x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / mtd / nand / nand_hynix.c
blob985751eda3172e61552422164ce1ffc312ba472b
1 /*
2 * Copyright (C) 2017 Free Electrons
3 * Copyright (C) 2017 NextThing Co
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/mtd/rawnand.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
22 #define NAND_HYNIX_CMD_SET_PARAMS 0x36
23 #define NAND_HYNIX_CMD_APPLY_PARAMS 0x16
25 #define NAND_HYNIX_1XNM_RR_REPEAT 8
27 /**
28 * struct hynix_read_retry - read-retry data
29 * @nregs: number of register to set when applying a new read-retry mode
30 * @regs: register offsets (NAND chip dependent)
31 * @values: array of values to set in registers. The array size is equal to
32 * (nregs * nmodes)
34 struct hynix_read_retry {
35 int nregs;
36 const u8 *regs;
37 u8 values[0];
40 /**
41 * struct hynix_nand - private Hynix NAND struct
42 * @nand_technology: manufacturing process expressed in picometer
43 * @read_retry: read-retry information
45 struct hynix_nand {
46 const struct hynix_read_retry *read_retry;
49 /**
50 * struct hynix_read_retry_otp - structure describing how the read-retry OTP
51 * area
52 * @nregs: number of hynix private registers to set before reading the reading
53 * the OTP area
54 * @regs: registers that should be configured
55 * @values: values that should be set in regs
56 * @page: the address to pass to the READ_PAGE command. Depends on the NAND
57 * chip
58 * @size: size of the read-retry OTP section
60 struct hynix_read_retry_otp {
61 int nregs;
62 const u8 *regs;
63 const u8 *values;
64 int page;
65 int size;
68 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
70 struct mtd_info *mtd = nand_to_mtd(chip);
71 u8 jedecid[6] = { };
72 int i = 0;
74 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
75 for (i = 0; i < 5; i++)
76 jedecid[i] = chip->read_byte(mtd);
78 return !strcmp("JEDEC", jedecid);
81 static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
83 struct nand_chip *chip = mtd_to_nand(mtd);
84 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
85 const u8 *values;
86 int status;
87 int i;
89 values = hynix->read_retry->values +
90 (retry_mode * hynix->read_retry->nregs);
92 /* Enter 'Set Hynix Parameters' mode */
93 chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1);
96 * Configure the NAND in the requested read-retry mode.
97 * This is done by setting pre-defined values in internal NAND
98 * registers.
100 * The set of registers is NAND specific, and the values are either
101 * predefined or extracted from an OTP area on the NAND (values are
102 * probably tweaked at production in this case).
104 for (i = 0; i < hynix->read_retry->nregs; i++) {
105 int column = hynix->read_retry->regs[i];
107 column |= column << 8;
108 chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
109 chip->write_byte(mtd, values[i]);
112 /* Apply the new settings. */
113 chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
115 status = chip->waitfunc(mtd, chip);
116 if (status & NAND_STATUS_FAIL)
117 return -EIO;
119 return 0;
123 * hynix_get_majority - get the value that is occurring the most in a given
124 * set of values
125 * @in: the array of values to test
126 * @repeat: the size of the in array
127 * @out: pointer used to store the output value
129 * This function implements the 'majority check' logic that is supposed to
130 * overcome the unreliability of MLC NANDs when reading the OTP area storing
131 * the read-retry parameters.
133 * It's based on a pretty simple assumption: if we repeat the same value
134 * several times and then take the one that is occurring the most, we should
135 * find the correct value.
136 * Let's hope this dummy algorithm prevents us from losing the read-retry
137 * parameters.
139 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
141 int i, j, half = repeat / 2;
144 * We only test the first half of the in array because we must ensure
145 * that the value is at least occurring repeat / 2 times.
147 * This loop is suboptimal since we may count the occurrences of the
148 * same value several time, but we are doing that on small sets, which
149 * makes it acceptable.
