1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
68 static void transport_handle_queue_full(struct se_cmd
*cmd
,
69 struct se_device
*dev
, int err
, bool write_pending
);
70 static int transport_put_cmd(struct se_cmd
*cmd
);
71 static void target_complete_ok_work(struct work_struct
*work
);
73 int init_se_kmem_caches(void)
75 se_sess_cache
= kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session
), __alignof__(struct se_session
),
79 pr_err("kmem_cache_create() for struct se_session"
83 se_ua_cache
= kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua
), __alignof__(struct se_ua
),
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache
;
90 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration
),
92 __alignof__(struct t10_pr_registration
), 0, NULL
);
93 if (!t10_pr_reg_cache
) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 goto out_free_ua_cache
;
98 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
101 if (!t10_alua_lu_gp_cache
) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 goto out_free_pr_reg_cache
;
106 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member
),
108 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
109 if (!t10_alua_lu_gp_mem_cache
) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 goto out_free_lu_gp_cache
;
114 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp
),
116 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
117 if (!t10_alua_tg_pt_gp_cache
) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 goto out_free_lu_gp_mem_cache
;
122 t10_alua_lba_map_cache
= kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map
),
125 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
126 if (!t10_alua_lba_map_cache
) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
129 goto out_free_tg_pt_gp_cache
;
131 t10_alua_lba_map_mem_cache
= kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member
),
134 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
135 if (!t10_alua_lba_map_mem_cache
) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
138 goto out_free_lba_map_cache
;
141 target_completion_wq
= alloc_workqueue("target_completion",
143 if (!target_completion_wq
)
144 goto out_free_lba_map_mem_cache
;
148 out_free_lba_map_mem_cache
:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
150 out_free_lba_map_cache
:
151 kmem_cache_destroy(t10_alua_lba_map_cache
);
152 out_free_tg_pt_gp_cache
:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
154 out_free_lu_gp_mem_cache
:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
156 out_free_lu_gp_cache
:
157 kmem_cache_destroy(t10_alua_lu_gp_cache
);
158 out_free_pr_reg_cache
:
159 kmem_cache_destroy(t10_pr_reg_cache
);
161 kmem_cache_destroy(se_ua_cache
);
163 kmem_cache_destroy(se_sess_cache
);
168 void release_se_kmem_caches(void)
170 destroy_workqueue(target_completion_wq
);
171 kmem_cache_destroy(se_sess_cache
);
172 kmem_cache_destroy(se_ua_cache
);
173 kmem_cache_destroy(t10_pr_reg_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_cache
);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_cache
);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
183 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
186 * Allocate a new row index for the entry type specified
188 u32
scsi_get_new_index(scsi_index_t type
)
192 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
194 spin_lock(&scsi_mib_index_lock
);
195 new_index
= ++scsi_mib_index
[type
];
196 spin_unlock(&scsi_mib_index_lock
);
201 void transport_subsystem_check_init(void)
204 static int sub_api_initialized
;
206 if (sub_api_initialized
)
209 ret
= request_module("target_core_iblock");
211 pr_err("Unable to load target_core_iblock\n");
213 ret
= request_module("target_core_file");
215 pr_err("Unable to load target_core_file\n");
217 ret
= request_module("target_core_pscsi");
219 pr_err("Unable to load target_core_pscsi\n");
221 ret
= request_module("target_core_user");
223 pr_err("Unable to load target_core_user\n");
225 sub_api_initialized
= 1;
228 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
230 struct se_session
*se_sess
;
232 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
234 pr_err("Unable to allocate struct se_session from"
236 return ERR_PTR(-ENOMEM
);
238 INIT_LIST_HEAD(&se_sess
->sess_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
241 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
242 spin_lock_init(&se_sess
->sess_cmd_lock
);
243 se_sess
->sup_prot_ops
= sup_prot_ops
;
247 EXPORT_SYMBOL(transport_init_session
);
249 int transport_alloc_session_tags(struct se_session
*se_sess
,
250 unsigned int tag_num
, unsigned int tag_size
)
254 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
255 GFP_KERNEL
| __GFP_NOWARN
| __GFP_RETRY_MAYFAIL
);
256 if (!se_sess
->sess_cmd_map
) {
257 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
258 if (!se_sess
->sess_cmd_map
) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
264 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num
);
268 kvfree(se_sess
->sess_cmd_map
);
269 se_sess
->sess_cmd_map
= NULL
;
275 EXPORT_SYMBOL(transport_alloc_session_tags
);
277 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
278 unsigned int tag_size
,
279 enum target_prot_op sup_prot_ops
)
281 struct se_session
*se_sess
;
284 if (tag_num
!= 0 && !tag_size
) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num
);
287 return ERR_PTR(-EINVAL
);
289 if (!tag_num
&& tag_size
) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size
);
292 return ERR_PTR(-EINVAL
);
295 se_sess
= transport_init_session(sup_prot_ops
);
299 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
301 transport_free_session(se_sess
);
302 return ERR_PTR(-ENOMEM
);
307 EXPORT_SYMBOL(transport_init_session_tags
);
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312 void __transport_register_session(
313 struct se_portal_group
*se_tpg
,
314 struct se_node_acl
*se_nacl
,
315 struct se_session
*se_sess
,
316 void *fabric_sess_ptr
)
318 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
319 unsigned char buf
[PR_REG_ISID_LEN
];
322 se_sess
->se_tpg
= se_tpg
;
323 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
325 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
327 * Only set for struct se_session's that will actually be moving I/O.
328 * eg: *NOT* discovery sessions.
333 * Determine if fabric allows for T10-PI feature bits exposed to
334 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
336 * If so, then always save prot_type on a per se_node_acl node
337 * basis and re-instate the previous sess_prot_type to avoid
338 * disabling PI from below any previously initiator side
341 if (se_nacl
->saved_prot_type
)
342 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
343 else if (tfo
->tpg_check_prot_fabric_only
)
344 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
345 tfo
->tpg_check_prot_fabric_only(se_tpg
);
347 * If the fabric module supports an ISID based TransportID,
348 * save this value in binary from the fabric I_T Nexus now.
350 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
351 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
352 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
353 &buf
[0], PR_REG_ISID_LEN
);
354 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
357 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
359 * The se_nacl->nacl_sess pointer will be set to the
360 * last active I_T Nexus for each struct se_node_acl.
362 se_nacl
->nacl_sess
= se_sess
;
364 list_add_tail(&se_sess
->sess_acl_list
,
365 &se_nacl
->acl_sess_list
);
366 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
368 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
370 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
371 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
373 EXPORT_SYMBOL(__transport_register_session
);
375 void transport_register_session(
376 struct se_portal_group
*se_tpg
,
377 struct se_node_acl
*se_nacl
,
378 struct se_session
*se_sess
,
379 void *fabric_sess_ptr
)
383 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
384 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
385 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
387 EXPORT_SYMBOL(transport_register_session
);
390 target_alloc_session(struct se_portal_group
*tpg
,
391 unsigned int tag_num
, unsigned int tag_size
,
392 enum target_prot_op prot_op
,
393 const char *initiatorname
, void *private,
394 int (*callback
)(struct se_portal_group
*,
395 struct se_session
*, void *))
397 struct se_session
*sess
;
400 * If the fabric driver is using percpu-ida based pre allocation
401 * of I/O descriptor tags, go ahead and perform that setup now..
404 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
406 sess
= transport_init_session(prot_op
);
411 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
412 (unsigned char *)initiatorname
);
413 if (!sess
->se_node_acl
) {
414 transport_free_session(sess
);
415 return ERR_PTR(-EACCES
);
418 * Go ahead and perform any remaining fabric setup that is
419 * required before transport_register_session().
421 if (callback
!= NULL
) {
422 int rc
= callback(tpg
, sess
, private);
424 transport_free_session(sess
);
429 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
432 EXPORT_SYMBOL(target_alloc_session
);
434 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
436 struct se_session
*se_sess
;
439 spin_lock_bh(&se_tpg
->session_lock
);
440 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
441 if (!se_sess
->se_node_acl
)
443 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
445 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
448 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
449 se_sess
->se_node_acl
->initiatorname
);
450 len
+= 1; /* Include NULL terminator */
452 spin_unlock_bh(&se_tpg
->session_lock
);
456 EXPORT_SYMBOL(target_show_dynamic_sessions
);
458 static void target_complete_nacl(struct kref
*kref
)
460 struct se_node_acl
*nacl
= container_of(kref
,
461 struct se_node_acl
, acl_kref
);
462 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
464 if (!nacl
->dynamic_stop
) {
465 complete(&nacl
->acl_free_comp
);
469 mutex_lock(&se_tpg
->acl_node_mutex
);
470 list_del_init(&nacl
->acl_list
);
471 mutex_unlock(&se_tpg
->acl_node_mutex
);
473 core_tpg_wait_for_nacl_pr_ref(nacl
);
474 core_free_device_list_for_node(nacl
, se_tpg
);
478 void target_put_nacl(struct se_node_acl
*nacl
)
480 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
482 EXPORT_SYMBOL(target_put_nacl
);
484 void transport_deregister_session_configfs(struct se_session
*se_sess
)
486 struct se_node_acl
*se_nacl
;
489 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
491 se_nacl
= se_sess
->se_node_acl
;
493 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
494 if (!list_empty(&se_sess
->sess_acl_list
))
495 list_del_init(&se_sess
->sess_acl_list
);
497 * If the session list is empty, then clear the pointer.
