
789 .enable
= pll_enable
,
790 .disable
= pll_disable
,
791 .is_enabled
= pll_is_enabled
,
792 .recalc_rate
= pll_fd_recalc_rate
,
795 static struct clk_hw
*clk_register_stm32_pll(struct device
*dev
,
799 const struct st32h7_pll_cfg
*cfg
,
802 struct stm32_pll_obj
*pll
;
803 struct clk_init_data init
= { NULL
};
806 struct stm32_fractional_divider
*div
= NULL
;
807 struct stm32_ready_gate
*rgate
;
809 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
811 return ERR_PTR(-ENOMEM
);
816 init
.parent_names
= &parent
;
817 init
.num_parents
= 1;
818 pll
->hw
.init
= &init
;
823 rgate
->bit_rdy
= cfg
->bit_idx
+ 1;
824 rgate
->gate
.lock
= lock
;
825 rgate
->gate
.reg
= base
+ RCC_CR
;
826 rgate
->gate
.bit_idx
= cfg
->bit_idx
;
830 div
->mreg
= base
+ RCC_PLLCKSELR
;
831 div
->mshift
= cfg
->divm
;
833 div
->nreg
= base
+ cfg
->offset_divr
;
837 div
->freg_status
= base
+ RCC_PLLCFGR
;
838 div
->freg_bit
= cfg
->bit_frac_en
;
839 div
->freg_value
= base
+ cfg
->offset_frac
;
845 ret
= clk_hw_register(dev
, hw
);
855 static unsigned long odf_divider_recalc_rate(struct clk_hw
*hw
,
856 unsigned long parent_rate
)
858 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
861 static long odf_divider_round_rate(struct clk_hw
*hw
, unsigned long rate
,
862 unsigned long *prate
)
864 return clk_divider_ops
.round_rate(hw
, rate
, prate
);
867 static int odf_divider_set_rate(struct clk_hw
*hw
, unsigned long rate
,
868 unsigned long parent_rate
)
874 hwp
= clk_hw_get_parent(hw
);
876 pll_status
= pll_is_enabled(hwp
);
881 ret
= clk_divider_ops
.set_rate(hw
, rate
, parent_rate
);
889 static const struct clk_ops odf_divider_ops
= {
890 .recalc_rate
= odf_divider_recalc_rate
,
891 .round_rate
= odf_divider_round_rate
,
892 .set_rate
= odf_divider_set_rate
,
895 static int odf_gate_enable(struct clk_hw
*hw
)
901 if (clk_gate_ops
.is_enabled(hw
))
904 hwp
= clk_hw_get_parent(hw
);
906 pll_status
= pll_is_enabled(hwp
);
911 ret
= clk_gate_ops
.enable(hw
);
919 static void odf_gate_disable(struct clk_hw
*hw
)
924 if (!clk_gate_ops
.is_enabled(hw
))
927 hwp
= clk_hw_get_parent(hw
);
929 pll_status
= pll_is_enabled(hwp
);
934 clk_gate_ops
.disable(hw
);
940 static const struct clk_ops odf_gate_ops
= {
941 .enable
= odf_gate_enable
,
942 .disable
= odf_gate_disable
,
943 .is_enabled
= clk_gate_is_enabled
,
946 static struct composite_clk_gcfg odf_clk_gcfg
= {
947 M_CFG_DIV(&odf_divider_ops
, 0),
948 M_CFG_GATE(&odf_gate_ops
, 0),
951 #define M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
952 _rate_shift, _rate_width, _flags)\
955 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
956 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
