2 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the core HCD code, and implements the Linux hc_driver
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/platform_device.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/delay.h>
49 #include <linux/slab.h>
50 #include <linux/usb.h>
52 #include <linux/usb/hcd.h>
53 #include <linux/usb/ch11.h>
58 static void dwc2_port_resume(struct dwc2_hsotg
*hsotg
);
61 * =========================================================================
62 * Host Core Layer Functions
63 * =========================================================================
67 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
68 * used in both device and host modes
70 * @hsotg: Programming view of the DWC_otg controller
72 static void dwc2_enable_common_interrupts(struct dwc2_hsotg
*hsotg
)
76 /* Clear any pending OTG Interrupts */
77 dwc2_writel(0xffffffff, hsotg
->regs
+ GOTGINT
);
79 /* Clear any pending interrupts */
80 dwc2_writel(0xffffffff, hsotg
->regs
+ GINTSTS
);
82 /* Enable the interrupts in the GINTMSK */
83 intmsk
= GINTSTS_MODEMIS
| GINTSTS_OTGINT
;
85 if (!hsotg
->params
.host_dma
)
86 intmsk
|= GINTSTS_RXFLVL
;
87 if (!hsotg
->params
.external_id_pin_ctl
)
88 intmsk
|= GINTSTS_CONIDSTSCHNG
;
90 intmsk
|= GINTSTS_WKUPINT
| GINTSTS_USBSUSP
|
93 dwc2_writel(intmsk
, hsotg
->regs
+ GINTMSK
);
97 * Initializes the FSLSPClkSel field of the HCFG register depending on the
100 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg
*hsotg
)
104 if ((hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_ULPI
&&
105 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
&&
106 hsotg
->params
.ulpi_fs_ls
) ||
107 hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
) {
109 val
= HCFG_FSLSPCLKSEL_48_MHZ
;
111 /* High speed PHY running at full speed or high speed */
112 val
= HCFG_FSLSPCLKSEL_30_60_MHZ
;
115 dev_dbg(hsotg
->dev
, "Initializing HCFG.FSLSPClkSel to %08x\n", val
);
116 hcfg
= dwc2_readl(hsotg
->regs
+ HCFG
);
117 hcfg
&= ~HCFG_FSLSPCLKSEL_MASK
;
118 hcfg
|= val
<< HCFG_FSLSPCLKSEL_SHIFT
;
119 dwc2_writel(hcfg
, hsotg
->regs
+ HCFG
);
122 static int dwc2_fs_phy_init(struct dwc2_hsotg
*hsotg
, bool select_phy
)
124 u32 usbcfg
, ggpio
, i2cctl
;
128 * core_init() is now called on every switch so only call the
129 * following for the first time through
132 dev_dbg(hsotg
->dev
, "FS PHY selected\n");
134 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
135 if (!(usbcfg
& GUSBCFG_PHYSEL
)) {
136 usbcfg
|= GUSBCFG_PHYSEL
;
137 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
139 /* Reset after a PHY select */
140 retval
= dwc2_core_reset_and_force_dr_mode(hsotg
);
144 "%s: Reset failed, aborting", __func__
);
149 if (hsotg
->params
.activate_stm_fs_transceiver
) {
150 ggpio
= dwc2_readl(hsotg
->regs
+ GGPIO
);
151 if (!(ggpio
& GGPIO_STM32_OTG_GCCFG_PWRDWN
)) {
152 dev_dbg(hsotg
->dev
, "Activating transceiver\n");
154 * STM32F4x9 uses the GGPIO register as general
155 * core configuration register.
157 ggpio
|= GGPIO_STM32_OTG_GCCFG_PWRDWN
;
158 dwc2_writel(ggpio
, hsotg
->regs
+ GGPIO
);
164 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
165 * do this on HNP Dev/Host mode switches (done in dev_init and
168 if (dwc2_is_host_mode(hsotg
))
169 dwc2_init_fs_ls_pclk_sel(hsotg
);
171 if (hsotg
->params
.i2c_enable
) {
172 dev_dbg(hsotg
->dev
, "FS PHY enabling I2C\n");
174 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
175 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
176 usbcfg
|= GUSBCFG_OTG_UTMI_FS_SEL
;
177 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
179 /* Program GI2CCTL.I2CEn */
180 i2cctl
= dwc2_readl(hsotg
->regs
+ GI2CCTL
);
181 i2cctl
&= ~GI2CCTL_I2CDEVADDR_MASK
;
182 i2cctl
|= 1 << GI2CCTL_I2CDEVADDR_SHIFT
;
183 i2cctl
&= ~GI2CCTL_I2CEN
;
184 dwc2_writel(i2cctl
, hsotg
->regs
+ GI2CCTL
);
185 i2cctl
|= GI2CCTL_I2CEN
;
186 dwc2_writel(i2cctl
, hsotg
->regs
+ GI2CCTL
);
192 static int dwc2_hs_phy_init(struct dwc2_hsotg
*hsotg
, bool select_phy
)
194 u32 usbcfg
, usbcfg_old
;
200 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
204 * HS PHY parameters. These parameters are preserved during soft reset
205 * so only program the first time. Do a soft reset immediately after
208 switch (hsotg
->params
.phy_type
) {
209 case DWC2_PHY_TYPE_PARAM_ULPI
:
211 dev_dbg(hsotg
->dev
, "HS ULPI PHY selected\n");
212 usbcfg
|= GUSBCFG_ULPI_UTMI_SEL
;
213 usbcfg
&= ~(GUSBCFG_PHYIF16
| GUSBCFG_DDRSEL
);
214 if (hsotg
->params
.phy_ulpi_ddr
)
215 usbcfg
|= GUSBCFG_DDRSEL
;
217 case DWC2_PHY_TYPE_PARAM_UTMI
:
218 /* UTMI+ interface */
219 dev_dbg(hsotg
->dev
, "HS UTMI+ PHY selected\n");
220 usbcfg
&= ~(GUSBCFG_ULPI_UTMI_SEL
| GUSBCFG_PHYIF16
);
221 if (hsotg
->params
.phy_utmi_width
== 16)
222 usbcfg
|= GUSBCFG_PHYIF16
;
225 dev_err(hsotg
->dev
, "FS PHY selected at HS!\n");
229 if (usbcfg
!= usbcfg_old
) {
230 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
232 /* Reset after setting the PHY parameters */
233 retval
= dwc2_core_reset_and_force_dr_mode(hsotg
);
236 "%s: Reset failed, aborting", __func__
);
244 static int dwc2_phy_init(struct dwc2_hsotg
*hsotg
, bool select_phy
)
249 if ((hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
250 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
) &&
251 hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
) {
252 /* If FS/LS mode with FS/LS PHY */
253 retval
= dwc2_fs_phy_init(hsotg
, select_phy
);
258 retval
= dwc2_hs_phy_init(hsotg
, select_phy
);
263 if (hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_ULPI
&&
264 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