151 for (i = 0; i < half; i++) {
152 int cnt = 0;
153 u8 val = in[i];
155 /* Count all values that are matching the one at index i. */
156 for (j = i + 1; j < repeat; j++) {
157 if (in[j] == val)
158 cnt++;
161 /* We found a value occurring more than repeat / 2. */
162 if (cnt > half) {
163 *out = val;
164 return 0;
168 return -EIO;
171 static int hynix_read_rr_otp(struct nand_chip *chip,
172 const struct hynix_read_retry_otp *info,
173 void *buf)
175 struct mtd_info *mtd = nand_to_mtd(chip);
176 int i;
178 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
180 chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1);
182 for (i = 0; i < info->nregs; i++) {
183 int column = info->regs[i];
185 column |= column << 8;
186 chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
187 chip->write_byte(mtd, info->values[i]);
190 chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
192 /* Sequence to enter OTP mode? */
193 chip->cmdfunc(mtd, 0x17, -1, -1);
194 chip->cmdfunc(mtd, 0x04, -1, -1);
195 chip->cmdfunc(mtd, 0x19, -1, -1);
197 /* Now read the page */
198 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, info->page);
199 chip->read_buf(mtd, buf, info->size);
201 /* Put everything back to normal */
202 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
203 chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, 0x38, -1);
204 chip->write_byte(mtd, 0x0);
205 chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
206 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, -1);
208 return 0;
211 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0
212 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8
213 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \
214 (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
216 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
217 int mode, int reg, bool inv, u8 *val)
219 u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
220 int val_offs = (mode * nregs) + reg;
221 int set_size = nmodes * nregs;
222 int i, ret;
224 for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
225 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
227 tmp[i] = buf[val_offs + set_offs];
230 ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
231 if (ret)
232 return ret;
234 if (inv)
235 *val = ~*val;
237 return 0;
240 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
241 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
244 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
245 const struct hynix_read_retry_otp *info)
247 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
248 struct hynix_read_retry *rr = NULL;
249 int ret, i, j;
250 u8 nregs, nmodes;
251 u8 *buf;
253 buf = kmalloc(info->size, GFP_KERNEL);
254 if (!buf)
255 return -ENOMEM;
257 ret = hynix_read_rr_otp(chip, info, buf);
258 if (ret)
259 goto out;
261 ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
262 &nmodes);
263 if (ret)
264 goto out;
266 ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
267 NAND_HYNIX_1XNM_RR_REPEAT,
268 &nregs);
269 if (ret)
270 goto out;
272 rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
273 if (!rr) {
274 ret = -ENOMEM;
275 goto out;
278 for (i = 0; i < nmodes; i++) {
279 for (j = 0; j < nregs; j++) {
280 u8 *val = rr->values + (i * nregs);
282 ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
283 false, val);
284 if (!ret)
285 continue;
287 ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
288 true, val);
289 if (ret)
290 goto out;
294 rr->nregs = nregs;
295 rr->regs = hynix_1xnm_mlc_read_retry_regs;
296 hynix->read_retry = rr;
297 chip->setup_read_retry = hynix_nand_setup_read_retry;
298 chip->read_retries = nmodes;
300 out:
301 kfree(buf);
303 if (ret)
304 kfree(rr);
306 return ret;
309 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
310 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
312 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
314 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
315 .regs = hynix_mlc_1xnm_rr_otp_regs,
316 .values = hynix_mlc_1xnm_rr_otp_values,
317 .page = 0x21f,
318 .size = 784
321 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
322 .regs = hynix_mlc_1xnm_rr_otp_regs,
323 .values = hynix_mlc_1xnm_rr_otp_values,
324 .page = 0x200,
325 .size = 528,
329 static int hynix_nand_rr_init(struct nand_chip *chip)
331 int i, ret = 0;
332 bool valid_jedecid;
334 valid_jedecid = hynix_nand_has_valid_jedecid(chip);
337 * We only support read-retry for 1xnm NANDs, and those NANDs all
338 * expose a valid JEDEC ID.