958 .parent_name = &(const char *) {_parent},\
963 #define M_ODF(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
964 _rate_shift, _rate_width)\
965 M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
966 _rate_shift, _rate_width, 0)\
968 static const struct composite_clk_cfg stm32_odf[3][3] = {
970 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR
, 16, RCC_PLL1DIVR
, 9, 7,
972 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR
, 17, RCC_PLL1DIVR
, 16, 7,
974 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR
, 18, RCC_PLL1DIVR
, 24, 7,
979 M_ODF("pll2_p", "vco2", RCC_PLLCFGR
, 19, RCC_PLL2DIVR
, 9, 7),
980 M_ODF("pll2_q", "vco2", RCC_PLLCFGR
, 20, RCC_PLL2DIVR
, 16, 7),
981 M_ODF("pll2_r", "vco2", RCC_PLLCFGR
, 21, RCC_PLL2DIVR
, 24, 7),
984 M_ODF("pll3_p", "vco3", RCC_PLLCFGR
, 22, RCC_PLL3DIVR
, 9, 7),
985 M_ODF("pll3_q", "vco3", RCC_PLLCFGR
, 23, RCC_PLL3DIVR
, 16, 7),
986 M_ODF("pll3_r", "vco3", RCC_PLLCFGR
, 24, RCC_PLL3DIVR
, 24, 7),
999 #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
1001 .gate_offset = _gate_offset,\
1002 .bit_idx = _bit_idx,\
1008 #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
1009 PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
1011 static const struct pclk_t pclk
[] = {
1012 PER_CLK(RCC_AHB3ENR
, 31, "d1sram1", "hclk"),
1013 PER_CLK(RCC_AHB3ENR
, 30, "itcm", "hclk"),
1014 PER_CLK(RCC_AHB3ENR
, 29, "dtcm2", "hclk"),
1015 PER_CLK(RCC_AHB3ENR
, 28, "dtcm1", "hclk"),
1016 PER_CLK(RCC_AHB3ENR
, 8, "flitf", "hclk"),
1017 PER_CLK(RCC_AHB3ENR
, 5, "jpgdec", "hclk"),
1018 PER_CLK(RCC_AHB3ENR
, 4, "dma2d", "hclk"),
1019 PER_CLK(RCC_AHB3ENR
, 0, "mdma", "hclk"),
1020 PER_CLK(RCC_AHB1ENR
, 28, "usb2ulpi", "hclk"),
1021 PER_CLK(RCC_AHB1ENR
, 26, "usb1ulpi", "hclk"),
1022 PER_CLK(RCC_AHB1ENR
, 17, "eth1rx", "hclk"),
1023 PER_CLK(RCC_AHB1ENR
, 16, "eth1tx", "hclk"),
1024 PER_CLK(RCC_AHB1ENR
, 15, "eth1mac", "hclk"),
1025 PER_CLK(RCC_AHB1ENR
, 14, "art", "hclk"),
1026 PER_CLK(RCC_AHB1ENR
, 1, "dma2", "hclk"),
1027 PER_CLK(RCC_AHB1ENR
, 0, "dma1", "hclk"),
1028 PER_CLK(RCC_AHB2ENR
, 31, "d2sram3", "hclk"),
1029 PER_CLK(RCC_AHB2ENR
, 30, "d2sram2", "hclk"),
1030 PER_CLK(RCC_AHB2ENR
, 29, "d2sram1", "hclk"),
1031 PER_CLK(RCC_AHB2ENR
, 5, "hash", "hclk"),
1032 PER_CLK(RCC_AHB2ENR
, 4, "crypt", "hclk"),
1033 PER_CLK(RCC_AHB2ENR
, 0, "camitf", "hclk"),
1034 PER_CLK(RCC_AHB4ENR
, 28, "bkpram", "hclk"),
1035 PER_CLK(RCC_AHB4ENR
, 25, "hsem", "hclk"),
1036 PER_CLK(RCC_AHB4ENR
, 21, "bdma", "hclk"),
1037 PER_CLK(RCC_AHB4ENR
, 19, "crc", "hclk"),
1038 PER_CLK(RCC_AHB4ENR
, 10, "gpiok", "hclk"),
1039 PER_CLK(RCC_AHB4ENR
, 9, "gpioj", "hclk"),
1040 PER_CLK(RCC_AHB4ENR
