x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / hwmon / ibmpowernv.c
blobb38f4951c94e480ac3a2ddc094639d49290d14d8
1 /*
2 * IBM PowerNV platform sensors for temperature/fan/voltage/power
3 * Copyright (C) 2014 IBM
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program.
19 #define DRVNAME "ibmpowernv"
20 #define pr_fmt(fmt) DRVNAME ": " fmt
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/of.h>
28 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <asm/opal.h>
32 #include <linux/err.h>
33 #include <asm/cputhreads.h>
34 #include <asm/smp.h>
36 #define MAX_ATTR_LEN 32
37 #define MAX_LABEL_LEN 64
39 /* Sensor suffix name from DT */
40 #define DT_FAULT_ATTR_SUFFIX "faulted"
41 #define DT_DATA_ATTR_SUFFIX "data"
42 #define DT_THRESHOLD_ATTR_SUFFIX "thrs"
45 * Enumerates all the types of sensors in the POWERNV platform and does index
46 * into 'struct sensor_group'
48 enum sensors {
49 FAN,
50 TEMP,
51 POWER_SUPPLY,
52 POWER_INPUT,
53 CURRENT,
54 MAX_SENSOR_TYPE,
57 #define INVALID_INDEX (-1U)
60 * 'compatible' string properties for sensor types as defined in old
61 * PowerNV firmware (skiboot). These are ordered as 'enum sensors'.
63 static const char * const legacy_compatibles[] = {
64 "ibm,opal-sensor-cooling-fan",
65 "ibm,opal-sensor-amb-temp",
66 "ibm,opal-sensor-power-supply",
67 "ibm,opal-sensor-power"
70 static struct sensor_group {
71 const char *name; /* matches property 'sensor-type' */
72 struct attribute_group group;
73 u32 attr_count;
74 u32 hwmon_index;
75 } sensor_groups[] = {
76 { "fan" },
77 { "temp" },
78 { "in" },
79 { "power" },
80 { "curr" },
83 struct sensor_data {
84 u32 id; /* An opaque id of the firmware for each sensor */
85 u32 hwmon_index;
86 u32 opal_index;
87 enum sensors type;
88 char label[MAX_LABEL_LEN];
89 char name[MAX_ATTR_LEN];
90 struct device_attribute dev_attr;
93 struct platform_data {
94 const struct attribute_group *attr_groups[MAX_SENSOR_TYPE + 1];
95 u32 sensors_count; /* Total count of sensors from each group */
98 static ssize_t show_sensor(struct device *dev, struct device_attribute *devattr,
99 char *buf)
101 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
102 dev_attr);
103 ssize_t ret;
104 u32 x;
106 ret = opal_get_sensor_data(sdata->id, &x);
107 if (ret)
108 return ret;
110 /* Convert temperature to milli-degrees */
111 if (sdata->type == TEMP)
112 x *= 1000;
113 /* Convert power to micro-watts */
114 else if (sdata->type == POWER_INPUT)
115 x *= 1000000;
117 return sprintf(buf, "%u\n", x);
120 static ssize_t show_label(struct device *dev, struct device_attribute *devattr,
121 char *buf)
123 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
124 dev_attr);
126 return sprintf(buf, "%s\n", sdata->label);
129 static int get_logical_cpu(int hwcpu)
131 int cpu;
133 for_each_possible_cpu(cpu)
134 if (get_hard_smp_processor_id(cpu) == hwcpu)
135 return cpu;
137 return -ENOENT;
140 static void make_sensor_label(struct device_node *np,
141 struct sensor_data *sdata, const char *label)
143 u32 id;
144 size_t n;
146 n = snprintf(sdata->label, sizeof(sdata->label), "%s", label);
149 * Core temp pretty print
151 if (!of_property_read_u32(np, "ibm,pir", &id)) {
152 int cpuid = get_logical_cpu(id);
154 if (cpuid >= 0)
156 * The digital thermal sensors are associated
157 * with a core.
