2 * Copyright (C) 2015 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/irqdomain.h>
17 #include <linux/msi.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_pci.h>
20 #include <linux/pci.h>
22 #include "pcie-iproc.h"
24 #define IPROC_MSI_INTR_EN_SHIFT 11
25 #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT)
26 #define IPROC_MSI_INT_N_EVENT_SHIFT 1
27 #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
28 #define IPROC_MSI_EQ_EN_SHIFT 0
29 #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT)
31 #define IPROC_MSI_EQ_MASK 0x3f
33 /* Max number of GIC interrupts */
36 /* Number of entries in each event queue */
39 /* Size of each event queue memory region */
40 #define EQ_MEM_REGION_SIZE SZ_4K
42 /* Size of each MSI address region */
43 #define MSI_MEM_REGION_SIZE SZ_4K
46 IPROC_MSI_EQ_PAGE
= 0,
47 IPROC_MSI_EQ_PAGE_UPPER
,
62 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
65 * @msi: pointer to iProc MSI data
66 * @gic_irq: GIC interrupt
67 * @eq: Event queue number
69 struct iproc_msi_grp
{
70 struct iproc_msi
*msi
;
76 * iProc event queue based MSI
78 * Only meant to be used on platforms without MSI support integrated into the
81 * @pcie: pointer to iProc PCIe data
82 * @reg_offsets: MSI register offsets
84 * @nr_irqs: number of total interrupts connected to GIC
85 * @nr_cpus: number of toal CPUs
86 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
87 * set explicitly (required for some legacy platforms)
88 * @bitmap: MSI vector bitmap
89 * @bitmap_lock: lock to protect access to the MSI bitmap
90 * @nr_msi_vecs: total number of MSI vectors
91 * @inner_domain: inner IRQ domain
92 * @msi_domain: MSI IRQ domain
93 * @nr_eq_region: required number of 4K aligned memory region for MSI event
95 * @nr_msi_region: required number of 4K aligned address region for MSI posted
97 * @eq_cpu: pointer to allocated memory region for MSI event queues
98 * @eq_dma: DMA address of MSI event queues
99 * @msi_addr: MSI address
102 struct iproc_pcie
*pcie
;
103 const u16 (*reg_offsets
)[IPROC_MSI_REG_SIZE
];
104 struct iproc_msi_grp
*grps
;
108 unsigned long *bitmap
;
109 struct mutex bitmap_lock
;
110 unsigned int nr_msi_vecs
;
111 struct irq_domain
*inner_domain
;
112 struct irq_domain
*msi_domain
;
113 unsigned int nr_eq_region
;
114 unsigned int nr_msi_region
;
117 phys_addr_t msi_addr
;
120 static const u16 iproc_msi_reg_paxb
[NR_HW_IRQS
][IPROC_MSI_REG_SIZE
] = {
121 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
122 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
123 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
124 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
125 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
126 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
129 static const u16 iproc_msi_reg_paxc
[NR_HW_IRQS
][IPROC_MSI_REG_SIZE
] = {
130 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
131 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
132 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
133 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
136 static inline u32
iproc_msi_read_reg(struct iproc_msi
*msi
,
137 enum iproc_msi_reg reg
,
140 struct iproc_pcie
*pcie
= msi
->pcie
;
142 return readl_relaxed(pcie
->base
+ msi
->reg_offsets
[eq
][reg
]);
145 static inline void iproc_msi_write_reg(struct iproc_msi
*msi
,
146 enum iproc_msi_reg reg
,
149 struct iproc_pcie
*pcie
= msi
->pcie
;
151 writel_relaxed(val
, pcie
->base
+ msi
->reg_offsets
[eq
][reg
]);
154 static inline u32
hwirq_to_group(struct iproc_msi
*msi
, unsigned long hwirq
)
156 return (hwirq
% msi
->nr_irqs
);
159 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi
*msi
,
162 if (msi
->nr_msi_region
> 1)
163 return hwirq_to_group(msi
, hwirq
) * MSI_MEM_REGION_SIZE
;
165 return hwirq_to_group(msi
, hwirq
) * sizeof(u32
);
168 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi
*msi
, u32 eq
)
170 if (msi
->nr_eq_region
> 1)
171 return eq
* EQ_MEM_REGION_SIZE
;
173 return eq
* EQ_LEN
* sizeof(u32
);
176 static struct irq_chip iproc_msi_irq_chip
= {
180 static struct msi_domain_info iproc_msi_domain_info
= {
181 .flags
= MSI_FLAG_USE_DEF_DOM_OPS
| MSI_FLAG_USE_DEF_CHIP_OPS
|
183 .chip
= &iproc_msi_irq_chip
,
187 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
188 * dedicated event queue. Each MSI group can support up to 64 MSI vectors.
