x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / iio / pressure / bmp280-core.c
blob5f625ffa2a88d8b12d10491d85e920e519c8a97c
1 /*
2 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3 * Copyright (c) 2012 Bosch Sensortec GmbH
4 * Copyright (c) 2012 Unixphere AB
5 * Copyright (c) 2014 Intel Corporation
6 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * Datasheet:
15 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
20 #define pr_fmt(fmt) "bmp280: " fmt
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
36 #include "bmp280.h"
39 * These enums are used for indexing into the array of calibration
40 * coefficients for BMP180.
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
44 struct bmp180_calib {
45 s16 AC1;
46 s16 AC2;
47 s16 AC3;
48 u16 AC4;
49 u16 AC5;
50 u16 AC6;
51 s16 B1;
52 s16 B2;
53 s16 MB;
54 s16 MC;
55 s16 MD;
58 struct bmp280_data {
59 struct device *dev;
60 struct mutex lock;
61 struct regmap *regmap;
62 struct completion done;
63 bool use_eoc;
64 const struct bmp280_chip_info *chip_info;
65 struct bmp180_calib calib;
66 struct regulator *vddd;
67 struct regulator *vdda;
68 unsigned int start_up_time; /* in microseconds */
70 /* log of base 2 of oversampling rate */
71 u8 oversampling_press;
72 u8 oversampling_temp;
73 u8 oversampling_humid;
76 * Carryover value from temperature conversion, used in pressure
77 * calculation.
79 s32 t_fine;
82 struct bmp280_chip_info {
83 const int *oversampling_temp_avail;
84 int num_oversampling_temp_avail;
86 const int *oversampling_press_avail;
87 int num_oversampling_press_avail;
89 const int *oversampling_humid_avail;
90 int num_oversampling_humid_avail;
92 int (*chip_config)(struct bmp280_data *);
93 int (*read_temp)(struct bmp280_data *, int *);
94 int (*read_press)(struct bmp280_data *, int *, int *);
95 int (*read_humid)(struct bmp280_data *, int *, int *);
99 * These enums are used for indexing into the array of compensation
100 * parameters for BMP280.
102 enum { T1, T2, T3 };
103 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
105 static const struct iio_chan_spec bmp280_channels[] = {
107 .type = IIO_PRESSURE,
108 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
109 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
112 .type = IIO_TEMP,
113 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
114 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
117 .type = IIO_HUMIDITYRELATIVE,
118 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
119 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
124 * Returns humidity in percent, resolution is 0.01 percent. Output value of
125 * "47445" represents 47445/1024 = 46.333 %RH.
127 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
130 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
131 s32 adc_humidity)
133 struct device *dev = data->dev;
134 unsigned int H1, H3, tmp;
135 int H2, H4, H5, H6, ret, var;
137 ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
138 if (ret < 0) {
139 dev_err(dev, "failed to read H1 comp value\n");
140 return ret;
143 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
144 if (ret < 0) {
145 dev_err(dev, "failed to read H2 comp value\n");
146 return ret;
148 H2 = sign_extend32(le16_to_cpu(tmp), 15);
150 ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
151 if (ret < 0) {
152 dev_err(dev, "failed to read H3 comp value\n");
153 return ret;
156 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
157 if (ret < 0) {
158 dev_err(dev, "failed to read H4 comp value\n");
159 return ret;
161 H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
162 (be16_to_cpu(tmp) & 0xf), 11);
164 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
165 if (ret < 0) {
166 dev_err(dev, "failed to read H5 comp value\n");
167 return ret;
169 H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
171 ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
172 if (ret < 0) {
173 dev_err(dev, "failed to read H6 comp value\n");
174 return ret;
176 H6 = sign_extend32(tmp, 7);
178 var = ((s32)data->t_fine) - (s32)76800;
179 var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var))
180 + (s32)16384) >> 15) * (((((((var * H6) >> 10)
181 * (((var * (s32)H3) >> 11) + (s32)32768)) >> 10)
182 + (s32)2097152) * H2 + 8192) >> 14);
183 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)H1) >> 4;
185 return var >> 12;
189 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
190 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
191 * value.