&&
265 hsotg
->params
.ulpi_fs_ls
) {
266 dev_dbg(hsotg
->dev
, "Setting ULPI FSLS\n");
267 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
268 usbcfg
|= GUSBCFG_ULPI_FS_LS
;
269 usbcfg
|= GUSBCFG_ULPI_CLK_SUSP_M
;
270 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
272 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
273 usbcfg
&= ~GUSBCFG_ULPI_FS_LS
;
274 usbcfg
&= ~GUSBCFG_ULPI_CLK_SUSP_M
;
275 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
281 static int dwc2_gahbcfg_init(struct dwc2_hsotg
*hsotg
)
283 u32 ahbcfg
= dwc2_readl(hsotg
->regs
+ GAHBCFG
);
285 switch (hsotg
->hw_params
.arch
) {
286 case GHWCFG2_EXT_DMA_ARCH
:
287 dev_err(hsotg
->dev
, "External DMA Mode not supported\n");
290 case GHWCFG2_INT_DMA_ARCH
:
291 dev_dbg(hsotg
->dev
, "Internal DMA Mode\n");
292 if (hsotg
->params
.ahbcfg
!= -1) {
293 ahbcfg
&= GAHBCFG_CTRL_MASK
;
294 ahbcfg
|= hsotg
->params
.ahbcfg
&
299 case GHWCFG2_SLAVE_ONLY_ARCH
:
301 dev_dbg(hsotg
->dev
, "Slave Only Mode\n");
305 dev_dbg(hsotg
->dev
, "host_dma:%d dma_desc_enable:%d\n",
306 hsotg
->params
.host_dma
,
307 hsotg
->params
.dma_desc_enable
);
309 if (hsotg
->params
.host_dma
) {
310 if (hsotg
->params
.dma_desc_enable
)
311 dev_dbg(hsotg
->dev
, "Using Descriptor DMA mode\n");
313 dev_dbg(hsotg
->dev
, "Using Buffer DMA mode\n");
315 dev_dbg(hsotg
->dev
, "Using Slave mode\n");
316 hsotg
->params
.dma_desc_enable
= false;
319 if (hsotg
->params
.host_dma
)
320 ahbcfg
|= GAHBCFG_DMA_EN
;
322 dwc2_writel(ahbcfg
, hsotg
->regs
+ GAHBCFG
);
327 static void dwc2_gusbcfg_init(struct dwc2_hsotg
*hsotg
)
331 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
332 usbcfg
&= ~(GUSBCFG_HNPCAP
| GUSBCFG_SRPCAP
);
334 switch (hsotg
->hw_params
.op_mode
) {
335 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE
:
336 if (hsotg
->params
.otg_cap
==
337 DWC2_CAP_PARAM_HNP_SRP_CAPABLE
)
338 usbcfg
|= GUSBCFG_HNPCAP
;
339 if (hsotg
->params
.otg_cap
!=
340 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE
)
341 usbcfg
|= GUSBCFG_SRPCAP
;
344 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE
:
345 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE
:
346 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST
:
347 if (hsotg
->params
.otg_cap
!=
348 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE
)
349 usbcfg
|= GUSBCFG_SRPCAP
;
352 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE
:
353 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE
:
354 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST
:
359 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
363 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
365 * @hsotg: Programming view of DWC_otg controller
367 static void dwc2_enable_host_interrupts(struct dwc2_hsotg
*hsotg
)
371 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
373 /* Disable all interrupts */
374 dwc2_writel(0, hsotg
->regs
+ GINTMSK
);
375 dwc2_writel(0, hsotg
->regs
+ HAINTMSK
);
377 /* Enable the common interrupts */
378 dwc2_enable_common_interrupts(hsotg
);
380 /* Enable host mode interrupts without disturbing common interrupts */
381 intmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
382 intmsk
|= GINTSTS_DISCONNINT
| GINTSTS_PRTINT
| GINTSTS_HCHINT
;
383 dwc2_writel(intmsk
, hsotg
->regs
+ GINTMSK
);
387 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
389 * @hsotg: Programming view of DWC_otg controller
391 static void dwc2_disable_host_interrupts(struct dwc2_hsotg
*hsotg
)
393 u32 intmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
395 /* Disable host mode interrupts without disturbing common interrupts */
396 intmsk
&= ~(GINTSTS_SOF
| GINTSTS_PRTINT
| GINTSTS_HCHINT
|
397 GINTSTS_PTXFEMP
| GINTSTS_NPTXFEMP
| GINTSTS_DISCONNINT
);
398 dwc2_writel(intmsk
, hsotg
->regs
+ GINTMSK
);
402 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
403 * For system that have a total fifo depth that is smaller than the default
406 * @hsotg: Programming view of DWC_otg controller
408 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg
*hsotg
)
410 struct dwc2_core_params
*params
= &hsotg
->params
;
411 struct dwc2_hw_params
*hw
= &hsotg
->hw_params
;
412 u32 rxfsiz
, nptxfsiz
, ptxfsiz
, total_fifo_size
;
414 total_fifo_size
= hw
->total_fifo_size
;
415 rxfsiz
= params
->host_rx_fifo_size
;
416 nptxfsiz
= params
->host_nperio_tx_fifo_size
;
417 ptxfsiz
= params
->host_perio_tx_fifo_size
;
420 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
421 * allocation with support for high bandwidth endpoints. Synopsys
422 * defines MPS(Max Packet size) for a periodic EP=1024, and for
423 * non-periodic as 512.
425 if (total_fifo_size
< (rxfsiz
+ nptxfsiz
+ ptxfsiz
)) {
427 * For Buffer DMA mode/Scatter Gather DMA mode
428 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
429 * with n = number of host channel.
430 * 2 * ((1024/4) + 2) = 516
432 rxfsiz
= 516 + hw
->host_channels
;
435 * min non-periodic tx fifo depth
436 * 2 * (largest non-periodic USB packet used / 4)
442 * min periodic tx fifo depth
443 * (largest packet size*MC)/4
448 params
->host_rx_fifo_size
= rxfsiz
;
449 params
->host_nperio_tx_fifo_size
= nptxfsiz
;
450 params
->host_perio_tx_fifo_size
= ptxfsiz
;
454 * If the summation of RX, NPTX and PTX fifo sizes is still
455 * bigger than the total_fifo_size, then we have a problem.
457 * We won't be able to allocate as many endpoints. Right now,
458 * we're just printing an error message, but ideally this FIFO
459 * allocation algorithm would be improved in the future.
461 * FIXME improve this FIFO allocation algorithm.