190 * The number of MSI groups varies between different iProc SoCs. The total
191 * number of CPU cores also varies. To support MSI IRQ affinity, we
192 * distribute GIC interrupts across all available CPUs. MSI vector is moved
193 * from one GIC interrupt to another to steer to the target CPU.
196 * - the number of MSI groups is M
197 * - the number of CPU cores is N
198 * - M is always a multiple of N
200 * Total number of raw MSI vectors = M * 64
201 * Total number of supported MSI vectors = (M * 64) / N
203 static inline int hwirq_to_cpu(struct iproc_msi
*msi
, unsigned long hwirq
)
205 return (hwirq
% msi
->nr_cpus
);
208 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi
*msi
,
211 return (hwirq
- hwirq_to_cpu(msi
, hwirq
));
214 static int iproc_msi_irq_set_affinity(struct irq_data
*data
,
215 const struct cpumask
*mask
, bool force
)
217 struct iproc_msi
*msi
= irq_data_get_irq_chip_data(data
);
218 int target_cpu
= cpumask_first(mask
);
221 curr_cpu
= hwirq_to_cpu(msi
, data
->hwirq
);
222 if (curr_cpu
== target_cpu
)
223 return IRQ_SET_MASK_OK_DONE
;
225 /* steer MSI to the target CPU */
226 data
->hwirq
= hwirq_to_canonical_hwirq(msi
, data
->hwirq
) + target_cpu
;
228 return IRQ_SET_MASK_OK
;
231 static void iproc_msi_irq_compose_msi_msg(struct irq_data
*data
,
234 struct iproc_msi
*msi
= irq_data_get_irq_chip_data(data
);
237 addr
= msi
->msi_addr
+ iproc_msi_addr_offset(msi
, data
->hwirq
);
238 msg
->address_lo
= lower_32_bits(addr
);
239 msg
->address_hi
= upper_32_bits(addr
);
240 msg
->data
= data
->hwirq
;
243 static struct irq_chip iproc_msi_bottom_irq_chip
= {
245 .irq_set_affinity
= iproc_msi_irq_set_affinity
,
246 .irq_compose_msi_msg
= iproc_msi_irq_compose_msi_msg
,
249 static int iproc_msi_irq_domain_alloc(struct irq_domain
*domain
,
250 unsigned int virq
, unsigned int nr_irqs
,
253 struct iproc_msi
*msi
= domain
->host_data
;
256 mutex_lock(&msi
->bitmap_lock
);
258 /* Allocate 'nr_cpus' number of MSI vectors each time */
259 hwirq
= bitmap_find_next_zero_area(msi
->bitmap
, msi
->nr_msi_vecs
, 0,
261 if (hwirq
< msi
->nr_msi_vecs
) {
262 bitmap_set(msi
->bitmap
, hwirq
, msi
->nr_cpus
);
264 mutex_unlock(&msi
->bitmap_lock
);
268 mutex_unlock(&msi
->bitmap_lock
);
270 irq_domain_set_info(domain
, virq
, hwirq
, &iproc_msi_bottom_irq_chip
,
271 domain
->host_data
, handle_simple_irq
, NULL
, NULL
);
276 static void iproc_msi_irq_domain_free(struct irq_domain
*domain
,
277 unsigned int virq
, unsigned int nr_irqs
)
279 struct irq_data
*data
= irq_domain_get_irq_data(domain
, virq
);
280 struct iproc_msi
*msi
= irq_data_get_irq_chip_data(data
);
283 mutex_lock(&msi
->bitmap_lock
);
285 hwirq
= hwirq_to_canonical_hwirq(msi
, data
->hwirq
);
286 bitmap_clear(msi
->bitmap
, hwirq
, msi
->nr_cpus
);
288 mutex_unlock(&msi
->bitmap_lock
);
290 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
293 static const struct irq_domain_ops msi_domain_ops
= {
294 .alloc
= iproc_msi_irq_domain_alloc
,
295 .free
= iproc_msi_irq_domain_free
,
298 static inline u32
decode_msi_hwirq(struct iproc_msi
*msi
, u32 eq
, u32 head
)
303 offs
= iproc_msi_eq_offset(msi
, eq
) + head
* sizeof(u32
);
304 msg
= (u32
*)(msi
->eq_cpu
+ offs
);
305 hwirq
= *msg
& IPROC_MSI_EQ_MASK
;
308 * Since we have multiple hwirq mapped to a single MSI vector,
309 * now we need to derive the hwirq at CPU0. It can then be used to
310 * mapped back to virq.