498 * Otherwise, set the struct se_session pointer from the tail
499 * element of the per struct se_node_acl active session list.
501 if (list_empty(&se_nacl
->acl_sess_list
))
502 se_nacl
->nacl_sess
= NULL
;
504 se_nacl
->nacl_sess
= container_of(
505 se_nacl
->acl_sess_list
.prev
,
506 struct se_session
, sess_acl_list
);
508 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
511 EXPORT_SYMBOL(transport_deregister_session_configfs
);
513 void transport_free_session(struct se_session
*se_sess
)
515 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
518 * Drop the se_node_acl->nacl_kref obtained from within
519 * core_tpg_get_initiator_node_acl().
522 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
523 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
526 se_sess
->se_node_acl
= NULL
;
529 * Also determine if we need to drop the extra ->cmd_kref if
530 * it had been previously dynamically generated, and
531 * the endpoint is not caching dynamic ACLs.
533 mutex_lock(&se_tpg
->acl_node_mutex
);
534 if (se_nacl
->dynamic_node_acl
&&
535 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
536 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
537 if (list_empty(&se_nacl
->acl_sess_list
))
538 se_nacl
->dynamic_stop
= true;
539 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
541 if (se_nacl
->dynamic_stop
)
542 list_del_init(&se_nacl
->acl_list
);
544 mutex_unlock(&se_tpg
->acl_node_mutex
);
546 if (se_nacl
->dynamic_stop
)
547 target_put_nacl(se_nacl
);
549 target_put_nacl(se_nacl
);
551 if (se_sess
->sess_cmd_map
) {
552 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
553 kvfree(se_sess
->sess_cmd_map
);
555 kmem_cache_free(se_sess_cache
, se_sess
);
557 EXPORT_SYMBOL(transport_free_session
);
559 void transport_deregister_session(struct se_session
*se_sess
)
561 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
565 transport_free_session(se_sess
);
569 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
570 list_del(&se_sess
->sess_list
);
571 se_sess
->se_tpg
= NULL
;
572 se_sess
->fabric_sess_ptr
= NULL
;
573 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
575 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
576 se_tpg
->se_tpg_tfo
->get_fabric_name());
578 * If last kref is dropping now for an explicit NodeACL, awake sleeping
579 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
580 * removal context from within transport_free_session() code.
582 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
583 * to release all remaining generate_node_acl=1 created ACL resources.
586 transport_free_session(se_sess
);
588 EXPORT_SYMBOL(transport_deregister_session
);
590 static void target_remove_from_state_list(struct se_cmd
*cmd
)
592 struct se_device
*dev
= cmd
->se_dev
;
598 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
599 if (cmd
->state_active
) {
600 list_del(&cmd
->state_list
);
601 cmd
->state_active
= false;
603 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
606 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
610 target_remove_from_state_list(cmd
);
613 * Clear struct se_cmd->se_lun before the handoff to FE.
617 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
619 * Determine if frontend context caller is requesting the stopping of
620 * this command for frontend exceptions.
622 if (cmd
->transport_state
& CMD_T_STOP
) {
623 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
624 __func__
, __LINE__
, cmd
->tag
);
626 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
628 complete_all(&cmd
->t_transport_stop_comp
);
631 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
632 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
635 * Some fabric modules like tcm_loop can release their internally
636 * allocated I/O reference and struct se_cmd now.
638 * Fabric modules are expected to return '1' here if the se_cmd being
639 * passed is released at this point, or zero if not being released.
641 return cmd
->se_tfo
->check_stop_free(cmd
);
644 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
646 struct se_lun
*lun
= cmd
->se_lun
;
651 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
652 percpu_ref_put(&lun
->lun_ref
);
655 int transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
657 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
660 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
661 transport_lun_remove_cmd(cmd
);
663 * Allow the fabric driver to unmap any resources before
664 * releasing the descriptor via TFO->release_cmd()
667 cmd
->se_tfo
->aborted_task(cmd
);
669 if (transport_cmd_check_stop_to_fabric(cmd
))
671 if (remove
&& ack_kref
)
672 ret
= transport_put_cmd(cmd
);
677 static void target_complete_failure_work(struct work_struct
*work
)
679 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
681 transport_generic_request_failure(cmd
,
682 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
686 * Used when asking transport to copy Sense Data from the underlying
687 * Linux/SCSI struct scsi_cmnd
689 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
691 struct se_device
*dev
= cmd
->se_dev
;
693 WARN_ON(!cmd
->se_lun
);
698 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
701 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
703 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
704 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
705 return cmd
->sense_buffer
;
708 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
710 unsigned char *cmd_sense_buf
;
713 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
714 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
715 if (!cmd_sense_buf
) {
716 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
720 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
721 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
722 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
724 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
726 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
728 struct se_device
*dev
= cmd
->se_dev
;
732 cmd
->scsi_status
= scsi_status
;
734 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
735 switch (cmd
->scsi_status
) {
736 case SAM_STAT_CHECK_CONDITION
:
737 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
748 * Check for case where an explicit ABORT_TASK has been received
749 * and transport_wait_for_tasks() will be waiting for completion..
751 if (cmd
->transport_state
& CMD_T_ABORTED
||
752 cmd
->transport_state
& CMD_T_STOP
) {
753 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
755 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
756 * release se_device->caw_sem obtained by sbc_compare_and_write()
757 * since target_complete_ok_work() or target_complete_failure_work()
758 * won't be called to invoke the normal CAW completion callbacks.
760 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
763 complete_all(&cmd
->t_transport_stop_comp
);
765 } else if (!success
) {
766 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
768 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
771 cmd
->t_state
= TRANSPORT_COMPLETE
;
772 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
773 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
775 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
776 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
778 queue_work(target_completion_wq
, &cmd
->work
);
780 EXPORT_SYMBOL(target_complete_cmd
);
782 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
784 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
785 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
786 cmd
->residual_count
+= cmd
->data_length
- length
;
788 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
789 cmd
->residual_count
= cmd
->data_length
- length
;
792 cmd
->data_length
= length
;
795 target_complete_cmd(cmd
, scsi_status
);
797 EXPORT_SYMBOL(target_complete_cmd_with_length
);
799 static void target_add_to_state_list(struct se_cmd
*cmd
)
801 struct se_device
*dev
= cmd
->se_dev
;
804 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
805 if (!cmd
->state_active
) {
806 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
807 cmd
->state_active
= true;
809 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
813 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
815 static void transport_write_pending_qf(struct se_cmd
*cmd
);
816 static void transport_complete_qf(struct se_cmd
*cmd
);
818 void target_qf_do_work(struct work_struct
*work
)
820 struct se_device
*dev
= container_of(work
, struct se_device
,
822 LIST_HEAD(qf_cmd_list
);
823 struct se_cmd
*cmd
, *cmd_tmp
;
825 spin_lock_irq(&dev
->qf_cmd_lock
);
826 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
827 spin_unlock_irq(&dev
->qf_cmd_lock
);
829 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
830 list_del(&cmd
->se_qf_node
);
831 atomic_dec_mb(&dev
->dev_qf_count
);
833 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
834 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
835 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
836 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
839 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
840 transport_write_pending_qf(cmd
);
841 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
842 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
843 transport_complete_qf(cmd
);
847 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
849 switch (cmd
->data_direction
) {
852 case DMA_FROM_DEVICE
:
856 case DMA_BIDIRECTIONAL
:
865 void transport_dump_dev_state(
866 struct se_device
*dev
,
870 *bl
+= sprintf(b
+ *bl
, "Status: ");
871 if (dev
->export_count
)
872 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
874 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
876 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
877 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
878 dev
->dev_attrib
.block_size
,
879 dev
->dev_attrib
.hw_max_sectors
);
880 *bl
+= sprintf(b
+ *bl
, " ");
883 void transport_dump_vpd_proto_id(
885 unsigned char *p_buf
,
888 unsigned char buf
[VPD_TMP_BUF_SIZE
];
891 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
892 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
894 switch (vpd
->protocol_identifier
) {
896 sprintf(buf
+len
, "Fibre Channel\n");
899 sprintf(buf
+len
, "Parallel SCSI\n");
902 sprintf(buf
+len
, "SSA\n");
905 sprintf(buf
+len
, "IEEE 1394\n");
908 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
912 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
915 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
918 sprintf(buf
+len
, "Automation/Drive Interface Transport"
922 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
925 sprintf(buf
+len
, "Unknown 0x%02x\n",
926 vpd
->protocol_identifier
);
931 strncpy(p_buf
, buf
, p_buf_len
);
937 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
940 * Check if the Protocol Identifier Valid (PIV) bit is set..