463 if (unlikely(total_fifo_size
< (rxfsiz
+ nptxfsiz
+ ptxfsiz
)))
464 dev_err(hsotg
->dev
, "invalid fifo sizes\n");
467 static void dwc2_config_fifos(struct dwc2_hsotg
*hsotg
)
469 struct dwc2_core_params
*params
= &hsotg
->params
;
470 u32 nptxfsiz
, hptxfsiz
, dfifocfg
, grxfsiz
;
472 if (!params
->enable_dynamic_fifo
)
475 dwc2_calculate_dynamic_fifo(hsotg
);
478 grxfsiz
= dwc2_readl(hsotg
->regs
+ GRXFSIZ
);
479 dev_dbg(hsotg
->dev
, "initial grxfsiz=%08x\n", grxfsiz
);
480 grxfsiz
&= ~GRXFSIZ_DEPTH_MASK
;
481 grxfsiz
|= params
->host_rx_fifo_size
<<
482 GRXFSIZ_DEPTH_SHIFT
& GRXFSIZ_DEPTH_MASK
;
483 dwc2_writel(grxfsiz
, hsotg
->regs
+ GRXFSIZ
);
484 dev_dbg(hsotg
->dev
, "new grxfsiz=%08x\n",
485 dwc2_readl(hsotg
->regs
+ GRXFSIZ
));
487 /* Non-periodic Tx FIFO */
488 dev_dbg(hsotg
->dev
, "initial gnptxfsiz=%08x\n",
489 dwc2_readl(hsotg
->regs
+ GNPTXFSIZ
));
490 nptxfsiz
= params
->host_nperio_tx_fifo_size
<<
491 FIFOSIZE_DEPTH_SHIFT
& FIFOSIZE_DEPTH_MASK
;
492 nptxfsiz
|= params
->host_rx_fifo_size
<<
493 FIFOSIZE_STARTADDR_SHIFT
& FIFOSIZE_STARTADDR_MASK
;
494 dwc2_writel(nptxfsiz
, hsotg
->regs
+ GNPTXFSIZ
);
495 dev_dbg(hsotg
->dev
, "new gnptxfsiz=%08x\n",
496 dwc2_readl(hsotg
->regs
+ GNPTXFSIZ
));
498 /* Periodic Tx FIFO */
499 dev_dbg(hsotg
->dev
, "initial hptxfsiz=%08x\n",
500 dwc2_readl(hsotg
->regs
+ HPTXFSIZ
));
501 hptxfsiz
= params
->host_perio_tx_fifo_size
<<
502 FIFOSIZE_DEPTH_SHIFT
& FIFOSIZE_DEPTH_MASK
;
503 hptxfsiz
|= (params
->host_rx_fifo_size
+
504 params
->host_nperio_tx_fifo_size
) <<
505 FIFOSIZE_STARTADDR_SHIFT
& FIFOSIZE_STARTADDR_MASK
;
506 dwc2_writel(hptxfsiz
, hsotg
->regs
+ HPTXFSIZ
);
507 dev_dbg(hsotg
->dev
, "new hptxfsiz=%08x\n",
508 dwc2_readl(hsotg
->regs
+ HPTXFSIZ
));
510 if (hsotg
->params
.en_multiple_tx_fifo
&&
511 hsotg
->hw_params
.snpsid
>= DWC2_CORE_REV_2_91a
) {
513 * This feature was implemented in 2.91a version
514 * Global DFIFOCFG calculation for Host mode -
515 * include RxFIFO, NPTXFIFO and HPTXFIFO
517 dfifocfg
= dwc2_readl(hsotg
->regs
+ GDFIFOCFG
);
518 dfifocfg
&= ~GDFIFOCFG_EPINFOBASE_MASK
;
519 dfifocfg
|= (params
->host_rx_fifo_size
+
520 params
->host_nperio_tx_fifo_size
+
521 params
->host_perio_tx_fifo_size
) <<
522 GDFIFOCFG_EPINFOBASE_SHIFT
&
523 GDFIFOCFG_EPINFOBASE_MASK
;
524 dwc2_writel(dfifocfg
, hsotg
->regs
+ GDFIFOCFG
);
529 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
530 * the HFIR register according to PHY type and speed
532 * @hsotg: Programming view of DWC_otg controller
534 * NOTE: The caller can modify the value of the HFIR register only after the
535 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
538 u32
dwc2_calc_frame_interval(struct dwc2_hsotg
*hsotg
)
542 int clock
= 60; /* default value */
544 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
545 hprt0
= dwc2_readl(hsotg
->regs
+ HPRT0
);
547 if (!(usbcfg
& GUSBCFG_PHYSEL
) && (usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) &&
548 !(usbcfg
& GUSBCFG_PHYIF16
))
550 if ((usbcfg
& GUSBCFG_PHYSEL
) && hsotg
->hw_params
.fs_phy_type
==
551 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI
)
553 if (!(usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
554 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && (usbcfg
& GUSBCFG_PHYIF16
))
556 if (!(usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
557 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && !(usbcfg
& GUSBCFG_PHYIF16
))
559 if ((usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
560 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && (usbcfg
& GUSBCFG_PHYIF16
))
562 if ((usbcfg
& GUSBCFG_PHYSEL
) && !(usbcfg
& GUSBCFG_PHYIF16
) &&
563 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_SHARED_UTMI
)
565 if ((usbcfg
& GUSBCFG_PHYSEL
) &&
566 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
)
569 if ((hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
== HPRT0_SPD_HIGH_SPEED
)
570 /* High speed case */
571 return 125 * clock
- 1;
574 return 1000 * clock
- 1;
578 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
581 * @core_if: Programming view of DWC_otg controller
582 * @dest: Destination buffer for the packet
583 * @bytes: Number of bytes to copy to the destination
585 void dwc2_read_packet(struct dwc2_hsotg
*hsotg
, u8
*dest
, u16 bytes
)
587 u32 __iomem
*fifo
= hsotg
->regs
+ HCFIFO(0);
588 u32
*data_buf
= (u32
*)dest
;
589 int word_count
= (bytes
+ 3) / 4;
593 * Todo: Account for the case where dest is not dword aligned. This
594 * requires reading data from the FIFO into a u32 temp buffer, then
595 * moving it into the data buffer.