312 return hwirq_to_canonical_hwirq(msi
, hwirq
);
315 static void iproc_msi_handler(struct irq_desc
*desc
)
317 struct irq_chip
*chip
= irq_desc_get_chip(desc
);
318 struct iproc_msi_grp
*grp
;
319 struct iproc_msi
*msi
;
320 u32 eq
, head
, tail
, nr_events
;
324 chained_irq_enter(chip
, desc
);
326 grp
= irq_desc_get_handler_data(desc
);
331 * iProc MSI event queue is tracked by head and tail pointers. Head
332 * pointer indicates the next entry (MSI data) to be consumed by SW in
333 * the queue and needs to be updated by SW. iProc MSI core uses the
334 * tail pointer as the next data insertion point.
336 * Entries between head and tail pointers contain valid MSI data. MSI
337 * data is guaranteed to be in the event queue memory before the tail
338 * pointer is updated by the iProc MSI core.
340 head
= iproc_msi_read_reg(msi
, IPROC_MSI_EQ_HEAD
,
341 eq
) & IPROC_MSI_EQ_MASK
;
343 tail
= iproc_msi_read_reg(msi
, IPROC_MSI_EQ_TAIL
,
344 eq
) & IPROC_MSI_EQ_MASK
;
347 * Figure out total number of events (MSI data) to be
350 nr_events
= (tail
< head
) ?
351 (EQ_LEN
- (head
- tail
)) : (tail
- head
);
355 /* process all outstanding events */
356 while (nr_events
--) {
357 hwirq
= decode_msi_hwirq(msi
, eq
, head
);
358 virq
= irq_find_mapping(msi
->inner_domain
, hwirq
);
359 generic_handle_irq(virq
);
366 * Now all outstanding events have been processed. Update the
369 iproc_msi_write_reg(msi
, IPROC_MSI_EQ_HEAD
, eq
, head
);
372 * Now go read the tail pointer again to see if there are new
373 * oustanding events that came in during the above window.
377 chained_irq_exit(chip
, desc
);
380 static void iproc_msi_enable(struct iproc_msi
*msi
)
385 /* Program memory region for each event queue */
386 for (i
= 0; i
< msi
->nr_eq_region
; i
++) {
387 dma_addr_t addr
= msi
->eq_dma
+ (i
* EQ_MEM_REGION_SIZE
);
389 iproc_msi_write_reg(msi
, IPROC_MSI_EQ_PAGE
, i
,
390 lower_32_bits(addr
));
391 iproc_msi_write_reg(msi
, IPROC_MSI_EQ_PAGE_UPPER
, i
,
392 upper_32_bits(addr
));
395 /* Program address region for MSI posted writes */
396 for (i
= 0; i
< msi
->nr_msi_region
; i
++) {
397 phys_addr_t addr
= msi
->msi_addr
+ (i
* MSI_MEM_REGION_SIZE
);
399 iproc_msi_write_reg(msi
, IPROC_MSI_PAGE
, i
,
400 lower_32_bits(addr
));
401 iproc_msi_write_reg(msi
, IPROC_MSI_PAGE_UPPER
, i
,
402 upper_32_bits(addr
));
405 for (eq
= 0; eq
< msi
->nr_irqs
; eq
++) {
406 /* Enable MSI event queue */
407 val
= IPROC_MSI_INTR_EN
| IPROC_MSI_INT_N_EVENT
|
409 iproc_msi_write_reg(msi
, IPROC_MSI_CTRL
, eq
, val
);
412 * Some legacy platforms require the MSI interrupt enable
413 * register to be set explicitly.
