2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License version 2 as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 * Copyright (C) 2015 - 2016 Cavium, Inc.
17 #include <linux/bitfield.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/of_address.h>
21 #include <linux/of_pci.h>
22 #include <linux/pci-acpi.h>
23 #include <linux/pci-ecam.h>
24 #include <linux/platform_device.h>
27 #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS))
29 #define PEM_CFG_WR 0x28
30 #define PEM_CFG_RD 0x30
32 struct thunder_pem_pci
{
34 void __iomem
*pem_reg_base
;
37 static int thunder_pem_bridge_read(struct pci_bus
*bus
, unsigned int devfn
,
38 int where
, int size
, u32
*val
)
40 u64 read_val
, tmp_val
;
41 struct pci_config_window
*cfg
= bus
->sysdata
;
42 struct thunder_pem_pci
*pem_pci
= (struct thunder_pem_pci
*)cfg
->priv
;
44 if (devfn
!= 0 || where
>= 2048) {
46 return PCIBIOS_DEVICE_NOT_FOUND
;
50 * 32-bit accesses only. Write the address to the low order
51 * bits of PEM_CFG_RD, then trigger the read by reading back.
52 * The config data lands in the upper 32-bits of PEM_CFG_RD.
54 read_val
= where
& ~3ull;
55 writeq(read_val
, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
56 read_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
60 * The config space contains some garbage, fix it up. Also
61 * synthesize an EA capability for the BAR used by MSI-X.
65 read_val
&= 0xffff00ff;
66 read_val
|= 0x00007000; /* Skip MSI CAP */
68 case 0x70: /* Express Cap */
70 * Change PME interrupt to vector 2 on T88 where it
71 * reads as 0, else leave it alone.
73 if (!(read_val
& (0x1f << 25)))
74 read_val
|= (2u << 25);
76 case 0xb0: /* MSI-X Cap */
77 /* TableSize=2 or 4, Next Cap is EA */
78 read_val
&= 0xc00000ff;
80 * If Express Cap(0x70) raw PME vector reads as 0 we are on
81 * T88 and TableSize is reported as 4, else TableSize
84 writeq(0x70, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
85 tmp_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
87 if (!(tmp_val
& (0x1f << 25)))
88 read_val
|= 0x0003bc00;
90 read_val
|= 0x0001bc00;
93 /* Table offset=0, BIR=0 */
94 read_val
= 0x00000000;
97 /* BPA offset=0xf0000, BIR=0 */
98 read_val
= 0x000f0000;
101 /* EA, 1 entry, no next Cap */
102 read_val
= 0x00010014;
106 read_val
= 0x00000000;
109 /* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */
110 read_val
= 0x80ff0003;
113 read_val
= pem_pci
->ea_entry
[0];
116 read_val
= pem_pci
->ea_entry
[1];
119 read_val
= pem_pci
->ea_entry
[2];
124 read_val
>>= (8 * (where
& 3));
136 return PCIBIOS_SUCCESSFUL
;
139 static int thunder_pem_config_read(struct pci_bus
*bus
, unsigned int devfn
,
140 int where
, int size
, u32
*val
)
142 struct pci_config_window
*cfg
= bus
->sysdata
;
144 if (bus
->number
< cfg
->busr
.start
||
145 bus
->number
> cfg
->busr
.end
)
146 return PCIBIOS_DEVICE_NOT_FOUND
;
149 * The first device on the bus is the PEM PCIe bridge.
150 * Special case its config access.
152 if (bus
->number
== cfg
->busr
.start
)
153 return thunder_pem_bridge_read(bus
, devfn
, where
, size
, val
);
155 return pci_generic_config_read(bus
, devfn
, where
, size
, val
);
159 * Some of the w1c_bits below also include read-only or non-writable
160 * reserved bits, this makes the code simpler and is OK as the bits
161 * are not affected by writing zeros to them.