193 * Taken from datasheet, Section 3.11.3, "Compensation formula".
195 static s32 bmp280_compensate_temp(struct bmp280_data *data,
196 s32 adc_temp)
198 int ret;
199 s32 var1, var2;
200 __le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
202 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
203 buf, BMP280_COMP_TEMP_REG_COUNT);
204 if (ret < 0) {
205 dev_err(data->dev,
206 "failed to read temperature calibration parameters\n");
207 return ret;
211 * The double casts are necessary because le16_to_cpu returns an
212 * unsigned 16-bit value. Casting that value directly to a
213 * signed 32-bit will not do proper sign extension.
215 * Conversely, T1 and P1 are unsigned values, so they can be
216 * cast straight to the larger type.
218 var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
219 ((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
220 var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
221 ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
222 ((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
223 data->t_fine = var1 + var2;
225 return (data->t_fine * 5 + 128) >> 8;
229 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
230 * integer bits and 8 fractional bits). Output value of "24674867"
231 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
233 * Taken from datasheet, Section 3.11.3, "Compensation formula".
235 static u32 bmp280_compensate_press(struct bmp280_data *data,
236 s32 adc_press)
238 int ret;
239 s64 var1, var2, p;
240 __le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
242 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
243 buf, BMP280_COMP_PRESS_REG_COUNT);
244 if (ret < 0) {
245 dev_err(data->dev,
246 "failed to read pressure calibration parameters\n");
247 return ret;
250 var1 = ((s64)data->t_fine) - 128000;
251 var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
252 var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
253 var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
254 var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
255 ((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
256 var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
258 if (var1 == 0)
259 return 0;
261 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
262 p = div64_s64(p, var1);
263 var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
264 var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
265 p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
267 return (u32)p;
270 static int bmp280_read_temp(struct bmp280_data *data,
271 int *val)
273 int ret;
274 __be32 tmp = 0;
275 s32 adc_temp, comp_temp;
277 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
278 (u8 *) &tmp, 3);
279 if (ret < 0) {
280 dev_err(data->dev, "failed to read temperature\n");
281 return ret;
284 adc_temp = be32_to_cpu(tmp) >> 12;
285 if (adc_temp == BMP280_TEMP_SKIPPED) {
286 /* reading was skipped */
287 dev_err(data->dev, "reading temperature skipped\n");
288 return -EIO;
290 comp_temp = bmp280_compensate_temp(data, adc_temp);
293 * val might be NULL if we're called by the read_press routine,
294 * who only cares about the carry over t_fine value.
296 if (val) {
297 *val = comp_temp * 10;
298 return IIO_VAL_INT;
301 return 0;
304 static int bmp280_read_press(struct bmp280_data *data,
305 int *val, int *val2)
307 int ret;
308 __be32 tmp = 0;
309 s32 adc_press;
310 u32 comp_press;
312 /* Read and compensate temperature so we get a reading of t_fine. */
313 ret = bmp280_read_temp(data, NULL);
314 if (ret < 0)
315 return ret;
317 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
318 (u8 *) &tmp, 3);
319 if (ret < 0) {
320 dev_err(data->dev, "failed to read pressure\n");
321 return ret;
324 adc_press = be32_to_cpu(tmp) >> 12;
325 if (adc_press == BMP280_PRESS_SKIPPED) {
326 /* reading was skipped */
327 dev_err(data->dev, "reading pressure skipped\n");
328 return -EIO;
330 comp_press = bmp280_compensate_press(data, adc_press);
332 *val = comp_press;
333 *val2 = 256000;
335 return IIO_VAL_FRACTIONAL;
338 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