415 if (msi
->has_inten_reg
) {
416 val
= iproc_msi_read_reg(msi
, IPROC_MSI_INTS_EN
, eq
);
418 iproc_msi_write_reg(msi
, IPROC_MSI_INTS_EN
, eq
, val
);
423 static void iproc_msi_disable(struct iproc_msi
*msi
)
427 for (eq
= 0; eq
< msi
->nr_irqs
; eq
++) {
428 if (msi
->has_inten_reg
) {
429 val
= iproc_msi_read_reg(msi
, IPROC_MSI_INTS_EN
, eq
);
431 iproc_msi_write_reg(msi
, IPROC_MSI_INTS_EN
, eq
, val
);
434 val
= iproc_msi_read_reg(msi
, IPROC_MSI_CTRL
, eq
);
435 val
&= ~(IPROC_MSI_INTR_EN
| IPROC_MSI_INT_N_EVENT
|
437 iproc_msi_write_reg(msi
, IPROC_MSI_CTRL
, eq
, val
);
441 static int iproc_msi_alloc_domains(struct device_node
*node
,
442 struct iproc_msi
*msi
)
444 msi
->inner_domain
= irq_domain_add_linear(NULL
, msi
->nr_msi_vecs
,
445 &msi_domain_ops
, msi
);
446 if (!msi
->inner_domain
)
449 msi
->msi_domain
= pci_msi_create_irq_domain(of_node_to_fwnode(node
),
450 &iproc_msi_domain_info
,
452 if (!msi
->msi_domain
) {
453 irq_domain_remove(msi
->inner_domain
);
460 static void iproc_msi_free_domains(struct iproc_msi
*msi
)
463 irq_domain_remove(msi
->msi_domain
);
465 if (msi
->inner_domain
)
466 irq_domain_remove(msi
->inner_domain
);
469 static void iproc_msi_irq_free(struct iproc_msi
*msi
, unsigned int cpu
)
473 for (i
= cpu
; i
< msi
->nr_irqs
; i
+= msi
->nr_cpus
) {
474 irq_set_chained_handler_and_data(msi
->grps
[i
].gic_irq
,
479 static int iproc_msi_irq_setup(struct iproc_msi
*msi
, unsigned int cpu
)
483 struct iproc_pcie
*pcie
= msi
->pcie
;
485 for (i
= cpu
; i
< msi
->nr_irqs
; i
+= msi
->nr_cpus
) {
486 irq_set_chained_handler_and_data(msi
->grps
[i
].gic_irq
,
489 /* Dedicate GIC interrupt to each CPU core */
490 if (alloc_cpumask_var(&mask
, GFP_KERNEL
)) {
492 cpumask_set_cpu(cpu
, mask
);
493 ret
= irq_set_affinity(msi
->grps
[i
].gic_irq
, mask
);
496 "failed to set affinity for IRQ%d\n",
497 msi
->grps
[i
].gic_irq
);
498 free_cpumask_var(mask
);
500 dev_err(pcie
->dev
, "failed to alloc CPU mask\n");
505 /* Free all configured/unconfigured IRQs */
506 iproc_msi_irq_free(msi
, cpu
);
514 int iproc_msi_init(struct iproc_pcie
*pcie
, struct device_node
*node
)
516 struct iproc_msi
*msi
;
520 if (!of_device_is_compatible(node
, "brcm,iproc-msi"))
523 if (!of_find_property(node
, "msi-controller", NULL
))
529 msi
= devm_kzalloc(pcie
->dev
, sizeof(*msi
), GFP_KERNEL
);
535 msi
->msi_addr
= pcie
->base_addr
;
536 mutex_init(&msi
->bitmap_lock
);
537 msi
->nr_cpus
= num_possible_cpus();
539 msi
->nr_irqs
= of_irq_count(node
);
541 dev_err(pcie
->dev
, "found no MSI GIC interrupt\n");
545 if (msi
->nr_irqs
> NR_HW_IRQS
) {
546 dev_warn(pcie
