x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobc89f0e129f58623d304f9152c8c6f0f31c2cae2e
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
71 struct kmem_cache *cache;
72 int ret = 0;
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 if (cache)
76 return 0;
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 if (!scsi_sense_cache)
91 ret = -ENOMEM;
94 mutex_unlock(&scsi_sense_cache_mutex);
95 return ret;
99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100 * not change behaviour from the previous unplug mechanism, experimentation
101 * may prove this needs changing.
103 #define SCSI_QUEUE_DELAY 3
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
113 * Set the appropriate busy bit for the device/host.
115 * If the host/device isn't busy, assume that something actually
116 * completed, and that we should be able to queue a command now.
118 * Note that the prior mid-layer assumption that any host could
119 * always queue at least one command is now broken. The mid-layer
120 * will implement a user specifiable stall (see
121 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 * if a command is requeued with no other commands outstanding
123 * either for the device or for the host.
125 switch (reason) {
126 case SCSI_MLQUEUE_HOST_BUSY:
127 atomic_set(&host->host_blocked, host->max_host_blocked);
128 break;
129 case SCSI_MLQUEUE_DEVICE_BUSY:
130 case SCSI_MLQUEUE_EH_RETRY:
131 atomic_set(&device->device_blocked,
132 device->max_device_blocked);
133 break;
134 case SCSI_MLQUEUE_TARGET_BUSY:
135 atomic_set(&starget->target_blocked,
136 starget->max_target_blocked);
137 break;
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 struct scsi_device *sdev = cmd->device;
145 if (cmd->request->rq_flags & RQF_DONTPREP) {
146 cmd->request->rq_flags &= ~RQF_DONTPREP;
147 scsi_mq_uninit_cmd(cmd);
148 } else {
149 WARN_ON_ONCE(true);
151 blk_mq_requeue_request(cmd->request, true);
152 put_device(&sdev->sdev_gendev);
156 * __scsi_queue_insert - private queue insertion
157 * @cmd: The SCSI command being requeued
158 * @reason: The reason for the requeue
159 * @unbusy: Whether the queue should be unbusied
161 * This is a private queue insertion. The public interface
162 * scsi_queue_insert() always assumes the queue should be unbusied
163 * because it's always called before the completion. This function is
164 * for a requeue after completion, which should only occur in this
165 * file.
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
169 struct scsi_device *device = cmd->device;
170 struct request_queue *q = device->request_queue;
171 unsigned long flags;
173 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 "Inserting command %p into mlqueue\n", cmd));
176 scsi_set_blocked(cmd, reason);
179 * Decrement the counters, since these commands are no longer
180 * active on the host/device.
182 if (unbusy)
183 scsi_device_unbusy(device);
186 * Requeue this command. It will go before all other commands
187 * that are already in the queue. Schedule requeue work under
188 * lock such that the kblockd_schedule_work() call happens
189 * before blk_cleanup_queue() finishes.
191 cmd->result = 0;
192 if (q->mq_ops) {
193 scsi_mq_requeue_cmd(cmd);
194 return;
196 spin_lock_irqsave(q->queue_lock, flags);
197 blk_requeue_request(q, cmd->request);
198 kblockd_schedule_work(&device->requeue_work);
199 spin_unlock_irqrestore(q->queue_lock, flags);
203 * Function: scsi_queue_insert()
205 * Purpose: Insert a command in the midlevel queue.
207 * Arguments: cmd - command that we are adding to queue.
208 * reason - why we are inserting command to queue.
210 * Lock status: Assumed that lock is not held upon entry.
212 * Returns: Nothing.
214 * Notes: We do this for one of two cases. Either the host is busy
215 * and it cannot accept any more commands for the time being,
216 * or the device returned QUEUE_FULL and can accept no more
217 * commands.
218 * Notes: This could be called either from an interrupt context or a
219 * normal process context.
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
223 __scsi_queue_insert(cmd, reason, 1);
228 * scsi_execute - insert request and wait for the result
229 * @sdev: scsi device
230 * @cmd: scsi command
231 * @data_direction: data direction
232 * @buffer: data buffer
233 * @bufflen: len of buffer
234 * @sense: optional sense buffer
235 * @sshdr: optional decoded sense header
236 * @timeout: request timeout in seconds
237 * @retries: number of times to retry request
238 * @flags: flags for ->cmd_flags
239 * @rq_flags: flags for ->rq_flags
240 * @resid: optional residual length
242 * Returns the scsi_cmnd result field if a command was executed, or a negative
243 * Linux error code if we didn't get that far.
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 int *resid)
251 struct request *req;
252 struct scsi_request *rq;
253 int ret = DRIVER_ERROR << 24;
255 req = blk_get_request(sdev->request_queue,
256 data_direction == DMA_TO_DEVICE ?
257 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
258 if (IS_ERR(req))
259 return ret;
260 rq = scsi_req(req);
262 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
263 buffer, bufflen, __GFP_RECLAIM))
264 goto out;
266 rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 memcpy(rq->cmd, cmd, rq->cmd_len);
268 rq->retries = retries;
269 req->timeout = timeout;
270 req->cmd_flags |= flags;
271 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
274 * head injection *required* here otherwise quiesce won't work
276 blk_execute_rq(req->q, NULL, req, 1);
279 * Some devices (USB mass-storage in particular) may transfer
280 * garbage data together with a residue indicating that the data
281 * is invalid. Prevent the garbage from being misinterpreted
282 * and prevent security leaks by zeroing out the excess data.
284 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
287 if (resid)
288 *resid = rq->resid_len;
289 if (sense && rq->sense_len)
290 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 if (sshdr)
292 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 ret = rq->result;
294 out:
295 blk_put_request(req);
297 return ret;
299 EXPORT_SYMBOL(scsi_execute);
302 * Function: scsi_init_cmd_errh()
304 * Purpose: Initialize cmd fields related to error handling.
306 * Arguments: cmd - command that is ready to be queued.
308 * Notes: This function has the job of initializing a number of
309 * fields related to error handling. Typically this will
310 * be called once for each command, as required.
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 cmd->serial_number = 0;
315 scsi_set_resid(cmd, 0);
316 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 if (cmd->cmd_len == 0)
318 cmd->cmd_len = scsi_command_size(cmd->cmnd);
322 * Decrement the host_busy counter and wake up the error handler if necessary.
323 * Avoid as follows that the error handler is not woken up if shost->host_busy
324 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
325 * with an RCU read lock in this function to ensure that this function in its
326 * entirety either finishes before scsi_eh_scmd_add() increases the
327 * host_failed counter or that it notices the shost state change made by
328 * scsi_eh_scmd_add().
330 static void scsi_dec_host_busy(struct Scsi_Host *shost)
332 unsigned long flags;
334 rcu_read_lock();
335 atomic_dec(&shost->host_busy);
336 if (unlikely(scsi_host_in_recovery(shost))) {
337 spin_lock_irqsave(shost->host_lock, flags);
338 if (shost->host_failed || shost->host_eh_scheduled)
339 scsi_eh_wakeup(shost);
340 spin_unlock_irqrestore(shost->host_lock, flags);
342 rcu_read_unlock();
345 void scsi_device_unbusy(struct scsi_device *sdev)
347 struct Scsi_Host *shost = sdev->host;
348 struct scsi_target *starget = scsi_target(sdev);
350 scsi_dec_host_busy(shost);
352 if (starget->can_queue > 0)
353 atomic_dec(&starget->target_busy);
355 atomic_dec(&sdev->device_busy);
358 static void scsi_kick_queue(struct request_queue *q)
360 if (q->mq_ops)
361 blk_mq_start_hw_queues(q);
362 else
363 blk_run_queue(q);
367 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368 * and call blk_run_queue for all the scsi_devices on the target -
369 * including current_sdev first.
371 * Called with *no* scsi locks held.
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 struct Scsi_Host *shost = current_sdev->host;
376 struct scsi_device *sdev, *tmp;
377 struct scsi_target *starget = scsi_target(current_sdev);
378 unsigned long flags;
380 spin_lock_irqsave(shost->host_lock, flags);
381 starget->starget_sdev_user = NULL;
382 spin_unlock_irqrestore(shost->host_lock, flags);
385 * Call blk_run_queue for all LUNs on the target, starting with
386 * current_sdev. We race with others (to set starget_sdev_user),
387 * but in most cases, we will be first. Ideally, each LU on the
388 * target would get some limited time or requests on the target.
390 scsi_kick_queue(current_sdev->request_queue);
392 spin_lock_irqsave(shost->host_lock, flags);
393 if (starget->starget_sdev_user)
394 goto out;
395 list_for_each_entry_safe(sdev, tmp, &starget->devices,
396 same_target_siblings) {
397 if (sdev == current_sdev)
398 continue;
399 if (scsi_device_get(sdev))
400 continue;
402 spin_unlock_irqrestore(shost->host_lock, flags);
403 scsi_kick_queue(sdev->request_queue);
404 spin_lock_irqsave(shost->host_lock, flags);
406 scsi_device_put(sdev);
408 out:
409 spin_unlock_irqrestore(shost->host_lock, flags);
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
414 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415 return true;
416 if (atomic_read(&sdev->device_blocked) > 0)
417 return true;
418 return false;
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
423 if (starget->can_queue > 0) {
424 if (atomic_read(&starget->target_busy) >= starget->can_queue)
425 return true;
426 if (atomic_read(&starget->target_blocked) > 0)
427 return true;
429 return false;
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
434 if (shost->can_queue > 0 &&
435 atomic_read(&shost->host_busy) >= shost->can_queue)
436 return true;
437 if (atomic_read(&shost->host_blocked) > 0)
438 return true;
439 if (shost->host_self_blocked)
440 return true;
441 return false;
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
446 LIST_HEAD(starved_list);
447 struct scsi_device *sdev;
448 unsigned long flags;
450 spin_lock_irqsave(shost->host_lock, flags);
451 list_splice_init(&shost->starved_list, &starved_list);
453 while (!list_empty(&starved_list)) {
454 struct request_queue *slq;
457 * As long as shost is accepting commands and we have
458 * starved queues, call blk_run_queue. scsi_request_fn
459 * drops the queue_lock and can add us back to the
460 * starved_list.
462 * host_lock protects the starved_list and starved_entry.
463 * scsi_request_fn must get the host_lock before checking
464 * or modifying starved_list or starved_entry.
466 if (scsi_host_is_busy(shost))
467 break;
469 sdev = list_entry(starved_list.next,
470 struct scsi_device, starved_entry);
471 list_del_init(&sdev->starved_entry);
472 if (scsi_target_is_busy(scsi_target(sdev))) {
473 list_move_tail(&sdev->starved_entry,
474 &shost->starved_list);
475 continue;
479 * Once we drop the host lock, a racing scsi_remove_device()
480 * call may remove the sdev from the starved list and destroy
481 * it and the queue. Mitigate by taking a reference to the
482 * queue and never touching the sdev again after we drop the
483 * host lock. Note: if __scsi_remove_device() invokes
484 * blk_cleanup_queue() before the queue is run from this
485 * function then blk_run_queue() will return immediately since
486 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
488 slq = sdev->request_queue;
489 if (!blk_get_queue(slq))
490 continue;
491 spin_unlock_irqrestore(shost->host_lock, flags);
493 scsi_kick_queue(slq);
494 blk_put_queue(slq);
496 spin_lock_irqsave(shost->host_lock, flags);
498 /* put any unprocessed entries back */
499 list_splice(&starved_list, &shost->starved_list);
500 spin_unlock_irqrestore(shost->host_lock, flags);
504 * Function: scsi_run_queue()
506 * Purpose: Select a proper request queue to serve next
508 * Arguments: q - last request's queue
510 * Returns: Nothing
512 * Notes: The previous command was completely finished, start
513 * a new one if possible.