598 dev_vdbg(hsotg
->dev
, "%s(%p,%p,%d)\n", __func__
, hsotg
, dest
, bytes
);
600 for (i
= 0; i
< word_count
; i
++, data_buf
++)
601 *data_buf
= dwc2_readl(fifo
);
605 * dwc2_dump_channel_info() - Prints the state of a host channel
607 * @hsotg: Programming view of DWC_otg controller
608 * @chan: Pointer to the channel to dump
610 * Must be called with interrupt disabled and spinlock held
612 * NOTE: This function will be removed once the peripheral controller code
613 * is integrated and the driver is stable
615 static void dwc2_dump_channel_info(struct dwc2_hsotg
*hsotg
,
616 struct dwc2_host_chan
*chan
)
619 int num_channels
= hsotg
->params
.host_channels
;
630 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
631 hcsplt
= dwc2_readl(hsotg
->regs
+ HCSPLT(chan
->hc_num
));
632 hctsiz
= dwc2_readl(hsotg
->regs
+ HCTSIZ(chan
->hc_num
));
633 hc_dma
= dwc2_readl(hsotg
->regs
+ HCDMA(chan
->hc_num
));
635 dev_dbg(hsotg
->dev
, " Assigned to channel %p:\n", chan
);
636 dev_dbg(hsotg
->dev
, " hcchar 0x%08x, hcsplt 0x%08x\n",
638 dev_dbg(hsotg
->dev
, " hctsiz 0x%08x, hc_dma 0x%08x\n",
640 dev_dbg(hsotg
->dev
, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
641 chan
->dev_addr
, chan
->ep_num
, chan
->ep_is_in
);
642 dev_dbg(hsotg
->dev
, " ep_type: %d\n", chan
->ep_type
);
643 dev_dbg(hsotg
->dev
, " max_packet: %d\n", chan
->max_packet
);
644 dev_dbg(hsotg
->dev
, " data_pid_start: %d\n", chan
->data_pid_start
);
645 dev_dbg(hsotg
->dev
, " xfer_started: %d\n", chan
->xfer_started
);
646 dev_dbg(hsotg
->dev
, " halt_status: %d\n", chan
->halt_status
);
647 dev_dbg(hsotg
->dev
, " xfer_buf: %p\n", chan
->xfer_buf
);
648 dev_dbg(hsotg
->dev
, " xfer_dma: %08lx\n",
649 (unsigned long)chan
->xfer_dma
);
650 dev_dbg(hsotg
->dev
, " xfer_len: %d\n", chan
->xfer_len
);
651 dev_dbg(hsotg
->dev
, " qh: %p\n", chan
->qh
);
652 dev_dbg(hsotg
->dev
, " NP inactive sched:\n");
653 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_inactive
,
655 dev_dbg(hsotg
->dev
, " %p\n", qh
);
656 dev_dbg(hsotg
->dev
, " NP active sched:\n");
657 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_active
,
659 dev_dbg(hsotg
->dev
, " %p\n", qh
);
660 dev_dbg(hsotg
->dev
, " Channels:\n");
661 for (i
= 0; i
< num_channels
; i
++) {
662 struct dwc2_host_chan
*chan
= hsotg
->hc_ptr_array
[i
];
664 dev_dbg(hsotg
->dev
, " %2d: %p\n", i
, chan
);
666 #endif /* VERBOSE_DEBUG */
669 static int _dwc2_hcd_start(struct usb_hcd
*hcd
);
671 static void dwc2_host_start(struct dwc2_hsotg
*hsotg
)
673 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
675 hcd
->self
.is_b_host
= dwc2_hcd_is_b_host(hsotg
);
676 _dwc2_hcd_start(hcd
);
679 static void dwc2_host_disconnect(struct dwc2_hsotg
*hsotg
)
681 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
683 hcd
->self
.is_b_host
= 0;
686 static void dwc2_host_hub_info(struct dwc2_hsotg
*hsotg
, void *context
,
687 int *hub_addr
, int *hub_port
)
689 struct urb
*urb
= context
;
692 *hub_addr
= urb
->dev
->tt
->hub
->devnum
;
695 *hub_port
= urb
->dev
->ttport
;
699 * =========================================================================
700 * Low Level Host Channel Access Functions
701 * =========================================================================
704 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg
*hsotg
,
705 struct dwc2_host_chan
*chan
)
707 u32 hcintmsk
= HCINTMSK_CHHLTD
;
709 switch (chan
->ep_type
) {
710 case USB_ENDPOINT_XFER_CONTROL
:
711 case USB_ENDPOINT_XFER_BULK
:
712 dev_vdbg(hsotg
->dev
, "control/bulk\n");
713 hcintmsk
|= HCINTMSK_XFERCOMPL
;
714 hcintmsk
|= HCINTMSK_STALL
;
715 hcintmsk
|= HCINTMSK_XACTERR
;
716 hcintmsk
|= HCINTMSK_DATATGLERR
;
717 if (chan
->ep_is_in
) {
718 hcintmsk
|= HCINTMSK_BBLERR
;
720 hcintmsk
|= HCINTMSK_NAK
;
721 hcintmsk
|= HCINTMSK_NYET
;
723 hcintmsk
|= HCINTMSK_ACK
;
726 if (chan
->do_split
) {
727 hcintmsk
|= HCINTMSK_NAK
;
728 if (chan
->complete_split
)
729 hcintmsk
|= HCINTMSK_NYET
;
731 hcintmsk
|= HCINTMSK_ACK
;
734 if (chan
->error_state
)
735 hcintmsk
|= HCINTMSK_ACK
;
738 case USB_ENDPOINT_XFER_INT
:
740 dev_vdbg(hsotg
->dev
, "intr\n");
741 hcintmsk
|= HCINTMSK_XFERCOMPL
;
742 hcintmsk
|= HCINTMSK_NAK
;
743 hcintmsk
|= HCINTMSK_STALL
;
744 hcintmsk
|= HCINTMSK_XACTERR
;
745 hcintmsk
|= HCINTMSK_DATATGLERR
;
746 hcintmsk
|= HCINTMSK_FRMOVRUN
;
749 hcintmsk
|= HCINTMSK_BBLERR
;
750 if (chan
->error_state
)
751 hcintmsk
|= HCINTMSK_ACK
;
752 if (chan
->do_split
) {
753 if (chan
->complete_split
)
754 hcintmsk
|= HCINTMSK_NYET
;
756 hcintmsk
|= HCINTMSK_ACK
;
760 case USB_ENDPOINT_XFER_ISOC
:
762 dev_vdbg(hsotg
->dev
, "isoc\n");
763 hcintmsk
|= HCINTMSK_XFERCOMPL
;
764 hcintmsk
|= HCINTMSK_FRMOVRUN
;
765 hcintmsk
|= HCINTMSK_ACK
;
767 if (chan
->ep_is_in
) {
768 hcintmsk
|= HCINTMSK_XACTERR
;
769 hcintmsk
|= HCINTMSK_BBLERR
;
773 dev_err(hsotg
->dev
, "## Unknown EP type ##\n");
777 dwc2_writel(hcintmsk
, hsotg
->regs
+ HCINTMSK(chan
->hc_num
));
779 dev_vdbg(hsotg
->dev
, "set HCINTMSK to %08x\n", hcintmsk
);
782 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg
*hsotg
,
783 struct dwc2_host_chan
*chan
)
785 u32 hcintmsk
= HCINTMSK_CHHLTD
;
788 * For Descriptor DMA mode core halts the channel on AHB error.
789 * Interrupt is not required.
