x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / usb / dwc2 / gadget.c
blobe164439b215429492ce414bd8d088109397ea639
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
10 * S3C USB2.0 High-speed / OtG driver
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
34 #include "core.h"
35 #include "hw.h"
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
40 return container_of(req, struct dwc2_hsotg_req, req);
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
45 return container_of(ep, struct dwc2_hsotg_ep, ep);
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
50 return container_of(gadget, struct dwc2_hsotg, gadget);
53 static inline void __orr32(void __iomem *ptr, u32 val)
55 dwc2_writel(dwc2_readl(ptr) | val, ptr);
58 static inline void __bic32(void __iomem *ptr, u32 val)
60 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 u32 ep_index, u32 dir_in)
66 if (dir_in)
67 return hsotg->eps_in[ep_index];
68 else
69 return hsotg->eps_out[ep_index];
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
75 /**
76 * using_dma - return the DMA status of the driver.
77 * @hsotg: The driver state.
79 * Return true if we're using DMA.
81 * Currently, we have the DMA support code worked into everywhere
82 * that needs it, but the AMBA DMA implementation in the hardware can
83 * only DMA from 32bit aligned addresses. This means that gadgets such
84 * as the CDC Ethernet cannot work as they often pass packets which are
85 * not 32bit aligned.
87 * Unfortunately the choice to use DMA or not is global to the controller
88 * and seems to be only settable when the controller is being put through
89 * a core reset. This means we either need to fix the gadgets to take
90 * account of DMA alignment, or add bounce buffers (yuerk).
92 * g_using_dma is set depending on dts flag.
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
96 return hsotg->params.g_dma;
100 * using_desc_dma - return the descriptor DMA status of the driver.
101 * @hsotg: The driver state.
103 * Return true if we're using descriptor DMA.
105 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
107 return hsotg->params.g_dma_desc;
111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112 * @hs_ep: The endpoint
113 * @increment: The value to increment by
115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
118 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
120 hs_ep->target_frame += hs_ep->interval;
121 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
122 hs_ep->frame_overrun = 1;
123 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
124 } else {
125 hs_ep->frame_overrun = 0;
130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 * @hsotg: The device state
132 * @ints: A bitmask of the interrupts to enable
134 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
136 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 u32 new_gsintmsk;
139 new_gsintmsk = gsintmsk | ints;
141 if (new_gsintmsk != gsintmsk) {
142 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 * @hsotg: The device state
150 * @ints: A bitmask of the interrupts to enable
152 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
154 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 u32 new_gsintmsk;
157 new_gsintmsk = gsintmsk & ~ints;
159 if (new_gsintmsk != gsintmsk)
160 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 * @hsotg: The device state
166 * @ep: The endpoint index
167 * @dir_in: True if direction is in.
168 * @en: The enable value, true to enable
170 * Set or clear the mask for an individual endpoint's interrupt
171 * request.
173 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 unsigned int ep, unsigned int dir_in,
175 unsigned int en)
177 unsigned long flags;
178 u32 bit = 1 << ep;
179 u32 daint;
181 if (!dir_in)
182 bit <<= 16;
184 local_irq_save(flags);
185 daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 if (en)
187 daint |= bit;
188 else
189 daint &= ~bit;
190 dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 local_irq_restore(flags);
195 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
197 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
199 if (hsotg->hw_params.en_multiple_tx_fifo)
200 /* In dedicated FIFO mode we need count of IN EPs */
201 return (dwc2_readl(hsotg->regs + GHWCFG4) &
202 GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT;
203 else
204 /* In shared FIFO mode we need count of Periodic IN EPs */
205 return hsotg->hw_params.num_dev_perio_in_ep;
209 * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
211 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg)
213 int val = 0;
214 int i;
215 u32 ep_dirs;
218 * Don't need additional space for ep info control registers in
219 * slave mode.
221 if (!using_dma(hsotg)) {
222 dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n");
223 return 0;
227 * Buffer DMA mode - 1 location per endpoit
228 * Descriptor DMA mode - 4 locations per endpoint
230 ep_dirs = hsotg->hw_params.dev_ep_dirs;
232 for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) {
233 val += ep_dirs & 3 ? 1 : 2;
234 ep_dirs >>= 2;
237 if (using_desc_dma(hsotg))
238 val = val * 4;
240 return val;
244 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
245 * device mode TX FIFOs
247 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
249 int ep_info_size;
250 int addr;
251 int tx_addr_max;
252 u32 np_tx_fifo_size;
254 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
255 hsotg->params.g_np_tx_fifo_size);
257 /* Get Endpoint Info Control block size in DWORDs. */
258 ep_info_size = dwc2_hsotg_ep_info_size(hsotg);
259 tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size;
261 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
262 if (tx_addr_max <= addr)
263 return 0;
265 return tx_addr_max - addr;
269 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
270 * TX FIFOs
272 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
274 int tx_fifo_count;
275 int tx_fifo_depth;
277 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
279 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
281 if (!tx_fifo_count)
282 return tx_fifo_depth;
283 else
284 return tx_fifo_depth / tx_fifo_count;
288 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
289 * @hsotg: The device instance.
291 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
293 unsigned int ep;
294 unsigned int addr;
295 int timeout;
296 u32 val;
297 u32 *txfsz = hsotg->params.g_tx_fifo_size;
299 /* Reset fifo map if not correctly cleared during previous session */
300 WARN_ON(hsotg->fifo_map);
301 hsotg->fifo_map = 0;
303 /* set RX/NPTX FIFO sizes */
304 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
305 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
306 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
307 hsotg->regs + GNPTXFSIZ);
310 * arange all the rest of the TX FIFOs, as some versions of this
311 * block have overlapping default addresses. This also ensures
312 * that if the settings have been changed, then they are set to
313 * known values.
316 /* start at the end of the GNPTXFSIZ, rounded up */
317 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
320 * Configure fifos sizes from provided configuration and assign
321 * them to endpoints dynamically according to maxpacket size value of
322 * given endpoint.
324 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
325 if (!txfsz[ep])
326 continue;
327 val = addr;
328 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
329 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
330 "insufficient fifo memory");
331 addr += txfsz[ep];
333 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
334 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
337 dwc2_writel(hsotg->hw_params.total_fifo_size |
338 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
339 hsotg->regs + GDFIFOCFG);
341 * according to p428 of the design guide, we need to ensure that
342 * all fifos are flushed before continuing
345 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
346 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
348 /* wait until the fifos are both flushed */
349 timeout = 100;
350 while (1) {
351 val = dwc2_readl(hsotg->regs + GRSTCTL);
353 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
354 break;
356 if (--timeout == 0) {
357 dev_err(hsotg->dev,
358 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
359 __func__, val);
360 break;
363 udelay(1);
366 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
370 * @ep: USB endpoint to allocate request for.
371 * @flags: Allocation flags
373 * Allocate a new USB request structure appropriate for the specified endpoint
375 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
376 gfp_t flags)
378 struct dwc2_hsotg_req *req;
380 req = kzalloc(sizeof(*req), flags);
381 if (!req)
382 return NULL;
384 INIT_LIST_HEAD(&req->queue);
386 return &req->req;
390 * is_ep_periodic - return true if the endpoint is in periodic mode.
391 * @hs_ep: The endpoint to query.
393 * Returns true if the endpoint is in periodic mode, meaning it is being
394 * used for an Interrupt or ISO transfer.
396 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
398 return hs_ep->periodic;
402 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
403 * @hsotg: The device state.
404 * @hs_ep: The endpoint for the request
405 * @hs_req: The request being processed.
407 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
408 * of a request to ensure the buffer is ready for access by the caller.
410 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
411 struct dwc2_hsotg_ep *hs_ep,
412 struct dwc2_hsotg_req *hs_req)
414 struct usb_request *req = &hs_req->req;
416 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
420 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
421 * for Control endpoint
422 * @hsotg: The device state.
424 * This function will allocate 4 descriptor chains for EP 0: 2 for
425 * Setup stage, per one for IN and OUT data/status transactions.
427 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
429 hsotg->setup_desc[0] =
430 dmam_alloc_coherent(hsotg->dev,
431 sizeof(struct dwc2_dma_desc),
432 &hsotg->setup_desc_dma[0],
433 GFP_KERNEL);
434 if (!hsotg->setup_desc[0])
435 goto fail;
437 hsotg->setup_desc[1] =
438 dmam_alloc_coherent(hsotg->dev,
439 sizeof(struct dwc2_dma_desc),
440 &hsotg->setup_desc_dma[1],
441 GFP_KERNEL);
442 if (!hsotg->setup_desc[1])
443 goto fail;
445 hsotg->ctrl_in_desc =
446 dmam_alloc_coherent(hsotg->dev,
447 sizeof(struct dwc2_dma_desc),
448 &hsotg->ctrl_in_desc_dma,
449 GFP_KERNEL);
450 if (!hsotg->ctrl_in_desc)
451 goto fail;
453 hsotg->ctrl_out_desc =
454 dmam_alloc_coherent(hsotg->dev,
455 sizeof(struct dwc2_dma_desc),
456 &hsotg->ctrl_out_desc_dma,
457 GFP_KERNEL);
458 if (!hsotg->ctrl_out_desc)
459 goto fail;
461 return 0;
463 fail:
464 return -ENOMEM;
468 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
469 * @hsotg: The controller state.
470 * @hs_ep: The endpoint we're going to write for.
471 * @hs_req: The request to write data for.
473 * This is called when the TxFIFO has some space in it to hold a new
474 * transmission and we have something to give it. The actual setup of
475 * the data size is done elsewhere, so all we have to do is to actually
476 * write the data.
478 * The return value is zero if there is more space (or nothing was done)
479 * otherwise -ENOSPC is returned if the FIFO space was used up.
481 * This routine is only needed for PIO
483 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
484 struct dwc2_hsotg_ep *hs_ep,
485 struct dwc2_hsotg_req *hs_req)
487 bool periodic = is_ep_periodic(hs_ep);
488 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
489 int buf_pos = hs_req->req.actual;
490 int to_write = hs_ep->size_loaded;
491 void *data;
492 int can_write;
493 int pkt_round;
494 int max_transfer;
496 to_write -= (buf_pos - hs_ep->last_load);
498 /* if there's nothing to write, get out early */
499 if (to_write == 0)
500 return 0;
502 if (periodic && !hsotg->dedicated_fifos) {
503 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
504 int size_left;
505 int size_done;
508 * work out how much data was loaded so we can calculate
509 * how much data is left in the fifo.
512 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
515 * if shared fifo, we cannot write anything until the
516 * previous data has been completely sent.
518 if (hs_ep->fifo_load != 0) {
519 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
520 return -ENOSPC;
523 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
524 __func__, size_left,
525 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
527 /* how much of the data has moved */
528 size_done = hs_ep->size_loaded - size_left;
530 /* how much data is left in the fifo */
531 can_write = hs_ep->fifo_load - size_done;
532 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
533 __func__, can_write);
535 can_write = hs_ep->fifo_size - can_write;
536 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
537 __func__, can_write);
539 if (can_write <= 0) {
540 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 return -ENOSPC;
543 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
544 can_write = dwc2_readl(hsotg->regs +
545 DTXFSTS(hs_ep->fifo_index));
547 can_write &= 0xffff;
548 can_write *= 4;
549 } else {
550 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
551 dev_dbg(hsotg->dev,
552 "%s: no queue slots available (0x%08x)\n",
553 __func__, gnptxsts);
555 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
556 return -ENOSPC;
559 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
560 can_write *= 4; /* fifo size is in 32bit quantities. */
563 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
565 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
566 __func__, gnptxsts, can_write, to_write, max_transfer);
569 * limit to 512 bytes of data, it seems at least on the non-periodic
570 * FIFO, requests of >512 cause the endpoint to get stuck with a
571 * fragment of the end of the transfer in it.
573 if (can_write > 512 && !periodic)
574 can_write = 512;
577 * limit the write to one max-packet size worth of data, but allow
578 * the transfer to return that it did not run out of fifo space
579 * doing it.
581 if (to_write > max_transfer) {
582 to_write = max_transfer;
584 /* it's needed only when we do not use dedicated fifos */
585 if (!hsotg->dedicated_fifos)
586 dwc2_hsotg_en_gsint(hsotg,
587 periodic ? GINTSTS_PTXFEMP :
588 GINTSTS_NPTXFEMP);
591 /* see if we can write data */
593 if (to_write > can_write) {
594 to_write = can_write;
595 pkt_round = to_write % max_transfer;
598 * Round the write down to an
599 * exact number of packets.
601 * Note, we do not currently check to see if we can ever
602 * write a full packet or not to the FIFO.
605 if (pkt_round)
606 to_write -= pkt_round;
609 * enable correct FIFO interrupt to alert us when there
610 * is more room left.
613 /* it's needed only when we do not use dedicated fifos */
614 if (!hsotg->dedicated_fifos)
615 dwc2_hsotg_en_gsint(hsotg,
616 periodic ? GINTSTS_PTXFEMP :
617 GINTSTS_NPTXFEMP);
620 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
621 to_write, hs_req->req.length, can_write, buf_pos);
623 if (to_write <= 0)
624 return -ENOSPC;
626 hs_req->req.actual = buf_pos + to_write;
627 hs_ep->total_data += to_write;
629 if (periodic)
630 hs_ep->fifo_load += to_write;
632 to_write = DIV_ROUND_UP(to_write, 4);
633 data = hs_req->req.buf + buf_pos;
635 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
637 return (to_write >= can_write) ? -ENOSPC : 0;
641 * get_ep_limit - get the maximum data legnth for this endpoint
642 * @hs_ep: The endpoint
644 * Return the maximum data that can be queued in one go on a given endpoint
645 * so that transfers that are too long can be split.
647 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
649 int index = hs_ep->index;
650 unsigned int maxsize;
651 unsigned int maxpkt;
653 if (index != 0) {
654 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
655 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
656 } else {
657 maxsize = 64 + 64;
658 if (hs_ep->dir_in)
659 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
660 else
661 maxpkt = 2;
664 /* we made the constant loading easier above by using +1 */
665 maxpkt--;
666 maxsize--;
669 * constrain by packet count if maxpkts*pktsize is greater
670 * than the length register size.