, 8, "gpioi", "hclk"),
1041 PER_CLK(RCC_AHB4ENR
, 7, "gpioh", "hclk"),
1042 PER_CLK(RCC_AHB4ENR
, 6, "gpiog", "hclk"),
1043 PER_CLK(RCC_AHB4ENR
, 5, "gpiof", "hclk"),
1044 PER_CLK(RCC_AHB4ENR
, 4, "gpioe", "hclk"),
1045 PER_CLK(RCC_AHB4ENR
, 3, "gpiod", "hclk"),
1046 PER_CLK(RCC_AHB4ENR
, 2, "gpioc", "hclk"),
1047 PER_CLK(RCC_AHB4ENR
, 1, "gpiob", "hclk"),
1048 PER_CLK(RCC_AHB4ENR
, 0, "gpioa", "hclk"),
1049 PER_CLK(RCC_APB3ENR
, 6, "wwdg1", "pclk3"),
1050 PER_CLK(RCC_APB1LENR
, 29, "dac12", "pclk1"),
1051 PER_CLK(RCC_APB1LENR
, 11, "wwdg2", "pclk1"),
1052 PER_CLK(RCC_APB1LENR
, 8, "tim14", "tim1_ker"),
1053 PER_CLK(RCC_APB1LENR
, 7, "tim13", "tim1_ker"),
1054 PER_CLK(RCC_APB1LENR
, 6, "tim12", "tim1_ker"),
1055 PER_CLK(RCC_APB1LENR
, 5, "tim7", "tim1_ker"),
1056 PER_CLK(RCC_APB1LENR
, 4, "tim6", "tim1_ker"),
1057 PER_CLK(RCC_APB1LENR
, 3, "tim5", "tim1_ker"),
1058 PER_CLK(RCC_APB1LENR
, 2, "tim4", "tim1_ker"),
1059 PER_CLK(RCC_APB1LENR
, 1, "tim3", "tim1_ker"),
1060 PER_CLK(RCC_APB1LENR
, 0, "tim2", "tim1_ker"),
1061 PER_CLK(RCC_APB1HENR
, 5, "mdios", "pclk1"),
1062 PER_CLK(RCC_APB1HENR
, 4, "opamp", "pclk1"),
1063 PER_CLK(RCC_APB1HENR
, 1, "crs", "pclk1"),
1064 PER_CLK(RCC_APB2ENR
, 18, "tim17", "tim2_ker"),
1065 PER_CLK(RCC_APB2ENR
, 17, "tim16", "tim2_ker"),
1066 PER_CLK(RCC_APB2ENR
, 16, "tim15", "tim2_ker"),
1067 PER_CLK(RCC_APB2ENR
, 1, "tim8", "tim2_ker"),
1068 PER_CLK(RCC_APB2ENR
, 0, "tim1", "tim2_ker"),
1069 PER_CLK(RCC_APB4ENR
, 26, "tmpsens", "pclk4"),
1070 PER_CLK(RCC_APB4ENR
, 16, "rtcapb", "pclk4"),
1071 PER_CLK(RCC_APB4ENR
, 15, "vref", "pclk4"),
1072 PER_CLK(RCC_APB4ENR
, 14, "comp12", "pclk4"),
1073 PER_CLK(RCC_APB4ENR
, 1, "syscfg", "pclk4"),
1077 #define KER_CLKF(_gate_offset, _bit_idx,\
1078 _mux_offset, _mux_shift, _mux_width,\
1079 _name, _parent_name,\
1082 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1083 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1085 .parent_name = _parent_name, \
1086 .num_parents = ARRAY_SIZE(_parent_name),\
1090 #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1091 _name, _parent_name) \
1092 KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1093 _name, _parent_name, 0)\
1095 #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1096 _name, _parent_name,\
1099 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1102 .parent_name = _parent_name, \
1107 static const struct composite_clk_cfg kclk
[] = {
1108 KER_CLK(RCC_AHB3ENR
, 16, RCC_D1CCIPR
, 16, 1, "sdmmc1", sdmmc_src
),
1109 KER_CLKF(RCC_AHB3ENR
, 14, RCC_D1CCIPR
, 4, 2, "quadspi", qspi_src
,
1111 KER_CLKF(RCC_AHB3ENR
, 12, RCC_D1CCIPR
, 0, 2, "fmc", fmc_src
,
1113 KER_CLK(RCC_AHB1ENR