163 static u32
thunder_pem_bridge_w1c_bits(u64 where_aligned
)
167 switch (where_aligned
) {
168 case 0x04: /* Command/Status */
169 case 0x1c: /* Base and I/O Limit/Secondary Status */
170 w1c_bits
= 0xff000000;
172 case 0x44: /* Power Management Control and Status */
173 w1c_bits
= 0xfffffe00;
175 case 0x78: /* Device Control/Device Status */
176 case 0x80: /* Link Control/Link Status */
177 case 0x88: /* Slot Control/Slot Status */
178 case 0x90: /* Root Status */
179 case 0xa0: /* Link Control 2 Registers/Link Status 2 */
180 w1c_bits
= 0xffff0000;
182 case 0x104: /* Uncorrectable Error Status */
183 case 0x110: /* Correctable Error Status */
184 case 0x130: /* Error Status */
185 case 0x160: /* Link Control 4 */
186 w1c_bits
= 0xffffffff;
194 /* Some bits must be written to one so they appear to be read-only. */
195 static u32
thunder_pem_bridge_w1_bits(u64 where_aligned
)
199 switch (where_aligned
) {
200 case 0x1c: /* I/O Base / I/O Limit, Secondary Status */
201 /* Force 32-bit I/O addressing. */
204 case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */
205 /* Force 64-bit addressing */
206 w1_bits
= 0x00010001;
215 static int thunder_pem_bridge_write(struct pci_bus
*bus
, unsigned int devfn
,
216 int where
, int size
, u32 val
)
218 struct pci_config_window
*cfg
= bus
->sysdata
;
219 struct thunder_pem_pci
*pem_pci
= (struct thunder_pem_pci
*)cfg
->priv
;
220 u64 write_val
, read_val
;
221 u64 where_aligned
= where
& ~3ull;
225 if (devfn
!= 0 || where
>= 2048)
226 return PCIBIOS_DEVICE_NOT_FOUND
;
229 * 32-bit accesses only. If the write is for a size smaller
230 * than 32-bits, we must first read the 32-bit value and merge
231 * in the desired bits and then write the whole 32-bits back
236 writeq(where_aligned
, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
237 read_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
239 mask
= ~(0xff << (8 * (where
& 3)));
241 val
= (val
& 0xff) << (8 * (where
& 3));
242 val
|= (u32
)read_val
;
245 writeq(where_aligned
, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
246 read_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
248 mask
= ~(0xffff << (8 * (where
& 3)));
250 val
= (val
& 0xffff) << (8 * (where
& 3));
251 val
|= (u32
)read_val
;
258 * By expanding the write width to 32 bits, we may
259 * inadvertently hit some W1C bits that were not intended to
260 * be written. Calculate the mask that must be applied to the
261 * data to be written to avoid these cases.
264 u32 w1c_bits
= thunder_pem_bridge_w1c_bits(where
);
273 * Some bits must be read-only with value of one. Since the
274 * access method allows these to be cleared if a zero is
275 * written, force them to one before writing.
277 val
|= thunder_pem_bridge_w1_bits(where_aligned
);
280 * Low order bits are the config address, the high order 32
281 * bits are the data to be written.
283 write_val
= (((u64
)val
) << 32) | where_aligned
;
284 writeq(write_val
, pem_pci
->pem_reg_base
+ PEM_CFG_WR
);
285 return PCIBIOS_SUCCESSFUL
;
288 static int thunder_pem_config_write(struct pci_bus
*bus
, unsigned int devfn
,
289 int where
, int size
, u32 val
)
291 struct pci_config_window
*cfg
= bus
->sysdata
;
293 if (bus
->number
< cfg
->busr
.start
||
294 bus
->number
> cfg
->busr
.end
)
295 return PCIBIOS_DEVICE_NOT_FOUND
;
297 * The first device on the bus is the PEM PCIe bridge.
298 * Special case its config access.
300 if (bus
->number
== cfg
->busr
.start
)
301 return thunder_pem_bridge_write(bus
, devfn
, where
, size
, val
);
304 return pci_generic_config_write(bus
, devfn
, where
, size
, val
);
307 static int thunder_pem_init(struct device
*dev
, struct pci_config_window
*cfg
,
308 struct resource
*res_pem
)
310 struct thunder_pem_pci
*pem_pci
;
311 resource_size_t bar4_start
;
313 pem_pci
= devm_kzalloc(dev
, sizeof(*pem_pci
), GFP_KERNEL
);
317 pem_pci
->pem_reg_base
= devm_ioremap(dev
, res_pem
->start
, 0x10000);
318 if (!pem_pci
->pem_reg_base
)
322 * The MSI-X BAR for the PEM and AER interrupts is located at
323 * a fixed offset from the PEM register base. Generate a
324 * fragment of the synthesized Enhanced Allocation capability
325 * structure here for the BAR.