673 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
674 maxsize = maxpkt * hs_ep->ep.maxpacket;
676 return maxsize;
680 * dwc2_hsotg_read_frameno - read current frame number
681 * @hsotg: The device instance
683 * Return the current frame number
685 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
687 u32 dsts;
689 dsts = dwc2_readl(hsotg->regs + DSTS);
690 dsts &= DSTS_SOFFN_MASK;
691 dsts >>= DSTS_SOFFN_SHIFT;
693 return dsts;
697 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
698 * DMA descriptor chain prepared for specific endpoint
699 * @hs_ep: The endpoint
701 * Return the maximum data that can be queued in one go on a given endpoint
702 * depending on its descriptor chain capacity so that transfers that
703 * are too long can be split.
705 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
707 int is_isoc = hs_ep->isochronous;
708 unsigned int maxsize;
710 if (is_isoc)
711 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
712 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
713 else
714 maxsize = DEV_DMA_NBYTES_LIMIT;
716 /* Above size of one descriptor was chosen, multiple it */
717 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
719 return maxsize;
723 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
724 * @hs_ep: The endpoint
725 * @mask: RX/TX bytes mask to be defined
727 * Returns maximum data payload for one descriptor after analyzing endpoint
728 * characteristics.
729 * DMA descriptor transfer bytes limit depends on EP type:
730 * Control out - MPS,
731 * Isochronous - descriptor rx/tx bytes bitfield limit,
732 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
733 * have concatenations from various descriptors within one packet.
735 * Selects corresponding mask for RX/TX bytes as well.
737 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
739 u32 mps = hs_ep->ep.maxpacket;
740 int dir_in = hs_ep->dir_in;
741 u32 desc_size = 0;
743 if (!hs_ep->index && !dir_in) {
744 desc_size = mps;
745 *mask = DEV_DMA_NBYTES_MASK;
746 } else if (hs_ep->isochronous) {
747 if (dir_in) {
748 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
749 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
750 } else {
751 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
752 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
754 } else {
755 desc_size = DEV_DMA_NBYTES_LIMIT;
756 *mask = DEV_DMA_NBYTES_MASK;
758 /* Round down desc_size to be mps multiple */
759 desc_size -= desc_size % mps;
762 return desc_size;
766 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
767 * @hs_ep: The endpoint
768 * @dma_buff: DMA address to use
769 * @len: Length of the transfer
771 * This function will iterate over descriptor chain and fill its entries
772 * with corresponding information based on transfer data.
774 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
775 dma_addr_t dma_buff,
776 unsigned int len)
778 struct dwc2_hsotg *hsotg = hs_ep->parent;
779 int dir_in = hs_ep->dir_in;
780 struct dwc2_dma_desc *desc = hs_ep->desc_list;
781 u32 mps = hs_ep->ep.maxpacket;
782 u32 maxsize = 0;
783 u32 offset = 0;
784 u32 mask = 0;
785 int i;
787 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
789 hs_ep->desc_count = (len / maxsize) +
790 ((len % maxsize) ? 1 : 0);
791 if (len == 0)
792 hs_ep->desc_count = 1;
794 for (i = 0; i < hs_ep->desc_count; ++i) {
795 desc->status = 0;
796 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
797 << DEV_DMA_BUFF_STS_SHIFT);
799 if (len > maxsize) {
800 if (!hs_ep->index && !dir_in)
801 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
803 desc->status |= (maxsize <<
804 DEV_DMA_NBYTES_SHIFT & mask);
805 desc->buf = dma_buff + offset;
807 len -= maxsize;
808 offset += maxsize;
809 } else {
810 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
812 if (dir_in)
813 desc->status |= (len % mps) ? DEV_DMA_SHORT :
814 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
815 if (len > maxsize)
816 dev_err(hsotg->dev, "wrong len %d\n", len);
818 desc->status |=
819 len << DEV_DMA_NBYTES_SHIFT & mask;
820 desc->buf = dma_buff + offset;
823 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
824 desc->status |= (DEV_DMA_BUFF_STS_HREADY
825 << DEV_DMA_BUFF_STS_SHIFT);
826 desc++;
831 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
832 * @hs_ep: The isochronous endpoint.
833 * @dma_buff: usb requests dma buffer.
834 * @len: usb request transfer length.
836 * Finds out index of first free entry either in the bottom or up half of
837 * descriptor chain depend on which is under SW control and not processed
838 * by HW. Then fills that descriptor with the data of the arrived usb request,
839 * frame info, sets Last and IOC bits increments next_desc. If filled
840 * descriptor is not the first one, removes L bit from the previous descriptor
841 * status.
843 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
844 dma_addr_t dma_buff, unsigned int len)
846 struct dwc2_dma_desc *desc;
847 struct dwc2_hsotg *hsotg = hs_ep->parent;
848 u32 index;
849 u32 maxsize = 0;
850 u32 mask = 0;
851 u8 pid = 0;
853 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
854 if (len > maxsize) {
855 dev_err(hsotg->dev, "wrong len %d\n", len);
856 return -EINVAL;
860 * If SW has already filled half of chain, then return and wait for
861 * the other chain to be processed by HW.
863 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
864 return -EBUSY;
866 /* Increment frame number by interval for IN */
867 if (hs_ep->dir_in)
868 dwc2_gadget_incr_frame_num(hs_ep);
870 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
871 hs_ep->next_desc;
873 /* Sanity check of calculated index */
874 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
875 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
876 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
877 return -EINVAL;
880 desc = &hs_ep->desc_list[index];
882 /* Clear L bit of previous desc if more than one entries in the chain */
883 if (hs_ep->next_desc)
884 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
886 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
887 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
889 desc->status = 0;
890 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
892 desc->buf = dma_buff;
893 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
894 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
896 if (hs_ep->dir_in) {
897 if (len)
898 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
899 else
900 pid = 1;
901 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
902 DEV_DMA_ISOC_PID_MASK) |
903 ((len % hs_ep->ep.maxpacket) ?
904 DEV_DMA_SHORT : 0) |
905 ((hs_ep->target_frame <<
906 DEV_DMA_ISOC_FRNUM_SHIFT) &
907 DEV_DMA_ISOC_FRNUM_MASK);
910 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
911 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
913 /* Update index of last configured entry in the chain */
914 hs_ep->next_desc++;
916 return 0;
920 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
921 * @hs_ep: The isochronous endpoint.
923 * Prepare first descriptor chain for isochronous endpoints. Afterwards
924 * write DMA address to HW and enable the endpoint.
926 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
927 * to prepare second descriptor chain while first one is being processed by HW.
929 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
931 struct dwc2_hsotg *hsotg = hs_ep->parent;
932 struct dwc2_hsotg_req *hs_req, *treq;
933 int index = hs_ep->index;
934 int ret;
935 u32 dma_reg;
936 u32 depctl;
937 u32 ctrl;
939 if (list_empty(&hs_ep->queue)) {
940 hs_ep->target_frame = TARGET_FRAME_INITIAL;
941 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
942 return;
945 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
946 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
947 hs_req->req.length);
948 if (ret) {
949 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
950 break;
954 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
955 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
957 /* write descriptor chain address to control register */
958 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
960 ctrl = dwc2_readl(hsotg->regs + depctl);
961 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
962 dwc2_writel(ctrl, hsotg->regs + depctl);
964 /* Switch ISOC descriptor chain number being processed by SW*/
965 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
966 hs_ep->next_desc = 0;
970 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
971 * @hsotg: The controller state.
972 * @hs_ep: The endpoint to process a request for
973 * @hs_req: The request to start.
974 * @continuing: True if we are doing more for the current request.
976 * Start the given request running by setting the endpoint registers
977 * appropriately, and writing any data to the FIFOs.
979 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
980 struct dwc2_hsotg_ep *hs_ep,
981 struct dwc2_hsotg_req *hs_req,
982 bool continuing)
984 struct usb_request *ureq = &hs_req->req;
985 int index = hs_ep->index;
986 int dir_in = hs_ep->dir_in;
987 u32 epctrl_reg;
988 u32 epsize_reg;
989 u32 epsize;
990 u32 ctrl;
991 unsigned int length;
992 unsigned int packets;
993 unsigned int maxreq;
994 unsigned int dma_reg;
996 if (index != 0) {
997 if (hs_ep->req && !continuing) {
998 dev_err(hsotg->dev, "%s: active request\n", __func__);
999 WARN_ON(1);
1000 return;
1001 } else if (hs_ep->req != hs_req && continuing) {
1002 dev_err(hsotg->dev,
1003 "%s: continue different req\n", __func__);
1004 WARN_ON(1);
1005 return;
1009 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1010 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1011 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1013 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1014 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
1015 hs_ep->dir_in ? "in" : "out");
1017 /* If endpoint is stalled, we will restart request later */
1018 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
1020 if (index && ctrl & DXEPCTL_STALL) {
1021 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1022 return;
1025 length = ureq->length - ureq->actual;
1026 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1027 ureq->length, ureq->actual);
1029 if (!using_desc_dma(hsotg))
1030 maxreq = get_ep_limit(hs_ep);
1031 else
1032 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1034 if (length > maxreq) {
1035 int round = maxreq % hs_ep->ep.maxpacket;
1037 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1038 __func__, length, maxreq, round);
1040 /* round down to multiple of packets */
1041 if (round)
1042 maxreq -= round;
1044 length = maxreq;
1047 if (length)
1048 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1049 else
1050 packets = 1; /* send one packet if length is zero. */
1052 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1053 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1054 return;
1057 if (dir_in && index != 0)
1058 if (hs_ep->isochronous)
1059 epsize = DXEPTSIZ_MC(packets);
1060 else
1061 epsize = DXEPTSIZ_MC(1);
1062 else
1063 epsize = 0;
1066 * zero length packet should be programmed on its own and should not
1067 * be counted in DIEPTSIZ.PktCnt with other packets.
1069 if (dir_in && ureq->zero && !continuing) {
1070 /* Test if zlp is actually required. */
1071 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1072 !(ureq->length % hs_ep->ep.maxpacket))
1073 hs_ep->send_zlp = 1;
1076 epsize |= DXEPTSIZ_PKTCNT(packets);
1077 epsize |= DXEPTSIZ_XFERSIZE(length);
1079 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1080 __func__, packets, length, ureq->length, epsize, epsize_reg);
1082 /* store the request as the current one we're doing */
1083 hs_ep->req = hs_req;
1085 if (using_desc_dma(hsotg)) {
1086 u32 offset = 0;
1087 u32 mps = hs_ep->ep.maxpacket;
1089 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1090 if (!dir_in) {
1091 if (!index)
1092 length = mps;
1093 else if (length % mps)
1094 length += (mps - (length % mps));
1098 * If more data to send, adjust DMA for EP0 out data stage.
1099 * ureq->dma stays unchanged, hence increment it by already
1100 * passed passed data count before starting new transaction.
1102 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1103 continuing)
1104 offset = ureq->actual;
1106 /* Fill DDMA chain entries */
1107 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1108 length);
1110 /* write descriptor chain address to control register */
1111 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1113 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1114 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1115 } else {
1116 /* write size / packets */
1117 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1119 if (using_dma(hsotg) && !continuing && (length != 0)) {
1121 * write DMA address to control register, buffer
1122 * already synced by dwc2_hsotg_ep_queue().
1125 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1127 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1128 __func__, &ureq->dma, dma_reg);
1132 if (hs_ep->isochronous && hs_ep->interval == 1) {
1133 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1134 dwc2_gadget_incr_frame_num(hs_ep);
1136 if (hs_ep->target_frame & 0x1)
1137 ctrl |= DXEPCTL_SETODDFR;
1138 else
1139 ctrl |= DXEPCTL_SETEVENFR;
1142 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1144 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1146 /* For Setup request do not clear NAK */
1147 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1148 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1150 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1151 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1154 * set these, it seems that DMA support increments past the end
1155 * of the packet buffer so we need to calculate the length from
1156 * this information.
1158 hs_ep->size_loaded = length;
1159 hs_ep->last_load = ureq->actual;
1161 if (dir_in && !using_dma(hsotg)) {
1162 /* set these anyway, we may need them for non-periodic in */
1163 hs_ep->fifo_load = 0;
1165 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1169 * Note, trying to clear the NAK here causes problems with transmit
1170 * on the S3C6400 ending up with the TXFIFO becoming full.
1173 /* check ep is enabled */
1174 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1175 dev_dbg(hsotg->dev,
1176 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1177 index, dwc2_readl(hsotg->regs + epctrl_reg));
1179 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1180 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1182 /* enable ep interrupts */
1183 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1187 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1188 * @hsotg: The device state.
1189 * @hs_ep: The endpoint the request is on.
1190 * @req: The request being processed.
1192 * We've been asked to queue a request, so ensure that the memory buffer
1193 * is correctly setup for DMA. If we've been passed an extant DMA address
1194 * then ensure the buffer has been synced to memory. If our buffer has no
1195 * DMA memory, then we map the memory and mark our request to allow us to
1196 * cleanup on completion.
1198 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1199 struct dwc2_hsotg_ep *hs_ep,
1200 struct usb_request *req)
1202 int ret;
1204 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1205 if (ret)
1206 goto dma_error;
1208 return 0;
1210 dma_error:
1211 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1212 __func__, req->buf, req->length);
1214 return -EIO;
1217 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1218 struct dwc2_hsotg_ep *hs_ep,
1219 struct dwc2_hsotg_req *hs_req)
1221 void *req_buf = hs_req->req.buf;
1223 /* If dma is not being used or buffer is aligned */
1224 if (!using_dma(hsotg) || !((long)req_buf & 3))
1225 return 0;
1227 WARN_ON(hs_req->saved_req_buf);
1229 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1230 hs_ep->ep.name, req_buf, hs_req->req.length);
1232 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1233 if (!hs_req->req.buf) {
1234 hs_req->req.buf = req_buf;
1235 dev_err(hsotg->dev,
1236 "%s: unable to allocate memory for bounce buffer\n",
1237 __func__);
1238 return -ENOMEM;
1241 /* Save actual buffer */
1242 hs_req->saved_req_buf = req_buf;
1244 if (hs_ep->dir_in)
1245 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1246 return 0;
1249 static void
1250 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1251 struct dwc2_hsotg_ep *hs_ep,
1252 struct dwc2_hsotg_req *hs_req)
1254 /* If dma is not being used or buffer was aligned */
1255 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1256 return;
1258 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1259 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1261 /* Copy data from bounce buffer on successful out transfer */
1262 if (!hs_ep->dir_in && !hs_req->req.status)
1263 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1264 hs_req->req.actual);
1266 /* Free bounce buffer */
1267 kfree(hs_req->req.buf);
1269 hs_req->req.buf = hs_req->saved_req_buf;
1270 hs_req->saved_req_buf = NULL;
1274 * dwc2_gadget_target_frame_elapsed - Checks target frame
1275 * @hs_ep: The driver endpoint to check
1277 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1278 * corresponding transfer.