340 if (valid_jedecid) {
341 u8 nand_tech = chip->id.data[5] >> 4;
343 /* 1xnm technology */
344 if (nand_tech == 4) {
345 for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
346 i++) {
348 * FIXME: Hynix recommend to copy the
349 * read-retry OTP area into a normal page.
351 ret = hynix_mlc_1xnm_rr_init(chip,
352 hynix_mlc_1xnm_rr_otps);
353 if (!ret)
354 break;
359 if (ret)
360 pr_warn("failed to initialize read-retry infrastructure");
362 return 0;
365 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
366 bool valid_jedecid)
368 struct mtd_info *mtd = nand_to_mtd(chip);
369 u8 oobsize;
371 oobsize = ((chip->id.data[3] >> 2) & 0x3) |
372 ((chip->id.data[3] >> 4) & 0x4);
374 if (valid_jedecid) {
375 switch (oobsize) {
376 case 0:
377 mtd->oobsize = 2048;
378 break;
379 case 1:
380 mtd->oobsize = 1664;
381 break;
382 case 2:
383 mtd->oobsize = 1024;
384 break;
385 case 3:
386 mtd->oobsize = 640;
387 break;
388 default:
390 * We should never reach this case, but if that
391 * happens, this probably means Hynix decided to use
392 * a different extended ID format, and we should find
393 * a way to support it.
395 WARN(1, "Invalid OOB size");
396 break;
398 } else {
399 switch (oobsize) {
400 case 0:
401 mtd->oobsize = 128;
402 break;
403 case 1:
404 mtd->oobsize = 224;
405 break;
406 case 2:
407 mtd->oobsize = 448;
408 break;
409 case 3:
410 mtd->oobsize = 64;
411 break;
412 case 4:
413 mtd->oobsize = 32;
414 break;
415 case 5:
416 mtd->oobsize = 16;
417 break;
418 case 6:
419 mtd->oobsize = 640;
420 break;
421 default:
423 * We should never reach this case, but if that
424 * happens, this probably means Hynix decided to use
425 * a different extended ID format, and we should find
426 * a way to support it.
428 WARN(1, "Invalid OOB size");
429 break;
434 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
435 bool valid_jedecid)
437 u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
439 if (valid_jedecid) {
440 /* Reference: H27UCG8T2E datasheet */
441 chip->ecc_step_ds = 1024;
443 switch (ecc_level) {
444 case 0:
445 chip->ecc_step_ds = 0;
446 chip->ecc_strength_ds = 0;
447 break;
448 case 1:
449 chip->ecc_strength_ds = 4;
450 break;
451 case 2:
452 chip->ecc_strength_ds = 24;
453 break;
454 case 3:
455 chip->ecc_strength_ds = 32;
456 break;
457 case 4:
458 chip->ecc_strength_ds = 40;
459 break;
460 case 5:
461 chip->ecc_strength_ds = 50;
462 break;
463 case 6:
464 chip->ecc_strength_ds = 60;
465 break;
466 default:
468 * We should never reach this case, but if that
469 * happens, this probably means Hynix decided to use
470 * a different extended ID format, and we should find
471 * a way to support it.
473 WARN(1, "Invalid ECC requirements");
475 } else {
477 * The ECC requirements field meaning depends on the
478 * NAND technology.
480 u8 nand_tech = chip->id.data[5] & 0x7;
482 if (nand_tech < 3) {
483 /* > 26nm, reference: H27UBG8T2A datasheet */
484 if (ecc_level < 5) {
485 chip->ecc_step_ds = 512;
486 chip->ecc_strength_ds = 1 << ecc_level;
487 } else if (ecc_level < 7) {
488 if (ecc_level == 5)
489 chip->ecc_step_ds = 2048;
490 else
491 chip->ecc_step_ds = 1024;
492 chip->ecc_strength_ds = 24;
493 } else {
495 * We should never reach this case, but if that
496 * happens, this probably means Hynix decided
497 * to use a different extended ID format, and
498 * we should find a way to support it.