340 int ret;
341 __be16 tmp = 0;
342 s32 adc_humidity;
343 u32 comp_humidity;
345 /* Read and compensate temperature so we get a reading of t_fine. */
346 ret = bmp280_read_temp(data, NULL);
347 if (ret < 0)
348 return ret;
350 ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
351 (u8 *) &tmp, 2);
352 if (ret < 0) {
353 dev_err(data->dev, "failed to read humidity\n");
354 return ret;
357 adc_humidity = be16_to_cpu(tmp);
358 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
359 /* reading was skipped */
360 dev_err(data->dev, "reading humidity skipped\n");
361 return -EIO;
363 comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
365 *val = comp_humidity * 1000 / 1024;
367 return IIO_VAL_INT;
370 static int bmp280_read_raw(struct iio_dev *indio_dev,
371 struct iio_chan_spec const *chan,
372 int *val, int *val2, long mask)
374 int ret;
375 struct bmp280_data *data = iio_priv(indio_dev);
377 pm_runtime_get_sync(data->dev);
378 mutex_lock(&data->lock);
380 switch (mask) {
381 case IIO_CHAN_INFO_PROCESSED:
382 switch (chan->type) {
383 case IIO_HUMIDITYRELATIVE:
384 ret = data->chip_info->read_humid(data, val, val2);
385 break;
386 case IIO_PRESSURE:
387 ret = data->chip_info->read_press(data, val, val2);
388 break;
389 case IIO_TEMP:
390 ret = data->chip_info->read_temp(data, val);
391 break;
392 default:
393 ret = -EINVAL;
394 break;
396 break;
397 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
398 switch (chan->type) {
399 case IIO_HUMIDITYRELATIVE:
400 *val = 1 << data->oversampling_humid;
401 ret = IIO_VAL_INT;
402 break;
403 case IIO_PRESSURE:
404 *val = 1 << data->oversampling_press;
405 ret = IIO_VAL_INT;
406 break;
407 case IIO_TEMP:
408 *val = 1 << data->oversampling_temp;
409 ret = IIO_VAL_INT;
410 break;
411 default:
412 ret = -EINVAL;
413 break;
415 break;
416 default:
417 ret = -EINVAL;
418 break;
421 mutex_unlock(&data->lock);
422 pm_runtime_mark_last_busy(data->dev);
423 pm_runtime_put_autosuspend(data->dev);
425 return ret;
428 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
429 int val)
431 int i;
432 const int *avail = data->chip_info->oversampling_humid_avail;
433 const int n = data->chip_info->num_oversampling_humid_avail;
435 for (i = 0; i < n; i++) {
436 if (avail[i] == val) {
437 data->oversampling_humid = ilog2(val);
439 return data->chip_info->chip_config(data);
442 return -EINVAL;
445 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
446 int val)
448 int i;
449 const int *avail = data->chip_info->oversampling_temp_avail;
450 const int n = data->chip_info->num_oversampling_temp_avail;
452 for (i = 0; i < n; i++) {
453 if (avail[i] == val) {
454 data->oversampling_temp = ilog2(val);
456 return data->chip_info->chip_config(data);
459 return -EINVAL;
462 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
463 int val)
465 int i;
466 const int *avail = data->chip_info->oversampling_press_avail;
467 const int n = data->chip_info->num_oversampling_press_avail;
469 for (i = 0; i < n; i++) {
470 if (avail[i] == val) {
471 data->oversampling_press = ilog2(val);
473 return data->chip_info->chip_config(data);
476 return -EINVAL;
479 static int bmp280_write_raw(struct iio_dev *indio_dev,
480 struct iio_chan_spec const *chan,
481 int val, int val2, long mask)
483 int ret = 0;
484 struct bmp280_data *data = iio_priv(indio_dev);
486 switch (mask) {
487 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
488 pm_runtime_get_sync(data->dev);
489 mutex_lock(&data->lock);
490 switch (chan->type) {
491 case IIO_HUMIDITYRELATIVE:
492 ret = bmp280_write_oversampling_ratio_humid(data, val);
493 break;
494 case IIO_PRESSURE:
495 ret = bmp280_write_oversampling_ratio_press(data, val);
496 break;
497 case IIO_TEMP:
498 ret = bmp280_write_oversampling_ratio_temp(data, val);
499 break;
500 default:
501 ret = -EINVAL;
502 break;
504 mutex_unlock(&data->lock);
505 pm_runtime_mark_last_busy(data->dev);
506 pm_runtime_put_autosuspend(data->dev);
507 break;
508 default:
509 return -EINVAL;
512 return ret;
515 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