1280 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1282 struct dwc2_hsotg *hsotg = hs_ep->parent;
1283 u32 target_frame = hs_ep->target_frame;
1284 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1285 bool frame_overrun = hs_ep->frame_overrun;
1287 if (!frame_overrun && current_frame >= target_frame)
1288 return true;
1290 if (frame_overrun && current_frame >= target_frame &&
1291 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1292 return true;
1294 return false;
1298 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1299 * @hsotg: The driver state
1300 * @hs_ep: the ep descriptor chain is for
1302 * Called to update EP0 structure's pointers depend on stage of
1303 * control transfer.
1305 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1306 struct dwc2_hsotg_ep *hs_ep)
1308 switch (hsotg->ep0_state) {
1309 case DWC2_EP0_SETUP:
1310 case DWC2_EP0_STATUS_OUT:
1311 hs_ep->desc_list = hsotg->setup_desc[0];
1312 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1313 break;
1314 case DWC2_EP0_DATA_IN:
1315 case DWC2_EP0_STATUS_IN:
1316 hs_ep->desc_list = hsotg->ctrl_in_desc;
1317 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1318 break;
1319 case DWC2_EP0_DATA_OUT:
1320 hs_ep->desc_list = hsotg->ctrl_out_desc;
1321 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1322 break;
1323 default:
1324 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1325 hsotg->ep0_state);
1326 return -EINVAL;
1329 return 0;
1332 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1333 gfp_t gfp_flags)
1335 struct dwc2_hsotg_req *hs_req = our_req(req);
1336 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1337 struct dwc2_hsotg *hs = hs_ep->parent;
1338 bool first;
1339 int ret;
1341 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1342 ep->name, req, req->length, req->buf, req->no_interrupt,
1343 req->zero, req->short_not_ok);
1345 /* Prevent new request submission when controller is suspended */
1346 if (hs->lx_state == DWC2_L2) {
1347 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1348 __func__);
1349 return -EAGAIN;
1352 /* initialise status of the request */
1353 INIT_LIST_HEAD(&hs_req->queue);
1354 req->actual = 0;
1355 req->status = -EINPROGRESS;
1357 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1358 if (ret)
1359 return ret;
1361 /* if we're using DMA, sync the buffers as necessary */
1362 if (using_dma(hs)) {
1363 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1364 if (ret)
1365 return ret;
1367 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1368 if (using_desc_dma(hs) && !hs_ep->index) {
1369 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1370 if (ret)
1371 return ret;
1374 first = list_empty(&hs_ep->queue);
1375 list_add_tail(&hs_req->queue, &hs_ep->queue);
1378 * Handle DDMA isochronous transfers separately - just add new entry
1379 * to the half of descriptor chain that is not processed by HW.
1380 * Transfer will be started once SW gets either one of NAK or
1381 * OutTknEpDis interrupts.
1383 if (using_desc_dma(hs) && hs_ep->isochronous &&
1384 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1385 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1386 hs_req->req.length);
1387 if (ret)
1388 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1390 return 0;
1393 if (first) {
1394 if (!hs_ep->isochronous) {
1395 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1396 return 0;
1399 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1400 dwc2_gadget_incr_frame_num(hs_ep);
1402 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1403 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1405 return 0;
1408 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1409 gfp_t gfp_flags)
1411 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1412 struct dwc2_hsotg *hs = hs_ep->parent;
1413 unsigned long flags = 0;
1414 int ret = 0;
1416 spin_lock_irqsave(&hs->lock, flags);
1417 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1418 spin_unlock_irqrestore(&hs->lock, flags);
1420 return ret;
1423 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1424 struct usb_request *req)
1426 struct dwc2_hsotg_req *hs_req = our_req(req);
1428 kfree(hs_req);
1432 * dwc2_hsotg_complete_oursetup - setup completion callback
1433 * @ep: The endpoint the request was on.
1434 * @req: The request completed.
1436 * Called on completion of any requests the driver itself
1437 * submitted that need cleaning up.
1439 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1440 struct usb_request *req)
1442 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1443 struct dwc2_hsotg *hsotg = hs_ep->parent;
1445 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1447 dwc2_hsotg_ep_free_request(ep, req);
1451 * ep_from_windex - convert control wIndex value to endpoint
1452 * @hsotg: The driver state.
1453 * @windex: The control request wIndex field (in host order).
1455 * Convert the given wIndex into a pointer to an driver endpoint
1456 * structure, or return NULL if it is not a valid endpoint.
1458 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1459 u32 windex)
1461 struct dwc2_hsotg_ep *ep;
1462 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1463 int idx = windex & 0x7F;
1465 if (windex >= 0x100)
1466 return NULL;
1468 if (idx > hsotg->num_of_eps)
1469 return NULL;
1471 ep = index_to_ep(hsotg, idx, dir);
1473 if (idx && ep->dir_in != dir)
1474 return NULL;
1476 return ep;
1480 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1481 * @hsotg: The driver state.
1482 * @testmode: requested usb test mode
1483 * Enable usb Test Mode requested by the Host.
1485 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1487 int dctl = dwc2_readl(hsotg->regs + DCTL);
1489 dctl &= ~DCTL_TSTCTL_MASK;
1490 switch (testmode) {
1491 case TEST_J:
1492 case TEST_K:
1493 case TEST_SE0_NAK:
1494 case TEST_PACKET:
1495 case TEST_FORCE_EN:
1496 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1497 break;
1498 default:
1499 return -EINVAL;
1501 dwc2_writel(dctl, hsotg->regs + DCTL);
1502 return 0;
1506 * dwc2_hsotg_send_reply - send reply to control request
1507 * @hsotg: The device state
1508 * @ep: Endpoint 0
1509 * @buff: Buffer for request
1510 * @length: Length of reply.
1512 * Create a request and queue it on the given endpoint. This is useful as
1513 * an internal method of sending replies to certain control requests, etc.
1515 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1516 struct dwc2_hsotg_ep *ep,
1517 void *buff,
1518 int length)
1520 struct usb_request *req;
1521 int ret;
1523 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1525 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1526 hsotg->ep0_reply = req;
1527 if (!req) {
1528 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1529 return -ENOMEM;
1532 req->buf = hsotg->ep0_buff;
1533 req->length = length;
1535 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1536 * STATUS stage.
1538 req->zero = 0;
1539 req->complete = dwc2_hsotg_complete_oursetup;
1541 if (length)
1542 memcpy(req->buf, buff, length);
1544 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1545 if (ret) {
1546 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1547 return ret;
1550 return 0;
1554 * dwc2_hsotg_process_req_status - process request GET_STATUS
1555 * @hsotg: The device state
1556 * @ctrl: USB control request
1558 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1559 struct usb_ctrlrequest *ctrl)
1561 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1562 struct dwc2_hsotg_ep *ep;
1563 __le16 reply;
1564 int ret;
1566 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1568 if (!ep0->dir_in) {
1569 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1570 return -EINVAL;
1573 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1574 case USB_RECIP_DEVICE:
1576 * bit 0 => self powered
1577 * bit 1 => remote wakeup
1579 reply = cpu_to_le16(0);
1580 break;
1582 case USB_RECIP_INTERFACE:
1583 /* currently, the data result should be zero */
1584 reply = cpu_to_le16(0);
1585 break;
1587 case USB_RECIP_ENDPOINT:
1588 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1589 if (!ep)
1590 return -ENOENT;
1592 reply = cpu_to_le16(ep->halted ? 1 : 0);
1593 break;
1595 default:
1596 return 0;
1599 if (le16_to_cpu(ctrl->wLength) != 2)
1600 return -EINVAL;
1602 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1603 if (ret) {
1604 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1605 return ret;
1608 return 1;
1611 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1614 * get_ep_head - return the first request on the endpoint
1615 * @hs_ep: The controller endpoint to get
1617 * Get the first request on the endpoint.
1619 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1621 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1622 queue);
1626 * dwc2_gadget_start_next_request - Starts next request from ep queue
1627 * @hs_ep: Endpoint structure
1629 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1630 * in its handler. Hence we need to unmask it here to be able to do
1631 * resynchronization.
1633 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1635 u32 mask;
1636 struct dwc2_hsotg *hsotg = hs_ep->parent;
1637 int dir_in = hs_ep->dir_in;
1638 struct dwc2_hsotg_req *hs_req;
1639 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1641 if (!list_empty(&hs_ep->queue)) {
1642 hs_req = get_ep_head(hs_ep);
1643 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1644 return;
1646 if (!hs_ep->isochronous)
1647 return;
1649 if (dir_in) {
1650 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1651 __func__);
1652 } else {
1653 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1654 __func__);
1655 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1656 mask |= DOEPMSK_OUTTKNEPDISMSK;
1657 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1662 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1663 * @hsotg: The device state
1664 * @ctrl: USB control request
1666 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1667 struct usb_ctrlrequest *ctrl)
1669 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1670 struct dwc2_hsotg_req *hs_req;
1671 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1672 struct dwc2_hsotg_ep *ep;
1673 int ret;
1674 bool halted;
1675 u32 recip;
1676 u32 wValue;
1677 u32 wIndex;
1679 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1680 __func__, set ? "SET" : "CLEAR");
1682 wValue = le16_to_cpu(ctrl->wValue);
1683 wIndex = le16_to_cpu(ctrl->wIndex);
1684 recip = ctrl->bRequestType & USB_RECIP_MASK;
1686 switch (recip) {
1687 case USB_RECIP_DEVICE:
1688 switch (wValue) {
1689 case USB_DEVICE_TEST_MODE:
1690 if ((wIndex & 0xff) != 0)
1691 return -EINVAL;
1692 if (!set)
1693 return -EINVAL;
1695 hsotg->test_mode = wIndex >> 8;
1696 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1697 if (ret) {
1698 dev_err(hsotg->dev,
1699 "%s: failed to send reply\n", __func__);
1700 return ret;
1702 break;
1703 default:
1704 return -ENOENT;
1706 break;
1708 case USB_RECIP_ENDPOINT:
1709 ep = ep_from_windex(hsotg, wIndex);
1710 if (!ep) {
1711 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1712 __func__, wIndex);
1713 return -ENOENT;
1716 switch (wValue) {
1717 case USB_ENDPOINT_HALT:
1718 halted = ep->halted;
1720 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1722 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1723 if (ret) {
1724 dev_err(hsotg->dev,
1725 "%s: failed to send reply\n", __func__);
1726 return ret;
1730 * we have to complete all requests for ep if it was
1731 * halted, and the halt was cleared by CLEAR_FEATURE
1734 if (!set && halted) {
1736 * If we have request in progress,
1737 * then complete it
1739 if (ep->req) {
1740 hs_req = ep->req;
1741 ep->req = NULL;
1742 list_del_init(&hs_req->queue);
1743 if (hs_req->req.complete) {
1744 spin_unlock(&hsotg->lock);
1745 usb_gadget_giveback_request(
1746 &ep->ep, &hs_req->req);
1747 spin_lock(&hsotg->lock);
1751 /* If we have pending request, then start it */
1752 if (!ep->req)
1753 dwc2_gadget_start_next_request(ep);
1756 break;
1758 default:
1759 return -ENOENT;
1761 break;
1762 default:
1763 return -ENOENT;
1765 return 1;
1768 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1771 * dwc2_hsotg_stall_ep0 - stall ep0
1772 * @hsotg: The device state
1774 * Set stall for ep0 as response for setup request.
1776 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1778 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1779 u32 reg;
1780 u32 ctrl;
1782 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1783 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1786 * DxEPCTL_Stall will be cleared by EP once it has
1787 * taken effect, so no need to clear later.
1790 ctrl = dwc2_readl(hsotg->regs + reg);
1791 ctrl |= DXEPCTL_STALL;
1792 ctrl |= DXEPCTL_CNAK;
1793 dwc2_writel(ctrl, hsotg->regs + reg);
1795 dev_dbg(hsotg->dev,
1796 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1797 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1800 * complete won't be called, so we enqueue
1801 * setup request here
1803 dwc2_hsotg_enqueue_setup(hsotg);
1807 * dwc2_hsotg_process_control - process a control request
1808 * @hsotg: The device state
1809 * @ctrl: The control request received
1811 * The controller has received the SETUP phase of a control request, and
1812 * needs to work out what to do next (and whether to pass it on to the
1813 * gadget driver).
1815 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1816 struct usb_ctrlrequest *ctrl)
1818 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1819 int ret = 0;
1820 u32 dcfg;
1822 dev_dbg(hsotg->dev,
1823 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1824 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1825 ctrl->wIndex, ctrl->wLength);
1827 if (ctrl->wLength == 0) {
1828 ep0->dir_in = 1;
1829 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1830 } else if (ctrl->bRequestType & USB_DIR_IN) {
1831 ep0->dir_in = 1;
1832 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1833 } else {
1834 ep0->dir_in = 0;
1835 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1838 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1839 switch (ctrl->bRequest) {
1840 case USB_REQ_SET_ADDRESS:
1841 hsotg->connected = 1;
1842 dcfg = dwc2_readl(hsotg->regs + DCFG);
1843 dcfg &= ~DCFG_DEVADDR_MASK;
1844 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1845 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1846 dwc2_writel(dcfg, hsotg->regs + DCFG);
1848 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1850 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1851 return;
1853 case USB_REQ_GET_STATUS:
1854 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1855 break;
1857 case USB_REQ_CLEAR_FEATURE:
1858 case USB_REQ_SET_FEATURE:
1859 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1860 break;
1864 /* as a fallback, try delivering it to the driver to deal with */
1866 if (ret == 0 && hsotg->driver) {
1867 spin_unlock(&hsotg->lock);
1868 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1869 spin_lock(&hsotg->lock);
1870 if (ret < 0)
1871 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1875 * the request is either unhandlable, or is not formatted correctly
1876 * so respond with a STALL for the status stage to indicate failure.
1879 if (ret < 0)
1880 dwc2_hsotg_stall_ep0(hsotg);
1884 * dwc2_hsotg_complete_setup - completion of a setup transfer
1885 * @ep: The endpoint the request was on.
1886 * @req: The request completed.