500 WARN(1, "Invalid ECC requirements");
502 } else {
503 /* <= 26nm, reference: H27UBG8T2B datasheet */
504 if (!ecc_level) {
505 chip->ecc_step_ds = 0;
506 chip->ecc_strength_ds = 0;
507 } else if (ecc_level < 5) {
508 chip->ecc_step_ds = 512;
509 chip->ecc_strength_ds = 1 << (ecc_level - 1);
510 } else {
511 chip->ecc_step_ds = 1024;
512 chip->ecc_strength_ds = 24 +
513 (8 * (ecc_level - 5));
519 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
520 bool valid_jedecid)
522 u8 nand_tech;
524 /* We need scrambling on all TLC NANDs*/
525 if (chip->bits_per_cell > 2)
526 chip->options |= NAND_NEED_SCRAMBLING;
528 /* And on MLC NANDs with sub-3xnm process */
529 if (valid_jedecid) {
530 nand_tech = chip->id.data[5] >> 4;
532 /* < 3xnm */
533 if (nand_tech > 0)
534 chip->options |= NAND_NEED_SCRAMBLING;
535 } else {
536 nand_tech = chip->id.data[5] & 0x7;
538 /* < 32nm */
539 if (nand_tech > 2)
540 chip->options |= NAND_NEED_SCRAMBLING;
544 static void hynix_nand_decode_id(struct nand_chip *chip)
546 struct mtd_info *mtd = nand_to_mtd(chip);
547 bool valid_jedecid;
548 u8 tmp;
551 * Exclude all SLC NANDs from this advanced detection scheme.
552 * According to the ranges defined in several datasheets, it might
553 * appear that even SLC NANDs could fall in this extended ID scheme.
554 * If that the case rework the test to let SLC NANDs go through the
555 * detection process.
557 if (chip->id.len < 6 || nand_is_slc(chip)) {
558 nand_decode_ext_id(chip);
559 return;
562 /* Extract pagesize */
563 mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
565 tmp = (chip->id.data[3] >> 4) & 0x3;
567 * When bit7 is set that means we start counting at 1MiB, otherwise
568 * we start counting at 128KiB and shift this value the content of
569 * ID[3][4:5].
570 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
571 * this case the erasesize is set to 768KiB.
573 if (chip->id.data[3] & 0x80)
574 mtd->erasesize = SZ_1M << tmp;
575 else if (tmp == 3)
576 mtd->erasesize = SZ_512K + SZ_256K;
577 else
578 mtd->erasesize = SZ_128K << tmp;
581 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
582 * not exposing a valid JEDEC parameter table.
583 * These NANDs use a different NAND ID scheme.
585 valid_jedecid = hynix_nand_has_valid_jedecid(chip);
587 hynix_nand_extract_oobsize(chip, valid_jedecid);
588 hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
589 hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
592 static void hynix_nand_cleanup(struct nand_chip *chip)
594 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
596 if (!hynix)
597 return;
599 kfree(hynix->read_retry);
600 kfree(hynix);
601 nand_set_manufacturer_data(chip, NULL);
604 static int hynix_nand_init(struct nand_chip *chip)
606 struct hynix_nand *hynix;
607 int ret;
609 if (!nand_is_slc(chip))
610 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
611 else
612 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
614 hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
615 if (!hynix)
616 return -ENOMEM;
618 nand_set_manufacturer_data(chip, hynix);
620 ret = hynix_nand_rr_init(chip);
621 if (ret)
622 hynix_nand_cleanup(chip);
624 return ret;
627 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
628 .detect = hynix_nand_decode_id,
629 .init = hynix_nand_init,
630 .cleanup = hynix_nand_cleanup,