->dev
, "too many MSI GIC interrupts defined %d\n",
548 msi
->nr_irqs
= NR_HW_IRQS
;
551 if (msi
->nr_irqs
< msi
->nr_cpus
) {
553 "not enough GIC interrupts for MSI affinity\n");
557 if (msi
->nr_irqs
% msi
->nr_cpus
!= 0) {
558 msi
->nr_irqs
-= msi
->nr_irqs
% msi
->nr_cpus
;
559 dev_warn(pcie
->dev
, "Reducing number of interrupts to %d\n",
563 switch (pcie
->type
) {
564 case IPROC_PCIE_PAXB_BCMA
:
565 case IPROC_PCIE_PAXB
:
566 msi
->reg_offsets
= iproc_msi_reg_paxb
;
567 msi
->nr_eq_region
= 1;
568 msi
->nr_msi_region
= 1;
570 case IPROC_PCIE_PAXC
:
571 msi
->reg_offsets
= iproc_msi_reg_paxc
;
572 msi
->nr_eq_region
= msi
->nr_irqs
;
573 msi
->nr_msi_region
= msi
->nr_irqs
;
576 dev_err(pcie
->dev
, "incompatible iProc PCIe interface\n");
580 if (of_find_property(node
, "brcm,pcie-msi-inten", NULL
))
581 msi
->has_inten_reg
= true;
583 msi
->nr_msi_vecs
= msi
->nr_irqs
* EQ_LEN
;
584 msi
->bitmap
= devm_kcalloc(pcie
->dev
, BITS_TO_LONGS(msi
->nr_msi_vecs
),
585 sizeof(*msi
->bitmap
), GFP_KERNEL
);
589 msi
->grps
= devm_kcalloc(pcie
->dev
, msi
->nr_irqs
, sizeof(*msi
->grps
),
594 for (i
= 0; i
< msi
->nr_irqs
; i
++) {
595 unsigned int irq
= irq_of_parse_and_map(node
, i
);
598 dev_err(pcie
->dev
, "unable to parse/map interrupt\n");
602 msi
->grps
[i
].gic_irq
= irq
;
603 msi
->grps
[i
].msi
= msi
;
607 /* Reserve memory for event queue and make sure memories are zeroed */
608 msi
->eq_cpu
= dma_zalloc_coherent(pcie
->dev
,
609 msi
->nr_eq_region
* EQ_MEM_REGION_SIZE
,
610 &msi
->eq_dma
, GFP_KERNEL
);
616 ret
= iproc_msi_alloc_domains(node
, msi
);
618 dev_err(pcie
->dev
, "failed to create MSI domains\n");
622 for_each_online_cpu(cpu
) {
623 ret
= iproc_msi_irq_setup(msi
, cpu
);
628 iproc_msi_enable(msi
);
633 for_each_online_cpu(cpu
)
634 iproc_msi_irq_free(msi
, cpu
);
635 iproc_msi_free_domains(msi
);
638 dma_free_coherent(pcie
->dev
, msi
->nr_eq_region
* EQ_MEM_REGION_SIZE
,
639 msi
->eq_cpu
, msi
->eq_dma
);
642 for (i
= 0; i
< msi
->nr_irqs
; i
++) {
643 if (msi
->grps
[i
].gic_irq
)
644 irq_dispose_mapping(msi
->grps
[i
].gic_irq
);
649 EXPORT_SYMBOL(iproc_msi_init
);
651 void iproc_msi_exit(struct iproc_pcie
*pcie
)
653 struct iproc_msi
*msi
= pcie
->msi
;
659 iproc_msi_disable(msi
);
661 for_each_online_cpu(cpu
)
662 iproc_msi_irq_free(msi
, cpu
);
664 iproc_msi_free_domains(msi
);
666 dma_free_coherent(pcie
->dev
, msi
->nr_eq_region
* EQ_MEM_REGION_SIZE
,
667 msi
->eq_cpu
, msi
->eq_dma
);
669 for (i
= 0; i
< msi
->nr_irqs
; i
++) {
670 if (msi
->grps
[i
].gic_irq
)
671 irq_dispose_mapping(msi
->grps
[i
].gic_irq
);
674 EXPORT_SYMBOL(iproc_msi_exit
);