, 27, RCC_D2CCIP2R
, 20, 2, "usb2otg", usbotg_src
),
1114 KER_CLK(RCC_AHB1ENR
, 25, RCC_D2CCIP2R
, 20, 2, "usb1otg", usbotg_src
),
1115 KER_CLK(RCC_AHB1ENR
, 5, RCC_D3CCIPR
, 16, 2, "adc12", adc_src
),
1116 KER_CLK(RCC_AHB2ENR
, 9, RCC_D1CCIPR
, 16, 1, "sdmmc2", sdmmc_src
),
1117 KER_CLK(RCC_AHB2ENR
, 6, RCC_D2CCIP2R
, 8, 2, "rng", rng_src
),
1118 KER_CLK(RCC_AHB4ENR
, 24, RCC_D3CCIPR
, 16, 2, "adc3", adc_src
),
1119 KER_CLKF(RCC_APB3ENR
, 4, RCC_D1CCIPR
, 8, 1, "dsi", dsi_src
,
1120 CLK_SET_RATE_PARENT
),
1121 KER_CLKF_NOMUX(RCC_APB3ENR
, 3, "ltdc", ltdc_src
, CLK_SET_RATE_PARENT
),
1122 KER_CLK(RCC_APB1LENR
, 31, RCC_D2CCIP2R
, 0, 3, "usart8", usart_src2
),
1123 KER_CLK(RCC_APB1LENR
, 30, RCC_D2CCIP2R
, 0, 3, "usart7", usart_src2
),
1124 KER_CLK(RCC_APB1LENR
, 27, RCC_D2CCIP2R
, 22, 2, "hdmicec", cec_src
),
1125 KER_CLK(RCC_APB1LENR
, 23, RCC_D2CCIP2R
, 12, 2, "i2c3", i2c_src1
),
1126 KER_CLK(RCC_APB1LENR
, 22, RCC_D2CCIP2R
, 12, 2, "i2c2", i2c_src1
),
1127 KER_CLK(RCC_APB1LENR
, 21, RCC_D2CCIP2R
, 12, 2, "i2c1", i2c_src1
),
1128 KER_CLK(RCC_APB1LENR
, 20, RCC_D2CCIP2R
, 0, 3, "uart5", usart_src2
),
1129 KER_CLK(RCC_APB1LENR
, 19, RCC_D2CCIP2R
, 0, 3, "uart4", usart_src2
),
1130 KER_CLK(RCC_APB1LENR
, 18, RCC_D2CCIP2R
, 0, 3, "usart3", usart_src2
),
1131 KER_CLK(RCC_APB1LENR
, 17, RCC_D2CCIP2R
, 0, 3, "usart2", usart_src2
),
1132 KER_CLK(RCC_APB1LENR
, 16, RCC_D2CCIP1R
, 20, 2, "spdifrx", spdifrx_src
),
1133 KER_CLK(RCC_APB1LENR
, 15, RCC_D2CCIP1R
, 16, 3, "spi3", spi_src1
),
1134 KER_CLK(RCC_APB1LENR
, 14, RCC_D2CCIP1R
, 16, 3, "spi2", spi_src1
),
1135 KER_CLK(RCC_APB1LENR
, 9, RCC_D2CCIP2R
, 28, 3, "lptim1", lptim_src1
),
1136 KER_CLK(RCC_APB1HENR
, 8, RCC_D2CCIP1R
, 28, 2, "fdcan", fdcan_src
),
1137 KER_CLK(RCC_APB1HENR
, 2, RCC_D2CCIP1R
, 31, 1, "swp", swp_src
),
1138 KER_CLK(RCC_APB2ENR
, 29, RCC_CFGR
, 14, 1, "hrtim", hrtim_src
),
1139 KER_CLK(RCC_APB2ENR
, 28, RCC_D2CCIP1R
, 24, 1, "dfsdm1", dfsdm1_src
),
1140 KER_CLKF(RCC_APB2ENR
, 24, RCC_D2CCIP1R
, 6, 3, "sai3", sai_src
,
1141 CLK_SET_RATE_PARENT
| CLK_SET_RATE_NO_REPARENT
),
1142 KER_CLKF(RCC_APB2ENR
, 23, RCC_D2CCIP1R
, 6, 3, "sai2", sai_src
,
1143 CLK_SET_RATE_PARENT
| CLK_SET_RATE_NO_REPARENT
),
1144 KER_CLKF(RCC_APB2ENR
, 22, RCC_D2CCIP1R
, 0, 3, "sai1", sai_src
,
1145 CLK_SET_RATE_PARENT
| CLK_SET_RATE_NO_REPARENT
),
1146 KER_CLK(RCC_APB2ENR
, 20, RCC_D2CCIP1R
, 16, 3, "spi5", spi_src2
),
1147 KER_CLK(RCC_APB2ENR
, 13, RCC_D2CCIP1R
, 16, 3, "spi4", spi_src2
),
1148 KER_CLK(RCC_APB2ENR
, 12, RCC_D2CCIP1R
, 16, 3, "spi1", spi_src1
),
1149 KER_CLK(RCC_APB2ENR
, 5, RCC_D2CCIP2R
, 3, 3, "usart6", usart_src1
),
1150 KER_CLK(RCC_APB2ENR