791 if (!hsotg
->params
.dma_desc_enable
) {
793 dev_vdbg(hsotg
->dev
, "desc DMA disabled\n");
794 hcintmsk
|= HCINTMSK_AHBERR
;
797 dev_vdbg(hsotg
->dev
, "desc DMA enabled\n");
798 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
799 hcintmsk
|= HCINTMSK_XFERCOMPL
;
802 if (chan
->error_state
&& !chan
->do_split
&&
803 chan
->ep_type
!= USB_ENDPOINT_XFER_ISOC
) {
805 dev_vdbg(hsotg
->dev
, "setting ACK\n");
806 hcintmsk
|= HCINTMSK_ACK
;
807 if (chan
->ep_is_in
) {
808 hcintmsk
|= HCINTMSK_DATATGLERR
;
809 if (chan
->ep_type
!= USB_ENDPOINT_XFER_INT
)
810 hcintmsk
|= HCINTMSK_NAK
;
814 dwc2_writel(hcintmsk
, hsotg
->regs
+ HCINTMSK(chan
->hc_num
));
816 dev_vdbg(hsotg
->dev
, "set HCINTMSK to %08x\n", hcintmsk
);
819 static void dwc2_hc_enable_ints(struct dwc2_hsotg
*hsotg
,
820 struct dwc2_host_chan
*chan
)
824 if (hsotg
->params
.host_dma
) {
826 dev_vdbg(hsotg
->dev
, "DMA enabled\n");
827 dwc2_hc_enable_dma_ints(hsotg
, chan
);
830 dev_vdbg(hsotg
->dev
, "DMA disabled\n");
831 dwc2_hc_enable_slave_ints(hsotg
, chan
);
834 /* Enable the top level host channel interrupt */
835 intmsk
= dwc2_readl(hsotg
->regs
+ HAINTMSK
);
836 intmsk
|= 1 << chan
->hc_num
;
837 dwc2_writel(intmsk
, hsotg
->regs
+ HAINTMSK
);
839 dev_vdbg(hsotg
->dev
, "set HAINTMSK to %08x\n", intmsk
);
841 /* Make sure host channel interrupts are enabled */
842 intmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
843 intmsk
|= GINTSTS_HCHINT
;
844 dwc2_writel(intmsk
, hsotg
->regs
+ GINTMSK
);
846 dev_vdbg(hsotg
->dev
, "set GINTMSK to %08x\n", intmsk
);
850 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
851 * a specific endpoint
853 * @hsotg: Programming view of DWC_otg controller
854 * @chan: Information needed to initialize the host channel
856 * The HCCHARn register is set up with the characteristics specified in chan.
857 * Host channel interrupts that may need to be serviced while this transfer is
858 * in progress are enabled.
860 static void dwc2_hc_init(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
)
862 u8 hc_num
= chan
->hc_num
;
868 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
870 /* Clear old interrupt conditions for this host channel */
871 hcintmsk
= 0xffffffff;
872 hcintmsk
&= ~HCINTMSK_RESERVED14_31
;
873 dwc2_writel(hcintmsk
, hsotg
->regs
+ HCINT(hc_num
));
875 /* Enable channel interrupts required for this transfer */
876 dwc2_hc_enable_ints(hsotg
, chan
);
879 * Program the HCCHARn register with the endpoint characteristics for
880 * the current transfer
882 hcchar
= chan
->dev_addr
<< HCCHAR_DEVADDR_SHIFT
& HCCHAR_DEVADDR_MASK
;
883 hcchar
|= chan
->ep_num
<< HCCHAR_EPNUM_SHIFT
& HCCHAR_EPNUM_MASK
;
885 hcchar
|= HCCHAR_EPDIR
;
886 if (chan
->speed
== USB_SPEED_LOW
)
887 hcchar
|= HCCHAR_LSPDDEV
;
888 hcchar
|= chan
->ep_type
<< HCCHAR_EPTYPE_SHIFT
& HCCHAR_EPTYPE_MASK
;
889 hcchar
|= chan
->max_packet
<< HCCHAR_MPS_SHIFT
& HCCHAR_MPS_MASK
;
890 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(hc_num
));
892 dev_vdbg(hsotg
->dev
, "set HCCHAR(%d) to %08x\n",
895 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n",
897 dev_vdbg(hsotg
->dev
, " Dev Addr: %d\n",
899 dev_vdbg(hsotg
->dev
, " Ep Num: %d\n",
901 dev_vdbg(hsotg
->dev
, " Is In: %d\n",
903 dev_vdbg(hsotg
->dev
, " Is Low Speed: %d\n",
904 chan
->speed
== USB_SPEED_LOW
);
905 dev_vdbg(hsotg
->dev
, " Ep Type: %d\n",
907 dev_vdbg(hsotg
->dev
, " Max Pkt: %d\n",
911 /* Program the HCSPLT register for SPLITs */
912 if (chan
->do_split
) {
915 "Programming HC %d with split --> %s\n",
917 chan
->complete_split
? "CSPLIT" : "SSPLIT");
918 if (chan
->complete_split
)
919 hcsplt
|= HCSPLT_COMPSPLT
;
920 hcsplt
|= chan
->xact_pos
<< HCSPLT_XACTPOS_SHIFT
&
922 hcsplt
|= chan
->hub_addr
<< HCSPLT_HUBADDR_SHIFT
&
924 hcsplt
|= chan
->hub_port
<< HCSPLT_PRTADDR_SHIFT
&
927 dev_vdbg(hsotg
->dev
, " comp split %d\n",
928 chan
->complete_split
);
929 dev_vdbg(hsotg
->dev
, " xact pos %d\n",
931 dev_vdbg(hsotg
->dev
, " hub addr %d\n",
933 dev_vdbg(hsotg
->dev
, " hub port %d\n",
935 dev_vdbg(hsotg
->dev
, " is_in %d\n",
937 dev_vdbg(hsotg
->dev
, " Max Pkt %d\n",
939 dev_vdbg(hsotg
->dev
, " xferlen %d\n",
944 dwc2_writel(hcsplt
, hsotg
->regs
+ HCSPLT(hc_num
));
948 * dwc2_hc_halt() - Attempts to halt a host channel
950 * @hsotg: Controller register interface
951 * @chan: Host channel to halt
952 * @halt_status: Reason for halting the channel
954 * This function should only be called in Slave mode or to abort a transfer in
955 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
956 * controller halts the channel when the transfer is complete or a condition
957 * occurs that requires application intervention.
959 * In slave mode, checks for a free request queue entry, then sets the Channel
960 * Enable and Channel Disable bits of the Host Channel Characteristics
961 * register of the specified channel to intiate the halt. If there is no free
962 * request queue entry, sets only the Channel Disable bit of the HCCHARn
963 * register to flush requests for this channel. In the latter case, sets a
964 * flag to indicate that the host channel needs to be halted when a request
965 * queue slot is open.
967 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
968 * HCCHARn register. The controller ensures there is space in the request
969 * queue before submitting the halt request.