1888 * Called on completion of any requests the driver itself submitted for
1889 * EP0 setup packets
1891 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1892 struct usb_request *req)
1894 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1895 struct dwc2_hsotg *hsotg = hs_ep->parent;
1897 if (req->status < 0) {
1898 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1899 return;
1902 spin_lock(&hsotg->lock);
1903 if (req->actual == 0)
1904 dwc2_hsotg_enqueue_setup(hsotg);
1905 else
1906 dwc2_hsotg_process_control(hsotg, req->buf);
1907 spin_unlock(&hsotg->lock);
1911 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1912 * @hsotg: The device state.
1914 * Enqueue a request on EP0 if necessary to received any SETUP packets
1915 * received from the host.
1917 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1919 struct usb_request *req = hsotg->ctrl_req;
1920 struct dwc2_hsotg_req *hs_req = our_req(req);
1921 int ret;
1923 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1925 req->zero = 0;
1926 req->length = 8;
1927 req->buf = hsotg->ctrl_buff;
1928 req->complete = dwc2_hsotg_complete_setup;
1930 if (!list_empty(&hs_req->queue)) {
1931 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1932 return;
1935 hsotg->eps_out[0]->dir_in = 0;
1936 hsotg->eps_out[0]->send_zlp = 0;
1937 hsotg->ep0_state = DWC2_EP0_SETUP;
1939 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1940 if (ret < 0) {
1941 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1943 * Don't think there's much we can do other than watch the
1944 * driver fail.
1949 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1950 struct dwc2_hsotg_ep *hs_ep)
1952 u32 ctrl;
1953 u8 index = hs_ep->index;
1954 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1955 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1957 if (hs_ep->dir_in)
1958 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1959 index);
1960 else
1961 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1962 index);
1963 if (using_desc_dma(hsotg)) {
1964 /* Not specific buffer needed for ep0 ZLP */
1965 dma_addr_t dma = hs_ep->desc_list_dma;
1967 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1968 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1969 } else {
1970 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1971 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1972 epsiz_reg);
1975 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1976 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1977 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1978 ctrl |= DXEPCTL_USBACTEP;
1979 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1983 * dwc2_hsotg_complete_request - complete a request given to us
1984 * @hsotg: The device state.
1985 * @hs_ep: The endpoint the request was on.
1986 * @hs_req: The request to complete.
1987 * @result: The result code (0 => Ok, otherwise errno)
1989 * The given request has finished, so call the necessary completion
1990 * if it has one and then look to see if we can start a new request
1991 * on the endpoint.
1993 * Note, expects the ep to already be locked as appropriate.
1995 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1996 struct dwc2_hsotg_ep *hs_ep,
1997 struct dwc2_hsotg_req *hs_req,
1998 int result)
2000 if (!hs_req) {
2001 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2002 return;
2005 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2006 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2009 * only replace the status if we've not already set an error
2010 * from a previous transaction
2013 if (hs_req->req.status == -EINPROGRESS)
2014 hs_req->req.status = result;
2016 if (using_dma(hsotg))
2017 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2019 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2021 hs_ep->req = NULL;
2022 list_del_init(&hs_req->queue);
2025 * call the complete request with the locks off, just in case the
2026 * request tries to queue more work for this endpoint.
2029 if (hs_req->req.complete) {
2030 spin_unlock(&hsotg->lock);
2031 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2032 spin_lock(&hsotg->lock);
2035 /* In DDMA don't need to proceed to starting of next ISOC request */
2036 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2037 return;
2040 * Look to see if there is anything else to do. Note, the completion
2041 * of the previous request may have caused a new request to be started
2042 * so be careful when doing this.
2045 if (!hs_ep->req && result >= 0)
2046 dwc2_gadget_start_next_request(hs_ep);
2050 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2051 * @hs_ep: The endpoint the request was on.
2053 * Get first request from the ep queue, determine descriptor on which complete
2054 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2055 * chain is currently in use by HW, adjusts dma_address and calculates index
2056 * of completed descriptor based on the value of DEPDMA register. Update actual
2057 * length of request, giveback to gadget.
2059 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2061 struct dwc2_hsotg *hsotg = hs_ep->parent;
2062 struct dwc2_hsotg_req *hs_req;
2063 struct usb_request *ureq;
2064 int index;
2065 dma_addr_t dma_addr;
2066 u32 dma_reg;
2067 u32 depdma;
2068 u32 desc_sts;
2069 u32 mask;
2071 hs_req = get_ep_head(hs_ep);
2072 if (!hs_req) {
2073 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2074 return;
2076 ureq = &hs_req->req;
2078 dma_addr = hs_ep->desc_list_dma;
2081 * If lower half of descriptor chain is currently use by SW,
2082 * that means higher half is being processed by HW, so shift
2083 * DMA address to higher half of descriptor chain.
2085 if (!hs_ep->isoc_chain_num)
2086 dma_addr += sizeof(struct dwc2_dma_desc) *
2087 (MAX_DMA_DESC_NUM_GENERIC / 2);
2089 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2090 depdma = dwc2_readl(hsotg->regs + dma_reg);
2092 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2093 desc_sts = hs_ep->desc_list[index].status;
2095 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2096 DEV_DMA_ISOC_RX_NBYTES_MASK;
2097 ureq->actual = ureq->length -
2098 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2100 /* Adjust actual length for ISOC Out if length is not align of 4 */
2101 if (!hs_ep->dir_in && ureq->length & 0x3)
2102 ureq->actual += 4 - (ureq->length & 0x3);
2104 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2108 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2109 * @hs_ep: The isochronous endpoint to be re-enabled.
2111 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2112 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2113 * was under SW control till HW was busy and restart the endpoint if needed.
2115 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2117 struct dwc2_hsotg *hsotg = hs_ep->parent;
2118 u32 depctl;
2119 u32 dma_reg;
2120 u32 ctrl;
2121 u32 dma_addr = hs_ep->desc_list_dma;
2122 unsigned char index = hs_ep->index;
2124 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2125 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2127 ctrl = dwc2_readl(hsotg->regs + depctl);
2130 * EP was disabled if HW has processed last descriptor or BNA was set.
2131 * So restart ep if SW has prepared new descriptor chain in ep_queue
2132 * routine while HW was busy.
2134 if (!(ctrl & DXEPCTL_EPENA)) {
2135 if (!hs_ep->next_desc) {
2136 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2137 __func__);
2138 return;
2141 dma_addr += sizeof(struct dwc2_dma_desc) *
2142 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2143 hs_ep->isoc_chain_num;
2144 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2146 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2147 dwc2_writel(ctrl, hsotg->regs + depctl);
2149 /* Switch ISOC descriptor chain number being processed by SW*/
2150 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2151 hs_ep->next_desc = 0;
2153 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2154 __func__);
2159 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2160 * @hsotg: The device state.
2161 * @ep_idx: The endpoint index for the data
2162 * @size: The size of data in the fifo, in bytes
2164 * The FIFO status shows there is data to read from the FIFO for a given
2165 * endpoint, so sort out whether we need to read the data into a request
2166 * that has been made for that endpoint.
2168 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2170 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2171 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2172 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2173 int to_read;
2174 int max_req;
2175 int read_ptr;
2177 if (!hs_req) {
2178 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2179 int ptr;
2181 dev_dbg(hsotg->dev,
2182 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2183 __func__, size, ep_idx, epctl);
2185 /* dump the data from the FIFO, we've nothing we can do */
2186 for (ptr = 0; ptr < size; ptr += 4)
2187 (void)dwc2_readl(fifo);
2189 return;
2192 to_read = size;
2193 read_ptr = hs_req->req.actual;
2194 max_req = hs_req->req.length - read_ptr;
2196 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2197 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2199 if (to_read > max_req) {
2201 * more data appeared than we where willing
2202 * to deal with in this request.
2205 /* currently we don't deal this */
2206 WARN_ON_ONCE(1);
2209 hs_ep->total_data += to_read;
2210 hs_req->req.actual += to_read;
2211 to_read = DIV_ROUND_UP(to_read, 4);
2214 * note, we might over-write the buffer end by 3 bytes depending on
2215 * alignment of the data.
2217 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2221 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2222 * @hsotg: The device instance
2223 * @dir_in: If IN zlp
2225 * Generate a zero-length IN packet request for terminating a SETUP
2226 * transaction.
2228 * Note, since we don't write any data to the TxFIFO, then it is
2229 * currently believed that we do not need to wait for any space in
2230 * the TxFIFO.
2232 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2234 /* eps_out[0] is used in both directions */
2235 hsotg->eps_out[0]->dir_in = dir_in;
2236 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2238 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2241 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2242 u32 epctl_reg)
2244 u32 ctrl;
2246 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2247 if (ctrl & DXEPCTL_EOFRNUM)
2248 ctrl |= DXEPCTL_SETEVENFR;
2249 else
2250 ctrl |= DXEPCTL_SETODDFR;
2251 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2255 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2256 * @hs_ep - The endpoint on which transfer went
2258 * Iterate over endpoints descriptor chain and get info on bytes remained
2259 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2261 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2263 struct dwc2_hsotg *hsotg = hs_ep->parent;
2264 unsigned int bytes_rem = 0;
2265 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2266 int i;
2267 u32 status;
2269 if (!desc)
2270 return -EINVAL;
2272 for (i = 0; i < hs_ep->desc_count; ++i) {
2273 status = desc->status;
2274 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2276 if (status & DEV_DMA_STS_MASK)
2277 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2278 i, status & DEV_DMA_STS_MASK);
2281 return bytes_rem;
2285 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2286 * @hsotg: The device instance
2287 * @epnum: The endpoint received from
2289 * The RXFIFO has delivered an OutDone event, which means that the data
2290 * transfer for an OUT endpoint has been completed, either by a short
2291 * packet or by the finish of a transfer.
2293 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2295 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2296 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2297 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2298 struct usb_request *req = &hs_req->req;
2299 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2300 int result = 0;
2302 if (!hs_req) {
2303 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2304 return;
2307 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2308 dev_dbg(hsotg->dev, "zlp packet received\n");
2309 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2310 dwc2_hsotg_enqueue_setup(hsotg);
2311 return;
2314 if (using_desc_dma(hsotg))
2315 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2317 if (using_dma(hsotg)) {
2318 unsigned int size_done;
2321 * Calculate the size of the transfer by checking how much
2322 * is left in the endpoint size register and then working it
2323 * out from the amount we loaded for the transfer.
2325 * We need to do this as DMA pointers are always 32bit aligned
2326 * so may overshoot/undershoot the transfer.
2329 size_done = hs_ep->size_loaded - size_left;
2330 size_done += hs_ep->last_load;
2332 req->actual = size_done;
2335 /* if there is more request to do, schedule new transfer */
2336 if (req->actual < req->length && size_left == 0) {
2337 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2338 return;
2341 if (req->actual < req->length && req->short_not_ok) {
2342 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2343 __func__, req->actual, req->length);
2346 * todo - what should we return here? there's no one else
2347 * even bothering to check the status.
2351 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2352 if (!using_desc_dma(hsotg) && epnum == 0 &&
2353 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2354 /* Move to STATUS IN */
2355 dwc2_hsotg_ep0_zlp(hsotg, true);
2356 return;
2360 * Slave mode OUT transfers do not go through XferComplete so
2361 * adjust the ISOC parity here.
2363 if (!using_dma(hsotg)) {
2364 if (hs_ep->isochronous && hs_ep->interval == 1)
2365 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2366 else if (hs_ep->isochronous && hs_ep->interval > 1)
2367 dwc2_gadget_incr_frame_num(hs_ep);
2370 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2374 * dwc2_hsotg_handle_rx - RX FIFO has data
2375 * @hsotg: The device instance
2377 * The IRQ handler has detected that the RX FIFO has some data in it
2378 * that requires processing, so find out what is in there and do the
2379 * appropriate read.
2381 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2382 * chunks, so if you have x packets received on an endpoint you'll get x
2383 * FIFO events delivered, each with a packet's worth of data in it.
2385 * When using DMA, we should not be processing events from the RXFIFO
2386 * as the actual data should be sent to the memory directly and we turn
2387 * on the completion interrupts to get notifications of transfer completion.
2389 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2391 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2392 u32 epnum, status, size;
2394 WARN_ON(using_dma(hsotg));
2396 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2397 status = grxstsr & GRXSTS_PKTSTS_MASK;
2399 size = grxstsr & GRXSTS_BYTECNT_MASK;
2400 size >>= GRXSTS_BYTECNT_SHIFT;
2402 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2403 __func__, grxstsr, size, epnum);
2405 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2406 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2407 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2408 break;
2410 case GRXSTS_PKTSTS_OUTDONE:
2411 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2412 dwc2_hsotg_read_frameno(hsotg));
2414 if (!using_dma(hsotg))
2415 dwc2_hsotg_handle_outdone(hsotg, epnum);
2416 break;
2418 case GRXSTS_PKTSTS_SETUPDONE:
2419 dev_dbg(hsotg->dev,
2420 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2421 dwc2_hsotg_read_frameno(hsotg),
2422 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2424 * Call dwc2_hsotg_handle_outdone here if it was not called from
2425 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2426 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2428 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2429 dwc2_hsotg_handle_outdone(hsotg, epnum);
2430 break;
2432 case GRXSTS_PKTSTS_OUTRX:
2433 dwc2_hsotg_rx_data(hsotg, epnum, size);
2434 break;
2436 case GRXSTS_PKTSTS_SETUPRX:
2437 dev_dbg(hsotg->dev,
2438 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2439 dwc2_hsotg_read_frameno(hsotg),
2440 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2442 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2444 dwc2_hsotg_rx_data(hsotg, epnum, size);
2445 break;
2447 default:
2448 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2449 __func__, grxstsr);
2451 dwc2_hsotg_dump(hsotg);
2452 break;
2457 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2458 * @mps: The maximum packet size in bytes.
2460 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2462 switch (mps) {
2463 case 64:
2464 return D0EPCTL_MPS_64;
2465 case 32:
2466 return D0EPCTL_MPS_32;
2467 case 16:
2468 return D0EPCTL_MPS_16;
2469 case 8:
2470 return D0EPCTL_MPS_8;
2473 /* bad max packet size, warn and return invalid result */
2474 WARN_ON(1);
2475 return (u32)-1;
2479 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2480 * @hsotg: The driver state.
2481 * @ep: The index number of the endpoint
2482 * @mps: The maximum packet size in bytes
2483 * @mc: The multicount value
2485 * Configure the maximum packet size for the given endpoint, updating
2486 * the hardware control registers to reflect this.