, 4, RCC_D2CCIP2R
, 3, 3, "usart1", usart_src1
),
1151 KER_CLK(RCC_APB4ENR
, 21, RCC_D3CCIPR
, 24, 3, "sai4b", sai_src
),
1152 KER_CLK(RCC_APB4ENR
, 21, RCC_D3CCIPR
, 21, 3, "sai4a", sai_src
),
1153 KER_CLK(RCC_APB4ENR
, 12, RCC_D3CCIPR
, 13, 3, "lptim5", lptim_src2
),
1154 KER_CLK(RCC_APB4ENR
, 11, RCC_D3CCIPR
, 13, 3, "lptim4", lptim_src2
),
1155 KER_CLK(RCC_APB4ENR
, 10, RCC_D3CCIPR
, 13, 3, "lptim3", lptim_src2
),
1156 KER_CLK(RCC_APB4ENR
, 9, RCC_D3CCIPR
, 10, 3, "lptim2", lptim_src2
),
1157 KER_CLK(RCC_APB4ENR
, 7, RCC_D3CCIPR
, 8, 2, "i2c4", i2c_src2
),
1158 KER_CLK(RCC_APB4ENR
, 5, RCC_D3CCIPR
, 28, 3, "spi6", spi_src3
),
1159 KER_CLK(RCC_APB4ENR
, 3, RCC_D3CCIPR
, 0, 3, "lpuart1", lpuart1_src
),
1162 static struct composite_clk_gcfg kernel_clk_cfg
= {
1164 M_CFG_GATE(NULL
, 0),
1169 * RTC & LSE registers are protected against parasitic write access.
1170 * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1174 /* STM32_PWR_CR bit field */
1175 #define PWR_CR_DBP BIT(8)
1177 static struct composite_clk_gcfg rtc_clk_cfg
= {
1179 M_CFG_GATE(NULL
, 0),
1182 static const struct composite_clk_cfg rtc_clk
=
1183 KER_CLK(RCC_BDCR
, 15, RCC_BDCR
, 8, 2, "rtc_ck", rtc_src
);
1185 /* Micro-controller output clock */
1186 static struct composite_clk_gcfg mco_clk_cfg
= {
1188 M_CFG_DIV(NULL
, CLK_DIVIDER_ONE_BASED
| CLK_DIVIDER_ALLOW_ZERO
),
1191 #define M_MCO_F(_name, _parents, _mux_offset, _mux_shift, _mux_width,\
1192 _rate_offset, _rate_shift, _rate_width,\
1195 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1196 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1199 .parent_name = _parents,\
1200 .num_parents = ARRAY_SIZE(_parents),\
1204 static const struct composite_clk_cfg mco_clk
[] = {
1205 M_MCO_F("mco1", mco_src1
, RCC_CFGR
, 22, 4, RCC_CFGR
, 18, 4, 0),
1206 M_MCO_F("mco2", mco_src2
, RCC_CFGR
, 29, 3, RCC_CFGR
, 25, 4, 0),
1209 static void __init
stm32h7_rcc_init(struct device_node
*np
)
1211 struct clk_hw_onecell_data
*clk_data
;
1212 struct composite_cfg c_cfg
;
1214 const char *hse_clk
, *lse_clk
, *i2s_clk
;
1215 struct regmap
*pdrm
;
1217 clk_data
= kzalloc(sizeof(*clk_data
) +
1218 sizeof(*clk_data
->hws
) * STM32H7_MAX_CLKS
,
1223 clk_data
->num
= STM32H7_MAX_CLKS
;
1225 hws
= clk_data
->hws
;
1227 for (n
= 0; n
< STM32H7_MAX_CLKS
; n
++)
1228 hws
[n
] = ERR_PTR(-ENOENT
);
1230 /* get RCC base @ from DT */
1231 base
= of_iomap(np
, 0);
1233 pr_err("%s: unable to map resource", np
->name
);
1237 pdrm
= syscon_regmap_lookup_by_phandle(np
, "st,syscfg");
1239 pr_warn("%s: Unable to get syscfg\n", __func__
);
1241 /* In any case disable backup domain write protection
1242 * and will never be enabled.