517 size_t len = 0;
518 int i;
520 for (i = 0; i < n; i++)
521 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
523 buf[len - 1] = '\n';
525 return len;
528 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
529 struct device_attribute *attr, char *buf)
531 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
533 return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
534 data->chip_info->num_oversampling_temp_avail);
537 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
538 struct device_attribute *attr, char *buf)
540 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
542 return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
543 data->chip_info->num_oversampling_press_avail);
546 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
547 S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
549 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
550 S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
552 static struct attribute *bmp280_attributes[] = {
553 &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
554 &iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
555 NULL,
558 static const struct attribute_group bmp280_attrs_group = {
559 .attrs = bmp280_attributes,
562 static const struct iio_info bmp280_info = {
563 .driver_module = THIS_MODULE,
564 .read_raw = &bmp280_read_raw,
565 .write_raw = &bmp280_write_raw,
566 .attrs = &bmp280_attrs_group,
569 static int bmp280_chip_config(struct bmp280_data *data)
571 int ret;
572 u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
573 BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
575 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
576 BMP280_OSRS_TEMP_MASK |
577 BMP280_OSRS_PRESS_MASK |
578 BMP280_MODE_MASK,
579 osrs | BMP280_MODE_NORMAL);
580 if (ret < 0) {
581 dev_err(data->dev,
582 "failed to write ctrl_meas register\n");
583 return ret;
586 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
587 BMP280_FILTER_MASK,
588 BMP280_FILTER_4X);
589 if (ret < 0) {
590 dev_err(data->dev,
591 "failed to write config register\n");
592 return ret;
595 return ret;
598 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
600 static const struct bmp280_chip_info bmp280_chip_info = {
601 .oversampling_temp_avail = bmp280_oversampling_avail,
602 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
604 .oversampling_press_avail = bmp280_oversampling_avail,
605 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
607 .chip_config = bmp280_chip_config,
608 .read_temp = bmp280_read_temp,
609 .read_press = bmp280_read_press,
612 static int bme280_chip_config(struct bmp280_data *data)
614 int ret;
615 u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
618 * Oversampling of humidity must be set before oversampling of
619 * temperature/pressure is set to become effective.
621 ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
622 BMP280_OSRS_HUMIDITY_MASK, osrs);
624 if (ret < 0)
625 return ret;
627 return bmp280_chip_config(data);
630 static const struct bmp280_chip_info bme280_chip_info = {
631 .oversampling_temp_avail = bmp280_oversampling_avail,
632 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
634 .oversampling_press_avail = bmp280_oversampling_avail,
635 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
637 .oversampling_humid_avail = bmp280_oversampling_avail,
638 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
640 .chip_config = bme280_chip_config,
641 .read_temp = bmp280_read_temp,
642 .read_press = bmp280_read_press,
643 .read_humid = bmp280_read_humid,
646 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
648 int ret;
649 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
650 unsigned int delay_us;
651 unsigned int ctrl;
653 if (data->use_eoc)
654 init_completion(&data->done);
656 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
657 if (ret)
658 return ret;
660 if (data->use_eoc) {
662 * If we have a completion interrupt, use it, wait up to
663 * 100ms. The longest conversion time listed is 76.5 ms for
664 * advanced resolution mode.