971 * Some time may elapse before the core flushes any posted requests for this
972 * host channel and halts. The Channel Halted interrupt handler completes the
973 * deactivation of the host channel.
975 void dwc2_hc_halt(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
,
976 enum dwc2_halt_status halt_status
)
978 u32 nptxsts
, hptxsts
, hcchar
;
981 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
984 * In buffer DMA or external DMA mode channel can't be halted
985 * for non-split periodic channels. At the end of the next
986 * uframe/frame (in the worst case), the core generates a channel
987 * halted and disables the channel automatically.
989 if ((hsotg
->params
.g_dma
&& !hsotg
->params
.g_dma_desc
) ||
990 hsotg
->hw_params
.arch
== GHWCFG2_EXT_DMA_ARCH
) {
991 if (!chan
->do_split
&&
992 (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
||
993 chan
->ep_type
== USB_ENDPOINT_XFER_INT
)) {
994 dev_err(hsotg
->dev
, "%s() Channel can't be halted\n",
1000 if (halt_status
== DWC2_HC_XFER_NO_HALT_STATUS
)
1001 dev_err(hsotg
->dev
, "!!! halt_status = %d !!!\n", halt_status
);
1003 if (halt_status
== DWC2_HC_XFER_URB_DEQUEUE
||
1004 halt_status
== DWC2_HC_XFER_AHB_ERR
) {
1006 * Disable all channel interrupts except Ch Halted. The QTD
1007 * and QH state associated with this transfer has been cleared
1008 * (in the case of URB_DEQUEUE), so the channel needs to be
1009 * shut down carefully to prevent crashes.
1011 u32 hcintmsk
= HCINTMSK_CHHLTD
;
1013 dev_vdbg(hsotg
->dev
, "dequeue/error\n");
1014 dwc2_writel(hcintmsk
, hsotg
->regs
+ HCINTMSK(chan
->hc_num
));
1017 * Make sure no other interrupts besides halt are currently
1018 * pending. Handling another interrupt could cause a crash due
1019 * to the QTD and QH state.
1021 dwc2_writel(~hcintmsk
, hsotg
->regs
+ HCINT(chan
->hc_num
));
1024 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1025 * even if the channel was already halted for some other
1028 chan
->halt_status
= halt_status
;
1030 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1031 if (!(hcchar
& HCCHAR_CHENA
)) {
1033 * The channel is either already halted or it hasn't
1034 * started yet. In DMA mode, the transfer may halt if
1035 * it finishes normally or a condition occurs that
1036 * requires driver intervention. Don't want to halt
1037 * the channel again. In either Slave or DMA mode,
1038 * it's possible that the transfer has been assigned
1039 * to a channel, but not started yet when an URB is
1040 * dequeued. Don't want to halt a channel that hasn't
1046 if (chan
->halt_pending
) {
1048 * A halt has already been issued for this channel. This might
1049 * happen when a transfer is aborted by a higher level in
1052 dev_vdbg(hsotg
->dev
,
1053 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1054 __func__
, chan
->hc_num
);
1058 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1060 /* No need to set the bit in DDMA for disabling the channel */
1061 /* TODO check it everywhere channel is disabled */
1062 if (!hsotg
->params
.dma_desc_enable
) {
1064 dev_vdbg(hsotg
->dev
, "desc DMA disabled\n");
1065 hcchar
|= HCCHAR_CHENA
;
1068 dev_dbg(hsotg
->dev
, "desc DMA enabled\n");
1070 hcchar
|= HCCHAR_CHDIS
;
1072 if (!hsotg
->params
.host_dma
) {
1074 dev_vdbg(hsotg
->dev
, "DMA not enabled\n");
1075 hcchar
|= HCCHAR_CHENA
;
1077 /* Check for space in the request queue to issue the halt */
1078 if (chan
->ep_type
== USB_ENDPOINT_XFER_CONTROL
||
1079 chan
->ep_type
== USB_ENDPOINT_XFER_BULK
) {
1080 dev_vdbg(hsotg
->dev
, "control/bulk\n");
1081 nptxsts
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
1082 if ((nptxsts
& TXSTS_QSPCAVAIL_MASK
) == 0) {
1083 dev_vdbg(hsotg
->dev
, "Disabling channel\n");
1084 hcchar
&= ~HCCHAR_CHENA
;
1088 dev_vdbg(hsotg
->dev
, "isoc/intr\n");
1089 hptxsts
= dwc2_readl(hsotg
->regs
+ HPTXSTS
);
1090 if ((hptxsts
& TXSTS_QSPCAVAIL_MASK
) == 0 ||
1091 hsotg
->queuing_high_bandwidth
) {
1093 dev_vdbg(hsotg
->dev
, "Disabling channel\n");
1094 hcchar
&= ~HCCHAR_CHENA
;
1099 dev_vdbg(hsotg
->dev
, "DMA enabled\n");
1102 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1103 chan
->halt_status
= halt_status
;
1105 if (hcchar
& HCCHAR_CHENA
) {
1107 dev_vdbg(hsotg
->dev
, "Channel enabled\n");
1108 chan
->halt_pending
= 1;
1109 chan
->halt_on_queue
= 0;
1112 dev_vdbg(hsotg
->dev
, "Channel disabled\n");
1113 chan
->halt_on_queue
= 1;
1117 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1119 dev_vdbg(hsotg
->dev
, " hcchar: 0x%08x\n",
1121 dev_vdbg(hsotg
->dev
, " halt_pending: %d\n",
1122 chan
->halt_pending
);
1123 dev_vdbg(hsotg
->dev
, " halt_on_queue: %d\n",
1124 chan
->halt_on_queue
);
1125 dev_vdbg(hsotg
->dev
, " halt_status: %d\n",
1131 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1133 * @hsotg: Programming view of DWC_otg controller
1134 * @chan: Identifies the host channel to clean up
1136 * This function is normally called after a transfer is done and the host
1137 * channel is being released
1139 void dwc2_hc_cleanup(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
)
1143 chan
->xfer_started
= 0;
1145 list_del_init(&chan
->split_order_list_entry
);
1148 * Clear channel interrupt enables and any unhandled channel interrupt
1151 dwc2_writel(0, hsotg
->regs
+ HCINTMSK(chan
->hc_num
));
1152 hcintmsk
= 0xffffffff;
1153 hcintmsk
&= ~HCINTMSK_RESERVED14_31
;
1154 dwc2_writel(hcintmsk
, hsotg
->regs
+ HCINT(chan
->hc_num
));
1158 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1159 * which frame a periodic transfer should occur
1161 * @hsotg: Programming view of DWC_otg controller
1162 * @chan: Identifies the host channel to set up and its properties
1163 * @hcchar: Current value of the HCCHAR register for the specified host channel
1165 * This function has no effect on non-periodic transfers
1167 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg
*hsotg
,
1168 struct dwc2_host_chan
*chan
, u32
*hcchar
)
1170 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1171 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1181 * Try to figure out if we're an even or odd frame. If we set
1182 * even and the current frame number is even the the transfer
1183 * will happen immediately. Similar if both are odd. If one is
1184 * even and the other is odd then the transfer will happen when
1185 * the frame number ticks.