515 static void scsi_run_queue(struct request_queue *q)
517 struct scsi_device *sdev = q->queuedata;
519 if (scsi_target(sdev)->single_lun)
520 scsi_single_lun_run(sdev);
521 if (!list_empty(&sdev->host->starved_list))
522 scsi_starved_list_run(sdev->host);
524 if (q->mq_ops)
525 blk_mq_run_hw_queues(q, false);
526 else
527 blk_run_queue(q);
530 void scsi_requeue_run_queue(struct work_struct *work)
532 struct scsi_device *sdev;
533 struct request_queue *q;
535 sdev = container_of(work, struct scsi_device, requeue_work);
536 q = sdev->request_queue;
537 scsi_run_queue(q);
541 * Function: scsi_requeue_command()
543 * Purpose: Handle post-processing of completed commands.
545 * Arguments: q - queue to operate on
546 * cmd - command that may need to be requeued.
548 * Returns: Nothing
550 * Notes: After command completion, there may be blocks left
551 * over which weren't finished by the previous command
552 * this can be for a number of reasons - the main one is
553 * I/O errors in the middle of the request, in which case
554 * we need to request the blocks that come after the bad
555 * sector.
556 * Notes: Upon return, cmd is a stale pointer.
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
560 struct scsi_device *sdev = cmd->device;
561 struct request *req = cmd->request;
562 unsigned long flags;
564 spin_lock_irqsave(q->queue_lock, flags);
565 blk_unprep_request(req);
566 req->special = NULL;
567 scsi_put_command(cmd);
568 blk_requeue_request(q, req);
569 spin_unlock_irqrestore(q->queue_lock, flags);
571 scsi_run_queue(q);
573 put_device(&sdev->sdev_gendev);
576 void scsi_run_host_queues(struct Scsi_Host *shost)
578 struct scsi_device *sdev;
580 shost_for_each_device(sdev, shost)
581 scsi_run_queue(sdev->request_queue);
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
586 if (!blk_rq_is_passthrough(cmd->request)) {
587 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
589 if (drv->uninit_command)
590 drv->uninit_command(cmd);
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
596 struct scsi_data_buffer *sdb;
598 if (cmd->sdb.table.nents)
599 sg_free_table_chained(&cmd->sdb.table, true);
600 if (cmd->request->next_rq) {
601 sdb = cmd->request->next_rq->special;
602 if (sdb)
603 sg_free_table_chained(&sdb->table, true);
605 if (scsi_prot_sg_count(cmd))
606 sg_free_table_chained(&cmd->prot_sdb->table, true);
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
611 scsi_mq_free_sgtables(cmd);
612 scsi_uninit_cmd(cmd);
613 scsi_del_cmd_from_list(cmd);
617 * Function: scsi_release_buffers()
619 * Purpose: Free resources allocate for a scsi_command.
621 * Arguments: cmd - command that we are bailing.
623 * Lock status: Assumed that no lock is held upon entry.
625 * Returns: Nothing
627 * Notes: In the event that an upper level driver rejects a
628 * command, we must release resources allocated during
629 * the __init_io() function. Primarily this would involve
630 * the scatter-gather table.
632 static void scsi_release_buffers(struct scsi_cmnd *cmd)
634 if (cmd->sdb.table.nents)
635 sg_free_table_chained(&cmd->sdb.table, false);
637 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639 if (scsi_prot_sg_count(cmd))
640 sg_free_table_chained(&cmd->prot_sdb->table, false);
643 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
645 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
647 sg_free_table_chained(&bidi_sdb->table, false);
648 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
649 cmd->request->next_rq->special = NULL;
652 static bool scsi_end_request(struct request *req, blk_status_t error,
653 unsigned int bytes, unsigned int bidi_bytes)
655 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
656 struct scsi_device *sdev = cmd->device;
657 struct request_queue *q = sdev->request_queue;
659 if (blk_update_request(req, error, bytes))
660 return true;
662 /* Bidi request must be completed as a whole */
663 if (unlikely(bidi_bytes) &&
664 blk_update_request(req->next_rq, error, bidi_bytes))
665 return true;
667 if (blk_queue_add_random(q))
668 add_disk_randomness(req->rq_disk);
670 if (!blk_rq_is_scsi(req)) {
671 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
672 cmd->flags &= ~SCMD_INITIALIZED;
673 destroy_rcu_head(&cmd->rcu);
676 if (req->mq_ctx) {
678 * In the MQ case the command gets freed by __blk_mq_end_request,
679 * so we have to do all cleanup that depends on it earlier.
681 * We also can't kick the queues from irq context, so we
682 * will have to defer it to a workqueue.
684 scsi_mq_uninit_cmd(cmd);
687 * queue is still alive, so grab the ref for preventing it
688 * from being cleaned up during running queue.
690 percpu_ref_get(&q->q_usage_counter);
692 __blk_mq_end_request(req, error);
694 if (scsi_target(sdev)->single_lun ||
695 !list_empty(&sdev->host->starved_list))
696 kblockd_schedule_work(&sdev->requeue_work);
697 else
698 blk_mq_run_hw_queues(q, true);
700 percpu_ref_put(&q->q_usage_counter);
701 } else {
702 unsigned long flags;
704 if (bidi_bytes)
705 scsi_release_bidi_buffers(cmd);
706 scsi_release_buffers(cmd);
707 scsi_put_command(cmd);
709 spin_lock_irqsave(q->queue_lock, flags);
710 blk_finish_request(req, error);
711 spin_unlock_irqrestore(q->queue_lock, flags);
713 scsi_run_queue(q);
716 put_device(&sdev->sdev_gendev);
717 return false;
721 * __scsi_error_from_host_byte - translate SCSI error code into errno
722 * @cmd: SCSI command (unused)
723 * @result: scsi error code
725 * Translate SCSI error code into block errors.
727 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
728 int result)
730 switch (host_byte(result)) {
731 case DID_TRANSPORT_FAILFAST:
732 return BLK_STS_TRANSPORT;
733 case DID_TARGET_FAILURE:
734 set_host_byte(cmd, DID_OK);
735 return BLK_STS_TARGET;
736 case DID_NEXUS_FAILURE:
737 set_host_byte(cmd, DID_OK);
738 return BLK_STS_NEXUS;
739 case DID_ALLOC_FAILURE:
740 set_host_byte(cmd, DID_OK);
741 return BLK_STS_NOSPC;
742 case DID_MEDIUM_ERROR:
743 set_host_byte(cmd, DID_OK);
744 return BLK_STS_MEDIUM;
745 default:
746 return BLK_STS_IOERR;
751 * Function: scsi_io_completion()
753 * Purpose: Completion processing for block device I/O requests.
755 * Arguments: cmd - command that is finished.
757 * Lock status: Assumed that no lock is held upon entry.
759 * Returns: Nothing
761 * Notes: We will finish off the specified number of sectors. If we
762 * are done, the command block will be released and the queue
763 * function will be goosed. If we are not done then we have to
764 * figure out what to do next:
766 * a) We can call scsi_requeue_command(). The request
767 * will be unprepared and put back on the queue. Then
768 * a new command will be created for it. This should
769 * be used if we made forward progress, or if we want
770 * to switch from READ(10) to READ(6) for example.
772 * b) We can call __scsi_queue_insert(). The request will
773 * be put back on the queue and retried using the same
774 * command as before, possibly after a delay.
776 * c) We can call scsi_end_request() with -EIO to fail
777 * the remainder of the request.
779 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
781 int result = cmd->result;
782 struct request_queue *q = cmd->device->request_queue;
783 struct request *req = cmd->request;
784 blk_status_t error = BLK_STS_OK;
785 struct scsi_sense_hdr sshdr;
786 bool sense_valid = false;
787 int sense_deferred = 0, level = 0;
788 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
789 ACTION_DELAYED_RETRY} action;
790 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
792 if (result) {
793 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
794 if (sense_valid)
795 sense_deferred = scsi_sense_is_deferred(&sshdr);
798 if (blk_rq_is_passthrough(req)) {
799 if (result) {
800 if (sense_valid) {
802 * SG_IO wants current and deferred errors
804 scsi_req(req)->sense_len =
805 min(8 + cmd->sense_buffer[7],
806 SCSI_SENSE_BUFFERSIZE);
808 if (!sense_deferred)
809 error = __scsi_error_from_host_byte(cmd, result);
812 * __scsi_error_from_host_byte may have reset the host_byte
814 scsi_req(req)->result = cmd->result;
815 scsi_req(req)->resid_len = scsi_get_resid(cmd);
817 if (scsi_bidi_cmnd(cmd)) {
819 * Bidi commands Must be complete as a whole,
820 * both sides at once.
822 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
823 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
824 blk_rq_bytes(req->next_rq)))
825 BUG();
826 return;
828 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
830 * Flush commands do not transfers any data, and thus cannot use
831 * good_bytes != blk_rq_bytes(req) as the signal for an error.
832 * This sets the error explicitly for the problem case.
834 error = __scsi_error_from_host_byte(cmd, result);
837 /* no bidi support for !blk_rq_is_passthrough yet */
838 BUG_ON(blk_bidi_rq(req));
841 * Next deal with any sectors which we were able to correctly
842 * handle.
844 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
845 "%u sectors total, %d bytes done.\n",
846 blk_rq_sectors(req), good_bytes));
849 * Recovered errors need reporting, but they're always treated as
850 * success, so fiddle the result code here. For passthrough requests
851 * we already took a copy of the original into sreq->result which
852 * is what gets returned to the user
854 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
855 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
856 * print since caller wants ATA registers. Only occurs on
857 * SCSI ATA PASS_THROUGH commands when CK_COND=1
859 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
861 else if (!(req->rq_flags & RQF_QUIET))
862 scsi_print_sense(cmd);
863 result = 0;
864 /* for passthrough error may be set */
865 error = BLK_STS_OK;
868 * Another corner case: the SCSI status byte is non-zero but 'good'.
869 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
870 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
871 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
872 * intermediate statuses (both obsolete in SAM-4) as good.
874 if (status_byte(result) && scsi_status_is_good(result)) {
875 result = 0;
876 error = BLK_STS_OK;
880 * special case: failed zero length commands always need to
881 * drop down into the retry code. Otherwise, if we finished
882 * all bytes in the request we are done now.
884 if (!(blk_rq_bytes(req) == 0 && error) &&
885 !scsi_end_request(req, error, good_bytes, 0))
886 return;
889 * Kill remainder if no retrys.
891 if (error && scsi_noretry_cmd(cmd)) {
892 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
893 BUG();
894 return;
898 * If there had been no error, but we have leftover bytes in the
899 * requeues just queue the command up again.
901 if (result == 0)
902 goto requeue;
904 error = __scsi_error_from_host_byte(cmd, result);
906 if (host_byte(result) == DID_RESET) {
907 /* Third party bus reset or reset for error recovery
908 * reasons. Just retry the command and see what
909 * happens.
911 action = ACTION_RETRY;
912 } else if (sense_valid && !sense_deferred) {
913 switch (sshdr.sense_key) {
914 case UNIT_ATTENTION:
915 if (cmd->device->removable) {
916 /* Detected disc change. Set a bit
917 * and quietly refuse further access.
919 cmd->device->changed = 1;
920 action = ACTION_FAIL;
921 } else {
922 /* Must have been a power glitch, or a
923 * bus reset. Could not have been a
924 * media change, so we just retry the
925 * command and see what happens.
927 action = ACTION_RETRY;
929 break;
930 case ILLEGAL_REQUEST:
931 /* If we had an ILLEGAL REQUEST returned, then
932 * we may have performed an unsupported
933 * command. The only thing this should be
934 * would be a ten byte read where only a six
935 * byte read was supported. Also, on a system
936 * where READ CAPACITY failed, we may have
937 * read past the end of the disk.