327 bar4_start
= res_pem
->start
+ 0xf00000;
328 pem_pci
->ea_entry
[0] = (u32
)bar4_start
| 2;
329 pem_pci
->ea_entry
[1] = (u32
)(res_pem
->end
- bar4_start
) & ~3u;
330 pem_pci
->ea_entry
[2] = (u32
)(bar4_start
>> 32);
336 #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)
338 #define PEM_RES_BASE 0x87e0c0000000UL
339 #define PEM_NODE_MASK GENMASK(45, 44)
340 #define PEM_INDX_MASK GENMASK(26, 24)
341 #define PEM_MIN_DOM_IN_NODE 4
342 #define PEM_MAX_DOM_IN_NODE 10
344 static void thunder_pem_reserve_range(struct device
*dev
, int seg
,
347 resource_size_t start
= r
->start
, end
= r
->end
;
348 struct resource
*res
;
349 const char *regionid
;
351 regionid
= kasprintf(GFP_KERNEL
, "PEM RC:%d", seg
);
355 res
= request_mem_region(start
, end
- start
+ 1, regionid
);
357 res
->flags
&= ~IORESOURCE_BUSY
;
361 dev_info(dev
, "%pR %s reserved\n", r
,
362 res
? "has been" : "could not be");
365 static void thunder_pem_legacy_fw(struct acpi_pci_root
*root
,
366 struct resource
*res_pem
)
368 int node
= acpi_get_node(root
->device
->handle
);
371 if (node
== NUMA_NO_NODE
)
374 index
= root
->segment
- PEM_MIN_DOM_IN_NODE
;
375 index
-= node
* PEM_MAX_DOM_IN_NODE
;
376 res_pem
->start
= PEM_RES_BASE
| FIELD_PREP(PEM_NODE_MASK
, node
) |
377 FIELD_PREP(PEM_INDX_MASK
, index
);
378 res_pem
->flags
= IORESOURCE_MEM
;
381 static int thunder_pem_acpi_init(struct pci_config_window
*cfg
)
383 struct device
*dev
= cfg
->parent
;
384 struct acpi_device
*adev
= to_acpi_device(dev
);
385 struct acpi_pci_root
*root
= acpi_driver_data(adev
);
386 struct resource
*res_pem
;
389 res_pem
= devm_kzalloc(&adev
->dev
, sizeof(*res_pem
), GFP_KERNEL
);
393 ret
= acpi_get_rc_resources(dev
, "CAVA02B", root
->segment
, res_pem
);
396 * If we fail to gather resources it means that we run with old
397 * FW where we need to calculate PEM-specific resources manually.
400 thunder_pem_legacy_fw(root
, res_pem
);
402 * Reserve 64K size PEM specific resources. The full 16M range
403 * size is required for thunder_pem_init() call.
405 res_pem
->end
= res_pem
->start
+ SZ_64K
- 1;
406 thunder_pem_reserve_range(dev
, root
->segment
, res_pem
);
407 res_pem
->end
= res_pem
->start
+ SZ_16M
- 1;
409 /* Reserve PCI configuration space as well. */
410 thunder_pem_reserve_range(dev
, root
->segment
, &cfg
->res
);
413 return thunder_pem_init(dev
, cfg
, res_pem
);
416 struct pci_ecam_ops thunder_pem_ecam_ops
= {
418 .init
= thunder_pem_acpi_init
,
420 .map_bus
= pci_ecam_map_bus
,
421 .read
= thunder_pem_config_read
,
422 .write
= thunder_pem_config_write
,
428 #ifdef CONFIG_PCI_HOST_THUNDER_PEM
430 static int thunder_pem_platform_init(struct pci_config_window
*cfg
)
432 struct device
*dev
= cfg
->parent
;
433 struct platform_device
*pdev
= to_platform_device(dev
);
434 struct resource
*res_pem
;
440 * The second register range is the PEM bridge to the PCIe
441 * bus. It has a different config access method than those
442 * devices behind the bridge.
444 res_pem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
446 dev_err(dev
, "missing \"reg[1]\"property\n");
450 return thunder_pem_init(dev
, cfg
, res_pem
);
453 static struct pci_ecam_ops pci_thunder_pem_ops
= {
455 .init
= thunder_pem_platform_init
,
457 .map_bus
= pci_ecam_map_bus
,
458 .read
= thunder_pem_config_read
,
459 .write
= thunder_pem_config_write
,
463 static const struct of_device_id thunder_pem_of_match
[] = {
464 { .compatible
= "cavium,pci-host-thunder-pem" },
468 static int thunder_pem_probe(struct platform_device
*pdev
)
470 return pci_host_common_probe(pdev
, &pci_thunder_pem_ops
);
473 static struct platform_driver thunder_pem_driver
= {
475 .name
= KBUILD_MODNAME
,
476 .of_match_table
= thunder_pem_of_match
,
477 .suppress_bind_attrs
= true,
479 .probe
= thunder_pem_probe
,
481 builtin_platform_driver(thunder_pem_driver
);