159 n += snprintf(sdata->label + n,
160 sizeof(sdata->label) - n, " %d",
161 cpuid);
162 else
163 n += snprintf(sdata->label + n,
164 sizeof(sdata->label) - n, " phy%d", id);
168 * Membuffer pretty print
170 if (!of_property_read_u32(np, "ibm,chip-id", &id))
171 n += snprintf(sdata->label + n, sizeof(sdata->label) - n,
172 " %d", id & 0xffff);
175 static int get_sensor_index_attr(const char *name, u32 *index, char *attr)
177 char *hash_pos = strchr(name, '#');
178 char buf[8] = { 0 };
179 char *dash_pos;
180 u32 copy_len;
181 int err;
183 if (!hash_pos)
184 return -EINVAL;
186 dash_pos = strchr(hash_pos, '-');
187 if (!dash_pos)
188 return -EINVAL;
190 copy_len = dash_pos - hash_pos - 1;
191 if (copy_len >= sizeof(buf))
192 return -EINVAL;
194 strncpy(buf, hash_pos + 1, copy_len);
196 err = kstrtou32(buf, 10, index);
197 if (err)
198 return err;
200 strncpy(attr, dash_pos + 1, MAX_ATTR_LEN);
202 return 0;
205 static const char *convert_opal_attr_name(enum sensors type,
206 const char *opal_attr)
208 const char *attr_name = NULL;
210 if (!strcmp(opal_attr, DT_FAULT_ATTR_SUFFIX)) {
211 attr_name = "fault";
212 } else if (!strcmp(opal_attr, DT_DATA_ATTR_SUFFIX)) {
213 attr_name = "input";
214 } else if (!strcmp(opal_attr, DT_THRESHOLD_ATTR_SUFFIX)) {
215 if (type == TEMP)
216 attr_name = "max";
217 else if (type == FAN)
218 attr_name = "min";
221 return attr_name;
225 * This function translates the DT node name into the 'hwmon' attribute name.
226 * IBMPOWERNV device node appear like cooling-fan#2-data, amb-temp#1-thrs etc.
227 * which need to be mapped as fan2_input, temp1_max respectively before
228 * populating them inside hwmon device class.
230 static const char *parse_opal_node_name(const char *node_name,
231 enum sensors type, u32 *index)
233 char attr_suffix[MAX_ATTR_LEN];
234 const char *attr_name;
235 int err;
237 err = get_sensor_index_attr(node_name, index, attr_suffix);
238 if (err)
239 return ERR_PTR(err);
241 attr_name = convert_opal_attr_name(type, attr_suffix);
242 if (!attr_name)
243 return ERR_PTR(-ENOENT);
245 return attr_name;
248 static int get_sensor_type(struct device_node *np)
250 enum sensors type;
251 const char *str;
253 for (type = 0; type < ARRAY_SIZE(legacy_compatibles); type++) {
254 if (of_device_is_compatible(np, legacy_compatibles[type]))
255 return type;
259 * Let's check if we have a newer device tree
261 if (!of_device_is_compatible(np, "ibm,opal-sensor"))
262 return MAX_SENSOR_TYPE;
264 if (of_property_read_string(np, "sensor-type", &str))
265 return MAX_SENSOR_TYPE;
267 for (type = 0; type < MAX_SENSOR_TYPE; type++)
268 if (!strcmp(str, sensor_groups[type].name))
269 return type;
271 return MAX_SENSOR_TYPE;
274 static u32 get_sensor_hwmon_index(struct sensor_data *sdata,
275 struct sensor_data *sdata_table, int count)
277 int i;
280 * We don't use the OPAL index on newer device trees
282 if (sdata->opal_index != INVALID_INDEX) {
283 for (i = 0; i < count; i++)
284 if (sdata_table[i].opal_index == sdata->opal_index &&
285 sdata_table[i].type == sdata->type)
286 return sdata_table[i].hwmon_index;
288 return ++sensor_groups[sdata->type].hwmon_index;
291 static int populate_attr_groups(struct platform_device *pdev)
293 struct platform_data *pdata = platform_get_drvdata(pdev);
294 const struct attribute_group **pgroups = pdata->attr_groups;
295 struct device_node *opal, *np;
296 enum sensors type;