939 if ((cmd->device->use_10_for_rw &&
940 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
941 (cmd->cmnd[0] == READ_10 ||
942 cmd->cmnd[0] == WRITE_10)) {
943 /* This will issue a new 6-byte command. */
944 cmd->device->use_10_for_rw = 0;
945 action = ACTION_REPREP;
946 } else if (sshdr.asc == 0x10) /* DIX */ {
947 action = ACTION_FAIL;
948 error = BLK_STS_PROTECTION;
949 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
950 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
951 action = ACTION_FAIL;
952 error = BLK_STS_TARGET;
953 } else
954 action = ACTION_FAIL;
955 break;
956 case ABORTED_COMMAND:
957 action = ACTION_FAIL;
958 if (sshdr.asc == 0x10) /* DIF */
959 error = BLK_STS_PROTECTION;
960 break;
961 case NOT_READY:
962 /* If the device is in the process of becoming
963 * ready, or has a temporary blockage, retry.
965 if (sshdr.asc == 0x04) {
966 switch (sshdr.ascq) {
967 case 0x01: /* becoming ready */
968 case 0x04: /* format in progress */
969 case 0x05: /* rebuild in progress */
970 case 0x06: /* recalculation in progress */
971 case 0x07: /* operation in progress */
972 case 0x08: /* Long write in progress */
973 case 0x09: /* self test in progress */
974 case 0x14: /* space allocation in progress */
975 action = ACTION_DELAYED_RETRY;
976 break;
977 default:
978 action = ACTION_FAIL;
979 break;
981 } else
982 action = ACTION_FAIL;
983 break;
984 case VOLUME_OVERFLOW:
985 /* See SSC3rXX or current. */
986 action = ACTION_FAIL;
987 break;
988 default:
989 action = ACTION_FAIL;
990 break;
992 } else
993 action = ACTION_FAIL;
995 if (action != ACTION_FAIL &&
996 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
997 action = ACTION_FAIL;
999 switch (action) {
1000 case ACTION_FAIL:
1001 /* Give up and fail the remainder of the request */
1002 if (!(req->rq_flags & RQF_QUIET)) {
1003 static DEFINE_RATELIMIT_STATE(_rs,
1004 DEFAULT_RATELIMIT_INTERVAL,
1005 DEFAULT_RATELIMIT_BURST);
1007 if (unlikely(scsi_logging_level))
1008 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1009 SCSI_LOG_MLCOMPLETE_BITS);
1012 * if logging is enabled the failure will be printed
1013 * in scsi_log_completion(), so avoid duplicate messages
1015 if (!level && __ratelimit(&_rs)) {
1016 scsi_print_result(cmd, NULL, FAILED);
1017 if (driver_byte(result) & DRIVER_SENSE)
1018 scsi_print_sense(cmd);
1019 scsi_print_command(cmd);
1022 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1023 return;
1024 /*FALLTHRU*/
1025 case ACTION_REPREP:
1026 requeue:
1027 /* Unprep the request and put it back at the head of the queue.
1028 * A new command will be prepared and issued.
1030 if (q->mq_ops) {
1031 scsi_mq_requeue_cmd(cmd);
1032 } else {
1033 scsi_release_buffers(cmd);
1034 scsi_requeue_command(q, cmd);
1036 break;
1037 case ACTION_RETRY:
1038 /* Retry the same command immediately */
1039 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1040 break;
1041 case ACTION_DELAYED_RETRY:
1042 /* Retry the same command after a delay */
1043 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1044 break;
1048 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1050 int count;
1053 * If sg table allocation fails, requeue request later.
1055 if (unlikely(sg_alloc_table_chained(&sdb->table,
1056 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1057 return BLKPREP_DEFER;
1060 * Next, walk the list, and fill in the addresses and sizes of
1061 * each segment.
1063 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1064 BUG_ON(count > sdb->table.nents);
1065 sdb->table.nents = count;
1066 sdb->length = blk_rq_payload_bytes(req);
1067 return BLKPREP_OK;
1071 * Function: scsi_init_io()
1073 * Purpose: SCSI I/O initialize function.
1075 * Arguments: cmd - Command descriptor we wish to initialize
1077 * Returns: 0 on success
1078 * BLKPREP_DEFER if the failure is retryable
1079 * BLKPREP_KILL if the failure is fatal
1081 int scsi_init_io(struct scsi_cmnd *cmd)
1083 struct scsi_device *sdev = cmd->device;
1084 struct request *rq = cmd->request;
1085 bool is_mq = (rq->mq_ctx != NULL);
1086 int error = BLKPREP_KILL;
1088 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1089 goto err_exit;
1091 error = scsi_init_sgtable(rq, &cmd->sdb);
1092 if (error)
1093 goto err_exit;
1095 if (blk_bidi_rq(rq)) {
1096 if (!rq->q->mq_ops) {
1097 struct scsi_data_buffer *bidi_sdb =
1098 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1099 if (!bidi_sdb) {
1100 error = BLKPREP_DEFER;
1101 goto err_exit;
1104 rq->next_rq->special = bidi_sdb;
1107 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1108 if (error)
1109 goto err_exit;
1112 if (blk_integrity_rq(rq)) {
1113 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1114 int ivecs, count;
1116 if (prot_sdb == NULL) {
1118 * This can happen if someone (e.g. multipath)
1119 * queues a command to a device on an adapter
1120 * that does not support DIX.
1122 WARN_ON_ONCE(1);
1123 error = BLKPREP_KILL;
1124 goto err_exit;
1127 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1129 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1130 prot_sdb->table.sgl)) {
1131 error = BLKPREP_DEFER;
1132 goto err_exit;
1135 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1136 prot_sdb->table.sgl);
1137 BUG_ON(unlikely(count > ivecs));
1138 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1140 cmd->prot_sdb = prot_sdb;
1141 cmd->prot_sdb->table.nents = count;
1144 return BLKPREP_OK;
1145 err_exit:
1146 if (is_mq) {
1147 scsi_mq_free_sgtables(cmd);
1148 } else {
1149 scsi_release_buffers(cmd);
1150 cmd->request->special = NULL;
1151 scsi_put_command(cmd);
1152 put_device(&sdev->sdev_gendev);
1154 return error;
1156 EXPORT_SYMBOL(scsi_init_io);
1159 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1160 * @rq: Request associated with the SCSI command to be initialized.
1162 * This function initializes the members of struct scsi_cmnd that must be
1163 * initialized before request processing starts and that won't be
1164 * reinitialized if a SCSI command is requeued.
1166 * Called from inside blk_get_request() for pass-through requests and from
1167 * inside scsi_init_command() for filesystem requests.
1169 void scsi_initialize_rq(struct request *rq)
1171 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1173 scsi_req_init(&cmd->req);
1174 init_rcu_head(&cmd->rcu);
1175 cmd->jiffies_at_alloc = jiffies;
1176 cmd->retries = 0;
1178 EXPORT_SYMBOL(scsi_initialize_rq);
1180 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1181 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1183 struct scsi_device *sdev = cmd->device;
1184 struct Scsi_Host *shost = sdev->host;
1185 unsigned long flags;
1187 if (shost->use_cmd_list) {
1188 spin_lock_irqsave(&sdev->list_lock, flags);
1189 list_add_tail(&cmd->list, &sdev->cmd_list);
1190 spin_unlock_irqrestore(&sdev->list_lock, flags);
1194 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1195 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1197 struct scsi_device *sdev = cmd->device;
1198 struct Scsi_Host *shost = sdev->host;
1199 unsigned long flags;
1201 if (shost->use_cmd_list) {
1202 spin_lock_irqsave(&sdev->list_lock, flags);
1203 BUG_ON(list_empty(&cmd->list));
1204 list_del_init(&cmd->list);
1205 spin_unlock_irqrestore(&sdev->list_lock, flags);
1209 /* Called after a request has been started. */
1210 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1212 void *buf = cmd->sense_buffer;
1213 void *prot = cmd->prot_sdb;
1214 struct request *rq = blk_mq_rq_from_pdu(cmd);
1215 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1216 unsigned long jiffies_at_alloc;
1217 int retries;
1219 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1220 flags |= SCMD_INITIALIZED;
1221 scsi_initialize_rq(rq);
1224 jiffies_at_alloc = cmd->jiffies_at_alloc;
1225 retries = cmd->retries;
1226 /* zero out the cmd, except for the embedded scsi_request */
1227 memset((char *)cmd + sizeof(cmd->req), 0,
1228 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1230 cmd->device = dev;
1231 cmd->sense_buffer = buf;
1232 cmd->prot_sdb = prot;
1233 cmd->flags = flags;
1234 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1235 cmd->jiffies_at_alloc = jiffies_at_alloc;
1236 cmd->retries = retries;
1238 scsi_add_cmd_to_list(cmd);
1241 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1243 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1246 * Passthrough requests may transfer data, in which case they must
1247 * a bio attached to them. Or they might contain a SCSI command
1248 * that does not transfer data, in which case they may optionally
1249 * submit a request without an attached bio.
1251 if (req->bio) {
1252 int ret = scsi_init_io(cmd);
1253 if (unlikely(ret))
1254 return ret;
1255 } else {
1256 BUG_ON(blk_rq_bytes(req));
1258 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1261 cmd->cmd_len = scsi_req(req)->cmd_len;
1262 cmd->cmnd = scsi_req(req)->cmd;
1263 cmd->transfersize = blk_rq_bytes(req);
1264 cmd->allowed = scsi_req(req)->retries;
1265 return BLKPREP_OK;
1269 * Setup a normal block command. These are simple request from filesystems
1270 * that still need to be translated to SCSI CDBs from the ULD.
1272 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1274 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1276 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1277 int ret = sdev->handler->prep_fn(sdev, req);
1278 if (ret != BLKPREP_OK)
1279 return ret;
1282 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1283 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1284 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1287 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1289 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1291 if (!blk_rq_bytes(req))
1292 cmd->sc_data_direction = DMA_NONE;
1293 else if (rq_data_dir(req) == WRITE)
1294 cmd->sc_data_direction = DMA_TO_DEVICE;
1295 else
1296 cmd->sc_data_direction = DMA_FROM_DEVICE;
1298 if (blk_rq_is_scsi(req))
1299 return scsi_setup_scsi_cmnd(sdev, req);
1300 else
1301 return scsi_setup_fs_cmnd(sdev, req);
1304 static int
1305 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1307 int ret = BLKPREP_OK;
1310 * If the device is not in running state we will reject some
1311 * or all commands.
1313 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1314 switch (sdev->sdev_state) {
1315 case SDEV_OFFLINE:
1316 case SDEV_TRANSPORT_OFFLINE:
1318 * If the device is offline we refuse to process any
1319 * commands. The device must be brought online
1320 * before trying any recovery commands.
1322 sdev_printk(KERN_ERR, sdev,
1323 "rejecting I/O to offline device\n");
1324 ret = BLKPREP_KILL;
1325 break;
1326 case SDEV_DEL:
1328 * If the device is fully deleted, we refuse to
1329 * process any commands as well.
1331 sdev_printk(KERN_ERR, sdev,
1332 "rejecting I/O to dead device\n");
1333 ret = BLKPREP_KILL;
1334 break;
1335 case SDEV_BLOCK:
1336 case SDEV_CREATED_BLOCK:
1337 ret = BLKPREP_DEFER;
1338 break;
1339 case SDEV_QUIESCE:
1341 * If the devices is blocked we defer normal commands.
1343 if (!(req->rq_flags & RQF_PREEMPT))
1344 ret = BLKPREP_DEFER;
1345 break;
1346 default:
1348 * For any other not fully online state we only allow
1349 * special commands. In particular any user initiated
1350 * command is not allowed.