2488 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2489 unsigned int ep, unsigned int mps,
2490 unsigned int mc, unsigned int dir_in)
2492 struct dwc2_hsotg_ep *hs_ep;
2493 void __iomem *regs = hsotg->regs;
2494 u32 reg;
2496 hs_ep = index_to_ep(hsotg, ep, dir_in);
2497 if (!hs_ep)
2498 return;
2500 if (ep == 0) {
2501 u32 mps_bytes = mps;
2503 /* EP0 is a special case */
2504 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2505 if (mps > 3)
2506 goto bad_mps;
2507 hs_ep->ep.maxpacket = mps_bytes;
2508 hs_ep->mc = 1;
2509 } else {
2510 if (mps > 1024)
2511 goto bad_mps;
2512 hs_ep->mc = mc;
2513 if (mc > 3)
2514 goto bad_mps;
2515 hs_ep->ep.maxpacket = mps;
2518 if (dir_in) {
2519 reg = dwc2_readl(regs + DIEPCTL(ep));
2520 reg &= ~DXEPCTL_MPS_MASK;
2521 reg |= mps;
2522 dwc2_writel(reg, regs + DIEPCTL(ep));
2523 } else {
2524 reg = dwc2_readl(regs + DOEPCTL(ep));
2525 reg &= ~DXEPCTL_MPS_MASK;
2526 reg |= mps;
2527 dwc2_writel(reg, regs + DOEPCTL(ep));
2530 return;
2532 bad_mps:
2533 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2537 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2538 * @hsotg: The driver state
2539 * @idx: The index for the endpoint (0..15)
2541 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2543 int timeout;
2544 int val;
2546 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2547 hsotg->regs + GRSTCTL);
2549 /* wait until the fifo is flushed */
2550 timeout = 100;
2552 while (1) {
2553 val = dwc2_readl(hsotg->regs + GRSTCTL);
2555 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2556 break;
2558 if (--timeout == 0) {
2559 dev_err(hsotg->dev,
2560 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2561 __func__, val);
2562 break;
2565 udelay(1);
2570 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2571 * @hsotg: The driver state
2572 * @hs_ep: The driver endpoint to check.
2574 * Check to see if there is a request that has data to send, and if so
2575 * make an attempt to write data into the FIFO.
2577 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2578 struct dwc2_hsotg_ep *hs_ep)
2580 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2582 if (!hs_ep->dir_in || !hs_req) {
2584 * if request is not enqueued, we disable interrupts
2585 * for endpoints, excepting ep0
2587 if (hs_ep->index != 0)
2588 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2589 hs_ep->dir_in, 0);
2590 return 0;
2593 if (hs_req->req.actual < hs_req->req.length) {
2594 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2595 hs_ep->index);
2596 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2599 return 0;
2603 * dwc2_hsotg_complete_in - complete IN transfer
2604 * @hsotg: The device state.
2605 * @hs_ep: The endpoint that has just completed.
2607 * An IN transfer has been completed, update the transfer's state and then
2608 * call the relevant completion routines.
2610 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2611 struct dwc2_hsotg_ep *hs_ep)
2613 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2614 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2615 int size_left, size_done;
2617 if (!hs_req) {
2618 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2619 return;
2622 /* Finish ZLP handling for IN EP0 transactions */
2623 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2624 dev_dbg(hsotg->dev, "zlp packet sent\n");
2627 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2628 * changed to IN. Change back to complete OUT transfer request
2630 hs_ep->dir_in = 0;
2632 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2633 if (hsotg->test_mode) {
2634 int ret;
2636 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2637 if (ret < 0) {
2638 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2639 hsotg->test_mode);
2640 dwc2_hsotg_stall_ep0(hsotg);
2641 return;
2644 dwc2_hsotg_enqueue_setup(hsotg);
2645 return;
2649 * Calculate the size of the transfer by checking how much is left
2650 * in the endpoint size register and then working it out from
2651 * the amount we loaded for the transfer.
2653 * We do this even for DMA, as the transfer may have incremented
2654 * past the end of the buffer (DMA transfers are always 32bit
2655 * aligned).
2657 if (using_desc_dma(hsotg)) {
2658 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2659 if (size_left < 0)
2660 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2661 size_left);
2662 } else {
2663 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2666 size_done = hs_ep->size_loaded - size_left;
2667 size_done += hs_ep->last_load;
2669 if (hs_req->req.actual != size_done)
2670 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2671 __func__, hs_req->req.actual, size_done);
2673 hs_req->req.actual = size_done;
2674 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2675 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2677 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2678 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2679 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2680 return;
2683 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2684 if (hs_ep->send_zlp) {
2685 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2686 hs_ep->send_zlp = 0;
2687 /* transfer will be completed on next complete interrupt */
2688 return;
2691 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2692 /* Move to STATUS OUT */
2693 dwc2_hsotg_ep0_zlp(hsotg, false);
2694 return;
2697 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2701 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2702 * @hsotg: The device state.
2703 * @idx: Index of ep.
2704 * @dir_in: Endpoint direction 1-in 0-out.
2706 * Reads for endpoint with given index and direction, by masking
2707 * epint_reg with coresponding mask.
2709 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2710 unsigned int idx, int dir_in)
2712 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2713 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2714 u32 ints;
2715 u32 mask;
2716 u32 diepempmsk;
2718 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2719 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2720 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2721 mask |= DXEPINT_SETUP_RCVD;
2723 ints = dwc2_readl(hsotg->regs + epint_reg);
2724 ints &= mask;
2725 return ints;
2729 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2730 * @hs_ep: The endpoint on which interrupt is asserted.
2732 * This interrupt indicates that the endpoint has been disabled per the
2733 * application's request.
2735 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2736 * in case of ISOC completes current request.
2738 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2739 * request starts it.
2741 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2743 struct dwc2_hsotg *hsotg = hs_ep->parent;
2744 struct dwc2_hsotg_req *hs_req;
2745 unsigned char idx = hs_ep->index;
2746 int dir_in = hs_ep->dir_in;
2747 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2748 int dctl = dwc2_readl(hsotg->regs + DCTL);
2750 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2752 if (dir_in) {
2753 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2755 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2757 if (hs_ep->isochronous) {
2758 dwc2_hsotg_complete_in(hsotg, hs_ep);
2759 return;
2762 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2763 int dctl = dwc2_readl(hsotg->regs + DCTL);
2765 dctl |= DCTL_CGNPINNAK;
2766 dwc2_writel(dctl, hsotg->regs + DCTL);
2768 return;
2771 if (dctl & DCTL_GOUTNAKSTS) {
2772 dctl |= DCTL_CGOUTNAK;
2773 dwc2_writel(dctl, hsotg->regs + DCTL);
2776 if (!hs_ep->isochronous)
2777 return;
2779 if (list_empty(&hs_ep->queue)) {
2780 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2781 __func__, hs_ep);
2782 return;
2785 do {
2786 hs_req = get_ep_head(hs_ep);
2787 if (hs_req)
2788 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2789 -ENODATA);
2790 dwc2_gadget_incr_frame_num(hs_ep);
2791 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2793 dwc2_gadget_start_next_request(hs_ep);
2797 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2798 * @hs_ep: The endpoint on which interrupt is asserted.
2800 * This is starting point for ISOC-OUT transfer, synchronization done with
2801 * first out token received from host while corresponding EP is disabled.
2803 * Device does not know initial frame in which out token will come. For this
2804 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2805 * getting this interrupt SW starts calculation for next transfer frame.
2807 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2809 struct dwc2_hsotg *hsotg = ep->parent;
2810 int dir_in = ep->dir_in;
2811 u32 doepmsk;
2812 u32 tmp;
2814 if (dir_in || !ep->isochronous)
2815 return;
2818 * Store frame in which irq was asserted here, as
2819 * it can change while completing request below.
2821 tmp = dwc2_hsotg_read_frameno(hsotg);
2823 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2825 if (using_desc_dma(hsotg)) {
2826 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2827 /* Start first ISO Out */
2828 ep->target_frame = tmp;
2829 dwc2_gadget_start_isoc_ddma(ep);
2831 return;
2834 if (ep->interval > 1 &&
2835 ep->target_frame == TARGET_FRAME_INITIAL) {
2836 u32 dsts;
2837 u32 ctrl;
2839 dsts = dwc2_readl(hsotg->regs + DSTS);
2840 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2841 dwc2_gadget_incr_frame_num(ep);
2843 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2844 if (ep->target_frame & 0x1)
2845 ctrl |= DXEPCTL_SETODDFR;
2846 else
2847 ctrl |= DXEPCTL_SETEVENFR;
2849 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2852 dwc2_gadget_start_next_request(ep);
2853 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2854 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2855 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2859 * dwc2_gadget_handle_nak - handle NAK interrupt
2860 * @hs_ep: The endpoint on which interrupt is asserted.
2862 * This is starting point for ISOC-IN transfer, synchronization done with
2863 * first IN token received from host while corresponding EP is disabled.
2865 * Device does not know when first one token will arrive from host. On first
2866 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2867 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2868 * sent in response to that as there was no data in FIFO. SW is basing on this
2869 * interrupt to obtain frame in which token has come and then based on the
2870 * interval calculates next frame for transfer.
2872 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2874 struct dwc2_hsotg *hsotg = hs_ep->parent;
2875 int dir_in = hs_ep->dir_in;
2877 if (!dir_in || !hs_ep->isochronous)
2878 return;
2880 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2881 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2883 if (using_desc_dma(hsotg)) {
2884 dwc2_gadget_start_isoc_ddma(hs_ep);
2885 return;
2888 if (hs_ep->interval > 1) {
2889 u32 ctrl = dwc2_readl(hsotg->regs +
2890 DIEPCTL(hs_ep->index));
2891 if (hs_ep->target_frame & 0x1)
2892 ctrl |= DXEPCTL_SETODDFR;
2893 else
2894 ctrl |= DXEPCTL_SETEVENFR;
2896 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2899 dwc2_hsotg_complete_request(hsotg, hs_ep,
2900 get_ep_head(hs_ep), 0);
2903 dwc2_gadget_incr_frame_num(hs_ep);
2907 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2908 * @hsotg: The driver state
2909 * @idx: The index for the endpoint (0..15)
2910 * @dir_in: Set if this is an IN endpoint
2912 * Process and clear any interrupt pending for an individual endpoint
2914 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2915 int dir_in)
2917 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2918 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2919 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2920 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2921 u32 ints;
2922 u32 ctrl;
2924 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2925 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2927 /* Clear endpoint interrupts */
2928 dwc2_writel(ints, hsotg->regs + epint_reg);
2930 if (!hs_ep) {
2931 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2932 __func__, idx, dir_in ? "in" : "out");
2933 return;
2936 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2937 __func__, idx, dir_in ? "in" : "out", ints);
2939 /* Don't process XferCompl interrupt if it is a setup packet */
2940 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2941 ints &= ~DXEPINT_XFERCOMPL;
2944 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2945 * stage and xfercomplete was generated without SETUP phase done
2946 * interrupt. SW should parse received setup packet only after host's
2947 * exit from setup phase of control transfer.
2949 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2950 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2951 ints &= ~DXEPINT_XFERCOMPL;
2953 if (ints & DXEPINT_XFERCOMPL) {
2954 dev_dbg(hsotg->dev,
2955 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2956 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2957 dwc2_readl(hsotg->regs + epsiz_reg));
2959 /* In DDMA handle isochronous requests separately */
2960 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2961 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2962 /* Try to start next isoc request */
2963 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2964 } else if (dir_in) {
2966 * We get OutDone from the FIFO, so we only
2967 * need to look at completing IN requests here
2968 * if operating slave mode
2970 if (hs_ep->isochronous && hs_ep->interval > 1)
2971 dwc2_gadget_incr_frame_num(hs_ep);
2973 dwc2_hsotg_complete_in(hsotg, hs_ep);
2974 if (ints & DXEPINT_NAKINTRPT)
2975 ints &= ~DXEPINT_NAKINTRPT;
2977 if (idx == 0 && !hs_ep->req)
2978 dwc2_hsotg_enqueue_setup(hsotg);
2979 } else if (using_dma(hsotg)) {
2981 * We're using DMA, we need to fire an OutDone here
2982 * as we ignore the RXFIFO.
2984 if (hs_ep->isochronous && hs_ep->interval > 1)
2985 dwc2_gadget_incr_frame_num(hs_ep);
2987 dwc2_hsotg_handle_outdone(hsotg, idx);
2991 if (ints & DXEPINT_EPDISBLD)
2992 dwc2_gadget_handle_ep_disabled(hs_ep);
2994 if (ints & DXEPINT_OUTTKNEPDIS)
2995 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2997 if (ints & DXEPINT_NAKINTRPT)
2998 dwc2_gadget_handle_nak(hs_ep);
3000 if (ints & DXEPINT_AHBERR)
3001 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3003 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3004 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3006 if (using_dma(hsotg) && idx == 0) {
3008 * this is the notification we've received a
3009 * setup packet. In non-DMA mode we'd get this
3010 * from the RXFIFO, instead we need to process
3011 * the setup here.
3014 if (dir_in)
3015 WARN_ON_ONCE(1);
3016 else
3017 dwc2_hsotg_handle_outdone(hsotg, 0);
3021 if (ints & DXEPINT_STSPHSERCVD) {
3022 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3024 /* Move to STATUS IN for DDMA */
3025 if (using_desc_dma(hsotg))
3026 dwc2_hsotg_ep0_zlp(hsotg, true);
3029 if (ints & DXEPINT_BACK2BACKSETUP)
3030 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3032 if (ints & DXEPINT_BNAINTR) {
3033 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3036 * Try to start next isoc request, if any.
3037 * Sometimes the endpoint remains enabled after BNA interrupt
3038 * assertion, which is not expected, hence we can enter here
3039 * couple of times.
3041 if (hs_ep->isochronous)
3042 dwc2_gadget_start_next_isoc_ddma(hs_ep);
3045 if (dir_in && !hs_ep->isochronous) {
3046 /* not sure if this is important, but we'll clear it anyway */
3047 if (ints & DXEPINT_INTKNTXFEMP) {
3048 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3049 __func__, idx);
3052 /* this probably means something bad is happening */
3053 if (ints & DXEPINT_INTKNEPMIS) {
3054 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3055 __func__, idx);
3058 /* FIFO has space or is empty (see GAHBCFG) */
3059 if (hsotg->dedicated_fifos &&
3060 ints & DXEPINT_TXFEMP) {
3061 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3062 __func__, idx);
3063 if (!using_dma(hsotg))
3064 dwc2_hsotg_trytx(hsotg, hs_ep);
3070 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3071 * @hsotg: The device state.