666 ret = wait_for_completion_timeout(&data->done,
667 1 + msecs_to_jiffies(100));
668 if (!ret)
669 dev_err(data->dev, "timeout waiting for completion\n");
670 } else {
671 if (ctrl_meas == BMP180_MEAS_TEMP)
672 delay_us = 4500;
673 else
674 delay_us =
675 conversion_time_max[data->oversampling_press];
677 usleep_range(delay_us, delay_us + 1000);
680 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
681 if (ret)
682 return ret;
684 /* The value of this bit reset to "0" after conversion is complete */
685 if (ctrl & BMP180_MEAS_SCO)
686 return -EIO;
688 return 0;
691 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
693 int ret;
694 __be16 tmp = 0;
696 ret = bmp180_measure(data, BMP180_MEAS_TEMP);
697 if (ret)
698 return ret;
700 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
701 if (ret)
702 return ret;
704 *val = be16_to_cpu(tmp);
706 return 0;
709 static int bmp180_read_calib(struct bmp280_data *data,
710 struct bmp180_calib *calib)
712 int ret;
713 int i;
714 __be16 buf[BMP180_REG_CALIB_COUNT / 2];
716 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
717 sizeof(buf));
719 if (ret < 0)
720 return ret;
722 /* None of the words has the value 0 or 0xFFFF */
723 for (i = 0; i < ARRAY_SIZE(buf); i++) {
724 if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
725 return -EIO;
728 /* Toss the calibration data into the entropy pool */
729 add_device_randomness(buf, sizeof(buf));
731 calib->AC1 = be16_to_cpu(buf[AC1]);
732 calib->AC2 = be16_to_cpu(buf[AC2]);
733 calib->AC3 = be16_to_cpu(buf[AC3]);
734 calib->AC4 = be16_to_cpu(buf[AC4]);
735 calib->AC5 = be16_to_cpu(buf[AC5]);
736 calib->AC6 = be16_to_cpu(buf[AC6]);
737 calib->B1 = be16_to_cpu(buf[B1]);
738 calib->B2 = be16_to_cpu(buf[B2]);
739 calib->MB = be16_to_cpu(buf[MB]);
740 calib->MC = be16_to_cpu(buf[MC]);
741 calib->MD = be16_to_cpu(buf[MD]);
743 return 0;
747 * Returns temperature in DegC, resolution is 0.1 DegC.
748 * t_fine carries fine temperature as global value.
750 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
752 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
754 s32 x1, x2;
755 struct bmp180_calib *calib = &data->calib;
757 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
758 x2 = (calib->MC << 11) / (x1 + calib->MD);
759 data->t_fine = x1 + x2;
761 return (data->t_fine + 8) >> 4;
764 static int bmp180_read_temp(struct bmp280_data *data, int *val)
766 int ret;
767 s32 adc_temp, comp_temp;
769 ret = bmp180_read_adc_temp(data, &adc_temp);
770 if (ret)
771 return ret;
773 comp_temp = bmp180_compensate_temp(data, adc_temp);
776 * val might be NULL if we're called by the read_press routine,
777 * who only cares about the carry over t_fine value.
779 if (val) {
780 *val = comp_temp * 100;
781 return IIO_VAL_INT;
784 return 0;
787 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
789 int ret;
790 __be32 tmp = 0;
791 u8 oss = data->oversampling_press;
793 ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
794 if (ret)
795 return ret;
797 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
798 if (ret)
799 return ret;
801 *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
803 return 0;
807 * Returns pressure in Pa, resolution is 1 Pa.
809 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
811 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
813 s32 x1, x2, x3, p;
814 s32 b3, b6;
815 u32 b4, b7;
816 s32 oss = data->oversampling_press;
817 struct bmp180_calib *calib = &data->calib;
819 b6 = data->t_fine - 4000;
820 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
821 x2 = calib->AC2 * b6 >> 11;
822 x3 = x1 + x2;
823 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
824 x1 = calib->AC3 * b6 >> 13;
825 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
826 x3 = (x1 + x2 + 2) >> 2;
827 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
828 b7 = ((u32)adc_press - b3) * (50000 >> oss);
829 if (b7 < 0x80000000)
830 p = (b7 * 2) / b4;
831 else
832 p = (b7 / b4) * 2;
834 x1 = (p >> 8) * (p >> 8);
835 x1 = (x1 * 3038) >> 16;
836 x2 = (-7357 * p) >> 16;
838 return p + ((x1 + x2 + 3791) >> 4);
841 static int bmp180_read_press(struct bmp280_data *data,
842 int *val, int *val2)
844 int ret;
845 s32 adc_press;
846 u32 comp_press;
848 /* Read and compensate temperature so we get a reading of t_fine. */
849 ret = bmp180_read_temp(data, NULL);
850 if (ret)
851 return ret;
853 ret = bmp180_read_adc_press(data, &adc_press);
854 if (ret)
855 return ret;
857 comp_press = bmp180_compensate_press(data, adc_press);