1352 if (!(req->rq_flags & RQF_PREEMPT))
1353 ret = BLKPREP_KILL;
1354 break;
1357 return ret;
1360 static int
1361 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1363 struct scsi_device *sdev = q->queuedata;
1365 switch (ret) {
1366 case BLKPREP_KILL:
1367 case BLKPREP_INVALID:
1368 scsi_req(req)->result = DID_NO_CONNECT << 16;
1369 /* release the command and kill it */
1370 if (req->special) {
1371 struct scsi_cmnd *cmd = req->special;
1372 scsi_release_buffers(cmd);
1373 scsi_put_command(cmd);
1374 put_device(&sdev->sdev_gendev);
1375 req->special = NULL;
1377 break;
1378 case BLKPREP_DEFER:
1380 * If we defer, the blk_peek_request() returns NULL, but the
1381 * queue must be restarted, so we schedule a callback to happen
1382 * shortly.
1384 if (atomic_read(&sdev->device_busy) == 0)
1385 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1386 break;
1387 default:
1388 req->rq_flags |= RQF_DONTPREP;
1391 return ret;
1394 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1396 struct scsi_device *sdev = q->queuedata;
1397 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1398 int ret;
1400 ret = scsi_prep_state_check(sdev, req);
1401 if (ret != BLKPREP_OK)
1402 goto out;
1404 if (!req->special) {
1405 /* Bail if we can't get a reference to the device */
1406 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1407 ret = BLKPREP_DEFER;
1408 goto out;
1411 scsi_init_command(sdev, cmd);
1412 req->special = cmd;
1415 cmd->tag = req->tag;
1416 cmd->request = req;
1417 cmd->prot_op = SCSI_PROT_NORMAL;
1419 ret = scsi_setup_cmnd(sdev, req);
1420 out:
1421 return scsi_prep_return(q, req, ret);
1424 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1426 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1430 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1431 * return 0.
1433 * Called with the queue_lock held.
1435 static inline int scsi_dev_queue_ready(struct request_queue *q,
1436 struct scsi_device *sdev)
1438 unsigned int busy;
1440 busy = atomic_inc_return(&sdev->device_busy) - 1;
1441 if (atomic_read(&sdev->device_blocked)) {
1442 if (busy)
1443 goto out_dec;
1446 * unblock after device_blocked iterates to zero
1448 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1450 * For the MQ case we take care of this in the caller.
1452 if (!q->mq_ops)
1453 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1454 goto out_dec;
1456 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1457 "unblocking device at zero depth\n"));
1460 if (busy >= sdev->queue_depth)
1461 goto out_dec;
1463 return 1;
1464 out_dec:
1465 atomic_dec(&sdev->device_busy);
1466 return 0;
1470 * scsi_target_queue_ready: checks if there we can send commands to target
1471 * @sdev: scsi device on starget to check.
1473 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1474 struct scsi_device *sdev)
1476 struct scsi_target *starget = scsi_target(sdev);
1477 unsigned int busy;
1479 if (starget->single_lun) {
1480 spin_lock_irq(shost->host_lock);
1481 if (starget->starget_sdev_user &&
1482 starget->starget_sdev_user != sdev) {
1483 spin_unlock_irq(shost->host_lock);
1484 return 0;
1486 starget->starget_sdev_user = sdev;
1487 spin_unlock_irq(shost->host_lock);
1490 if (starget->can_queue <= 0)
1491 return 1;
1493 busy = atomic_inc_return(&starget->target_busy) - 1;
1494 if (atomic_read(&starget->target_blocked) > 0) {
1495 if (busy)
1496 goto starved;
1499 * unblock after target_blocked iterates to zero
1501 if (atomic_dec_return(&starget->target_blocked) > 0)
1502 goto out_dec;
1504 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1505 "unblocking target at zero depth\n"));
1508 if (busy >= starget->can_queue)
1509 goto starved;
1511 return 1;
1513 starved:
1514 spin_lock_irq(shost->host_lock);
1515 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1516 spin_unlock_irq(shost->host_lock);
1517 out_dec:
1518 if (starget->can_queue > 0)
1519 atomic_dec(&starget->target_busy);
1520 return 0;
1524 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1525 * return 0. We must end up running the queue again whenever 0 is
1526 * returned, else IO can hang.
1528 static inline int scsi_host_queue_ready(struct request_queue *q,
1529 struct Scsi_Host *shost,
1530 struct scsi_device *sdev)
1532 unsigned int busy;
1534 if (scsi_host_in_recovery(shost))
1535 return 0;
1537 busy = atomic_inc_return(&shost->host_busy) - 1;
1538 if (atomic_read(&shost->host_blocked) > 0) {
1539 if (busy)
1540 goto starved;
1543 * unblock after host_blocked iterates to zero
1545 if (atomic_dec_return(&shost->host_blocked) > 0)
1546 goto out_dec;
1548 SCSI_LOG_MLQUEUE(3,
1549 shost_printk(KERN_INFO, shost,
1550 "unblocking host at zero depth\n"));
1553 if (shost->can_queue > 0 && busy >= shost->can_queue)
1554 goto starved;
1555 if (shost->host_self_blocked)
1556 goto starved;
1558 /* We're OK to process the command, so we can't be starved */
1559 if (!list_empty(&sdev->starved_entry)) {
1560 spin_lock_irq(shost->host_lock);
1561 if (!list_empty(&sdev->starved_entry))
1562 list_del_init(&sdev->starved_entry);
1563 spin_unlock_irq(shost->host_lock);
1566 return 1;
1568 starved:
1569 spin_lock_irq(shost->host_lock);
1570 if (list_empty(&sdev->starved_entry))
1571 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1572 spin_unlock_irq(shost->host_lock);
1573 out_dec:
1574 scsi_dec_host_busy(shost);
1575 return 0;
1579 * Busy state exporting function for request stacking drivers.
1581 * For efficiency, no lock is taken to check the busy state of
1582 * shost/starget/sdev, since the returned value is not guaranteed and
1583 * may be changed after request stacking drivers call the function,
1584 * regardless of taking lock or not.
1586 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1587 * needs to return 'not busy'. Otherwise, request stacking drivers
1588 * may hold requests forever.
1590 static int scsi_lld_busy(struct request_queue *q)
1592 struct scsi_device *sdev = q->queuedata;
1593 struct Scsi_Host *shost;
1595 if (blk_queue_dying(q))
1596 return 0;
1598 shost = sdev->host;
1601 * Ignore host/starget busy state.
1602 * Since block layer does not have a concept of fairness across
1603 * multiple queues, congestion of host/starget needs to be handled
1604 * in SCSI layer.
1606 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1607 return 1;
1609 return 0;
1613 * Kill a request for a dead device
1615 static void scsi_kill_request(struct request *req, struct request_queue *q)
1617 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1618 struct scsi_device *sdev;
1619 struct scsi_target *starget;
1620 struct Scsi_Host *shost;
1622 blk_start_request(req);
1624 scmd_printk(KERN_INFO, cmd, "killing request\n");
1626 sdev = cmd->device;
1627 starget = scsi_target(sdev);
1628 shost = sdev->host;
1629 scsi_init_cmd_errh(cmd);
1630 cmd->result = DID_NO_CONNECT << 16;
1631 atomic_inc(&cmd->device->iorequest_cnt);
1634 * SCSI request completion path will do scsi_device_unbusy(),
1635 * bump busy counts. To bump the counters, we need to dance
1636 * with the locks as normal issue path does.
1638 atomic_inc(&sdev->device_busy);
1639 atomic_inc(&shost->host_busy);
1640 if (starget->can_queue > 0)
1641 atomic_inc(&starget->target_busy);
1643 blk_complete_request(req);
1646 static void scsi_softirq_done(struct request *rq)
1648 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1649 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1650 int disposition;
1652 INIT_LIST_HEAD(&cmd->eh_entry);
1654 atomic_inc(&cmd->device->iodone_cnt);
1655 if (cmd->result)
1656 atomic_inc(&cmd->device->ioerr_cnt);
1658 disposition = scsi_decide_disposition(cmd);
1659 if (disposition != SUCCESS &&
1660 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1661 sdev_printk(KERN_ERR, cmd->device,
1662 "timing out command, waited %lus\n",
1663 wait_for/HZ);
1664 disposition = SUCCESS;
1667 scsi_log_completion(cmd, disposition);
1669 switch (disposition) {
1670 case SUCCESS:
1671 scsi_finish_command(cmd);
1672 break;
1673 case NEEDS_RETRY:
1674 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1675 break;
1676 case ADD_TO_MLQUEUE:
1677 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1678 break;
1679 default:
1680 scsi_eh_scmd_add(cmd);
1681 break;
1686 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1687 * @cmd: command block we are dispatching.
1689 * Return: nonzero return request was rejected and device's queue needs to be
1690 * plugged.
1692 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1694 struct Scsi_Host *host = cmd->device->host;
1695 int rtn = 0;
1697 atomic_inc(&cmd->device->iorequest_cnt);
1699 /* check if the device is still usable */
1700 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1701 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1702 * returns an immediate error upwards, and signals
1703 * that the device is no longer present */
1704 cmd->result = DID_NO_CONNECT << 16;
1705 goto done;
1708 /* Check to see if the scsi lld made this device blocked. */
1709 if (unlikely(scsi_device_blocked(cmd->device))) {
1711 * in blocked state, the command is just put back on
1712 * the device queue. The suspend state has already
1713 * blocked the queue so future requests should not
1714 * occur until the device transitions out of the
1715 * suspend state.
1717 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718 "queuecommand : device blocked\n"));
1719 return SCSI_MLQUEUE_DEVICE_BUSY;
1722 /* Store the LUN value in cmnd, if needed. */
1723 if (cmd->device->lun_in_cdb)
1724 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1725 (cmd->device->lun << 5 & 0xe0);
1727 scsi_log_send(cmd);
1730 * Before we queue this command, check if the command
1731 * length exceeds what the host adapter can handle.
1733 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1734 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1735 "queuecommand : command too long. "
1736 "cdb_size=%d host->max_cmd_len=%d\n",
1737 cmd->cmd_len, cmd->device->host->max_cmd_len));
1738 cmd->result = (DID_ABORT << 16);
1739 goto done;
1742 if (unlikely(host->shost_state == SHOST_DEL)) {
1743 cmd->result = (DID_NO_CONNECT << 16);
1744 goto done;
1748 trace_scsi_dispatch_cmd_start(cmd);
1749 rtn = host->hostt->queuecommand(host, cmd);
1750 if (rtn) {
1751 trace_scsi_dispatch_cmd_error(cmd, rtn);
1752 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1753 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1754 rtn = SCSI_MLQUEUE_HOST_BUSY;
1756 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1757 "queuecommand : request rejected\n"));
1760 return rtn;
1761 done:
1762 cmd->scsi_done(cmd);
1763 return 0;
1767 * scsi_done - Invoke completion on finished SCSI command.
1768 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1769 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1771 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1772 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1773 * calls blk_complete_request() for further processing.
1775 * This function is interrupt context safe.
1777 static void scsi_done(struct scsi_cmnd *cmd)
1779 trace_scsi_dispatch_cmd_done(cmd);
1780 blk_complete_request(cmd->request);
1784 * Function: scsi_request_fn()
1786 * Purpose: Main strategy routine for SCSI.
1788 * Arguments: q - Pointer to actual queue.
1790 * Returns: Nothing
1792 * Lock status: IO request lock assumed to be held when called.
1794 static void scsi_request_fn(struct request_queue *q)
1795 __releases(q->queue_lock)
1796 __acquires(q->queue_lock)
1798 struct scsi_device *sdev = q->queuedata;
1799 struct Scsi_Host *shost;
1800 struct scsi_cmnd *cmd;
1801 struct request *req;
1804 * To start with, we keep looping until the queue is empty, or until
1805 * the host is no longer able to accept any more requests.
1807 shost = sdev->host;
1808 for (;;) {
1809 int rtn;
1811 * get next queueable request. We do this early to make sure
1812 * that the request is fully prepared even if we cannot
1813 * accept it.