942 * from spc3r23.pdf section 7.5.1
944 if (page_83
[1] & 0x80) {
945 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
946 vpd
->protocol_identifier_set
= 1;
947 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
950 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
952 int transport_dump_vpd_assoc(
954 unsigned char *p_buf
,
957 unsigned char buf
[VPD_TMP_BUF_SIZE
];
961 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
962 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
964 switch (vpd
->association
) {
966 sprintf(buf
+len
, "addressed logical unit\n");
969 sprintf(buf
+len
, "target port\n");
972 sprintf(buf
+len
, "SCSI target device\n");
975 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
981 strncpy(p_buf
, buf
, p_buf_len
);
988 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
991 * The VPD identification association..
993 * from spc3r23.pdf Section 7.6.3.1 Table 297
995 vpd
->association
= (page_83
[1] & 0x30);
996 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
998 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1000 int transport_dump_vpd_ident_type(
1001 struct t10_vpd
*vpd
,
1002 unsigned char *p_buf
,
1005 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1009 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1010 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1012 switch (vpd
->device_identifier_type
) {
1014 sprintf(buf
+len
, "Vendor specific\n");
1017 sprintf(buf
+len
, "T10 Vendor ID based\n");
1020 sprintf(buf
+len
, "EUI-64 based\n");
1023 sprintf(buf
+len
, "NAA\n");
1026 sprintf(buf
+len
, "Relative target port identifier\n");
1029 sprintf(buf
+len
, "SCSI name string\n");
1032 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1033 vpd
->device_identifier_type
);
1039 if (p_buf_len
< strlen(buf
)+1)
1041 strncpy(p_buf
, buf
, p_buf_len
);
1043 pr_debug("%s", buf
);
1049 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1052 * The VPD identifier type..
1054 * from spc3r23.pdf Section 7.6.3.1 Table 298
1056 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1057 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1059 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1061 int transport_dump_vpd_ident(
1062 struct t10_vpd
*vpd
,
1063 unsigned char *p_buf
,
1066 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1069 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1071 switch (vpd
->device_identifier_code_set
) {
1072 case 0x01: /* Binary */
1073 snprintf(buf
, sizeof(buf
),
1074 "T10 VPD Binary Device Identifier: %s\n",
1075 &vpd
->device_identifier
[0]);
1077 case 0x02: /* ASCII */
1078 snprintf(buf
, sizeof(buf
),
1079 "T10 VPD ASCII Device Identifier: %s\n",
1080 &vpd
->device_identifier
[0]);
1082 case 0x03: /* UTF-8 */
1083 snprintf(buf
, sizeof(buf
),
1084 "T10 VPD UTF-8 Device Identifier: %s\n",
1085 &vpd
->device_identifier
[0]);
1088 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1089 " 0x%02x", vpd
->device_identifier_code_set
);
1095 strncpy(p_buf
, buf
, p_buf_len
);
1097 pr_debug("%s", buf
);
1103 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1105 static const char hex_str
[] = "0123456789abcdef";
1106 int j
= 0, i
= 4; /* offset to start of the identifier */
1109 * The VPD Code Set (encoding)
1111 * from spc3r23.pdf Section 7.6.3.1 Table 296
1113 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1114 switch (vpd
->device_identifier_code_set
) {
1115 case 0x01: /* Binary */
1116 vpd
->device_identifier
[j
++] =
1117 hex_str
[vpd
->device_identifier_type
];
1118 while (i
< (4 + page_83
[3])) {
1119 vpd
->device_identifier
[j
++] =
1120 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1121 vpd
->device_identifier
[j
++] =
1122 hex_str
[page_83
[i
] & 0x0f];
1126 case 0x02: /* ASCII */
1127 case 0x03: /* UTF-8 */
1128 while (i
< (4 + page_83
[3]))
1129 vpd
->device_identifier
[j
++] = page_83
[i
++];
1135 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1137 EXPORT_SYMBOL(transport_set_vpd_ident
);
1139 static sense_reason_t
1140 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1145 if (!cmd
->se_tfo
->max_data_sg_nents
)
1146 return TCM_NO_SENSE
;
1148 * Check if fabric enforced maximum SGL entries per I/O descriptor
1149 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1150 * residual_count and reduce original cmd->data_length to maximum
1151 * length based on single PAGE_SIZE entry scatter-lists.
1153 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1154 if (cmd
->data_length
> mtl
) {
1156 * If an existing CDB overflow is present, calculate new residual
1157 * based on CDB size minus fabric maximum transfer length.
1159 * If an existing CDB underflow is present, calculate new residual
1160 * based on original cmd->data_length minus fabric maximum transfer
1163 * Otherwise, set the underflow residual based on cmd->data_length
1164 * minus fabric maximum transfer length.
1166 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1167 cmd
->residual_count
= (size
- mtl
);
1168 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1169 u32 orig_dl
= size
+ cmd
->residual_count
;
1170 cmd
->residual_count
= (orig_dl
- mtl
);
1172 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1173 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1175 cmd
->data_length
= mtl
;
1177 * Reset sbc_check_prot() calculated protection payload
1178 * length based upon the new smaller MTL.
1180 if (cmd
->prot_length
) {
1181 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1182 cmd
->prot_length
= dev
->prot_length
* sectors
;
1185 return TCM_NO_SENSE
;
1189 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1191 struct se_device
*dev
= cmd
->se_dev
;
1193 if (cmd
->unknown_data_length
) {
1194 cmd
->data_length
= size
;
1195 } else if (size
!= cmd
->data_length
) {
1196 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1197 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1198 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1199 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1201 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1202 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1203 pr_err_ratelimited("Rejecting underflow/overflow"
1204 " for WRITE data CDB\n");
1205 return TCM_INVALID_CDB_FIELD
;
1208 * Some fabric drivers like iscsi-target still expect to
1209 * always reject overflow writes. Reject this case until
1210 * full fabric driver level support for overflow writes
1211 * is introduced tree-wide.
1213 if (size
> cmd
->data_length
) {
1214 pr_err_ratelimited("Rejecting overflow for"
1215 " WRITE control CDB\n");
1216 return TCM_INVALID_CDB_FIELD
;
1220 * Reject READ_* or WRITE_* with overflow/underflow for
1221 * type SCF_SCSI_DATA_CDB.
1223 if (dev
->dev_attrib
.block_size
!= 512) {
1224 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1225 " CDB on non 512-byte sector setup subsystem"
1226 " plugin: %s\n", dev
->transport
->name
);
1227 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1228 return TCM_INVALID_CDB_FIELD
;
1231 * For the overflow case keep the existing fabric provided
1232 * ->data_length. Otherwise for the underflow case, reset
1233 * ->data_length to the smaller SCSI expected data transfer
1236 if (size
> cmd
->data_length
) {
1237 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1238 cmd
->residual_count
= (size
- cmd
->data_length
);
1240 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1241 cmd
->residual_count
= (cmd
->data_length
- size
);
1242 cmd
->data_length
= size
;
1246 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1251 * Used by fabric modules containing a local struct se_cmd within their
1252 * fabric dependent per I/O descriptor.
1254 * Preserves the value of @cmd->tag.
1256 void transport_init_se_cmd(
1258 const struct target_core_fabric_ops
*tfo
,
1259 struct se_session
*se_sess
,
1263 unsigned char *sense_buffer
)
1265 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1266 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1267 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1268 INIT_LIST_HEAD(&cmd
->state_list
);
1269 init_completion(&cmd
->t_transport_stop_comp
);
1270 init_completion(&cmd
->cmd_wait_comp
);
1271 spin_lock_init(&cmd
->t_state_lock
);
1272 INIT_WORK(&cmd
->work
, NULL
);
1273 kref_init(&cmd
->cmd_kref
);
1276 cmd
->se_sess
= se_sess
;
1277 cmd
->data_length
= data_length
;
1278 cmd
->data_direction
= data_direction
;
1279 cmd
->sam_task_attr
= task_attr
;
1280 cmd
->sense_buffer
= sense_buffer
;
1282 cmd
->state_active
= false;
1284 EXPORT_SYMBOL(transport_init_se_cmd
);
1286 static sense_reason_t
1287 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1289 struct se_device
*dev
= cmd
->se_dev
;
1292 * Check if SAM Task Attribute emulation is enabled for this
1293 * struct se_device storage object
1295 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1298 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1299 pr_debug("SAM Task Attribute ACA"
1300 " emulation is not supported\n");
1301 return TCM_INVALID_CDB_FIELD
;
1308 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1310 struct se_device
*dev
= cmd
->se_dev
;
1314 * Ensure that the received CDB is less than the max (252 + 8) bytes
1315 * for VARIABLE_LENGTH_CMD
1317 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1318 pr_err("Received SCSI CDB with command_size: %d that"
1319 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1320 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1321 return TCM_INVALID_CDB_FIELD
;
1324 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1325 * allocate the additional extended CDB buffer now.. Otherwise
1326 * setup the pointer from __t_task_cdb to t_task_cdb.