1187 * There's a bit of a balancing act to get this right.
1188 * Sometimes we may want to send data in the current frame (AK
1189 * right away). We might want to do this if the frame number
1190 * _just_ ticked, but we might also want to do this in order
1191 * to continue a split transaction that happened late in a
1192 * microframe (so we didn't know to queue the next transfer
1193 * until the frame number had ticked). The problem is that we
1194 * need a lot of knowledge to know if there's actually still
1195 * time to send things or if it would be better to wait until
1198 * We can look at how much time is left in the current frame
1199 * and make a guess about whether we'll have time to transfer.
1203 /* Get speed host is running at */
1204 host_speed
= (chan
->speed
!= USB_SPEED_HIGH
&&
1205 !chan
->do_split
) ? chan
->speed
: USB_SPEED_HIGH
;
1207 /* See how many bytes are in the periodic FIFO right now */
1208 fifo_space
= (dwc2_readl(hsotg
->regs
+ HPTXSTS
) &
1209 TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
;
1210 bytes_in_fifo
= sizeof(u32
) *
1211 (hsotg
->params
.host_perio_tx_fifo_size
-
1215 * Roughly estimate bus time for everything in the periodic
1216 * queue + our new transfer. This is "rough" because we're
1217 * using a function that makes takes into account IN/OUT
1218 * and INT/ISO and we're just slamming in one value for all
1219 * transfers. This should be an over-estimate and that should
1220 * be OK, but we can probably tighten it.
1222 xfer_ns
= usb_calc_bus_time(host_speed
, false, false,
1223 chan
->xfer_len
+ bytes_in_fifo
);
1224 xfer_us
= NS_TO_US(xfer_ns
);
1226 /* See what frame number we'll be at by the time we finish */
1227 frame_number
= dwc2_hcd_get_future_frame_number(hsotg
, xfer_us
);
1229 /* This is when we were scheduled to be on the wire */
1230 wire_frame
= dwc2_frame_num_inc(chan
->qh
->next_active_frame
, 1);
1233 * If we'd finish _after_ the frame we're scheduled in then
1234 * it's hopeless. Just schedule right away and hope for the
1235 * best. Note that it _might_ be wise to call back into the
1236 * scheduler to pick a better frame, but this is better than
1239 if (dwc2_frame_num_gt(frame_number
, wire_frame
)) {
1240 dwc2_sch_vdbg(hsotg
,
1241 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1242 chan
->qh
, wire_frame
, frame_number
,
1243 dwc2_frame_num_dec(frame_number
,
1245 wire_frame
= frame_number
;
1248 * We picked a different frame number; communicate this
1249 * back to the scheduler so it doesn't try to schedule
1250 * another in the same frame.
1252 * Remember that next_active_frame is 1 before the wire
1255 chan
->qh
->next_active_frame
=
1256 dwc2_frame_num_dec(frame_number
, 1);
1260 *hcchar
|= HCCHAR_ODDFRM
;
1262 *hcchar
&= ~HCCHAR_ODDFRM
;
1266 static void dwc2_set_pid_isoc(struct dwc2_host_chan
*chan
)
1268 /* Set up the initial PID for the transfer */
1269 if (chan
->speed
== USB_SPEED_HIGH
) {
1270 if (chan
->ep_is_in
) {
1271 if (chan
->multi_count
== 1)
1272 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1273 else if (chan
->multi_count
== 2)
1274 chan
->data_pid_start
= DWC2_HC_PID_DATA1
;
1276 chan
->data_pid_start
= DWC2_HC_PID_DATA2
;
1278 if (chan
->multi_count
== 1)
1279 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1281 chan
->data_pid_start
= DWC2_HC_PID_MDATA
;
1284 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1289 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1292 * @hsotg: Programming view of DWC_otg controller
1293 * @chan: Information needed to initialize the host channel
1295 * This function should only be called in Slave mode. For a channel associated
1296 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1297 * associated with a periodic EP, the periodic Tx FIFO is written.
1299 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1300 * the number of bytes written to the Tx FIFO.
1302 static void dwc2_hc_write_packet(struct dwc2_hsotg
*hsotg
,
1303 struct dwc2_host_chan
*chan
)
1306 u32 remaining_count
;
1309 u32 __iomem
*data_fifo
;
1310 u32
*data_buf
= (u32
*)chan
->xfer_buf
;
1313 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1315 data_fifo
= (u32 __iomem
*)(hsotg
->regs
+ HCFIFO(chan
->hc_num
));
1317 remaining_count
= chan
->xfer_len
- chan
->xfer_count
;
1318 if (remaining_count
> chan
->max_packet
)
1319 byte_count
= chan
->max_packet
;
1321 byte_count
= remaining_count
;
1323 dword_count
= (byte_count
+ 3) / 4;
1325 if (((unsigned long)data_buf
& 0x3) == 0) {
1326 /* xfer_buf is DWORD aligned */
1327 for (i
= 0; i
< dword_count
; i
++, data_buf
++)
1328 dwc2_writel(*data_buf
, data_fifo
);
1330 /* xfer_buf is not DWORD aligned */
1331 for (i
= 0; i
< dword_count
; i
++, data_buf
++) {
1332 u32 data
= data_buf
[0] | data_buf
[1] << 8 |
1333 data_buf
[2] << 16 | data_buf
[3] << 24;
1334 dwc2_writel(data
, data_fifo
);
1338 chan
->xfer_count
+= byte_count
;
1339 chan
->xfer_buf
+= byte_count
;
1343 * dwc2_hc_do_ping() - Starts a PING transfer
1345 * @hsotg: Programming view of DWC_otg controller
1346 * @chan: Information needed to initialize the host channel
1348 * This function should only be called in Slave mode. The Do Ping bit is set in
1349 * the HCTSIZ register, then the channel is enabled.
1351 static void dwc2_hc_do_ping(struct dwc2_hsotg
*hsotg
,
1352 struct dwc2_host_chan
*chan
)
1358 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1361 hctsiz
= TSIZ_DOPNG
;
1362 hctsiz
|= 1 << TSIZ_PKTCNT_SHIFT
;
1363 dwc2_writel(hctsiz
, hsotg
->regs
+ HCTSIZ(chan
->hc_num
));
1365 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1366 hcchar
|= HCCHAR_CHENA
;
1367 hcchar
&= ~HCCHAR_CHDIS
;
1368 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1372 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1373 * channel and starts the transfer
1375 * @hsotg: Programming view of DWC_otg controller
1376 * @chan: Information needed to initialize the host channel. The xfer_len value
1377 * may be reduced to accommodate the max widths of the XferSize and
1378 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1379 * changed to reflect the final xfer_len value.