859 *val = comp_press;
860 *val2 = 1000;
862 return IIO_VAL_FRACTIONAL;
865 static int bmp180_chip_config(struct bmp280_data *data)
867 return 0;
870 static const int bmp180_oversampling_temp_avail[] = { 1 };
871 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
873 static const struct bmp280_chip_info bmp180_chip_info = {
874 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
875 .num_oversampling_temp_avail =
876 ARRAY_SIZE(bmp180_oversampling_temp_avail),
878 .oversampling_press_avail = bmp180_oversampling_press_avail,
879 .num_oversampling_press_avail =
880 ARRAY_SIZE(bmp180_oversampling_press_avail),
882 .chip_config = bmp180_chip_config,
883 .read_temp = bmp180_read_temp,
884 .read_press = bmp180_read_press,
887 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
889 struct bmp280_data *data = d;
891 complete(&data->done);
893 return IRQ_HANDLED;
896 static int bmp085_fetch_eoc_irq(struct device *dev,
897 const char *name,
898 int irq,
899 struct bmp280_data *data)
901 unsigned long irq_trig;
902 int ret;
904 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
905 if (irq_trig != IRQF_TRIGGER_RISING) {
906 dev_err(dev, "non-rising trigger given for EOC interrupt, "
907 "trying to enforce it\n");
908 irq_trig = IRQF_TRIGGER_RISING;
910 ret = devm_request_threaded_irq(dev,
911 irq,
912 bmp085_eoc_irq,
913 NULL,
914 irq_trig,
915 name,
916 data);
917 if (ret) {
918 /* Bail out without IRQ but keep the driver in place */
919 dev_err(dev, "unable to request DRDY IRQ\n");
920 return 0;
923 data->use_eoc = true;
924 return 0;
927 int bmp280_common_probe(struct device *dev,
928 struct regmap *regmap,
929 unsigned int chip,
930 const char *name,
931 int irq)
933 int ret;
934 struct iio_dev *indio_dev;
935 struct bmp280_data *data;
936 unsigned int chip_id;
937 struct gpio_desc *gpiod;
939 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
940 if (!indio_dev)
941 return -ENOMEM;
943 data = iio_priv(indio_dev);
944 mutex_init(&data->lock);
945 data->dev = dev;
947 indio_dev->dev.parent = dev;
948 indio_dev->name = name;
949 indio_dev->channels = bmp280_channels;
950 indio_dev->info = &bmp280_info;
951 indio_dev->modes = INDIO_DIRECT_MODE;
953 switch (chip) {
954 case BMP180_CHIP_ID:
955 indio_dev->num_channels = 2;
956 data->chip_info = &bmp180_chip_info;
957 data->oversampling_press = ilog2(8);
958 data->oversampling_temp = ilog2(1);
959 data->start_up_time = 10000;
960 break;
961 case BMP280_CHIP_ID:
962 indio_dev->num_channels = 2;
963 data->chip_info = &bmp280_chip_info;
964 data->oversampling_press = ilog2(16);
965 data->oversampling_temp = ilog2(2);
966 data->start_up_time = 2000;
967 break;
968 case BME280_CHIP_ID:
969 indio_dev->num_channels = 3;
970 data->chip_info = &bme280_chip_info;
971 data->oversampling_press = ilog2(16);
972 data->oversampling_humid = ilog2(16);
973 data->oversampling_temp = ilog2(2);
974 data->start_up_time = 2000;
975 break;
976 default:
977 return -EINVAL;
980 /* Bring up regulators */
981 data->vddd = devm_regulator_get(dev, "vddd");
982 if (IS_ERR(data->vddd)) {
983 dev_err(dev, "failed to get VDDD regulator\n");
984 return PTR_ERR(data->vddd);
986 ret = regulator_enable(data->vddd);
987 if (ret) {
988 dev_err(dev, "failed to enable VDDD regulator\n");
989 return ret;
991 data->vdda = devm_regulator_get(dev, "vdda");
992 if (IS_ERR(data->vdda)) {
993 dev_err(dev, "failed to get VDDA regulator\n");
994 ret = PTR_ERR(data->vdda);
995 goto out_disable_vddd;
997 ret = regulator_enable(data->vdda);
998 if (ret) {
999 dev_err(dev, "failed to enable VDDA regulator\n");
1000 goto out_disable_vddd;
1002 /* Wait to make sure we started up properly */
1003 usleep_range(data->start_up_time, data->start_up_time + 100);
1005 /* Bring chip out of reset if there is an assigned GPIO line */
1006 gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1007 /* Deassert the signal */
1008 if (!IS_ERR(gpiod)) {
1009 dev_info(dev, "release reset\n");
1010 gpiod_set_value(gpiod, 0);
1013 data->regmap = regmap;
1014 ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1015 if (ret < 0)
1016 goto out_disable_vdda;
1017 if (chip_id != chip) {
1018 dev_err(dev, "bad chip id: expected %x got %x\n",
1019 chip, chip_id);
1020 ret = -EINVAL;
1021 goto out_disable_vdda;
1024 ret = data->chip_info->chip_config(data);
1025 if (ret < 0)
1026 goto out_disable_vdda;
1028 dev_set_drvdata(dev, indio_dev);
1031 * The BMP085 and BMP180 has calibration in an E2PROM, read it out
1032 * at probe time. It will not change.