1328 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1329 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1331 if (!cmd
->t_task_cdb
) {
1332 pr_err("Unable to allocate cmd->t_task_cdb"
1333 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1334 scsi_command_size(cdb
),
1335 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1336 return TCM_OUT_OF_RESOURCES
;
1339 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1341 * Copy the original CDB into cmd->
1343 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1345 trace_target_sequencer_start(cmd
);
1347 ret
= dev
->transport
->parse_cdb(cmd
);
1348 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1349 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1350 cmd
->se_tfo
->get_fabric_name(),
1351 cmd
->se_sess
->se_node_acl
->initiatorname
,
1352 cmd
->t_task_cdb
[0]);
1356 ret
= transport_check_alloc_task_attr(cmd
);
1360 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1361 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1364 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1367 * Used by fabric module frontends to queue tasks directly.
1368 * May only be used from process context.
1370 int transport_handle_cdb_direct(
1377 pr_err("cmd->se_lun is NULL\n");
1380 if (in_interrupt()) {
1382 pr_err("transport_generic_handle_cdb cannot be called"
1383 " from interrupt context\n");
1387 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1388 * outstanding descriptors are handled correctly during shutdown via
1389 * transport_wait_for_tasks()
1391 * Also, we don't take cmd->t_state_lock here as we only expect
1392 * this to be called for initial descriptor submission.
1394 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1395 cmd
->transport_state
|= CMD_T_ACTIVE
;
1398 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1399 * so follow TRANSPORT_NEW_CMD processing thread context usage
1400 * and call transport_generic_request_failure() if necessary..
1402 ret
= transport_generic_new_cmd(cmd
);
1404 transport_generic_request_failure(cmd
, ret
);
1407 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1410 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1411 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1413 if (!sgl
|| !sgl_count
)
1417 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1418 * scatterlists already have been set to follow what the fabric
1419 * passes for the original expected data transfer length.
1421 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1422 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1423 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1424 return TCM_INVALID_CDB_FIELD
;
1427 cmd
->t_data_sg
= sgl
;
1428 cmd
->t_data_nents
= sgl_count
;
1429 cmd
->t_bidi_data_sg
= sgl_bidi
;
1430 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1432 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1437 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1438 * se_cmd + use pre-allocated SGL memory.
1440 * @se_cmd: command descriptor to submit
1441 * @se_sess: associated se_sess for endpoint
1442 * @cdb: pointer to SCSI CDB
1443 * @sense: pointer to SCSI sense buffer
1444 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445 * @data_length: fabric expected data transfer length
1446 * @task_addr: SAM task attribute
1447 * @data_dir: DMA data direction
1448 * @flags: flags for command submission from target_sc_flags_tables
1449 * @sgl: struct scatterlist memory for unidirectional mapping
1450 * @sgl_count: scatterlist count for unidirectional mapping
1451 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1452 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1453 * @sgl_prot: struct scatterlist memory protection information
1454 * @sgl_prot_count: scatterlist count for protection information
1456 * Task tags are supported if the caller has set @se_cmd->tag.
1458 * Returns non zero to signal active I/O shutdown failure. All other
1459 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1460 * but still return zero here.
1462 * This may only be called from process context, and also currently
1463 * assumes internal allocation of fabric payload buffer by target-core.
1465 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1466 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1467 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1468 struct scatterlist
*sgl
, u32 sgl_count
,
1469 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1470 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1472 struct se_portal_group
*se_tpg
;
1476 se_tpg
= se_sess
->se_tpg
;
1478 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1479 BUG_ON(in_interrupt());
1481 * Initialize se_cmd for target operation. From this point
1482 * exceptions are handled by sending exception status via
1483 * target_core_fabric_ops->queue_status() callback
1485 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1486 data_length
, data_dir
, task_attr
, sense
);
1488 if (flags
& TARGET_SCF_USE_CPUID
)
1489 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1491 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1493 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1494 se_cmd
->unknown_data_length
= 1;
1496 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1497 * se_sess->sess_cmd_list. A second kref_get here is necessary
1498 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1499 * kref_put() to happen during fabric packet acknowledgement.
1501 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1505 * Signal bidirectional data payloads to target-core
1507 if (flags
& TARGET_SCF_BIDI_OP
)
1508 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1510 * Locate se_lun pointer and attach it to struct se_cmd
1512 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1514 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1515 target_put_sess_cmd(se_cmd
);
1519 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1521 transport_generic_request_failure(se_cmd
, rc
);
1526 * Save pointers for SGLs containing protection information,
1529 if (sgl_prot_count
) {
1530 se_cmd
->t_prot_sg
= sgl_prot
;
1531 se_cmd
->t_prot_nents
= sgl_prot_count
;
1532 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1536 * When a non zero sgl_count has been passed perform SGL passthrough
1537 * mapping for pre-allocated fabric memory instead of having target
1538 * core perform an internal SGL allocation..
1540 if (sgl_count
!= 0) {
1544 * A work-around for tcm_loop as some userspace code via
1545 * scsi-generic do not memset their associated read buffers,
1546 * so go ahead and do that here for type non-data CDBs. Also
1547 * note that this is currently guaranteed to be a single SGL
1548 * for this case by target core in target_setup_cmd_from_cdb()
1549 * -> transport_generic_cmd_sequencer().
1551 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1552 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1553 unsigned char *buf
= NULL
;
1556 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1559 memset(buf
, 0, sgl
->length
);
1560 kunmap(sg_page(sgl
));
1564 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1565 sgl_bidi
, sgl_bidi_count
);
1567 transport_generic_request_failure(se_cmd
, rc
);
1573 * Check if we need to delay processing because of ALUA
1574 * Active/NonOptimized primary access state..
1576 core_alua_check_nonop_delay(se_cmd
);
1578 transport_handle_cdb_direct(se_cmd
);
1581 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1584 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1586 * @se_cmd: command descriptor to submit
1587 * @se_sess: associated se_sess for endpoint
1588 * @cdb: pointer to SCSI CDB
1589 * @sense: pointer to SCSI sense buffer
1590 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1591 * @data_length: fabric expected data transfer length
1592 * @task_addr: SAM task attribute
1593 * @data_dir: DMA data direction
1594 * @flags: flags for command submission from target_sc_flags_tables
1596 * Task tags are supported if the caller has set @se_cmd->tag.
1598 * Returns non zero to signal active I/O shutdown failure. All other
1599 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1600 * but still return zero here.
1602 * This may only be called from process context, and also currently
1603 * assumes internal allocation of fabric payload buffer by target-core.
1605 * It also assumes interal target core SGL memory allocation.
1607 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1608 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1609 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1611 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1612 unpacked_lun
, data_length
, task_attr
, data_dir
,
1613 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1615 EXPORT_SYMBOL(target_submit_cmd
);
1617 static void target_complete_tmr_failure(struct work_struct
*work
)
1619 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1621 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1622 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1624 transport_lun_remove_cmd(se_cmd
);
1625 transport_cmd_check_stop_to_fabric(se_cmd
);
1628 static bool target_lookup_lun_from_tag(struct se_session
*se_sess
, u64 tag
,
1631 struct se_cmd
*se_cmd
;
1632 unsigned long flags
;
1635 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
1636 list_for_each_entry(se_cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
) {
1637 if (se_cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
1640 if (se_cmd
->tag
== tag
) {
1641 *unpacked_lun
= se_cmd
->orig_fe_lun
;
1646 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
1652 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1655 * @se_cmd: command descriptor to submit
1656 * @se_sess: associated se_sess for endpoint
1657 * @sense: pointer to SCSI sense buffer
1658 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1659 * @fabric_context: fabric context for TMR req
1660 * @tm_type: Type of TM request
1661 * @gfp: gfp type for caller
1662 * @tag: referenced task tag for TMR_ABORT_TASK
1663 * @flags: submit cmd flags
1665 * Callable from all contexts.
1668 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1669 unsigned char *sense
, u64 unpacked_lun
,
1670 void *fabric_tmr_ptr
, unsigned char tm_type
,
1671 gfp_t gfp
, u64 tag
, int flags
)
1673 struct se_portal_group
*se_tpg
;
1676 se_tpg
= se_sess
->se_tpg
;
1679 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1680 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1682 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1683 * allocation failure.
1685 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1689 if (tm_type
== TMR_ABORT_TASK
)
1690 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1692 /* See target_submit_cmd for commentary */
1693 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1695 core_tmr_release_req(se_cmd
->se_tmr_req
);
1699 * If this is ABORT_TASK with no explicit fabric provided LUN,
1700 * go ahead and search active session tags for a match to figure
1701 * out unpacked_lun for the original se_cmd.