1243 * Needed by LSE & RTC clocks.
1245 regmap_update_bits(pdrm
, PWR_CR
, PWR_CR_DBP
, PWR_CR_DBP
);
1247 /* Put parent names from DT */
1248 hse_clk
= of_clk_get_parent_name(np
, 0);
1249 lse_clk
= of_clk_get_parent_name(np
, 1);
1250 i2s_clk
= of_clk_get_parent_name(np
, 2);
1252 sai_src
[3] = i2s_clk
;
1253 spi_src1
[3] = i2s_clk
;
1255 /* Register Internal oscillators */
1256 clk_hw_register_fixed_rate(NULL
, "clk-hsi", NULL
, 0, 64000000);
1257 clk_hw_register_fixed_rate(NULL
, "clk-csi", NULL
, 0, 4000000);
1258 clk_hw_register_fixed_rate(NULL
, "clk-lsi", NULL
, 0, 32000);
1259 clk_hw_register_fixed_rate(NULL
, "clk-rc48", NULL
, 0, 48000);
1261 /* This clock is coming from outside. Frequencies unknown */
1262 hws
[CK_DSI_PHY
] = clk_hw_register_fixed_rate(NULL
, "ck_dsi_phy", NULL
,
1265 hws
[HSI_DIV
] = clk_hw_register_divider(NULL
, "hsidiv", "clk-hsi", 0,
1266 base
+ RCC_CR
, 3, 2, CLK_DIVIDER_POWER_OF_TWO
,
1269 hws
[HSE_1M
] = clk_hw_register_divider(NULL
, "hse_1M", "hse_ck", 0,
1270 base
+ RCC_CFGR
, 8, 6, CLK_DIVIDER_ONE_BASED
|
1271 CLK_DIVIDER_ALLOW_ZERO
,
1274 /* Mux system clocks */
1275 for (n
= 0; n
< ARRAY_SIZE(stm32_mclk
); n
++)
1276 hws
[MCLK_BANK
+ n
] = clk_hw_register_mux(NULL
,
1278 stm32_mclk
[n
].parents
,
1279 stm32_mclk
[n
].num_parents
,
1280 stm32_mclk
[n
].flags
,
1281 stm32_mclk
[n
].offset
+ base
,
1282 stm32_mclk
[n
].shift
,
1283 stm32_mclk
[n
].width
,
1287 register_core_and_bus_clocks();
1289 /* Oscillary clocks */
1290 for (n
= 0; n
< ARRAY_SIZE(stm32_oclk
); n
++)
1291 hws
[OSC_BANK
+ n
] = clk_register_ready_gate(NULL
,
1293 stm32_oclk
[n
].parent
,
1294 stm32_oclk
[n
].gate_offset
+ base
,
1295 stm32_oclk
[n
].bit_idx
,
1296 stm32_oclk
[n
].bit_rdy
,
1297 stm32_oclk
[n
].flags
,
1300 hws
[HSE_CK
] = clk_register_ready_gate(NULL
,
1308 hws
[LSE_CK
] = clk_register_ready_gate(NULL
,
1316 hws
[CSI_KER_DIV122
+ n
] = clk_hw_register_fixed_factor(NULL
,
1317 "csi_ker_div122", "csi_ker", 0, 1, 122);
1320 for (n
= 0; n
< ARRAY_SIZE(stm32_pll
); n
++) {
1323 /* Register the VCO */
1324 clk_register_stm32_pll(NULL
, stm32_pll
[n
].name
,
1325 stm32_pll
[n
].parent_name
, stm32_pll
[n
].flags
,
1329 /* Register the 3 output dividers */