3073 * Handle updating the device settings after the enumeration phase has
3074 * been completed.
3076 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3078 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3079 int ep0_mps = 0, ep_mps = 8;
3082 * This should signal the finish of the enumeration phase
3083 * of the USB handshaking, so we should now know what rate
3084 * we connected at.
3087 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3090 * note, since we're limited by the size of transfer on EP0, and
3091 * it seems IN transfers must be a even number of packets we do
3092 * not advertise a 64byte MPS on EP0.
3095 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3096 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3097 case DSTS_ENUMSPD_FS:
3098 case DSTS_ENUMSPD_FS48:
3099 hsotg->gadget.speed = USB_SPEED_FULL;
3100 ep0_mps = EP0_MPS_LIMIT;
3101 ep_mps = 1023;
3102 break;
3104 case DSTS_ENUMSPD_HS:
3105 hsotg->gadget.speed = USB_SPEED_HIGH;
3106 ep0_mps = EP0_MPS_LIMIT;
3107 ep_mps = 1024;
3108 break;
3110 case DSTS_ENUMSPD_LS:
3111 hsotg->gadget.speed = USB_SPEED_LOW;
3112 ep0_mps = 8;
3113 ep_mps = 8;
3115 * note, we don't actually support LS in this driver at the
3116 * moment, and the documentation seems to imply that it isn't
3117 * supported by the PHYs on some of the devices.
3119 break;
3121 dev_info(hsotg->dev, "new device is %s\n",
3122 usb_speed_string(hsotg->gadget.speed));
3125 * we should now know the maximum packet size for an
3126 * endpoint, so set the endpoints to a default value.
3129 if (ep0_mps) {
3130 int i;
3131 /* Initialize ep0 for both in and out directions */
3132 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3133 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3134 for (i = 1; i < hsotg->num_of_eps; i++) {
3135 if (hsotg->eps_in[i])
3136 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3137 0, 1);
3138 if (hsotg->eps_out[i])
3139 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3140 0, 0);
3144 /* ensure after enumeration our EP0 is active */
3146 dwc2_hsotg_enqueue_setup(hsotg);
3148 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3149 dwc2_readl(hsotg->regs + DIEPCTL0),
3150 dwc2_readl(hsotg->regs + DOEPCTL0));
3154 * kill_all_requests - remove all requests from the endpoint's queue
3155 * @hsotg: The device state.
3156 * @ep: The endpoint the requests may be on.
3157 * @result: The result code to use.
3159 * Go through the requests on the given endpoint and mark them
3160 * completed with the given result code.
3162 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3163 struct dwc2_hsotg_ep *ep,
3164 int result)
3166 struct dwc2_hsotg_req *req, *treq;
3167 unsigned int size;
3169 ep->req = NULL;
3171 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3172 dwc2_hsotg_complete_request(hsotg, ep, req,
3173 result);
3175 if (!hsotg->dedicated_fifos)
3176 return;
3177 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3178 if (size < ep->fifo_size)
3179 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3183 * dwc2_hsotg_disconnect - disconnect service
3184 * @hsotg: The device state.
3186 * The device has been disconnected. Remove all current
3187 * transactions and signal the gadget driver that this
3188 * has happened.
3190 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3192 unsigned int ep;
3194 if (!hsotg->connected)
3195 return;
3197 hsotg->connected = 0;
3198 hsotg->test_mode = 0;
3200 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3201 if (hsotg->eps_in[ep])
3202 kill_all_requests(hsotg, hsotg->eps_in[ep],
3203 -ESHUTDOWN);
3204 if (hsotg->eps_out[ep])
3205 kill_all_requests(hsotg, hsotg->eps_out[ep],
3206 -ESHUTDOWN);
3209 call_gadget(hsotg, disconnect);
3210 hsotg->lx_state = DWC2_L3;
3214 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3215 * @hsotg: The device state:
3216 * @periodic: True if this is a periodic FIFO interrupt
3218 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3220 struct dwc2_hsotg_ep *ep;
3221 int epno, ret;
3223 /* look through for any more data to transmit */
3224 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3225 ep = index_to_ep(hsotg, epno, 1);
3227 if (!ep)
3228 continue;
3230 if (!ep->dir_in)
3231 continue;
3233 if ((periodic && !ep->periodic) ||
3234 (!periodic && ep->periodic))
3235 continue;
3237 ret = dwc2_hsotg_trytx(hsotg, ep);
3238 if (ret < 0)
3239 break;
3243 /* IRQ flags which will trigger a retry around the IRQ loop */
3244 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3245 GINTSTS_PTXFEMP | \
3246 GINTSTS_RXFLVL)
3249 * dwc2_hsotg_core_init - issue softreset to the core
3250 * @hsotg: The device state
3252 * Issue a soft reset to the core, and await the core finishing it.
3254 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3255 bool is_usb_reset)
3257 u32 intmsk;
3258 u32 val;
3259 u32 usbcfg;
3260 u32 dcfg = 0;
3262 /* Kill any ep0 requests as controller will be reinitialized */
3263 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3265 if (!is_usb_reset)
3266 if (dwc2_core_reset(hsotg, true))
3267 return;
3270 * we must now enable ep0 ready for host detection and then
3271 * set configuration.
3274 /* keep other bits untouched (so e.g. forced modes are not lost) */
3275 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3276 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3277 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3279 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3280 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3281 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3282 /* FS/LS Dedicated Transceiver Interface */
3283 usbcfg |= GUSBCFG_PHYSEL;
3284 } else {
3285 /* set the PLL on, remove the HNP/SRP and set the PHY */
3286 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3287 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3288 (val << GUSBCFG_USBTRDTIM_SHIFT);
3290 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3292 dwc2_hsotg_init_fifo(hsotg);
3294 if (!is_usb_reset)
3295 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3297 dcfg |= DCFG_EPMISCNT(1);
3299 switch (hsotg->params.speed) {
3300 case DWC2_SPEED_PARAM_LOW:
3301 dcfg |= DCFG_DEVSPD_LS;
3302 break;
3303 case DWC2_SPEED_PARAM_FULL:
3304 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3305 dcfg |= DCFG_DEVSPD_FS48;
3306 else
3307 dcfg |= DCFG_DEVSPD_FS;
3308 break;
3309 default:
3310 dcfg |= DCFG_DEVSPD_HS;
3313 dwc2_writel(dcfg, hsotg->regs + DCFG);
3315 /* Clear any pending OTG interrupts */
3316 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3318 /* Clear any pending interrupts */
3319 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3320 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3321 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3322 GINTSTS_USBRST | GINTSTS_RESETDET |
3323 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3324 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3326 if (!using_desc_dma(hsotg))
3327 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3329 if (!hsotg->params.external_id_pin_ctl)
3330 intmsk |= GINTSTS_CONIDSTSCHNG;
3332 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3334 if (using_dma(hsotg)) {
3335 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3336 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3337 hsotg->regs + GAHBCFG);
3339 /* Set DDMA mode support in the core if needed */
3340 if (using_desc_dma(hsotg))
3341 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3343 } else {
3344 dwc2_writel(((hsotg->dedicated_fifos) ?
3345 (GAHBCFG_NP_TXF_EMP_LVL |
3346 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3347 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3351 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3352 * when we have no data to transfer. Otherwise we get being flooded by
3353 * interrupts.
3356 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3357 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3358 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3359 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3360 hsotg->regs + DIEPMSK);
3363 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3364 * DMA mode we may need this and StsPhseRcvd.
3366 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3367 DOEPMSK_STSPHSERCVDMSK) : 0) |
3368 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3369 DOEPMSK_SETUPMSK,
3370 hsotg->regs + DOEPMSK);
3372 /* Enable BNA interrupt for DDMA */
3373 if (using_desc_dma(hsotg))
3374 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3376 dwc2_writel(0, hsotg->regs + DAINTMSK);
3378 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3379 dwc2_readl(hsotg->regs + DIEPCTL0),
3380 dwc2_readl(hsotg->regs + DOEPCTL0));
3382 /* enable in and out endpoint interrupts */
3383 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3386 * Enable the RXFIFO when in slave mode, as this is how we collect
3387 * the data. In DMA mode, we get events from the FIFO but also
3388 * things we cannot process, so do not use it.
3390 if (!using_dma(hsotg))
3391 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3393 /* Enable interrupts for EP0 in and out */
3394 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3395 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3397 if (!is_usb_reset) {
3398 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3399 udelay(10); /* see openiboot */
3400 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3403 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3406 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3407 * writing to the EPCTL register..
3410 /* set to read 1 8byte packet */
3411 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3412 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3414 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3415 DXEPCTL_CNAK | DXEPCTL_EPENA |
3416 DXEPCTL_USBACTEP,
3417 hsotg->regs + DOEPCTL0);
3419 /* enable, but don't activate EP0in */
3420 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3421 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3423 /* clear global NAKs */
3424 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3425 if (!is_usb_reset)
3426 val |= DCTL_SFTDISCON;
3427 __orr32(hsotg->regs + DCTL, val);
3429 /* must be at-least 3ms to allow bus to see disconnect */
3430 mdelay(3);
3432 hsotg->lx_state = DWC2_L0;
3434 dwc2_hsotg_enqueue_setup(hsotg);
3436 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3437 dwc2_readl(hsotg->regs + DIEPCTL0),
3438 dwc2_readl(hsotg->regs + DOEPCTL0));
3441 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3443 /* set the soft-disconnect bit */
3444 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3447 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3449 /* remove the soft-disconnect and let's go */
3450 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3454 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3455 * @hsotg: The device state:
3457 * This interrupt indicates one of the following conditions occurred while
3458 * transmitting an ISOC transaction.
3459 * - Corrupted IN Token for ISOC EP.
3460 * - Packet not complete in FIFO.
3462 * The following actions will be taken:
3463 * - Determine the EP
3464 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3466 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3468 struct dwc2_hsotg_ep *hs_ep;
3469 u32 epctrl;
3470 u32 idx;
3472 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3474 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3475 hs_ep = hsotg->eps_in[idx];
3476 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3477 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3478 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3479 epctrl |= DXEPCTL_SNAK;
3480 epctrl |= DXEPCTL_EPDIS;
3481 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3485 /* Clear interrupt */
3486 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3490 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3491 * @hsotg: The device state:
3493 * This interrupt indicates one of the following conditions occurred while
3494 * transmitting an ISOC transaction.
3495 * - Corrupted OUT Token for ISOC EP.
3496 * - Packet not complete in FIFO.
3498 * The following actions will be taken:
3499 * - Determine the EP
3500 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3502 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3504 u32 gintsts;
3505 u32 gintmsk;
3506 u32 epctrl;
3507 struct dwc2_hsotg_ep *hs_ep;
3508 int idx;
3510 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3512 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3513 hs_ep = hsotg->eps_out[idx];
3514 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3515 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3516 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3517 /* Unmask GOUTNAKEFF interrupt */
3518 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3519 gintmsk |= GINTSTS_GOUTNAKEFF;
3520 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3522 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3523 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3524 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3528 /* Clear interrupt */
3529 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3533 * dwc2_hsotg_irq - handle device interrupt
3534 * @irq: The IRQ number triggered
3535 * @pw: The pw value when registered the handler.
3537 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3539 struct dwc2_hsotg *hsotg = pw;
3540 int retry_count = 8;
3541 u32 gintsts;
3542 u32 gintmsk;
3544 if (!dwc2_is_device_mode(hsotg))
3545 return IRQ_NONE;
3547 spin_lock(&hsotg->lock);
3548 irq_retry:
3549 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3550 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3552 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3553 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3555 gintsts &= gintmsk;
3557 if (gintsts & GINTSTS_RESETDET) {
3558 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3560 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3562 /* This event must be used only if controller is suspended */
3563 if (hsotg->lx_state == DWC2_L2) {
3564 dwc2_exit_hibernation(hsotg, true);
3565 hsotg->lx_state = DWC2_L0;
3569 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3570 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3571 u32 connected = hsotg->connected;
3573 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3574 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3575 dwc2_readl(hsotg->regs + GNPTXSTS));
3577 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3579 /* Report disconnection if it is not already done. */
3580 dwc2_hsotg_disconnect(hsotg);
3582 /* Reset device address to zero */
3583 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3585 if (usb_status & GOTGCTL_BSESVLD && connected)
3586 dwc2_hsotg_core_init_disconnected(hsotg, true);
3589 if (gintsts & GINTSTS_ENUMDONE) {
3590 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3592 dwc2_hsotg_irq_enumdone(hsotg);
3595 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3596 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3597 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3598 u32 daint_out, daint_in;
3599 int ep;
3601 daint &= daintmsk;
3602 daint_out = daint >> DAINT_OUTEP_SHIFT;
3603 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3605 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3607 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3608 ep++, daint_out >>= 1) {
3609 if (daint_out & 1)
3610 dwc2_hsotg_epint(hsotg, ep, 0);
3613 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3614 ep++, daint_in >>= 1) {
3615 if (daint_in & 1)
3616 dwc2_hsotg_epint(hsotg, ep, 1);
3620 /* check both FIFOs */
3622 if (gintsts & GINTSTS_NPTXFEMP) {
3623 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3626 * Disable the interrupt to stop it happening again
3627 * unless one of these endpoint routines decides that
3628 * it needs re-enabling
3631 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3632 dwc2_hsotg_irq_fifoempty(hsotg, false);
3635 if (gintsts & GINTSTS_PTXFEMP) {
3636 dev_dbg(hsotg->dev, "PTxFEmp\n");
3638 /* See note in GINTSTS_NPTxFEmp */
3640 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3641 dwc2_hsotg_irq_fifoempty(hsotg, true);
3644 if (gintsts & GINTSTS_RXFLVL) {
3646 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3647 * we need to retry dwc2_hsotg_handle_rx if this is still
3648 * set.
3651 dwc2_hsotg_handle_rx(hsotg);
3654 if (gintsts & GINTSTS_ERLYSUSP) {
3655 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3656 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3660 * these next two seem to crop-up occasionally causing the core
3661 * to shutdown the USB transfer, so try clearing them and logging
3662 * the occurrence.