1703 if (tm_type
== TMR_ABORT_TASK
&& (flags
& TARGET_SCF_LOOKUP_LUN_FROM_TAG
)) {
1704 if (!target_lookup_lun_from_tag(se_sess
, tag
, &unpacked_lun
))
1708 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1712 transport_generic_handle_tmr(se_cmd
);
1716 * For callback during failure handling, push this work off
1717 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1720 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1721 schedule_work(&se_cmd
->work
);
1724 EXPORT_SYMBOL(target_submit_tmr
);
1727 * Handle SAM-esque emulation for generic transport request failures.
1729 void transport_generic_request_failure(struct se_cmd
*cmd
,
1730 sense_reason_t sense_reason
)
1732 int ret
= 0, post_ret
= 0;
1734 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1736 target_show_cmd("-----[ ", cmd
);
1739 * For SAM Task Attribute emulation for failed struct se_cmd
1741 transport_complete_task_attr(cmd
);
1744 * Handle special case for COMPARE_AND_WRITE failure, where the
1745 * callback is expected to drop the per device ->caw_sem.
1747 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1748 cmd
->transport_complete_callback
)
1749 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1751 if (transport_check_aborted_status(cmd
, 1))
1754 switch (sense_reason
) {
1755 case TCM_NON_EXISTENT_LUN
:
1756 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1757 case TCM_INVALID_CDB_FIELD
:
1758 case TCM_INVALID_PARAMETER_LIST
:
1759 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1760 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1761 case TCM_UNKNOWN_MODE_PAGE
:
1762 case TCM_WRITE_PROTECTED
:
1763 case TCM_ADDRESS_OUT_OF_RANGE
:
1764 case TCM_CHECK_CONDITION_ABORT_CMD
:
1765 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1766 case TCM_CHECK_CONDITION_NOT_READY
:
1767 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1768 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1769 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1770 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1771 case TCM_TOO_MANY_TARGET_DESCS
:
1772 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1773 case TCM_TOO_MANY_SEGMENT_DESCS
:
1774 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1776 case TCM_OUT_OF_RESOURCES
:
1777 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1779 case TCM_RESERVATION_CONFLICT
:
1781 * No SENSE Data payload for this case, set SCSI Status
1782 * and queue the response to $FABRIC_MOD.
1784 * Uses linux/include/scsi/scsi.h SAM status codes defs
1786 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1788 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1789 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1792 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1795 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1796 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1797 cmd
->orig_fe_lun
, 0x2C,
1798 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1800 trace_target_cmd_complete(cmd
);
1801 ret
= cmd
->se_tfo
->queue_status(cmd
);
1806 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1807 cmd
->t_task_cdb
[0], sense_reason
);
1808 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1812 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1817 transport_lun_remove_cmd(cmd
);
1818 transport_cmd_check_stop_to_fabric(cmd
);
1822 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1824 EXPORT_SYMBOL(transport_generic_request_failure
);
1826 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1830 if (!cmd
->execute_cmd
) {
1831 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1836 * Check for an existing UNIT ATTENTION condition after
1837 * target_handle_task_attr() has done SAM task attr
1838 * checking, and possibly have already defered execution
1839 * out to target_restart_delayed_cmds() context.
1841 ret
= target_scsi3_ua_check(cmd
);
1845 ret
= target_alua_state_check(cmd
);
1849 ret
= target_check_reservation(cmd
);
1851 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1856 ret
= cmd
->execute_cmd(cmd
);
1860 spin_lock_irq(&cmd
->t_state_lock
);
1861 cmd
->transport_state
&= ~CMD_T_SENT
;
1862 spin_unlock_irq(&cmd
->t_state_lock
);
1864 transport_generic_request_failure(cmd
, ret
);
1867 static int target_write_prot_action(struct se_cmd
*cmd
)
1871 * Perform WRITE_INSERT of PI using software emulation when backend
1872 * device has PI enabled, if the transport has not already generated
1873 * PI using hardware WRITE_INSERT offload.
1875 switch (cmd
->prot_op
) {
1876 case TARGET_PROT_DOUT_INSERT
:
1877 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1878 sbc_dif_generate(cmd
);
1880 case TARGET_PROT_DOUT_STRIP
:
1881 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1884 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1885 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1886 sectors
, 0, cmd
->t_prot_sg
, 0);
1887 if (unlikely(cmd
->pi_err
)) {
1888 spin_lock_irq(&cmd
->t_state_lock
);
1889 cmd
->transport_state
&= ~CMD_T_SENT
;
1890 spin_unlock_irq(&cmd
->t_state_lock
);
1891 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1902 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1904 struct se_device
*dev
= cmd
->se_dev
;
1906 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1909 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1912 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1913 * to allow the passed struct se_cmd list of tasks to the front of the list.
1915 switch (cmd
->sam_task_attr
) {
1917 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1918 cmd
->t_task_cdb
[0]);
1920 case TCM_ORDERED_TAG
:
1921 atomic_inc_mb(&dev
->dev_ordered_sync
);
1923 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1924 cmd
->t_task_cdb
[0]);
1927 * Execute an ORDERED command if no other older commands
1928 * exist that need to be completed first.
1930 if (!atomic_read(&dev
->simple_cmds
))
1935 * For SIMPLE and UNTAGGED Task Attribute commands
1937 atomic_inc_mb(&dev
->simple_cmds
);
1941 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1944 spin_lock(&dev
->delayed_cmd_lock
);
1945 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1946 spin_unlock(&dev
->delayed_cmd_lock
);
1948 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1949 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1953 static int __transport_check_aborted_status(struct se_cmd
*, int);
1955 void target_execute_cmd(struct se_cmd
*cmd
)
1958 * Determine if frontend context caller is requesting the stopping of
1959 * this command for frontend exceptions.
1961 * If the received CDB has aleady been aborted stop processing it here.
1963 spin_lock_irq(&cmd
->t_state_lock
);
1964 if (__transport_check_aborted_status(cmd
, 1)) {
1965 spin_unlock_irq(&cmd
->t_state_lock
);
1968 if (cmd
->transport_state
& CMD_T_STOP
) {
1969 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1970 __func__
, __LINE__
, cmd
->tag
);
1972 spin_unlock_irq(&cmd
->t_state_lock
);
1973 complete_all(&cmd
->t_transport_stop_comp
);
1977 cmd
->t_state
= TRANSPORT_PROCESSING
;
1978 cmd
->transport_state
&= ~CMD_T_PRE_EXECUTE
;
1979 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
1980 spin_unlock_irq(&cmd
->t_state_lock
);
1982 if (target_write_prot_action(cmd
))
1985 if (target_handle_task_attr(cmd
)) {
1986 spin_lock_irq(&cmd
->t_state_lock
);
1987 cmd
->transport_state
&= ~CMD_T_SENT
;
1988 spin_unlock_irq(&cmd
->t_state_lock
);
1992 __target_execute_cmd(cmd
, true);
1994 EXPORT_SYMBOL(target_execute_cmd
);
1997 * Process all commands up to the last received ORDERED task attribute which
1998 * requires another blocking boundary
2000 static void target_restart_delayed_cmds(struct se_device
*dev
)
2005 spin_lock(&dev
->delayed_cmd_lock
);
2006 if (list_empty(&dev
->delayed_cmd_list
)) {
2007 spin_unlock(&dev
->delayed_cmd_lock
);
2011 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2012 struct se_cmd
, se_delayed_node
);
2013 list_del(&cmd
->se_delayed_node
);
2014 spin_unlock(&dev
->delayed_cmd_lock
);
2016 cmd
->transport_state
|= CMD_T_SENT
;
2018 __target_execute_cmd(cmd
, true);
2020 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2026 * Called from I/O completion to determine which dormant/delayed
2027 * and ordered cmds need to have their tasks added to the execution queue.
2029 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2031 struct se_device
*dev
= cmd
->se_dev
;
2033 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2036 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2039 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2040 atomic_dec_mb(&dev
->simple_cmds
);
2041 dev
->dev_cur_ordered_id
++;
2042 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2043 dev
->dev_cur_ordered_id
++;
2044 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2045 dev
->dev_cur_ordered_id
);
2046 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2047 atomic_dec_mb(&dev
->dev_ordered_sync
);
2049 dev
->dev_cur_ordered_id
++;
2050 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2051 dev
->dev_cur_ordered_id
);
2053 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2056 target_restart_delayed_cmds(dev
);
2059 static void transport_complete_qf(struct se_cmd
*cmd
)
2063 transport_complete_task_attr(cmd
);
2065 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2066 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2067 * the same callbacks should not be retried. Return CHECK_CONDITION
2068 * if a scsi_status is not already set.
2070 * If a fabric driver ->queue_status() has returned non zero, always
2071 * keep retrying no matter what..