298 opal = of_find_node_by_path("/ibm,opal/sensors");
299 for_each_child_of_node(opal, np) {
300 const char *label;
302 if (np->name == NULL)
303 continue;
305 type = get_sensor_type(np);
306 if (type == MAX_SENSOR_TYPE)
307 continue;
309 sensor_groups[type].attr_count++;
312 * add attributes for labels, min and max
314 if (!of_property_read_string(np, "label", &label))
315 sensor_groups[type].attr_count++;
316 if (of_find_property(np, "sensor-data-min", NULL))
317 sensor_groups[type].attr_count++;
318 if (of_find_property(np, "sensor-data-max", NULL))
319 sensor_groups[type].attr_count++;
322 of_node_put(opal);
324 for (type = 0; type < MAX_SENSOR_TYPE; type++) {
325 sensor_groups[type].group.attrs = devm_kzalloc(&pdev->dev,
326 sizeof(struct attribute *) *
327 (sensor_groups[type].attr_count + 1),
328 GFP_KERNEL);
329 if (!sensor_groups[type].group.attrs)
330 return -ENOMEM;
332 pgroups[type] = &sensor_groups[type].group;
333 pdata->sensors_count += sensor_groups[type].attr_count;
334 sensor_groups[type].attr_count = 0;
337 return 0;
340 static void create_hwmon_attr(struct sensor_data *sdata, const char *attr_name,
341 ssize_t (*show)(struct device *dev,
342 struct device_attribute *attr,
343 char *buf))
345 snprintf(sdata->name, MAX_ATTR_LEN, "%s%d_%s",
346 sensor_groups[sdata->type].name, sdata->hwmon_index,
347 attr_name);
349 sysfs_attr_init(&sdata->dev_attr.attr);
350 sdata->dev_attr.attr.name = sdata->name;
351 sdata->dev_attr.attr.mode = S_IRUGO;
352 sdata->dev_attr.show = show;
355 static void populate_sensor(struct sensor_data *sdata, int od, int hd, int sid,
356 const char *attr_name, enum sensors type,
357 const struct attribute_group *pgroup,
358 ssize_t (*show)(struct device *dev,
359 struct device_attribute *attr,
360 char *buf))
362 sdata->id = sid;
363 sdata->type = type;
364 sdata->opal_index = od;
365 sdata->hwmon_index = hd;
366 create_hwmon_attr(sdata, attr_name, show);
367 pgroup->attrs[sensor_groups[type].attr_count++] = &sdata->dev_attr.attr;
370 static char *get_max_attr(enum sensors type)
372 switch (type) {
373 case POWER_INPUT:
374 return "input_highest";
375 default:
376 return "highest";
380 static char *get_min_attr(enum sensors type)
382 switch (type) {
383 case POWER_INPUT:
384 return "input_lowest";
385 default:
386 return "lowest";
391 * Iterate through the device tree for each child of 'sensors' node, create
392 * a sysfs attribute file, the file is named by translating the DT node name
393 * to the name required by the higher 'hwmon' driver like fan1_input, temp1_max
394 * etc..
396 static int create_device_attrs(struct platform_device *pdev)
398 struct platform_data *pdata = platform_get_drvdata(pdev);
399 const struct attribute_group **pgroups = pdata->attr_groups;
400 struct device_node *opal, *np;
401 struct sensor_data *sdata;
402 u32 sensor_id;
403 enum sensors type;
404 u32 count = 0;
405 int err = 0;
407 opal = of_find_node_by_path("/ibm,opal/sensors");
408 sdata = devm_kzalloc(&pdev->dev, pdata->sensors_count * sizeof(*sdata),
409 GFP_KERNEL);
410 if (!sdata) {
411 err = -ENOMEM;
412 goto exit_put_node;
415 for_each_child_of_node(opal, np) {
416 const char *attr_name;
417 u32 opal_index;
418 const char *label;
420 if (np->name == NULL)
421 continue;
423 type = get_sensor_type(np);
424 if (type == MAX_SENSOR_TYPE)
425 continue;
428 * Newer device trees use a "sensor-data" property
429 * name for input.