3665 if (gintsts & GINTSTS_GOUTNAKEFF) {
3666 u8 idx;
3667 u32 epctrl;
3668 u32 gintmsk;
3669 struct dwc2_hsotg_ep *hs_ep;
3671 /* Mask this interrupt */
3672 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3673 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3674 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3676 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3677 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3678 hs_ep = hsotg->eps_out[idx];
3679 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3681 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3682 epctrl |= DXEPCTL_SNAK;
3683 epctrl |= DXEPCTL_EPDIS;
3684 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3688 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3691 if (gintsts & GINTSTS_GINNAKEFF) {
3692 dev_info(hsotg->dev, "GINNakEff triggered\n");
3694 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3696 dwc2_hsotg_dump(hsotg);
3699 if (gintsts & GINTSTS_INCOMPL_SOIN)
3700 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3702 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3703 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3706 * if we've had fifo events, we should try and go around the
3707 * loop again to see if there's any point in returning yet.
3710 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3711 goto irq_retry;
3713 spin_unlock(&hsotg->lock);
3715 return IRQ_HANDLED;
3718 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3719 u32 bit, u32 timeout)
3721 u32 i;
3723 for (i = 0; i < timeout; i++) {
3724 if (dwc2_readl(hs_otg->regs + reg) & bit)
3725 return 0;
3726 udelay(1);
3729 return -ETIMEDOUT;
3732 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3733 struct dwc2_hsotg_ep *hs_ep)
3735 u32 epctrl_reg;
3736 u32 epint_reg;
3738 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3739 DOEPCTL(hs_ep->index);
3740 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3741 DOEPINT(hs_ep->index);
3743 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3744 hs_ep->name);
3746 if (hs_ep->dir_in) {
3747 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3748 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3749 /* Wait for Nak effect */
3750 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3751 DXEPINT_INEPNAKEFF, 100))
3752 dev_warn(hsotg->dev,
3753 "%s: timeout DIEPINT.NAKEFF\n",
3754 __func__);
3755 } else {
3756 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3757 /* Wait for Nak effect */
3758 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3759 GINTSTS_GINNAKEFF, 100))
3760 dev_warn(hsotg->dev,
3761 "%s: timeout GINTSTS.GINNAKEFF\n",
3762 __func__);
3764 } else {
3765 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3766 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3768 /* Wait for global nak to take effect */
3769 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3770 GINTSTS_GOUTNAKEFF, 100))
3771 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3772 __func__);
3775 /* Disable ep */
3776 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3778 /* Wait for ep to be disabled */
3779 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3780 dev_warn(hsotg->dev,
3781 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3783 /* Clear EPDISBLD interrupt */
3784 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3786 if (hs_ep->dir_in) {
3787 unsigned short fifo_index;
3789 if (hsotg->dedicated_fifos || hs_ep->periodic)
3790 fifo_index = hs_ep->fifo_index;
3791 else
3792 fifo_index = 0;
3794 /* Flush TX FIFO */
3795 dwc2_flush_tx_fifo(hsotg, fifo_index);
3797 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3798 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3799 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3801 } else {
3802 /* Remove global NAKs */
3803 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3808 * dwc2_hsotg_ep_enable - enable the given endpoint
3809 * @ep: The USB endpint to configure
3810 * @desc: The USB endpoint descriptor to configure with.
3812 * This is called from the USB gadget code's usb_ep_enable().
3814 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3815 const struct usb_endpoint_descriptor *desc)
3817 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3818 struct dwc2_hsotg *hsotg = hs_ep->parent;
3819 unsigned long flags;
3820 unsigned int index = hs_ep->index;
3821 u32 epctrl_reg;
3822 u32 epctrl;
3823 u32 mps;
3824 u32 mc;
3825 u32 mask;
3826 unsigned int dir_in;
3827 unsigned int i, val, size;
3828 int ret = 0;
3830 dev_dbg(hsotg->dev,
3831 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3832 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3833 desc->wMaxPacketSize, desc->bInterval);
3835 /* not to be called for EP0 */
3836 if (index == 0) {
3837 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3838 return -EINVAL;
3841 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3842 if (dir_in != hs_ep->dir_in) {
3843 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3844 return -EINVAL;
3847 mps = usb_endpoint_maxp(desc);
3848 mc = usb_endpoint_maxp_mult(desc);
3850 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3852 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3853 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3855 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3856 __func__, epctrl, epctrl_reg);
3858 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3859 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3860 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3861 MAX_DMA_DESC_NUM_GENERIC *
3862 sizeof(struct dwc2_dma_desc),
3863 &hs_ep->desc_list_dma, GFP_ATOMIC);
3864 if (!hs_ep->desc_list) {
3865 ret = -ENOMEM;
3866 goto error2;
3870 spin_lock_irqsave(&hsotg->lock, flags);
3872 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3873 epctrl |= DXEPCTL_MPS(mps);
3876 * mark the endpoint as active, otherwise the core may ignore
3877 * transactions entirely for this endpoint
3879 epctrl |= DXEPCTL_USBACTEP;
3881 /* update the endpoint state */
3882 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3884 /* default, set to non-periodic */
3885 hs_ep->isochronous = 0;
3886 hs_ep->periodic = 0;
3887 hs_ep->halted = 0;
3888 hs_ep->interval = desc->bInterval;
3890 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3891 case USB_ENDPOINT_XFER_ISOC:
3892 epctrl |= DXEPCTL_EPTYPE_ISO;
3893 epctrl |= DXEPCTL_SETEVENFR;
3894 hs_ep->isochronous = 1;
3895 hs_ep->interval = 1 << (desc->bInterval - 1);
3896 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3897 hs_ep->isoc_chain_num = 0;
3898 hs_ep->next_desc = 0;
3899 if (dir_in) {
3900 hs_ep->periodic = 1;
3901 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3902 mask |= DIEPMSK_NAKMSK;
3903 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3904 } else {
3905 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3906 mask |= DOEPMSK_OUTTKNEPDISMSK;
3907 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3909 break;
3911 case USB_ENDPOINT_XFER_BULK:
3912 epctrl |= DXEPCTL_EPTYPE_BULK;
3913 break;
3915 case USB_ENDPOINT_XFER_INT:
3916 if (dir_in)
3917 hs_ep->periodic = 1;
3919 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3920 hs_ep->interval = 1 << (desc->bInterval - 1);
3922 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3923 break;
3925 case USB_ENDPOINT_XFER_CONTROL:
3926 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3927 break;
3931 * if the hardware has dedicated fifos, we must give each IN EP
3932 * a unique tx-fifo even if it is non-periodic.
3934 if (dir_in && hsotg->dedicated_fifos) {
3935 u32 fifo_index = 0;
3936 u32 fifo_size = UINT_MAX;
3938 size = hs_ep->ep.maxpacket * hs_ep->mc;
3939 for (i = 1; i < hsotg->num_of_eps; ++i) {
3940 if (hsotg->fifo_map & (1 << i))
3941 continue;
3942 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3943 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3944 if (val < size)
3945 continue;
3946 /* Search for smallest acceptable fifo */
3947 if (val < fifo_size) {
3948 fifo_size = val;
3949 fifo_index = i;
3952 if (!fifo_index) {
3953 dev_err(hsotg->dev,
3954 "%s: No suitable fifo found\n", __func__);
3955 ret = -ENOMEM;
3956 goto error1;
3958 hsotg->fifo_map |= 1 << fifo_index;
3959 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3960 hs_ep->fifo_index = fifo_index;
3961 hs_ep->fifo_size = fifo_size;
3964 /* for non control endpoints, set PID to D0 */
3965 if (index && !hs_ep->isochronous)
3966 epctrl |= DXEPCTL_SETD0PID;
3968 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3969 __func__, epctrl);
3971 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3972 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3973 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3975 /* enable the endpoint interrupt */
3976 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3978 error1:
3979 spin_unlock_irqrestore(&hsotg->lock, flags);
3981 error2:
3982 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3983 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3984 sizeof(struct dwc2_dma_desc),
3985 hs_ep->desc_list, hs_ep->desc_list_dma);
3986 hs_ep->desc_list = NULL;
3989 return ret;
3993 * dwc2_hsotg_ep_disable - disable given endpoint
3994 * @ep: The endpoint to disable.
3996 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3998 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3999 struct dwc2_hsotg *hsotg = hs_ep->parent;
4000 int dir_in = hs_ep->dir_in;
4001 int index = hs_ep->index;
4002 unsigned long flags;
4003 u32 epctrl_reg;
4004 u32 ctrl;
4006 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4008 if (ep == &hsotg->eps_out[0]->ep) {
4009 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4010 return -EINVAL;
4013 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4015 spin_lock_irqsave(&hsotg->lock, flags);
4017 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4019 if (ctrl & DXEPCTL_EPENA)
4020 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4022 ctrl &= ~DXEPCTL_EPENA;
4023 ctrl &= ~DXEPCTL_USBACTEP;
4024 ctrl |= DXEPCTL_SNAK;
4026 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4027 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4029 /* disable endpoint interrupts */
4030 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4032 /* terminate all requests with shutdown */
4033 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4035 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4036 hs_ep->fifo_index = 0;
4037 hs_ep->fifo_size = 0;
4039 spin_unlock_irqrestore(&hsotg->lock, flags);
4040 return 0;
4044 * on_list - check request is on the given endpoint
4045 * @ep: The endpoint to check.
4046 * @test: The request to test if it is on the endpoint.
4048 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4050 struct dwc2_hsotg_req *req, *treq;
4052 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4053 if (req == test)
4054 return true;
4057 return false;
4061 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4062 * @ep: The endpoint to dequeue.
4063 * @req: The request to be removed from a queue.
4065 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4067 struct dwc2_hsotg_req *hs_req = our_req(req);
4068 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4069 struct dwc2_hsotg *hs = hs_ep->parent;
4070 unsigned long flags;
4072 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4074 spin_lock_irqsave(&hs->lock, flags);
4076 if (!on_list(hs_ep, hs_req)) {
4077 spin_unlock_irqrestore(&hs->lock, flags);
4078 return -EINVAL;
4081 /* Dequeue already started request */
4082 if (req == &hs_ep->req->req)
4083 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4085 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4086 spin_unlock_irqrestore(&hs->lock, flags);
4088 return 0;
4092 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4093 * @ep: The endpoint to set halt.
4094 * @value: Set or unset the halt.
4095 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4096 * the endpoint is busy processing requests.
4098 * We need to stall the endpoint immediately if request comes from set_feature
4099 * protocol command handler.
4101 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4103 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4104 struct dwc2_hsotg *hs = hs_ep->parent;
4105 int index = hs_ep->index;
4106 u32 epreg;
4107 u32 epctl;
4108 u32 xfertype;
4110 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4112 if (index == 0) {
4113 if (value)
4114 dwc2_hsotg_stall_ep0(hs);
4115 else
4116 dev_warn(hs->dev,
4117 "%s: can't clear halt on ep0\n", __func__);
4118 return 0;
4121 if (hs_ep->isochronous) {
4122 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4123 return -EINVAL;
4126 if (!now && value && !list_empty(&hs_ep->queue)) {
4127 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4128 ep->name);
4129 return -EAGAIN;
4132 if (hs_ep->dir_in) {
4133 epreg = DIEPCTL(index);
4134 epctl = dwc2_readl(hs->regs + epreg);
4136 if (value) {
4137 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4138 if (epctl & DXEPCTL_EPENA)
4139 epctl |= DXEPCTL_EPDIS;
4140 } else {
4141 epctl &= ~DXEPCTL_STALL;
4142 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4143 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4144 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4145 epctl |= DXEPCTL_SETD0PID;
4147 dwc2_writel(epctl, hs->regs + epreg);
4148 } else {
4149 epreg = DOEPCTL(index);
4150 epctl = dwc2_readl(hs->regs + epreg);
4152 if (value) {
4153 epctl |= DXEPCTL_STALL;
4154 } else {
4155 epctl &= ~DXEPCTL_STALL;
4156 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4157 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4158 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4159 epctl |= DXEPCTL_SETD0PID;
4161 dwc2_writel(epctl, hs->regs + epreg);
4164 hs_ep->halted = value;
4166 return 0;
4170 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4171 * @ep: The endpoint to set halt.
4172 * @value: Set or unset the halt.
4174 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4176 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4177 struct dwc2_hsotg *hs = hs_ep->parent;
4178 unsigned long flags = 0;
4179 int ret = 0;
4181 spin_lock_irqsave(&hs->lock, flags);
4182 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4183 spin_unlock_irqrestore(&hs->lock, flags);
4185 return ret;
4188 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4189 .enable = dwc2_hsotg_ep_enable,
4190 .disable = dwc2_hsotg_ep_disable,
4191 .alloc_request = dwc2_hsotg_ep_alloc_request,
4192 .free_request = dwc2_hsotg_ep_free_request,
4193 .queue = dwc2_hsotg_ep_queue_lock,
4194 .dequeue = dwc2_hsotg_ep_dequeue,
4195 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4196 /* note, don't believe we have any call for the fifo routines */
4200 * dwc2_hsotg_init - initialize the usb core
4201 * @hsotg: The driver state
4203 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4205 u32 trdtim;
4206 u32 usbcfg;
4207 /* unmask subset of endpoint interrupts */
4209 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4210 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4211 hsotg->regs + DIEPMSK);
4213 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4214 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4215 hsotg->regs + DOEPMSK);
4217 dwc2_writel(0, hsotg->regs + DAINTMSK);
4219 /* Be in disconnected state until gadget is registered */
4220 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4222 /* setup fifos */
4224 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4225 dwc2_readl(hsotg->regs + GRXFSIZ),
4226 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4228 dwc2_hsotg_init_fifo(hsotg);
4230 /* keep other bits untouched (so e.g. forced modes are not lost) */
4231 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4232 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4233 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4235 /* set the PLL on, remove the HNP/SRP and set the PHY */
4236 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4237 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4238 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4239 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4241 if (using_dma(hsotg))
4242 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4246 * dwc2_hsotg_udc_start - prepare the udc for work
4247 * @gadget: The usb gadget state
4248 * @driver: The usb gadget driver
4250 * Perform initialization to prepare udc device and driver
4251 * to work.