1815 req = blk_peek_request(q);
1816 if (!req)
1817 break;
1819 if (unlikely(!scsi_device_online(sdev))) {
1820 sdev_printk(KERN_ERR, sdev,
1821 "rejecting I/O to offline device\n");
1822 scsi_kill_request(req, q);
1823 continue;
1826 if (!scsi_dev_queue_ready(q, sdev))
1827 break;
1830 * Remove the request from the request list.
1832 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1833 blk_start_request(req);
1835 spin_unlock_irq(q->queue_lock);
1836 cmd = blk_mq_rq_to_pdu(req);
1837 if (cmd != req->special) {
1838 printk(KERN_CRIT "impossible request in %s.\n"
1839 "please mail a stack trace to "
1840 "linux-scsi@vger.kernel.org\n",
1841 __func__);
1842 blk_dump_rq_flags(req, "foo");
1843 BUG();
1847 * We hit this when the driver is using a host wide
1848 * tag map. For device level tag maps the queue_depth check
1849 * in the device ready fn would prevent us from trying
1850 * to allocate a tag. Since the map is a shared host resource
1851 * we add the dev to the starved list so it eventually gets
1852 * a run when a tag is freed.
1854 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1855 spin_lock_irq(shost->host_lock);
1856 if (list_empty(&sdev->starved_entry))
1857 list_add_tail(&sdev->starved_entry,
1858 &shost->starved_list);
1859 spin_unlock_irq(shost->host_lock);
1860 goto not_ready;
1863 if (!scsi_target_queue_ready(shost, sdev))
1864 goto not_ready;
1866 if (!scsi_host_queue_ready(q, shost, sdev))
1867 goto host_not_ready;
1869 if (sdev->simple_tags)
1870 cmd->flags |= SCMD_TAGGED;
1871 else
1872 cmd->flags &= ~SCMD_TAGGED;
1875 * Finally, initialize any error handling parameters, and set up
1876 * the timers for timeouts.
1878 scsi_init_cmd_errh(cmd);
1881 * Dispatch the command to the low-level driver.
1883 cmd->scsi_done = scsi_done;
1884 rtn = scsi_dispatch_cmd(cmd);
1885 if (rtn) {
1886 scsi_queue_insert(cmd, rtn);
1887 spin_lock_irq(q->queue_lock);
1888 goto out_delay;
1890 spin_lock_irq(q->queue_lock);
1893 return;
1895 host_not_ready:
1896 if (scsi_target(sdev)->can_queue > 0)
1897 atomic_dec(&scsi_target(sdev)->target_busy);
1898 not_ready:
1900 * lock q, handle tag, requeue req, and decrement device_busy. We
1901 * must return with queue_lock held.
1903 * Decrementing device_busy without checking it is OK, as all such
1904 * cases (host limits or settings) should run the queue at some
1905 * later time.
1907 spin_lock_irq(q->queue_lock);
1908 blk_requeue_request(q, req);
1909 atomic_dec(&sdev->device_busy);
1910 out_delay:
1911 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1912 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1915 static inline blk_status_t prep_to_mq(int ret)
1917 switch (ret) {
1918 case BLKPREP_OK:
1919 return BLK_STS_OK;
1920 case BLKPREP_DEFER:
1921 return BLK_STS_RESOURCE;
1922 default:
1923 return BLK_STS_IOERR;
1927 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1928 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1930 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1931 sizeof(struct scatterlist);
1934 static int scsi_mq_prep_fn(struct request *req)
1936 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1937 struct scsi_device *sdev = req->q->queuedata;
1938 struct Scsi_Host *shost = sdev->host;
1939 struct scatterlist *sg;
1941 scsi_init_command(sdev, cmd);
1943 req->special = cmd;
1945 cmd->request = req;
1947 cmd->tag = req->tag;
1948 cmd->prot_op = SCSI_PROT_NORMAL;
1950 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1951 cmd->sdb.table.sgl = sg;
1953 if (scsi_host_get_prot(shost)) {
1954 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1956 cmd->prot_sdb->table.sgl =
1957 (struct scatterlist *)(cmd->prot_sdb + 1);
1960 if (blk_bidi_rq(req)) {
1961 struct request *next_rq = req->next_rq;
1962 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1964 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1965 bidi_sdb->table.sgl =
1966 (struct scatterlist *)(bidi_sdb + 1);
1968 next_rq->special = bidi_sdb;
1971 blk_mq_start_request(req);
1973 return scsi_setup_cmnd(sdev, req);
1976 static void scsi_mq_done(struct scsi_cmnd *cmd)
1978 trace_scsi_dispatch_cmd_done(cmd);
1979 blk_mq_complete_request(cmd->request);
1982 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1983 const struct blk_mq_queue_data *bd)
1985 struct request *req = bd->rq;
1986 struct request_queue *q = req->q;
1987 struct scsi_device *sdev = q->queuedata;
1988 struct Scsi_Host *shost = sdev->host;
1989 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1990 blk_status_t ret;
1991 int reason;
1993 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1994 if (ret != BLK_STS_OK)
1995 goto out;
1997 ret = BLK_STS_RESOURCE;
1998 if (!get_device(&sdev->sdev_gendev))
1999 goto out;
2001 if (!scsi_dev_queue_ready(q, sdev))
2002 goto out_put_device;
2003 if (!scsi_target_queue_ready(shost, sdev))
2004 goto out_dec_device_busy;
2005 if (!scsi_host_queue_ready(q, shost, sdev))
2006 goto out_dec_target_busy;
2008 if (!(req->rq_flags & RQF_DONTPREP)) {
2009 ret = prep_to_mq(scsi_mq_prep_fn(req));
2010 if (ret != BLK_STS_OK)
2011 goto out_dec_host_busy;
2012 req->rq_flags |= RQF_DONTPREP;
2013 } else {
2014 blk_mq_start_request(req);
2017 if (sdev->simple_tags)
2018 cmd->flags |= SCMD_TAGGED;
2019 else
2020 cmd->flags &= ~SCMD_TAGGED;
2022 scsi_init_cmd_errh(cmd);
2023 cmd->scsi_done = scsi_mq_done;
2025 reason = scsi_dispatch_cmd(cmd);
2026 if (reason) {
2027 scsi_set_blocked(cmd, reason);
2028 ret = BLK_STS_RESOURCE;
2029 goto out_dec_host_busy;
2032 return BLK_STS_OK;
2034 out_dec_host_busy:
2035 scsi_dec_host_busy(shost);
2036 out_dec_target_busy:
2037 if (scsi_target(sdev)->can_queue > 0)
2038 atomic_dec(&scsi_target(sdev)->target_busy);
2039 out_dec_device_busy:
2040 atomic_dec(&sdev->device_busy);
2041 out_put_device:
2042 put_device(&sdev->sdev_gendev);
2043 out:
2044 switch (ret) {
2045 case BLK_STS_OK:
2046 break;
2047 case BLK_STS_RESOURCE:
2048 if (atomic_read(&sdev->device_busy) == 0 &&
2049 !scsi_device_blocked(sdev))
2050 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2051 break;
2052 default:
2053 if (unlikely(!scsi_device_online(sdev)))
2054 scsi_req(req)->result = DID_NO_CONNECT << 16;
2055 else
2056 scsi_req(req)->result = DID_ERROR << 16;
2058 * Make sure to release all allocated resources when
2059 * we hit an error, as we will never see this command
2060 * again.
2062 if (req->rq_flags & RQF_DONTPREP)
2063 scsi_mq_uninit_cmd(cmd);
2064 break;
2066 return ret;
2069 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2070 bool reserved)
2072 if (reserved)
2073 return BLK_EH_RESET_TIMER;
2074 return scsi_times_out(req);
2077 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2078 unsigned int hctx_idx, unsigned int numa_node)
2080 struct Scsi_Host *shost = set->driver_data;
2081 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2082 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2083 struct scatterlist *sg;
2085 if (unchecked_isa_dma)
2086 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2087 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2088 GFP_KERNEL, numa_node);
2089 if (!cmd->sense_buffer)
2090 return -ENOMEM;
2091 cmd->req.sense = cmd->sense_buffer;
2093 if (scsi_host_get_prot(shost)) {
2094 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2095 shost->hostt->cmd_size;
2096 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2099 return 0;
2102 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2103 unsigned int hctx_idx)
2105 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2107 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2108 cmd->sense_buffer);
2111 static int scsi_map_queues(struct blk_mq_tag_set *set)
2113 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2115 if (shost->hostt->map_queues)
2116 return shost->hostt->map_queues(shost);
2117 return blk_mq_map_queues(set);
2120 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2122 struct device *host_dev;
2123 u64 bounce_limit = 0xffffffff;
2125 if (shost->unchecked_isa_dma)
2126 return BLK_BOUNCE_ISA;
2128 * Platforms with virtual-DMA translation
2129 * hardware have no practical limit.
2131 if (!PCI_DMA_BUS_IS_PHYS)
2132 return BLK_BOUNCE_ANY;
2134 host_dev = scsi_get_device(shost);
2135 if (host_dev && host_dev->dma_mask)
2136 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2138 return bounce_limit;
2141 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2143 struct device *dev = shost->dma_dev;
2145 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2148 * this limit is imposed by hardware restrictions
2150 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2151 SG_MAX_SEGMENTS));
2153 if (scsi_host_prot_dma(shost)) {
2154 shost->sg_prot_tablesize =
2155 min_not_zero(shost->sg_prot_tablesize,
2156 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2157 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2158 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2161 blk_queue_max_hw_sectors(q, shost->max_sectors);
2162 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2163 blk_queue_segment_boundary(q, shost->dma_boundary);
2164 dma_set_seg_boundary(dev, shost->dma_boundary);
2166 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2168 if (!shost->use_clustering)
2169 q->limits.cluster = 0;
2172 * Set a reasonable default alignment: The larger of 32-byte (dword),
2173 * which is a common minimum for HBAs, and the minimum DMA alignment,
2174 * which is set by the platform.
2176 * Devices that require a bigger alignment can increase it later.
2178 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2180 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2182 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2183 gfp_t gfp)
2185 struct Scsi_Host *shost = q->rq_alloc_data;
2186 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2187 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2189 memset(cmd, 0, sizeof(*cmd));
2191 if (unchecked_isa_dma)
2192 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2193 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2194 NUMA_NO_NODE);
2195 if (!cmd->sense_buffer)
2196 goto fail;
2197 cmd->req.sense = cmd->sense_buffer;
2199 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2200 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2201 if (!cmd->prot_sdb)
2202 goto fail_free_sense;
2205 return 0;
2207 fail_free_sense:
2208 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2209 fail:
2210 return -ENOMEM;
2213 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2215 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2217 if (cmd->prot_sdb)
2218 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2219 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2220 cmd->sense_buffer);
2223 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2225 struct Scsi_Host *shost = sdev->host;
2226 struct request_queue *q;
2228 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2229 if (!q)
2230 return NULL;
2231 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2232 q->rq_alloc_data = shost;
2233 q->request_fn = scsi_request_fn;
2234 q->init_rq_fn = scsi_old_init_rq;
2235 q->exit_rq_fn = scsi_old_exit_rq;
2236 q->initialize_rq_fn = scsi_initialize_rq;
2238 if (blk_init_allocated_queue(q) < 0) {
2239 blk_cleanup_queue(q);
2240 return NULL;
2243 __scsi_init_queue(shost, q);
2244 blk_queue_prep_rq(q, scsi_prep_fn);
2245 blk_queue_unprep_rq(q, scsi_unprep_fn);
2246 blk_queue_softirq_done(q, scsi_softirq_done);
2247 blk_queue_rq_timed_out(q, scsi_times_out);
2248 blk_queue_lld_busy(q, scsi_lld_busy);
2249 return q;
2252 static const struct blk_mq_ops scsi_mq_ops = {
2253 .queue_rq = scsi_queue_rq,
2254 .complete = scsi_softirq_done,
2255 .timeout = scsi_timeout,
2256 #ifdef CONFIG_BLK_DEBUG_FS
2257 .show_rq = scsi_show_rq,
2258 #endif
2259 .init_request = scsi_mq_init_request,
2260 .exit_request = scsi_mq_exit_request,
2261 .initialize_rq_fn = scsi_initialize_rq,
2262 .map_queues = scsi_map_queues,
2265 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2267 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2268 if (IS_ERR(sdev->request_queue))
2269 return NULL;
2271 sdev->request_queue->queuedata = sdev;
2272 __scsi_init_queue(sdev->host, sdev->request_queue);
2273 return sdev->request_queue;
2276 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2278 unsigned int cmd_size, sgl_size;
2280 sgl_size = scsi_mq_sgl_size(shost);
2281 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2282 if (scsi_host_get_prot(shost))
2283 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2285 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2286 shost->tag_set.ops = &scsi_mq_ops;
2287 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2288 shost->tag_set.queue_depth = shost->can_queue;
2289 shost->tag_set.cmd_size = cmd_size;
2290 shost->tag_set.numa_node = NUMA_NO_NODE;
2291 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2292 shost->tag_set.flags |=
2293 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2294 shost->tag_set.driver_data = shost;
2296 return blk_mq_alloc_tag_set(&shost->tag_set);
2299 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2301 blk_mq_free_tag_set(&shost->tag_set);
2305 * scsi_device_from_queue - return sdev associated with a request_queue
2306 * @q: The request queue to return the sdev from
2308 * Return the sdev associated with a request queue or NULL if the
2309 * request_queue does not reference a SCSI device.