431 if (of_property_read_u32(np, "sensor-id", &sensor_id) &&
432 of_property_read_u32(np, "sensor-data", &sensor_id)) {
433 dev_info(&pdev->dev,
434 "'sensor-id' missing in the node '%s'\n",
435 np->name);
436 continue;
439 sdata[count].id = sensor_id;
440 sdata[count].type = type;
443 * If we can not parse the node name, it means we are
444 * running on a newer device tree. We can just forget
445 * about the OPAL index and use a defaut value for the
446 * hwmon attribute name
448 attr_name = parse_opal_node_name(np->name, type, &opal_index);
449 if (IS_ERR(attr_name)) {
450 attr_name = "input";
451 opal_index = INVALID_INDEX;
454 sdata[count].opal_index = opal_index;
455 sdata[count].hwmon_index =
456 get_sensor_hwmon_index(&sdata[count], sdata, count);
458 create_hwmon_attr(&sdata[count], attr_name, show_sensor);
460 pgroups[type]->attrs[sensor_groups[type].attr_count++] =
461 &sdata[count++].dev_attr.attr;
463 if (!of_property_read_string(np, "label", &label)) {
465 * For the label attribute, we can reuse the
466 * "properties" of the previous "input"
467 * attribute. They are related to the same
468 * sensor.
471 make_sensor_label(np, &sdata[count], label);
472 populate_sensor(&sdata[count], opal_index,
473 sdata[count - 1].hwmon_index,
474 sensor_id, "label", type, pgroups[type],
475 show_label);
476 count++;
479 if (!of_property_read_u32(np, "sensor-data-max", &sensor_id)) {
480 attr_name = get_max_attr(type);
481 populate_sensor(&sdata[count], opal_index,
482 sdata[count - 1].hwmon_index,
483 sensor_id, attr_name, type,
484 pgroups[type], show_sensor);
485 count++;
488 if (!of_property_read_u32(np, "sensor-data-min", &sensor_id)) {
489 attr_name = get_min_attr(type);
490 populate_sensor(&sdata[count], opal_index,
491 sdata[count - 1].hwmon_index,
492 sensor_id, attr_name, type,
493 pgroups[type], show_sensor);
494 count++;
498 exit_put_node:
499 of_node_put(opal);
500 return err;
503 static int ibmpowernv_probe(struct platform_device *pdev)
505 struct platform_data *pdata;
506 struct device *hwmon_dev;
507 int err;
509 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
510 if (!pdata)
511 return -ENOMEM;
513 platform_set_drvdata(pdev, pdata);
514 pdata->sensors_count = 0;
515 err = populate_attr_groups(pdev);
516 if (err)
517 return err;
519 /* Create sysfs attribute data for each sensor found in the DT */
520 err = create_device_attrs(pdev);
521 if (err)
522 return err;
524 /* Finally, register with hwmon */
525 hwmon_dev = devm_hwmon_device_register_with_groups(&pdev->dev, DRVNAME,
526 pdata,
527 pdata->attr_groups);
529 return PTR_ERR_OR_ZERO(hwmon_dev);
532 static const struct platform_device_id opal_sensor_driver_ids[] = {
534 .name = "opal-sensor",
538 MODULE_DEVICE_TABLE(platform, opal_sensor_driver_ids);
540 static const struct of_device_id opal_sensor_match[] = {
541 { .compatible = "ibm,opal-sensor" },
542 { },
544 MODULE_DEVICE_TABLE(of, opal_sensor_match);
546 static struct platform_driver ibmpowernv_driver = {
547 .probe = ibmpowernv_probe,
548 .id_table = opal_sensor_driver_ids,
549 .driver = {
550 .name = DRVNAME,
551 .of_match_table = opal_sensor_match,
555 module_platform_driver(ibmpowernv_driver);
557 MODULE_AUTHOR("Neelesh Gupta <neelegup@linux.vnet.ibm.com>");
558 MODULE_DESCRIPTION("IBM POWERNV platform sensors");
559 MODULE_LICENSE("GPL");