2073 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2074 if (cmd
->scsi_status
)
2077 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2078 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2079 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2080 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2084 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2087 switch (cmd
->data_direction
) {
2088 case DMA_FROM_DEVICE
:
2089 if (cmd
->scsi_status
)
2092 trace_target_cmd_complete(cmd
);
2093 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2096 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2097 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2100 /* Fall through for DMA_TO_DEVICE */
2103 trace_target_cmd_complete(cmd
);
2104 ret
= cmd
->se_tfo
->queue_status(cmd
);
2111 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2114 transport_lun_remove_cmd(cmd
);
2115 transport_cmd_check_stop_to_fabric(cmd
);
2118 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2119 int err
, bool write_pending
)
2122 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2123 * ->queue_data_in() callbacks from new process context.
2125 * Otherwise for other errors, transport_complete_qf() will send
2126 * CHECK_CONDITION via ->queue_status() instead of attempting to
2127 * retry associated fabric driver data-transfer callbacks.
2129 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2130 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2131 TRANSPORT_COMPLETE_QF_OK
;
2133 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2134 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2137 spin_lock_irq(&dev
->qf_cmd_lock
);
2138 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2139 atomic_inc_mb(&dev
->dev_qf_count
);
2140 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2142 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2145 static bool target_read_prot_action(struct se_cmd
*cmd
)
2147 switch (cmd
->prot_op
) {
2148 case TARGET_PROT_DIN_STRIP
:
2149 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2150 u32 sectors
= cmd
->data_length
>>
2151 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2153 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2154 sectors
, 0, cmd
->t_prot_sg
,
2160 case TARGET_PROT_DIN_INSERT
:
2161 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2164 sbc_dif_generate(cmd
);
2173 static void target_complete_ok_work(struct work_struct
*work
)
2175 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2179 * Check if we need to move delayed/dormant tasks from cmds on the
2180 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2183 transport_complete_task_attr(cmd
);
2186 * Check to schedule QUEUE_FULL work, or execute an existing
2187 * cmd->transport_qf_callback()
2189 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2190 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2193 * Check if we need to send a sense buffer from
2194 * the struct se_cmd in question.
2196 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2197 WARN_ON(!cmd
->scsi_status
);
2198 ret
= transport_send_check_condition_and_sense(
2203 transport_lun_remove_cmd(cmd
);
2204 transport_cmd_check_stop_to_fabric(cmd
);
2208 * Check for a callback, used by amongst other things
2209 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2211 if (cmd
->transport_complete_callback
) {
2213 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2214 bool zero_dl
= !(cmd
->data_length
);
2217 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2218 if (!rc
&& !post_ret
) {
2224 ret
= transport_send_check_condition_and_sense(cmd
,
2229 transport_lun_remove_cmd(cmd
);
2230 transport_cmd_check_stop_to_fabric(cmd
);
2236 switch (cmd
->data_direction
) {
2237 case DMA_FROM_DEVICE
:
2238 if (cmd
->scsi_status
)
2241 atomic_long_add(cmd
->data_length
,
2242 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2244 * Perform READ_STRIP of PI using software emulation when
2245 * backend had PI enabled, if the transport will not be
2246 * performing hardware READ_STRIP offload.
2248 if (target_read_prot_action(cmd
)) {
2249 ret
= transport_send_check_condition_and_sense(cmd
,
2254 transport_lun_remove_cmd(cmd
);
2255 transport_cmd_check_stop_to_fabric(cmd
);
2259 trace_target_cmd_complete(cmd
);
2260 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2265 atomic_long_add(cmd
->data_length
,
2266 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2268 * Check if we need to send READ payload for BIDI-COMMAND
2270 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2271 atomic_long_add(cmd
->data_length
,
2272 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2273 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2278 /* Fall through for DMA_TO_DEVICE */
2281 trace_target_cmd_complete(cmd
);
2282 ret
= cmd
->se_tfo
->queue_status(cmd
);
2290 transport_lun_remove_cmd(cmd
);
2291 transport_cmd_check_stop_to_fabric(cmd
);
2295 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2296 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2298 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2301 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2303 struct scatterlist
*sg
;
2306 for_each_sg(sgl
, sg
, nents
, count
)
2307 __free_page(sg_page(sg
));
2311 EXPORT_SYMBOL(target_free_sgl
);
2313 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2316 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2317 * emulation, and free + reset pointers if necessary..
2319 if (!cmd
->t_data_sg_orig
)
2322 kfree(cmd
->t_data_sg
);
2323 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2324 cmd
->t_data_sg_orig
= NULL
;
2325 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2326 cmd
->t_data_nents_orig
= 0;
2329 static inline void transport_free_pages(struct se_cmd
*cmd
)
2331 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2332 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2333 cmd
->t_prot_sg
= NULL
;
2334 cmd
->t_prot_nents
= 0;
2337 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2339 * Release special case READ buffer payload required for
2340 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2342 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2343 target_free_sgl(cmd
->t_bidi_data_sg
,
2344 cmd
->t_bidi_data_nents
);
2345 cmd
->t_bidi_data_sg
= NULL
;
2346 cmd
->t_bidi_data_nents
= 0;
2348 transport_reset_sgl_orig(cmd
);
2351 transport_reset_sgl_orig(cmd
);
2353 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2354 cmd
->t_data_sg
= NULL
;
2355 cmd
->t_data_nents
= 0;
2357 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2358 cmd
->t_bidi_data_sg
= NULL
;
2359 cmd
->t_bidi_data_nents
= 0;
2363 * transport_put_cmd - release a reference to a command
2364 * @cmd: command to release
2366 * This routine releases our reference to the command and frees it if possible.
2368 static int transport_put_cmd(struct se_cmd
*cmd
)
2370 BUG_ON(!cmd
->se_tfo
);
2372 * If this cmd has been setup with target_get_sess_cmd(), drop
2373 * the kref and call ->release_cmd() in kref callback.
2375 return target_put_sess_cmd(cmd
);
2378 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2380 struct scatterlist
*sg
= cmd
->t_data_sg
;
2381 struct page
**pages
;
2385 * We need to take into account a possible offset here for fabrics like
2386 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2387 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2389 if (!cmd
->t_data_nents
)
2393 if (cmd
->t_data_nents
== 1)
2394 return kmap(sg_page(sg
)) + sg
->offset
;
2396 /* >1 page. use vmap */
2397 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2401 /* convert sg[] to pages[] */
2402 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2403 pages
[i
] = sg_page(sg
);
2406 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2408 if (!cmd
->t_data_vmap
)
2411 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2413 EXPORT_SYMBOL(transport_kmap_data_sg
);
2415 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2417 if (!cmd
->t_data_nents
) {
2419 } else if (cmd
->t_data_nents
== 1) {
2420 kunmap(sg_page(cmd
->t_data_sg
));
2424 vunmap(cmd
->t_data_vmap
);
2425 cmd
->t_data_vmap
= NULL
;
2427 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2430 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2431 bool zero_page
, bool chainable
)
2433 struct scatterlist
*sg
;
2435 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2436 unsigned int nalloc
, nent
;
2439 nalloc
= nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2442 sg
= kmalloc_array(nalloc
, sizeof(struct scatterlist
), GFP_KERNEL
);
2446 sg_init_table(sg
, nalloc
);
2449 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2450 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2454 sg_set_page(&sg
[i
], page
, page_len
, 0);
2465 __free_page(sg_page(&sg
[i
]));
2470 EXPORT_SYMBOL(target_alloc_sgl
);
2473 * Allocate any required resources to execute the command. For writes we
2474 * might not have the payload yet, so notify the fabric via a call to
2475 * ->write_pending instead. Otherwise place it on the execution queue.
2478 transport_generic_new_cmd(struct se_cmd
*cmd
)
2480 unsigned long flags
;
2482 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2484 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2485 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2486 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2487 cmd
->prot_length
, true, false);
2489 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2493 * Determine is the TCM fabric module has already allocated physical
2494 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2497 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2500 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2501 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2504 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2505 bidi_length
= cmd
->t_task_nolb
*
2506 cmd
->se_dev
->dev_attrib
.block_size
;
2508 bidi_length
= cmd
->data_length
;
2510 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2511 &cmd
->t_bidi_data_nents
,
2512 bidi_length
, zero_flag
, false);
2514 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2517 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2518 cmd
->data_length
, zero_flag
, false);
2520 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2521 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2524 * Special case for COMPARE_AND_WRITE with fabrics
2525 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2527 u32 caw_length
= cmd
->t_task_nolb
*
2528 cmd
->se_dev
->dev_attrib
.block_size
;
2530 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2531 &cmd
->t_bidi_data_nents
,
2532 caw_length
, zero_flag
, false);
2534 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2537 * If this command is not a write we can execute it right here,
2538 * for write buffers we need to notify the fabric driver first
2539 * and let it call back once the write buffers are ready.