2311 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2313 struct scsi_device *sdev = NULL;
2315 if (q->mq_ops) {
2316 if (q->mq_ops == &scsi_mq_ops)
2317 sdev = q->queuedata;
2318 } else if (q->request_fn == scsi_request_fn)
2319 sdev = q->queuedata;
2320 if (!sdev || !get_device(&sdev->sdev_gendev))
2321 sdev = NULL;
2323 return sdev;
2325 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2328 * Function: scsi_block_requests()
2330 * Purpose: Utility function used by low-level drivers to prevent further
2331 * commands from being queued to the device.
2333 * Arguments: shost - Host in question
2335 * Returns: Nothing
2337 * Lock status: No locks are assumed held.
2339 * Notes: There is no timer nor any other means by which the requests
2340 * get unblocked other than the low-level driver calling
2341 * scsi_unblock_requests().
2343 void scsi_block_requests(struct Scsi_Host *shost)
2345 shost->host_self_blocked = 1;
2347 EXPORT_SYMBOL(scsi_block_requests);
2350 * Function: scsi_unblock_requests()
2352 * Purpose: Utility function used by low-level drivers to allow further
2353 * commands from being queued to the device.
2355 * Arguments: shost - Host in question
2357 * Returns: Nothing
2359 * Lock status: No locks are assumed held.
2361 * Notes: There is no timer nor any other means by which the requests
2362 * get unblocked other than the low-level driver calling
2363 * scsi_unblock_requests().
2365 * This is done as an API function so that changes to the
2366 * internals of the scsi mid-layer won't require wholesale
2367 * changes to drivers that use this feature.
2369 void scsi_unblock_requests(struct Scsi_Host *shost)
2371 shost->host_self_blocked = 0;
2372 scsi_run_host_queues(shost);
2374 EXPORT_SYMBOL(scsi_unblock_requests);
2376 int __init scsi_init_queue(void)
2378 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2379 sizeof(struct scsi_data_buffer),
2380 0, 0, NULL);
2381 if (!scsi_sdb_cache) {
2382 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2383 return -ENOMEM;
2386 return 0;
2389 void scsi_exit_queue(void)
2391 kmem_cache_destroy(scsi_sense_cache);
2392 kmem_cache_destroy(scsi_sense_isadma_cache);
2393 kmem_cache_destroy(scsi_sdb_cache);
2397 * scsi_mode_select - issue a mode select
2398 * @sdev: SCSI device to be queried
2399 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2400 * @sp: Save page bit (0 == don't save, 1 == save)
2401 * @modepage: mode page being requested
2402 * @buffer: request buffer (may not be smaller than eight bytes)
2403 * @len: length of request buffer.
2404 * @timeout: command timeout
2405 * @retries: number of retries before failing
2406 * @data: returns a structure abstracting the mode header data
2407 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2408 * must be SCSI_SENSE_BUFFERSIZE big.
2410 * Returns zero if successful; negative error number or scsi
2411 * status on error
2415 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2416 unsigned char *buffer, int len, int timeout, int retries,
2417 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2419 unsigned char cmd[10];
2420 unsigned char *real_buffer;
2421 int ret;
2423 memset(cmd, 0, sizeof(cmd));
2424 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2426 if (sdev->use_10_for_ms) {
2427 if (len > 65535)
2428 return -EINVAL;
2429 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2430 if (!real_buffer)
2431 return -ENOMEM;
2432 memcpy(real_buffer + 8, buffer, len);
2433 len += 8;
2434 real_buffer[0] = 0;
2435 real_buffer[1] = 0;
2436 real_buffer[2] = data->medium_type;
2437 real_buffer[3] = data->device_specific;
2438 real_buffer[4] = data->longlba ? 0x01 : 0;
2439 real_buffer[5] = 0;
2440 real_buffer[6] = data->block_descriptor_length >> 8;
2441 real_buffer[7] = data->block_descriptor_length;
2443 cmd[0] = MODE_SELECT_10;
2444 cmd[7] = len >> 8;
2445 cmd[8] = len;
2446 } else {
2447 if (len > 255 || data->block_descriptor_length > 255 ||
2448 data->longlba)
2449 return -EINVAL;
2451 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2452 if (!real_buffer)
2453 return -ENOMEM;
2454 memcpy(real_buffer + 4, buffer, len);
2455 len += 4;
2456 real_buffer[0] = 0;
2457 real_buffer[1] = data->medium_type;
2458 real_buffer[2] = data->device_specific;
2459 real_buffer[3] = data->block_descriptor_length;
2462 cmd[0] = MODE_SELECT;
2463 cmd[4] = len;
2466 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2467 sshdr, timeout, retries, NULL);
2468 kfree(real_buffer);
2469 return ret;
2471 EXPORT_SYMBOL_GPL(scsi_mode_select);
2474 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2475 * @sdev: SCSI device to be queried
2476 * @dbd: set if mode sense will allow block descriptors to be returned
2477 * @modepage: mode page being requested
2478 * @buffer: request buffer (may not be smaller than eight bytes)
2479 * @len: length of request buffer.
2480 * @timeout: command timeout
2481 * @retries: number of retries before failing
2482 * @data: returns a structure abstracting the mode header data
2483 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2484 * must be SCSI_SENSE_BUFFERSIZE big.
2486 * Returns zero if unsuccessful, or the header offset (either 4
2487 * or 8 depending on whether a six or ten byte command was
2488 * issued) if successful.
2491 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2492 unsigned char *buffer, int len, int timeout, int retries,
2493 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2495 unsigned char cmd[12];
2496 int use_10_for_ms;
2497 int header_length;
2498 int result, retry_count = retries;
2499 struct scsi_sense_hdr my_sshdr;
2501 memset(data, 0, sizeof(*data));
2502 memset(&cmd[0], 0, 12);
2503 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2504 cmd[2] = modepage;
2506 /* caller might not be interested in sense, but we need it */
2507 if (!sshdr)
2508 sshdr = &my_sshdr;
2510 retry:
2511 use_10_for_ms = sdev->use_10_for_ms;
2513 if (use_10_for_ms) {
2514 if (len < 8)
2515 len = 8;
2517 cmd[0] = MODE_SENSE_10;
2518 cmd[8] = len;
2519 header_length = 8;
2520 } else {
2521 if (len < 4)
2522 len = 4;
2524 cmd[0] = MODE_SENSE;
2525 cmd[4] = len;
2526 header_length = 4;
2529 memset(buffer, 0, len);
2531 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2532 sshdr, timeout, retries, NULL);
2534 /* This code looks awful: what it's doing is making sure an
2535 * ILLEGAL REQUEST sense return identifies the actual command
2536 * byte as the problem. MODE_SENSE commands can return
2537 * ILLEGAL REQUEST if the code page isn't supported */
2539 if (use_10_for_ms && !scsi_status_is_good(result) &&
2540 (driver_byte(result) & DRIVER_SENSE)) {
2541 if (scsi_sense_valid(sshdr)) {
2542 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2543 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2545 * Invalid command operation code
2547 sdev->use_10_for_ms = 0;
2548 goto retry;
2553 if(scsi_status_is_good(result)) {
2554 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2555 (modepage == 6 || modepage == 8))) {
2556 /* Initio breakage? */
2557 header_length = 0;
2558 data->length = 13;
2559 data->medium_type = 0;
2560 data->device_specific = 0;
2561 data->longlba = 0;
2562 data->block_descriptor_length = 0;
2563 } else if(use_10_for_ms) {
2564 data->length = buffer[0]*256 + buffer[1] + 2;
2565 data->medium_type = buffer[2];
2566 data->device_specific = buffer[3];
2567 data->longlba = buffer[4] & 0x01;
2568 data->block_descriptor_length = buffer[6]*256
2569 + buffer[7];
2570 } else {
2571 data->length = buffer[0] + 1;
2572 data->medium_type = buffer[1];
2573 data->device_specific = buffer[2];
2574 data->block_descriptor_length = buffer[3];
2576 data->header_length = header_length;
2577 } else if ((status_byte(result) == CHECK_CONDITION) &&
2578 scsi_sense_valid(sshdr) &&
2579 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2580 retry_count--;
2581 goto retry;
2584 return result;
2586 EXPORT_SYMBOL(scsi_mode_sense);
2589 * scsi_test_unit_ready - test if unit is ready
2590 * @sdev: scsi device to change the state of.
2591 * @timeout: command timeout
2592 * @retries: number of retries before failing
2593 * @sshdr: outpout pointer for decoded sense information.
2595 * Returns zero if unsuccessful or an error if TUR failed. For
2596 * removable media, UNIT_ATTENTION sets ->changed flag.
2599 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2600 struct scsi_sense_hdr *sshdr)
2602 char cmd[] = {
2603 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2605 int result;
2607 /* try to eat the UNIT_ATTENTION if there are enough retries */
2608 do {
2609 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2610 timeout, retries, NULL);
2611 if (sdev->removable && scsi_sense_valid(sshdr) &&
2612 sshdr->sense_key == UNIT_ATTENTION)
2613 sdev->changed = 1;
2614 } while (scsi_sense_valid(sshdr) &&
2615 sshdr->sense_key == UNIT_ATTENTION && --retries);
2617 return result;
2619 EXPORT_SYMBOL(scsi_test_unit_ready);
2622 * scsi_device_set_state - Take the given device through the device state model.
2623 * @sdev: scsi device to change the state of.
2624 * @state: state to change to.
2626 * Returns zero if successful or an error if the requested
2627 * transition is illegal.