1034 if (chip_id == BMP180_CHIP_ID) {
1035 ret = bmp180_read_calib(data, &data->calib);
1036 if (ret < 0) {
1037 dev_err(data->dev,
1038 "failed to read calibration coefficients\n");
1039 goto out_disable_vdda;
1044 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1045 * however as it happens, the BMP085 shares the chip ID of BMP180
1046 * so we look for an IRQ if we have that.
1048 if (irq > 0 || (chip_id == BMP180_CHIP_ID)) {
1049 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1050 if (ret)
1051 goto out_disable_vdda;
1054 /* Enable runtime PM */
1055 pm_runtime_get_noresume(dev);
1056 pm_runtime_set_active(dev);
1057 pm_runtime_enable(dev);
1059 * Set autosuspend to two orders of magnitude larger than the
1060 * start-up time.
1062 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1063 pm_runtime_use_autosuspend(dev);
1064 pm_runtime_put(dev);
1066 ret = iio_device_register(indio_dev);
1067 if (ret)
1068 goto out_runtime_pm_disable;
1071 return 0;
1073 out_runtime_pm_disable:
1074 pm_runtime_get_sync(data->dev);
1075 pm_runtime_put_noidle(data->dev);
1076 pm_runtime_disable(data->dev);
1077 out_disable_vdda:
1078 regulator_disable(data->vdda);
1079 out_disable_vddd:
1080 regulator_disable(data->vddd);
1081 return ret;
1083 EXPORT_SYMBOL(bmp280_common_probe);
1085 int bmp280_common_remove(struct device *dev)
1087 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1088 struct bmp280_data *data = iio_priv(indio_dev);
1090 iio_device_unregister(indio_dev);
1091 pm_runtime_get_sync(data->dev);
1092 pm_runtime_put_noidle(data->dev);
1093 pm_runtime_disable(data->dev);
1094 regulator_disable(data->vdda);
1095 regulator_disable(data->vddd);
1096 return 0;
1098 EXPORT_SYMBOL(bmp280_common_remove);
1100 #ifdef CONFIG_PM
1101 static int bmp280_runtime_suspend(struct device *dev)
1103 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1104 struct bmp280_data *data = iio_priv(indio_dev);
1105 int ret;
1107 ret = regulator_disable(data->vdda);
1108 if (ret)
1109 return ret;
1110 return regulator_disable(data->vddd);
1113 static int bmp280_runtime_resume(struct device *dev)
1115 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1116 struct bmp280_data *data = iio_priv(indio_dev);
1117 int ret;
1119 ret = regulator_enable(data->vddd);
1120 if (ret)
1121 return ret;
1122 ret = regulator_enable(data->vdda);
1123 if (ret)
1124 return ret;
1125 usleep_range(data->start_up_time, data->start_up_time + 100);
1126 return data->chip_info->chip_config(data);
1128 #endif /* CONFIG_PM */
1130 const struct dev_pm_ops bmp280_dev_pm_ops = {
1131 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1132 pm_runtime_force_resume)
1133 SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1134 bmp280_runtime_resume, NULL)
1136 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1138 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1139 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1140 MODULE_LICENSE("GPL v2");