2541 target_add_to_state_list(cmd
);
2542 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2543 target_execute_cmd(cmd
);
2547 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2548 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2550 * Determine if frontend context caller is requesting the stopping of
2551 * this command for frontend exceptions.
2553 if (cmd
->transport_state
& CMD_T_STOP
) {
2554 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2555 __func__
, __LINE__
, cmd
->tag
);
2557 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2559 complete_all(&cmd
->t_transport_stop_comp
);
2562 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2563 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2565 ret
= cmd
->se_tfo
->write_pending(cmd
);
2572 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2573 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2576 EXPORT_SYMBOL(transport_generic_new_cmd
);
2578 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2580 unsigned long flags
;
2584 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2585 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2586 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2589 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2590 __func__
, __LINE__
, cmd
->tag
);
2591 complete_all(&cmd
->t_transport_stop_comp
);
2595 ret
= cmd
->se_tfo
->write_pending(cmd
);
2597 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2599 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2604 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2605 unsigned long *flags
);
2607 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2609 unsigned long flags
;
2611 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2612 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2613 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2616 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2619 bool aborted
= false, tas
= false;
2621 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2622 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2623 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2625 if (!aborted
|| tas
)
2626 ret
= transport_put_cmd(cmd
);
2629 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2631 * Handle WRITE failure case where transport_generic_new_cmd()
2632 * has already added se_cmd to state_list, but fabric has
2633 * failed command before I/O submission.
2635 if (cmd
->state_active
)
2636 target_remove_from_state_list(cmd
);
2639 transport_lun_remove_cmd(cmd
);
2641 if (!aborted
|| tas
)
2642 ret
= transport_put_cmd(cmd
);
2645 * If the task has been internally aborted due to TMR ABORT_TASK
2646 * or LUN_RESET, target_core_tmr.c is responsible for performing
2647 * the remaining calls to target_put_sess_cmd(), and not the
2648 * callers of this function.
2651 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2652 wait_for_completion(&cmd
->cmd_wait_comp
);
2653 cmd
->se_tfo
->release_cmd(cmd
);
2658 EXPORT_SYMBOL(transport_generic_free_cmd
);
2660 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2661 * @se_cmd: command descriptor to add
2662 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2664 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2666 struct se_session
*se_sess
= se_cmd
->se_sess
;
2667 unsigned long flags
;
2671 * Add a second kref if the fabric caller is expecting to handle
2672 * fabric acknowledgement that requires two target_put_sess_cmd()
2673 * invocations before se_cmd descriptor release.
2676 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2679 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2682 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2683 if (se_sess
->sess_tearing_down
) {
2687 se_cmd
->transport_state
|= CMD_T_PRE_EXECUTE
;
2688 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2690 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2692 if (ret
&& ack_kref
)
2693 target_put_sess_cmd(se_cmd
);
2697 EXPORT_SYMBOL(target_get_sess_cmd
);
2699 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2701 transport_free_pages(cmd
);
2703 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2704 core_tmr_release_req(cmd
->se_tmr_req
);
2705 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2706 kfree(cmd
->t_task_cdb
);
2709 static void target_release_cmd_kref(struct kref
*kref
)
2711 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2712 struct se_session
*se_sess
= se_cmd
->se_sess
;
2713 unsigned long flags
;
2717 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2719 spin_lock(&se_cmd
->t_state_lock
);
2720 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2721 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2722 spin_unlock(&se_cmd
->t_state_lock
);
2724 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2725 list_del_init(&se_cmd
->se_cmd_list
);
2726 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2727 target_free_cmd_mem(se_cmd
);
2728 complete(&se_cmd
->cmd_wait_comp
);
2731 list_del_init(&se_cmd
->se_cmd_list
);
2732 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2735 target_free_cmd_mem(se_cmd
);
2736 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2740 * target_put_sess_cmd - decrease the command reference count
2741 * @se_cmd: command to drop a reference from
2743 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2744 * refcount to drop to zero. Returns zero otherwise.
2746 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2748 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2750 EXPORT_SYMBOL(target_put_sess_cmd
);
2752 static const char *data_dir_name(enum dma_data_direction d
)
2755 case DMA_BIDIRECTIONAL
: return "BIDI";
2756 case DMA_TO_DEVICE
: return "WRITE";
2757 case DMA_FROM_DEVICE
: return "READ";
2758 case DMA_NONE
: return "NONE";
2764 static const char *cmd_state_name(enum transport_state_table t
)
2767 case TRANSPORT_NO_STATE
: return "NO_STATE";
2768 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2769 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2770 case TRANSPORT_PROCESSING
: return "PROCESSING";
2771 case TRANSPORT_COMPLETE
: return "COMPLETE";
2772 case TRANSPORT_ISTATE_PROCESSING
:
2773 return "ISTATE_PROCESSING";
2774 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2775 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2776 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2782 static void target_append_str(char **str
, const char *txt
)
2786 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2787 kstrdup(txt
, GFP_ATOMIC
);
2792 * Convert a transport state bitmask into a string. The caller is
2793 * responsible for freeing the returned pointer.
2795 static char *target_ts_to_str(u32 ts
)
2799 if (ts
& CMD_T_ABORTED
)
2800 target_append_str(&str
, "aborted");
2801 if (ts
& CMD_T_ACTIVE
)
2802 target_append_str(&str
, "active");
2803 if (ts
& CMD_T_COMPLETE
)
2804 target_append_str(&str
, "complete");
2805 if (ts
& CMD_T_SENT
)
2806 target_append_str(&str
, "sent");
2807 if (ts
& CMD_T_STOP
)
2808 target_append_str(&str
, "stop");
2809 if (ts
& CMD_T_FABRIC_STOP
)
2810 target_append_str(&str
, "fabric_stop");
2815 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2818 case TMR_ABORT_TASK
: return "ABORT_TASK";
2819 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2820 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2821 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2822 case TMR_LUN_RESET
: return "LUN_RESET";
2823 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2824 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2825 case TMR_UNKNOWN
: break;
2830 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2832 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2833 const u8
*cdb
= cmd
->t_task_cdb
;
2834 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2836 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2837 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2838 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2839 data_dir_name(cmd
->data_direction
),
2840 cmd
->se_tfo
->get_cmd_state(cmd
),
2841 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2842 kref_read(&cmd
->cmd_kref
), ts_str
);
2844 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2845 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2846 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2847 cmd_state_name(cmd
->t_state
),
2848 kref_read(&cmd
->cmd_kref
), ts_str
);
2852 EXPORT_SYMBOL(target_show_cmd
);
2854 /* target_sess_cmd_list_set_waiting - Flag all commands in
2855 * sess_cmd_list to complete cmd_wait_comp. Set
2856 * sess_tearing_down so no more commands are queued.
2857 * @se_sess: session to flag
2859 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2861 struct se_cmd
*se_cmd
, *tmp_cmd
;
2862 unsigned long flags
;
2865 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2866 if (se_sess
->sess_tearing_down
) {
2867 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2870 se_sess
->sess_tearing_down
= 1;
2871 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2873 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2874 &se_sess
->sess_wait_list
, se_cmd_list
) {
2875 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2877 se_cmd
->cmd_wait_set
= 1;
2878 spin_lock(&se_cmd
->t_state_lock
);
2879 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2880 spin_unlock(&se_cmd
->t_state_lock
);
2882 list_del_init(&se_cmd
->se_cmd_list
);
2885 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2887 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2889 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2890 * @se_sess: session to wait for active I/O
2892 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2894 struct se_cmd
*se_cmd
, *tmp_cmd
;
2895 unsigned long flags
;
2898 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2899 &se_sess
->sess_wait_list
, se_cmd_list
) {
2900 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2901 " %d\n", se_cmd
, se_cmd
->t_state
,
2902 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2904 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2905 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2906 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2908 if (!target_put_sess_cmd(se_cmd
)) {
2910 target_put_sess_cmd(se_cmd
);
2913 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2914 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2915 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2916 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2918 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2921 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2922 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2923 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2926 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2928 static void target_lun_confirm(struct percpu_ref
*ref
)
2930 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2932 complete(&lun
->lun_ref_comp
);
2935 void transport_clear_lun_ref(struct se_lun
*lun
)
2938 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2939 * the initial reference and schedule confirm kill to be
2940 * executed after one full RCU grace period has completed.
2942 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2944 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2945 * to call target_lun_confirm after lun->lun_ref has been marked
2946 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2947 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2948 * fails for all new incoming I/O.
2950 wait_for_completion(&lun
->lun_ref_comp
);
2952 * The second completion waits for percpu_ref_put_many() to
2953 * invoke ->release() after lun->lun_ref has switched to
2954 * atomic_t mode, and lun->lun_ref.count has reached zero.
2956 * At this point all target-core lun->lun_ref references have
2957 * been dropped via transport_lun_remove_cmd(), and it's safe
2958 * to proceed with the remaining LUN shutdown.