2630 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2632 enum scsi_device_state oldstate = sdev->sdev_state;
2634 if (state == oldstate)
2635 return 0;
2637 switch (state) {
2638 case SDEV_CREATED:
2639 switch (oldstate) {
2640 case SDEV_CREATED_BLOCK:
2641 break;
2642 default:
2643 goto illegal;
2645 break;
2647 case SDEV_RUNNING:
2648 switch (oldstate) {
2649 case SDEV_CREATED:
2650 case SDEV_OFFLINE:
2651 case SDEV_TRANSPORT_OFFLINE:
2652 case SDEV_QUIESCE:
2653 case SDEV_BLOCK:
2654 break;
2655 default:
2656 goto illegal;
2658 break;
2660 case SDEV_QUIESCE:
2661 switch (oldstate) {
2662 case SDEV_RUNNING:
2663 case SDEV_OFFLINE:
2664 case SDEV_TRANSPORT_OFFLINE:
2665 break;
2666 default:
2667 goto illegal;
2669 break;
2671 case SDEV_OFFLINE:
2672 case SDEV_TRANSPORT_OFFLINE:
2673 switch (oldstate) {
2674 case SDEV_CREATED:
2675 case SDEV_RUNNING:
2676 case SDEV_QUIESCE:
2677 case SDEV_BLOCK:
2678 break;
2679 default:
2680 goto illegal;
2682 break;
2684 case SDEV_BLOCK:
2685 switch (oldstate) {
2686 case SDEV_RUNNING:
2687 case SDEV_CREATED_BLOCK:
2688 break;
2689 default:
2690 goto illegal;
2692 break;
2694 case SDEV_CREATED_BLOCK:
2695 switch (oldstate) {
2696 case SDEV_CREATED:
2697 break;
2698 default:
2699 goto illegal;
2701 break;
2703 case SDEV_CANCEL:
2704 switch (oldstate) {
2705 case SDEV_CREATED:
2706 case SDEV_RUNNING:
2707 case SDEV_QUIESCE:
2708 case SDEV_OFFLINE:
2709 case SDEV_TRANSPORT_OFFLINE:
2710 break;
2711 default:
2712 goto illegal;
2714 break;
2716 case SDEV_DEL:
2717 switch (oldstate) {
2718 case SDEV_CREATED:
2719 case SDEV_RUNNING:
2720 case SDEV_OFFLINE:
2721 case SDEV_TRANSPORT_OFFLINE:
2722 case SDEV_CANCEL:
2723 case SDEV_BLOCK:
2724 case SDEV_CREATED_BLOCK:
2725 break;
2726 default:
2727 goto illegal;
2729 break;
2732 sdev->sdev_state = state;
2733 return 0;
2735 illegal:
2736 SCSI_LOG_ERROR_RECOVERY(1,
2737 sdev_printk(KERN_ERR, sdev,
2738 "Illegal state transition %s->%s",
2739 scsi_device_state_name(oldstate),
2740 scsi_device_state_name(state))
2742 return -EINVAL;
2744 EXPORT_SYMBOL(scsi_device_set_state);
2747 * sdev_evt_emit - emit a single SCSI device uevent
2748 * @sdev: associated SCSI device
2749 * @evt: event to emit
2751 * Send a single uevent (scsi_event) to the associated scsi_device.
2753 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2755 int idx = 0;
2756 char *envp[3];
2758 switch (evt->evt_type) {
2759 case SDEV_EVT_MEDIA_CHANGE:
2760 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2761 break;
2762 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2763 scsi_rescan_device(&sdev->sdev_gendev);
2764 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2765 break;
2766 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2767 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2768 break;
2769 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2770 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2771 break;
2772 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2773 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2774 break;
2775 case SDEV_EVT_LUN_CHANGE_REPORTED:
2776 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2777 break;
2778 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2779 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2780 break;
2781 default:
2782 /* do nothing */
2783 break;
2786 envp[idx++] = NULL;
2788 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2792 * sdev_evt_thread - send a uevent for each scsi event
2793 * @work: work struct for scsi_device
2795 * Dispatch queued events to their associated scsi_device kobjects
2796 * as uevents.
2798 void scsi_evt_thread(struct work_struct *work)
2800 struct scsi_device *sdev;
2801 enum scsi_device_event evt_type;
2802 LIST_HEAD(event_list);
2804 sdev = container_of(work, struct scsi_device, event_work);
2806 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2807 if (test_and_clear_bit(evt_type, sdev->pending_events))
2808 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2810 while (1) {
2811 struct scsi_event *evt;
2812 struct list_head *this, *tmp;
2813 unsigned long flags;
2815 spin_lock_irqsave(&sdev->list_lock, flags);
2816 list_splice_init(&sdev->event_list, &event_list);
2817 spin_unlock_irqrestore(&sdev->list_lock, flags);
2819 if (list_empty(&event_list))
2820 break;
2822 list_for_each_safe(this, tmp, &event_list) {
2823 evt = list_entry(this, struct scsi_event, node);
2824 list_del(&evt->node);
2825 scsi_evt_emit(sdev, evt);
2826 kfree(evt);
2832 * sdev_evt_send - send asserted event to uevent thread
2833 * @sdev: scsi_device event occurred on
2834 * @evt: event to send
2836 * Assert scsi device event asynchronously.
2838 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2840 unsigned long flags;
2842 #if 0
2843 /* FIXME: currently this check eliminates all media change events
2844 * for polled devices. Need to update to discriminate between AN
2845 * and polled events */
2846 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2847 kfree(evt);
2848 return;
2850 #endif
2852 spin_lock_irqsave(&sdev->list_lock, flags);
2853 list_add_tail(&evt->node, &sdev->event_list);
2854 schedule_work(&sdev->event_work);
2855 spin_unlock_irqrestore(&sdev->list_lock, flags);
2857 EXPORT_SYMBOL_GPL(sdev_evt_send);
2860 * sdev_evt_alloc - allocate a new scsi event
2861 * @evt_type: type of event to allocate
2862 * @gfpflags: GFP flags for allocation
2864 * Allocates and returns a new scsi_event.
2866 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2867 gfp_t gfpflags)
2869 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2870 if (!evt)
2871 return NULL;
2873 evt->evt_type = evt_type;
2874 INIT_LIST_HEAD(&evt->node);
2876 /* evt_type-specific initialization, if any */
2877 switch (evt_type) {
2878 case SDEV_EVT_MEDIA_CHANGE:
2879 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2880 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2881 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2882 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2883 case SDEV_EVT_LUN_CHANGE_REPORTED:
2884 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2885 default:
2886 /* do nothing */
2887 break;
2890 return evt;
2892 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2895 * sdev_evt_send_simple - send asserted event to uevent thread
2896 * @sdev: scsi_device event occurred on
2897 * @evt_type: type of event to send
2898 * @gfpflags: GFP flags for allocation
2900 * Assert scsi device event asynchronously, given an event type.
2902 void sdev_evt_send_simple(struct scsi_device *sdev,
2903 enum scsi_device_event evt_type, gfp_t gfpflags)
2905 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2906 if (!evt) {
2907 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2908 evt_type);
2909 return;
2912 sdev_evt_send(sdev, evt);
2914 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2917 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2918 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2920 static int scsi_request_fn_active(struct scsi_device *sdev)
2922 struct request_queue *q = sdev->request_queue;
2923 int request_fn_active;
2925 WARN_ON_ONCE(sdev->host->use_blk_mq);
2927 spin_lock_irq(q->queue_lock);
2928 request_fn_active = q->request_fn_active;
2929 spin_unlock_irq(q->queue_lock);
2931 return request_fn_active;
2935 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2936 * @sdev: SCSI device pointer.
2938 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2939 * invoked from scsi_request_fn() have finished.
2941 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2943 WARN_ON_ONCE(sdev->host->use_blk_mq);
2945 while (scsi_request_fn_active(sdev))
2946 msleep(20);
2950 * scsi_device_quiesce - Block user issued commands.
2951 * @sdev: scsi device to quiesce.
2953 * This works by trying to transition to the SDEV_QUIESCE state
2954 * (which must be a legal transition). When the device is in this
2955 * state, only special requests will be accepted, all others will
2956 * be deferred. Since special requests may also be requeued requests,
2957 * a successful return doesn't guarantee the device will be
2958 * totally quiescent.
2960 * Must be called with user context, may sleep.
2962 * Returns zero if unsuccessful or an error if not.
2965 scsi_device_quiesce(struct scsi_device *sdev)
2967 int err;
2969 mutex_lock(&sdev->state_mutex);
2970 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2971 mutex_unlock(&sdev->state_mutex);
2973 if (err)
2974 return err;
2976 scsi_run_queue(sdev->request_queue);
2977 while (atomic_read(&sdev->device_busy)) {
2978 msleep_interruptible(200);
2979 scsi_run_queue(sdev->request_queue);
2981 return 0;
2983 EXPORT_SYMBOL(scsi_device_quiesce);
2986 * scsi_device_resume - Restart user issued commands to a quiesced device.
2987 * @sdev: scsi device to resume.
2989 * Moves the device from quiesced back to running and restarts the
2990 * queues.
2992 * Must be called with user context, may sleep.
2994 void scsi_device_resume(struct scsi_device *sdev)
2996 /* check if the device state was mutated prior to resume, and if
2997 * so assume the state is being managed elsewhere (for example
2998 * device deleted during suspend)
3000 mutex_lock(&sdev->state_mutex);
3001 if (sdev->sdev_state == SDEV_QUIESCE &&
3002 scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
3003 scsi_run_queue(sdev->request_queue);
3004 mutex_unlock(&sdev->state_mutex);
3006 EXPORT_SYMBOL(scsi_device_resume);
3008 static void
3009 device_quiesce_fn(struct scsi_device *sdev, void *data)
3011 scsi_device_quiesce(sdev);
3014 void
3015 scsi_target_quiesce(struct scsi_target *starget)
3017 starget_for_each_device(starget, NULL, device_quiesce_fn);
3019 EXPORT_SYMBOL(scsi_target_quiesce);
3021 static void
3022 device_resume_fn(struct scsi_device *sdev, void *data)
3024 scsi_device_resume(sdev);
3027 void
3028 scsi_target_resume(struct scsi_target *starget)
3030 starget_for_each_device(starget, NULL, device_resume_fn);
3032 EXPORT_SYMBOL(scsi_target_resume);
3035 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3036 * @sdev: device to block
3038 * Pause SCSI command processing on the specified device. Does not sleep.
3040 * Returns zero if successful or a negative error code upon failure.
3042 * Notes:
3043 * This routine transitions the device to the SDEV_BLOCK state (which must be
3044 * a legal transition). When the device is in this state, command processing
3045 * is paused until the device leaves the SDEV_BLOCK state. See also
3046 * scsi_internal_device_unblock_nowait().
3048 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3050 struct request_queue *q = sdev->request_queue;
3051 unsigned long flags;
3052 int err = 0;
3054 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3055 if (err) {
3056 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3058 if (err)
3059 return err;
3063 * The device has transitioned to SDEV_BLOCK. Stop the
3064 * block layer from calling the midlayer with this device's
3065 * request queue.
3067 if (q->mq_ops) {
3068 blk_mq_quiesce_queue_nowait(q);
3069 } else {
3070 spin_lock_irqsave(q->queue_lock, flags);
3071 blk_stop_queue(q);
3072 spin_unlock_irqrestore(q->queue_lock, flags);
3075 return 0;
3077 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3080 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3081 * @sdev: device to block
3083 * Pause SCSI command processing on the specified device and wait until all
3084 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3086 * Returns zero if successful or a negative error code upon failure.
3088 * Note:
3089 * This routine transitions the device to the SDEV_BLOCK state (which must be
3090 * a legal transition). When the device is in this state, command processing
3091 * is paused until the device leaves the SDEV_BLOCK state. See also
3092 * scsi_internal_device_unblock().