4253 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4254 struct usb_gadget_driver *driver)
4256 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4257 unsigned long flags;
4258 int ret;
4260 if (!hsotg) {
4261 pr_err("%s: called with no device\n", __func__);
4262 return -ENODEV;
4265 if (!driver) {
4266 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4267 return -EINVAL;
4270 if (driver->max_speed < USB_SPEED_FULL)
4271 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4273 if (!driver->setup) {
4274 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4275 return -EINVAL;
4278 WARN_ON(hsotg->driver);
4280 driver->driver.bus = NULL;
4281 hsotg->driver = driver;
4282 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4283 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4285 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4286 ret = dwc2_lowlevel_hw_enable(hsotg);
4287 if (ret)
4288 goto err;
4291 if (!IS_ERR_OR_NULL(hsotg->uphy))
4292 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4294 spin_lock_irqsave(&hsotg->lock, flags);
4295 if (dwc2_hw_is_device(hsotg)) {
4296 dwc2_hsotg_init(hsotg);
4297 dwc2_hsotg_core_init_disconnected(hsotg, false);
4300 hsotg->enabled = 0;
4301 spin_unlock_irqrestore(&hsotg->lock, flags);
4303 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4305 return 0;
4307 err:
4308 hsotg->driver = NULL;
4309 return ret;
4313 * dwc2_hsotg_udc_stop - stop the udc
4314 * @gadget: The usb gadget state
4315 * @driver: The usb gadget driver
4317 * Stop udc hw block and stay tunned for future transmissions
4319 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4321 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4322 unsigned long flags = 0;
4323 int ep;
4325 if (!hsotg)
4326 return -ENODEV;
4328 /* all endpoints should be shutdown */
4329 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4330 if (hsotg->eps_in[ep])
4331 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4332 if (hsotg->eps_out[ep])
4333 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4336 spin_lock_irqsave(&hsotg->lock, flags);
4338 hsotg->driver = NULL;
4339 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4340 hsotg->enabled = 0;
4342 spin_unlock_irqrestore(&hsotg->lock, flags);
4344 if (!IS_ERR_OR_NULL(hsotg->uphy))
4345 otg_set_peripheral(hsotg->uphy->otg, NULL);
4347 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4348 dwc2_lowlevel_hw_disable(hsotg);
4350 return 0;
4354 * dwc2_hsotg_gadget_getframe - read the frame number
4355 * @gadget: The usb gadget state
4357 * Read the {micro} frame number
4359 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4361 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4365 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4366 * @gadget: The usb gadget state
4367 * @is_on: Current state of the USB PHY
4369 * Connect/Disconnect the USB PHY pullup
4371 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4373 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4374 unsigned long flags = 0;
4376 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4377 hsotg->op_state);
4379 /* Don't modify pullup state while in host mode */
4380 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4381 hsotg->enabled = is_on;
4382 return 0;
4385 spin_lock_irqsave(&hsotg->lock, flags);
4386 if (is_on) {
4387 hsotg->enabled = 1;
4388 dwc2_hsotg_core_init_disconnected(hsotg, false);
4389 dwc2_hsotg_core_connect(hsotg);
4390 } else {
4391 dwc2_hsotg_core_disconnect(hsotg);
4392 dwc2_hsotg_disconnect(hsotg);
4393 hsotg->enabled = 0;
4396 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4397 spin_unlock_irqrestore(&hsotg->lock, flags);
4399 return 0;
4402 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4404 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4405 unsigned long flags;
4407 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4408 spin_lock_irqsave(&hsotg->lock, flags);
4411 * If controller is hibernated, it must exit from hibernation
4412 * before being initialized / de-initialized
4414 if (hsotg->lx_state == DWC2_L2)
4415 dwc2_exit_hibernation(hsotg, false);
4417 if (is_active) {
4418 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4420 dwc2_hsotg_core_init_disconnected(hsotg, false);
4421 if (hsotg->enabled)
4422 dwc2_hsotg_core_connect(hsotg);
4423 } else {
4424 dwc2_hsotg_core_disconnect(hsotg);
4425 dwc2_hsotg_disconnect(hsotg);
4428 spin_unlock_irqrestore(&hsotg->lock, flags);
4429 return 0;
4433 * dwc2_hsotg_vbus_draw - report bMaxPower field
4434 * @gadget: The usb gadget state
4435 * @mA: Amount of current
4437 * Report how much power the device may consume to the phy.
4439 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4441 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4443 if (IS_ERR_OR_NULL(hsotg->uphy))
4444 return -ENOTSUPP;
4445 return usb_phy_set_power(hsotg->uphy, mA);
4448 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4449 .get_frame = dwc2_hsotg_gadget_getframe,
4450 .udc_start = dwc2_hsotg_udc_start,
4451 .udc_stop = dwc2_hsotg_udc_stop,
4452 .pullup = dwc2_hsotg_pullup,
4453 .vbus_session = dwc2_hsotg_vbus_session,
4454 .vbus_draw = dwc2_hsotg_vbus_draw,
4458 * dwc2_hsotg_initep - initialise a single endpoint
4459 * @hsotg: The device state.
4460 * @hs_ep: The endpoint to be initialised.
4461 * @epnum: The endpoint number
4463 * Initialise the given endpoint (as part of the probe and device state
4464 * creation) to give to the gadget driver. Setup the endpoint name, any
4465 * direction information and other state that may be required.
4467 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4468 struct dwc2_hsotg_ep *hs_ep,
4469 int epnum,
4470 bool dir_in)
4472 char *dir;
4474 if (epnum == 0)
4475 dir = "";
4476 else if (dir_in)
4477 dir = "in";
4478 else
4479 dir = "out";
4481 hs_ep->dir_in = dir_in;
4482 hs_ep->index = epnum;
4484 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4486 INIT_LIST_HEAD(&hs_ep->queue);
4487 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4489 /* add to the list of endpoints known by the gadget driver */
4490 if (epnum)
4491 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4493 hs_ep->parent = hsotg;
4494 hs_ep->ep.name = hs_ep->name;
4496 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4497 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4498 else
4499 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4500 epnum ? 1024 : EP0_MPS_LIMIT);
4501 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4503 if (epnum == 0) {
4504 hs_ep->ep.caps.type_control = true;
4505 } else {
4506 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4507 hs_ep->ep.caps.type_iso = true;
4508 hs_ep->ep.caps.type_bulk = true;
4510 hs_ep->ep.caps.type_int = true;
4513 if (dir_in)
4514 hs_ep->ep.caps.dir_in = true;
4515 else
4516 hs_ep->ep.caps.dir_out = true;
4519 * if we're using dma, we need to set the next-endpoint pointer
4520 * to be something valid.
4523 if (using_dma(hsotg)) {
4524 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4526 if (dir_in)
4527 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4528 else
4529 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4534 * dwc2_hsotg_hw_cfg - read HW configuration registers
4535 * @param: The device state
4537 * Read the USB core HW configuration registers
4539 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4541 u32 cfg;
4542 u32 ep_type;
4543 u32 i;
4545 /* check hardware configuration */
4547 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4549 /* Add ep0 */
4550 hsotg->num_of_eps++;
4552 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4553 sizeof(struct dwc2_hsotg_ep),
4554 GFP_KERNEL);
4555 if (!hsotg->eps_in[0])
4556 return -ENOMEM;
4557 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4558 hsotg->eps_out[0] = hsotg->eps_in[0];
4560 cfg = hsotg->hw_params.dev_ep_dirs;
4561 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4562 ep_type = cfg & 3;
4563 /* Direction in or both */
4564 if (!(ep_type & 2)) {
4565 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4566 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4567 if (!hsotg->eps_in[i])
4568 return -ENOMEM;
4570 /* Direction out or both */
4571 if (!(ep_type & 1)) {
4572 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4573 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4574 if (!hsotg->eps_out[i])
4575 return -ENOMEM;
4579 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4580 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4582 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4583 hsotg->num_of_eps,
4584 hsotg->dedicated_fifos ? "dedicated" : "shared",
4585 hsotg->fifo_mem);
4586 return 0;
4590 * dwc2_hsotg_dump - dump state of the udc
4591 * @param: The device state
4593 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4595 #ifdef DEBUG
4596 struct device *dev = hsotg->dev;
4597 void __iomem *regs = hsotg->regs;
4598 u32 val;
4599 int idx;
4601 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4602 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4603 dwc2_readl(regs + DIEPMSK));
4605 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4606 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4608 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4609 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4611 /* show periodic fifo settings */
4613 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4614 val = dwc2_readl(regs + DPTXFSIZN(idx));
4615 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4616 val >> FIFOSIZE_DEPTH_SHIFT,
4617 val & FIFOSIZE_STARTADDR_MASK);
4620 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4621 dev_info(dev,
4622 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4623 dwc2_readl(regs + DIEPCTL(idx)),
4624 dwc2_readl(regs + DIEPTSIZ(idx)),
4625 dwc2_readl(regs + DIEPDMA(idx)));
4627 val = dwc2_readl(regs + DOEPCTL(idx));
4628 dev_info(dev,
4629 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4630 idx, dwc2_readl(regs + DOEPCTL(idx)),
4631 dwc2_readl(regs + DOEPTSIZ(idx)),
4632 dwc2_readl(regs + DOEPDMA(idx)));
4635 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4636 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4637 #endif
4641 * dwc2_gadget_init - init function for gadget
4642 * @dwc2: The data structure for the DWC2 driver.
4643 * @irq: The IRQ number for the controller.
4645 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4647 struct device *dev = hsotg->dev;
4648 int epnum;
4649 int ret;
4651 /* Dump fifo information */
4652 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4653 hsotg->params.g_np_tx_fifo_size);
4654 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4656 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4657 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4658 hsotg->gadget.name = dev_name(dev);
4659 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4660 hsotg->gadget.is_otg = 1;
4661 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4662 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4664 ret = dwc2_hsotg_hw_cfg(hsotg);
4665 if (ret) {
4666 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4667 return ret;
4670 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4671 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4672 if (!hsotg->ctrl_buff)
4673 return -ENOMEM;
4675 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4676 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4677 if (!hsotg->ep0_buff)
4678 return -ENOMEM;
4680 if (using_desc_dma(hsotg)) {
4681 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4682 if (ret < 0)
4683 return ret;
4686 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4687 dev_name(hsotg->dev), hsotg);
4688 if (ret < 0) {
4689 dev_err(dev, "cannot claim IRQ for gadget\n");
4690 return ret;
4693 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4695 if (hsotg->num_of_eps == 0) {
4696 dev_err(dev, "wrong number of EPs (zero)\n");
4697 return -EINVAL;
4700 /* setup endpoint information */
4702 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4703 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4705 /* allocate EP0 request */
4707 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4708 GFP_KERNEL);
4709 if (!hsotg->ctrl_req) {
4710 dev_err(dev, "failed to allocate ctrl req\n");
4711 return -ENOMEM;
4714 /* initialise the endpoints now the core has been initialised */
4715 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4716 if (hsotg->eps_in[epnum])
4717 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4718 epnum, 1);
4719 if (hsotg->eps_out[epnum])
4720 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4721 epnum, 0);
4724 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4725 if (ret) {
4726 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4727 hsotg->ctrl_req);
4728 return ret;
4730 dwc2_hsotg_dump(hsotg);
4732 return 0;
4736 * dwc2_hsotg_remove - remove function for hsotg driver
4737 * @pdev: The platform information for the driver
4739 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4741 usb_del_gadget_udc(&hsotg->gadget);
4742 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4744 return 0;
4747 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4749 unsigned long flags;
4751 if (hsotg->lx_state != DWC2_L0)
4752 return 0;
4754 if (hsotg->driver) {
4755 int ep;
4757 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4758 hsotg->driver->driver.name);
4760 spin_lock_irqsave(&hsotg->lock, flags);
4761 if (hsotg->enabled)
4762 dwc2_hsotg_core_disconnect(hsotg);
4763 dwc2_hsotg_disconnect(hsotg);
4764 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4765 spin_unlock_irqrestore(&hsotg->lock, flags);
4767 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4768 if (hsotg->eps_in[ep])
4769 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4770 if (hsotg->eps_out[ep])
4771 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4775 return 0;
4778 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4780 unsigned long flags;
4782 if (hsotg->lx_state == DWC2_L2)
4783 return 0;
4785 if (hsotg->driver) {
4786 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4787 hsotg->driver->driver.name);
4789 spin_lock_irqsave(&hsotg->lock, flags);
4790 dwc2_hsotg_core_init_disconnected(hsotg, false);
4791 if (hsotg->enabled)
4792 dwc2_hsotg_core_connect(hsotg);
4793 spin_unlock_irqrestore(&hsotg->lock, flags);
4796 return 0;
4800 * dwc2_backup_device_registers() - Backup controller device registers.
4801 * When suspending usb bus, registers needs to be backuped
4802 * if controller power is disabled once suspended.
4804 * @hsotg: Programming view of the DWC_otg controller
4806 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4808 struct dwc2_dregs_backup *dr;
4809 int i;
4811 dev_dbg(hsotg->dev, "%s\n", __func__);
4813 /* Backup dev regs */
4814 dr = &hsotg->dr_backup;
4816 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4817 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4818 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4819 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4820 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4822 for (i = 0; i < hsotg->num_of_eps; i++) {
4823 /* Backup IN EPs */
4824 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4826 /* Ensure DATA PID is correctly configured */
4827 if (dr->diepctl[i] & DXEPCTL_DPID)
4828 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4829 else
4830 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4832 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4833 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4835 /* Backup OUT EPs */
4836 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4838 /* Ensure DATA PID is correctly configured */
4839 if (dr->doepctl[i] & DXEPCTL_DPID)
4840 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4841 else
4842 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4844 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4845 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4847 dr->valid = true;
4848 return 0;
4852 * dwc2_restore_device_registers() - Restore controller device registers.
4853 * When resuming usb bus, device registers needs to be restored
4854 * if controller power were disabled.
4856 * @hsotg: Programming view of the DWC_otg controller
4858 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4860 struct dwc2_dregs_backup *dr;
4861 u32 dctl;
4862 int i;
4864 dev_dbg(hsotg->dev, "%s\n", __func__);
4866 /* Restore dev regs */
4867 dr = &hsotg->dr_backup;
4868 if (!dr->valid) {
4869 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4870 __func__);
4871 return -EINVAL;
4873 dr->valid = false;
4875 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4876 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4877 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4878 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4879 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4881 for (i = 0; i < hsotg->num_of_eps; i++) {
4882 /* Restore IN EPs */
4883 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4884 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4885 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4887 /* Restore OUT EPs */
4888 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4889 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4890 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4893 /* Set the Power-On Programming done bit */
4894 dctl = dwc2_readl(hsotg->regs + DCTL);
4895 dctl |= DCTL_PWRONPRGDONE;
4896 dwc2_writel(dctl, hsotg->regs + DCTL);
4898 return 0;