1330 for (odf
= 0; odf
< 3; odf
++) {
1331 int idx
= n
* 3 + odf
;
1333 get_cfg_composite_div(&odf_clk_gcfg
, &stm32_odf
[n
][odf
],
1334 &c_cfg
, &stm32rcc_lock
);
1336 hws
[ODF_BANK
+ idx
] = clk_hw_register_composite(NULL
,
1337 stm32_odf
[n
][odf
].name
,
1338 stm32_odf
[n
][odf
].parent_name
,
1339 stm32_odf
[n
][odf
].num_parents
,
1340 c_cfg
.mux_hw
, c_cfg
.mux_ops
,
1341 c_cfg
.div_hw
, c_cfg
.div_ops
,
1342 c_cfg
.gate_hw
, c_cfg
.gate_ops
,
1343 stm32_odf
[n
][odf
].flags
);
1347 /* Peripheral clocks */
1348 for (n
= 0; n
< ARRAY_SIZE(pclk
); n
++)
1349 hws
[PERIF_BANK
+ n
] = clk_hw_register_gate(NULL
, pclk
[n
].name
,
1351 pclk
[n
].flags
, base
+ pclk
[n
].gate_offset
,
1352 pclk
[n
].bit_idx
, pclk
[n
].flags
, &stm32rcc_lock
);
1355 for (n
= 0; n
< ARRAY_SIZE(kclk
); n
++) {
1356 get_cfg_composite_div(&kernel_clk_cfg
, &kclk
[n
], &c_cfg
,
1359 hws
[KERN_BANK
+ n
] = clk_hw_register_composite(NULL
,
1361 kclk
[n
].parent_name
,
1362 kclk
[n
].num_parents
,
1363 c_cfg
.mux_hw
, c_cfg
.mux_ops
,
1364 c_cfg
.div_hw
, c_cfg
.div_ops
,
1365 c_cfg
.gate_hw
, c_cfg
.gate_ops
,
1369 /* RTC clock (default state is off) */
1370 clk_hw_register_fixed_rate(NULL
, "off", NULL
, 0, 0);
1372 get_cfg_composite_div(&rtc_clk_cfg
, &rtc_clk
, &c_cfg
, &stm32rcc_lock
);
1374 hws
[RTC_CK
] = clk_hw_register_composite(NULL
,
1376 rtc_clk
.parent_name
,
1377 rtc_clk
.num_parents
,
1378 c_cfg
.mux_hw
, c_cfg
.mux_ops
,
1379 c_cfg
.div_hw
, c_cfg
.div_ops
,
1380 c_cfg
.gate_hw
, c_cfg
.gate_ops
,
1383 /* Micro-controller clocks */
1384 for (n
= 0; n
< ARRAY_SIZE(mco_clk
); n
++) {
1385 get_cfg_composite_div(&mco_clk_cfg
, &mco_clk
[n
], &c_cfg
,
1388 hws
[MCO_BANK
+ n
] = clk_hw_register_composite(NULL
,
1390 mco_clk
[n
].parent_name
,
1391 mco_clk
[n
].num_parents
,
1392 c_cfg
.mux_hw
, c_cfg
.mux_ops
,
1393 c_cfg
.div_hw
, c_cfg
.div_ops
,
1394 c_cfg
.gate_hw
, c_cfg
.gate_ops
,
1398 of_clk_add_hw_provider(np
, of_clk_hw_onecell_get
, clk_data
);
1406 /* The RCC node is a clock and reset controller, and these
1407 * functionalities are supported by different drivers that
1408 * matches the same compatible strings.
1410 CLK_OF_DECLARE_DRIVER(stm32h7_rcc
, "st,stm32h743-rcc", stm32h7_rcc_init
);