3094 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3095 * scsi_internal_device_block() has blocked a SCSI device and also
3096 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3098 static int scsi_internal_device_block(struct scsi_device *sdev)
3100 struct request_queue *q = sdev->request_queue;
3101 int err;
3103 mutex_lock(&sdev->state_mutex);
3104 err = scsi_internal_device_block_nowait(sdev);
3105 if (err == 0) {
3106 if (q->mq_ops)
3107 blk_mq_quiesce_queue(q);
3108 else
3109 scsi_wait_for_queuecommand(sdev);
3111 mutex_unlock(&sdev->state_mutex);
3113 return err;
3116 void scsi_start_queue(struct scsi_device *sdev)
3118 struct request_queue *q = sdev->request_queue;
3119 unsigned long flags;
3121 if (q->mq_ops) {
3122 blk_mq_unquiesce_queue(q);
3123 } else {
3124 spin_lock_irqsave(q->queue_lock, flags);
3125 blk_start_queue(q);
3126 spin_unlock_irqrestore(q->queue_lock, flags);
3131 * scsi_internal_device_unblock_nowait - resume a device after a block request
3132 * @sdev: device to resume
3133 * @new_state: state to set the device to after unblocking
3135 * Restart the device queue for a previously suspended SCSI device. Does not
3136 * sleep.
3138 * Returns zero if successful or a negative error code upon failure.
3140 * Notes:
3141 * This routine transitions the device to the SDEV_RUNNING state or to one of
3142 * the offline states (which must be a legal transition) allowing the midlayer
3143 * to goose the queue for this device.
3145 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3146 enum scsi_device_state new_state)
3149 * Try to transition the scsi device to SDEV_RUNNING or one of the
3150 * offlined states and goose the device queue if successful.
3152 switch (sdev->sdev_state) {
3153 case SDEV_BLOCK:
3154 case SDEV_TRANSPORT_OFFLINE:
3155 sdev->sdev_state = new_state;
3156 break;
3157 case SDEV_CREATED_BLOCK:
3158 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3159 new_state == SDEV_OFFLINE)
3160 sdev->sdev_state = new_state;
3161 else
3162 sdev->sdev_state = SDEV_CREATED;
3163 break;
3164 case SDEV_CANCEL:
3165 case SDEV_OFFLINE:
3166 break;
3167 default:
3168 return -EINVAL;
3170 scsi_start_queue(sdev);
3172 return 0;
3174 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3177 * scsi_internal_device_unblock - resume a device after a block request
3178 * @sdev: device to resume
3179 * @new_state: state to set the device to after unblocking
3181 * Restart the device queue for a previously suspended SCSI device. May sleep.
3183 * Returns zero if successful or a negative error code upon failure.
3185 * Notes:
3186 * This routine transitions the device to the SDEV_RUNNING state or to one of
3187 * the offline states (which must be a legal transition) allowing the midlayer
3188 * to goose the queue for this device.
3190 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3191 enum scsi_device_state new_state)
3193 int ret;
3195 mutex_lock(&sdev->state_mutex);
3196 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3197 mutex_unlock(&sdev->state_mutex);
3199 return ret;
3202 static void
3203 device_block(struct scsi_device *sdev, void *data)
3205 scsi_internal_device_block(sdev);
3208 static int
3209 target_block(struct device *dev, void *data)
3211 if (scsi_is_target_device(dev))
3212 starget_for_each_device(to_scsi_target(dev), NULL,
3213 device_block);
3214 return 0;
3217 void
3218 scsi_target_block(struct device *dev)
3220 if (scsi_is_target_device(dev))
3221 starget_for_each_device(to_scsi_target(dev), NULL,
3222 device_block);
3223 else
3224 device_for_each_child(dev, NULL, target_block);
3226 EXPORT_SYMBOL_GPL(scsi_target_block);
3228 static void
3229 device_unblock(struct scsi_device *sdev, void *data)
3231 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3234 static int
3235 target_unblock(struct device *dev, void *data)
3237 if (scsi_is_target_device(dev))
3238 starget_for_each_device(to_scsi_target(dev), data,
3239 device_unblock);
3240 return 0;
3243 void
3244 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3246 if (scsi_is_target_device(dev))
3247 starget_for_each_device(to_scsi_target(dev), &new_state,
3248 device_unblock);
3249 else
3250 device_for_each_child(dev, &new_state, target_unblock);
3252 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3255 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3256 * @sgl: scatter-gather list
3257 * @sg_count: number of segments in sg
3258 * @offset: offset in bytes into sg, on return offset into the mapped area
3259 * @len: bytes to map, on return number of bytes mapped
3261 * Returns virtual address of the start of the mapped page
3263 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3264 size_t *offset, size_t *len)
3266 int i;
3267 size_t sg_len = 0, len_complete = 0;
3268 struct scatterlist *sg;
3269 struct page *page;
3271 WARN_ON(!irqs_disabled());
3273 for_each_sg(sgl, sg, sg_count, i) {
3274 len_complete = sg_len; /* Complete sg-entries */
3275 sg_len += sg->length;
3276 if (sg_len > *offset)
3277 break;
3280 if (unlikely(i == sg_count)) {
3281 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3282 "elements %d\n",
3283 __func__, sg_len, *offset, sg_count);
3284 WARN_ON(1);
3285 return NULL;
3288 /* Offset starting from the beginning of first page in this sg-entry */
3289 *offset = *offset - len_complete + sg->offset;
3291 /* Assumption: contiguous pages can be accessed as "page + i" */
3292 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3293 *offset &= ~PAGE_MASK;
3295 /* Bytes in this sg-entry from *offset to the end of the page */
3296 sg_len = PAGE_SIZE - *offset;
3297 if (*len > sg_len)
3298 *len = sg_len;
3300 return kmap_atomic(page);
3302 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3305 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3306 * @virt: virtual address to be unmapped
3308 void scsi_kunmap_atomic_sg(void *virt)
3310 kunmap_atomic(virt);
3312 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3314 void sdev_disable_disk_events(struct scsi_device *sdev)
3316 atomic_inc(&sdev->disk_events_disable_depth);
3318 EXPORT_SYMBOL(sdev_disable_disk_events);
3320 void sdev_enable_disk_events(struct scsi_device *sdev)
3322 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3323 return;
3324 atomic_dec(&sdev->disk_events_disable_depth);
3326 EXPORT_SYMBOL(sdev_enable_disk_events);
3329 * scsi_vpd_lun_id - return a unique device identification
3330 * @sdev: SCSI device
3331 * @id: buffer for the identification
3332 * @id_len: length of the buffer
3334 * Copies a unique device identification into @id based
3335 * on the information in the VPD page 0x83 of the device.
3336 * The string will be formatted as a SCSI name string.
3338 * Returns the length of the identification or error on failure.
3339 * If the identifier is longer than the supplied buffer the actual
3340 * identifier length is returned and the buffer is not zero-padded.
3342 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3344 u8 cur_id_type = 0xff;
3345 u8 cur_id_size = 0;
3346 const unsigned char *d, *cur_id_str;
3347 const struct scsi_vpd *vpd_pg83;
3348 int id_size = -EINVAL;
3350 rcu_read_lock();
3351 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3352 if (!vpd_pg83) {
3353 rcu_read_unlock();
3354 return -ENXIO;
3358 * Look for the correct descriptor.
3359 * Order of preference for lun descriptor:
3360 * - SCSI name string
3361 * - NAA IEEE Registered Extended
3362 * - EUI-64 based 16-byte
3363 * - EUI-64 based 12-byte
3364 * - NAA IEEE Registered
3365 * - NAA IEEE Extended
3366 * - T10 Vendor ID
3367 * as longer descriptors reduce the likelyhood
3368 * of identification clashes.
3371 /* The id string must be at least 20 bytes + terminating NULL byte */
3372 if (id_len < 21) {
3373 rcu_read_unlock();
3374 return -EINVAL;
3377 memset(id, 0, id_len);
3378 d = vpd_pg83->data + 4;
3379 while (d < vpd_pg83->data + vpd_pg83->len) {
3380 /* Skip designators not referring to the LUN */
3381 if ((d[1] & 0x30) != 0x00)
3382 goto next_desig;
3384 switch (d[1] & 0xf) {
3385 case 0x1:
3386 /* T10 Vendor ID */
3387 if (cur_id_size > d[3])
3388 break;
3389 /* Prefer anything */
3390 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3391 break;
3392 cur_id_size = d[3];
3393 if (cur_id_size + 4 > id_len)
3394 cur_id_size = id_len - 4;
3395 cur_id_str = d + 4;
3396 cur_id_type = d[1] & 0xf;
3397 id_size = snprintf(id, id_len, "t10.%*pE",
3398 cur_id_size, cur_id_str);
3399 break;
3400 case 0x2:
3401 /* EUI-64 */
3402 if (cur_id_size > d[3])
3403 break;
3404 /* Prefer NAA IEEE Registered Extended */
3405 if (cur_id_type == 0x3 &&
3406 cur_id_size == d[3])
3407 break;
3408 cur_id_size = d[3];
3409 cur_id_str = d + 4;
3410 cur_id_type = d[1] & 0xf;
3411 switch (cur_id_size) {
3412 case 8:
3413 id_size = snprintf(id, id_len,
3414 "eui.%8phN",
3415 cur_id_str);
3416 break;
3417 case 12:
3418 id_size = snprintf(id, id_len,
3419 "eui.%12phN",
3420 cur_id_str);
3421 break;
3422 case 16:
3423 id_size = snprintf(id, id_len,
3424 "eui.%16phN",
3425 cur_id_str);
3426 break;
3427 default:
3428 cur_id_size = 0;
3429 break;
3431 break;
3432 case 0x3:
3433 /* NAA */
3434 if (cur_id_size > d[3])
3435 break;
3436 cur_id_size = d[3];
3437 cur_id_str = d + 4;
3438 cur_id_type = d[1] & 0xf;
3439 switch (cur_id_size) {
3440 case 8:
3441 id_size = snprintf(id, id_len,
3442 "naa.%8phN",
3443 cur_id_str);
3444 break;
3445 case 16:
3446 id_size = snprintf(id, id_len,
3447 "naa.%16phN",
3448 cur_id_str);
3449 break;
3450 default:
3451 cur_id_size = 0;
3452 break;
3454 break;
3455 case 0x8:
3456 /* SCSI name string */
3457 if (cur_id_size + 4 > d[3])
3458 break;
3459 /* Prefer others for truncated descriptor */
3460 if (cur_id_size && d[3] > id_len)
3461 break;
3462 cur_id_size = id_size = d[3];
3463 cur_id_str = d + 4;
3464 cur_id_type = d[1] & 0xf;
3465 if (cur_id_size >= id_len)
3466 cur_id_size = id_len - 1;
3467 memcpy(id, cur_id_str, cur_id_size);
3468 /* Decrease priority for truncated descriptor */
3469 if (cur_id_size != id_size)
3470 cur_id_size = 6;
3471 break;
3472 default:
3473 break;
3475 next_desig:
3476 d += d[3] + 4;
3478 rcu_read_unlock();
3480 return id_size;
3482 EXPORT_SYMBOL(scsi_vpd_lun_id);
3485 * scsi_vpd_tpg_id - return a target port group identifier
3486 * @sdev: SCSI device
3488 * Returns the Target Port Group identifier from the information
3489 * froom VPD page 0x83 of the device.
3491 * Returns the identifier or error on failure.
3493 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3495 const unsigned char *d;
3496 const struct scsi_vpd *vpd_pg83;
3497 int group_id = -EAGAIN, rel_port = -1;
3499 rcu_read_lock();
3500 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3501 if (!vpd_pg83) {
3502 rcu_read_unlock();
3503 return -ENXIO;
3506 d = vpd_pg83->data + 4;
3507 while (d < vpd_pg83->data + vpd_pg83->len) {
3508 switch (d[1] & 0xf) {
3509 case 0x4:
3510 /* Relative target port */
3511 rel_port = get_unaligned_be16(&d[6]);
3512 break;
3513 case 0x5:
3514 /* Target port group */
3515 group_id = get_unaligned_be16(&d[6]);
3516 break;
3517 default:
3518 break;
3520 d += d[3] + 4;
3522 rcu_read_unlock();
3524 if (group_id >= 0 && rel_id && rel_port != -1)
3525 *rel_id = rel_port;
3527 return group_id;
3529 EXPORT_SYMBOL(scsi_vpd_tpg_id);