2960 wait_for_completion(&lun
->lun_shutdown_comp
);
2964 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2965 bool *aborted
, bool *tas
, unsigned long *flags
)
2966 __releases(&cmd
->t_state_lock
)
2967 __acquires(&cmd
->t_state_lock
)
2970 assert_spin_locked(&cmd
->t_state_lock
);
2971 WARN_ON_ONCE(!irqs_disabled());
2974 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2976 if (cmd
->transport_state
& CMD_T_ABORTED
)
2979 if (cmd
->transport_state
& CMD_T_TAS
)
2982 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2983 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2986 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2987 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2990 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2993 if (fabric_stop
&& *aborted
)
2996 cmd
->transport_state
|= CMD_T_STOP
;
2998 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
3000 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
3002 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
3004 target_show_cmd("wait for tasks: ", cmd
);
3006 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
3007 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
3009 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3010 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
3016 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3017 * @cmd: command to wait on
3019 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3021 unsigned long flags
;
3022 bool ret
, aborted
= false, tas
= false;
3024 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3025 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3026 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3030 EXPORT_SYMBOL(transport_wait_for_tasks
);
3036 bool add_sector_info
;
3039 static const struct sense_info sense_info_table
[] = {
3043 [TCM_NON_EXISTENT_LUN
] = {
3044 .key
= ILLEGAL_REQUEST
,
3045 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3047 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3048 .key
= ILLEGAL_REQUEST
,
3049 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3051 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3052 .key
= ILLEGAL_REQUEST
,
3053 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3055 [TCM_UNKNOWN_MODE_PAGE
] = {
3056 .key
= ILLEGAL_REQUEST
,
3057 .asc
= 0x24, /* INVALID FIELD IN CDB */
3059 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3060 .key
= ABORTED_COMMAND
,
3061 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3064 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3065 .key
= ABORTED_COMMAND
,
3066 .asc
= 0x0c, /* WRITE ERROR */
3067 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3069 [TCM_INVALID_CDB_FIELD
] = {
3070 .key
= ILLEGAL_REQUEST
,
3071 .asc
= 0x24, /* INVALID FIELD IN CDB */
3073 [TCM_INVALID_PARAMETER_LIST
] = {
3074 .key
= ILLEGAL_REQUEST
,
3075 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3077 [TCM_TOO_MANY_TARGET_DESCS
] = {
3078 .key
= ILLEGAL_REQUEST
,
3080 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3082 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3083 .key
= ILLEGAL_REQUEST
,
3085 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3087 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3088 .key
= ILLEGAL_REQUEST
,
3090 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3092 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3093 .key
= ILLEGAL_REQUEST
,
3095 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3097 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3098 .key
= ILLEGAL_REQUEST
,
3099 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3101 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3102 .key
= ILLEGAL_REQUEST
,
3103 .asc
= 0x0c, /* WRITE ERROR */
3104 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3106 [TCM_SERVICE_CRC_ERROR
] = {
3107 .key
= ABORTED_COMMAND
,
3108 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3109 .ascq
= 0x05, /* N/A */
3111 [TCM_SNACK_REJECTED
] = {
3112 .key
= ABORTED_COMMAND
,
3113 .asc
= 0x11, /* READ ERROR */
3114 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3116 [TCM_WRITE_PROTECTED
] = {
3117 .key
= DATA_PROTECT
,
3118 .asc
= 0x27, /* WRITE PROTECTED */
3120 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3121 .key
= ILLEGAL_REQUEST
,
3122 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3124 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3125 .key
= UNIT_ATTENTION
,
3127 [TCM_CHECK_CONDITION_NOT_READY
] = {
3130 [TCM_MISCOMPARE_VERIFY
] = {
3132 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3135 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3136 .key
= ABORTED_COMMAND
,
3138 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3139 .add_sector_info
= true,
3141 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3142 .key
= ABORTED_COMMAND
,
3144 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3145 .add_sector_info
= true,
3147 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3148 .key
= ABORTED_COMMAND
,
3150 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3151 .add_sector_info
= true,
3153 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3154 .key
= COPY_ABORTED
,
3156 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3159 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3161 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3162 * Solaris initiators. Returning NOT READY instead means the
3163 * operations will be retried a finite number of times and we
3164 * can survive intermittent errors.
3167 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3171 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3173 const struct sense_info
*si
;
3174 u8
*buffer
= cmd
->sense_buffer
;
3175 int r
= (__force
int)reason
;
3177 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3179 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
3180 si
= &sense_info_table
[r
];
3182 si
= &sense_info_table
[(__force
int)
3183 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3185 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3186 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
3187 WARN_ON_ONCE(asc
== 0);
3188 } else if (si
->asc
== 0) {
3189 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3190 asc
= cmd
->scsi_asc
;
3191 ascq
= cmd
->scsi_ascq
;
3197 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
3198 if (si
->add_sector_info
)
3199 return scsi_set_sense_information(buffer
,
3200 cmd
->scsi_sense_length
,
3207 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3208 sense_reason_t reason
, int from_transport
)
3210 unsigned long flags
;
3212 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3213 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3214 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3217 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3218 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3220 if (!from_transport
) {
3223 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3224 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3225 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3226 rc
= translate_sense_reason(cmd
, reason
);
3231 trace_target_cmd_complete(cmd
);
3232 return cmd
->se_tfo
->queue_status(cmd
);
3234 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3236 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3237 __releases(&cmd
->t_state_lock
)
3238 __acquires(&cmd
->t_state_lock
)
3242 assert_spin_locked(&cmd
->t_state_lock
);
3243 WARN_ON_ONCE(!irqs_disabled());
3245 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3248 * If cmd has been aborted but either no status is to be sent or it has
3249 * already been sent, just return
3251 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3253 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3257 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3258 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3260 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3261 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3262 trace_target_cmd_complete(cmd
);
3264 spin_unlock_irq(&cmd
->t_state_lock
);
3265 ret
= cmd
->se_tfo
->queue_status(cmd
);
3267 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3268 spin_lock_irq(&cmd
->t_state_lock
);
3273 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3277 spin_lock_irq(&cmd
->t_state_lock
);
3278 ret
= __transport_check_aborted_status(cmd
, send_status
);
3279 spin_unlock_irq(&cmd
->t_state_lock
);
3283 EXPORT_SYMBOL(transport_check_aborted_status
);
3285 void transport_send_task_abort(struct se_cmd
*cmd
)
3287 unsigned long flags
;
3290 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3291 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3292 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3295 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3298 * If there are still expected incoming fabric WRITEs, we wait
3299 * until until they have completed before sending a TASK_ABORTED
3300 * response. This response with TASK_ABORTED status will be
3301 * queued back to fabric module by transport_check_aborted_status().
3303 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3304 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3305 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3306 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3307 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3310 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3311 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3316 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3318 transport_lun_remove_cmd(cmd
);
3320 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3321 cmd
->t_task_cdb
[0], cmd
->tag
);
3323 trace_target_cmd_complete(cmd
);
3324 ret
= cmd
->se_tfo
->queue_status(cmd
);
3326 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3329 static void target_tmr_work(struct work_struct
*work
)
3331 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3332 struct se_device
*dev
= cmd
->se_dev
;
3333 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3334 unsigned long flags
;
3337 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3338 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3339 tmr
->response
= TMR_FUNCTION_REJECTED
;
3340 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3343 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3345 switch (tmr
->function
) {
3346 case TMR_ABORT_TASK
:
3347 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3349 case TMR_ABORT_TASK_SET
:
3351 case TMR_CLEAR_TASK_SET
:
3352 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3355 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3356 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3357 TMR_FUNCTION_REJECTED
;
3358 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3359 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3360 cmd
->orig_fe_lun
, 0x29,
3361 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3364 case TMR_TARGET_WARM_RESET
:
3365 tmr
->response
= TMR_FUNCTION_REJECTED
;
3367 case TMR_TARGET_COLD_RESET
:
3368 tmr
->response
= TMR_FUNCTION_REJECTED
;
3371 pr_err("Uknown TMR function: 0x%02x.\n",
3373 tmr
->response
= TMR_FUNCTION_REJECTED
;
3377 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3378 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3379 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3382 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3384 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3387 transport_lun_remove_cmd(cmd
);
3388 transport_cmd_check_stop_to_fabric(cmd
);
3391 int transport_generic_handle_tmr(
3394 unsigned long flags
;
3395 bool aborted
= false;
3397 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3398 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3401 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3402 cmd
->transport_state
|= CMD_T_ACTIVE
;
3404 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3407 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3408 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3409 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3410 transport_lun_remove_cmd(cmd
);
3411 transport_cmd_check_stop_to_fabric(cmd
);
3415 INIT_WORK(&cmd
->work
, target_tmr_work
);
3416 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3419 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3422 target_check_wce(struct se_device
*dev
)
3426 if (dev
->transport
->get_write_cache
)
3427 wce
= dev
->transport
->get_write_cache(dev
);
3428 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3435 target_check_fua(struct se_device
*dev
)
3437 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;