1381 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1382 * the caller must ensure that there is sufficient space in the request queue
1385 * For an OUT transfer in Slave mode, it loads a data packet into the
1386 * appropriate FIFO. If necessary, additional data packets are loaded in the
1389 * For an IN transfer in Slave mode, a data packet is requested. The data
1390 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1391 * additional data packets are requested in the Host ISR.
1393 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1394 * register along with a packet count of 1 and the channel is enabled. This
1395 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1396 * simply set to 0 since no data transfer occurs in this case.
1398 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1399 * all the information required to perform the subsequent data transfer. In
1400 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1401 * controller performs the entire PING protocol, then starts the data
1404 static void dwc2_hc_start_transfer(struct dwc2_hsotg
*hsotg
,
1405 struct dwc2_host_chan
*chan
)
1407 u32 max_hc_xfer_size
= hsotg
->params
.max_transfer_size
;
1408 u16 max_hc_pkt_count
= hsotg
->params
.max_packet_count
;
1415 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1417 if (chan
->do_ping
) {
1418 if (!hsotg
->params
.host_dma
) {
1420 dev_vdbg(hsotg
->dev
, "ping, no DMA\n");
1421 dwc2_hc_do_ping(hsotg
, chan
);
1422 chan
->xfer_started
= 1;
1427 dev_vdbg(hsotg
->dev
, "ping, DMA\n");
1429 hctsiz
|= TSIZ_DOPNG
;
1432 if (chan
->do_split
) {
1434 dev_vdbg(hsotg
->dev
, "split\n");
1437 if (chan
->complete_split
&& !chan
->ep_is_in
)
1439 * For CSPLIT OUT Transfer, set the size to 0 so the
1440 * core doesn't expect any data written to the FIFO
1443 else if (chan
->ep_is_in
|| chan
->xfer_len
> chan
->max_packet
)
1444 chan
->xfer_len
= chan
->max_packet
;
1445 else if (!chan
->ep_is_in
&& chan
->xfer_len
> 188)
1446 chan
->xfer_len
= 188;
1448 hctsiz
|= chan
->xfer_len
<< TSIZ_XFERSIZE_SHIFT
&
1451 /* For split set ec_mc for immediate retries */
1452 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1453 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1459 dev_vdbg(hsotg
->dev
, "no split\n");
1461 * Ensure that the transfer length and packet count will fit
1462 * in the widths allocated for them in the HCTSIZn register
1464 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1465 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1467 * Make sure the transfer size is no larger than one
1468 * (micro)frame's worth of data. (A check was done
1469 * when the periodic transfer was accepted to ensure
1470 * that a (micro)frame's worth of data can be
1471 * programmed into a channel.)
1473 u32 max_periodic_len
=
1474 chan
->multi_count
* chan
->max_packet
;
1476 if (chan
->xfer_len
> max_periodic_len
)
1477 chan
->xfer_len
= max_periodic_len
;
1478 } else if (chan
->xfer_len
> max_hc_xfer_size
) {
1480 * Make sure that xfer_len is a multiple of max packet
1484 max_hc_xfer_size
- chan
->max_packet
+ 1;
1487 if (chan
->xfer_len
> 0) {
1488 num_packets
= (chan
->xfer_len
+ chan
->max_packet
- 1) /
1490 if (num_packets
> max_hc_pkt_count
) {
1491 num_packets
= max_hc_pkt_count
;
1492 chan
->xfer_len
= num_packets
* chan
->max_packet
;
1495 /* Need 1 packet for transfer length of 0 */
1501 * Always program an integral # of max packets for IN
1504 chan
->xfer_len
= num_packets
* chan
->max_packet
;
1506 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1507 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1509 * Make sure that the multi_count field matches the
1510 * actual transfer length
1512 chan
->multi_count
= num_packets
;
1514 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1515 dwc2_set_pid_isoc(chan
);
1517 hctsiz
|= chan
->xfer_len
<< TSIZ_XFERSIZE_SHIFT
&
1520 /* The ec_mc gets the multi_count for non-split */
1521 ec_mc
= chan
->multi_count
;
1524 chan
->start_pkt_count
= num_packets
;
1525 hctsiz
|= num_packets
<< TSIZ_PKTCNT_SHIFT
& TSIZ_PKTCNT_MASK
;
1526 hctsiz
|= chan
->data_pid_start
<< TSIZ_SC_MC_PID_SHIFT
&
1527 TSIZ_SC_MC_PID_MASK
;
1528 dwc2_writel(hctsiz
, hsotg
->regs
+ HCTSIZ(chan
->hc_num
));
1530 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCTSIZ(%d)\n",
1531 hctsiz
, chan
->hc_num
);
1533 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1535 dev_vdbg(hsotg
->dev
, " Xfer Size: %d\n",
1536 (hctsiz
& TSIZ_XFERSIZE_MASK
) >>
1537 TSIZ_XFERSIZE_SHIFT
);
1538 dev_vdbg(hsotg
->dev
, " Num Pkts: %d\n",
1539 (hctsiz
& TSIZ_PKTCNT_MASK
) >>
1541 dev_vdbg(hsotg
->dev
, " Start PID: %d\n",
1542 (hctsiz
& TSIZ_SC_MC_PID_MASK
) >>
1543 TSIZ_SC_MC_PID_SHIFT
);
1546 if (hsotg
->params
.host_dma
) {
1547 dma_addr_t dma_addr
;
1549 if (chan
->align_buf
) {
1551 dev_vdbg(hsotg
->dev
, "align_buf\n");
1552 dma_addr
= chan
->align_buf
;
1554 dma_addr
= chan
->xfer_dma
;
1556 dwc2_writel((u32
)dma_addr
, hsotg
->regs
+ HCDMA(chan
->hc_num
));
1559 dev_vdbg(hsotg
->dev
, "Wrote %08lx to HCDMA(%d)\n",
1560 (unsigned long)dma_addr
, chan
->hc_num
);
1563 /* Start the split */
1564 if (chan
->do_split
) {
1565 u32 hcsplt
= dwc2_readl(hsotg
->regs
+ HCSPLT(chan
->hc_num
));
1567 hcsplt
|= HCSPLT_SPLTENA
;
1568 dwc2_writel(hcsplt
, hsotg
->regs
+ HCSPLT(chan
->hc_num
));
1571 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1572 hcchar
&= ~HCCHAR_MULTICNT_MASK
;
1573 hcchar
|= (ec_mc
<< HCCHAR_MULTICNT_SHIFT
) & HCCHAR_MULTICNT_MASK
;
1574 dwc2_hc_set_even_odd_frame(hsotg
, chan
, &hcchar
);
1576 if (hcchar
& HCCHAR_CHDIS
)
1577 dev_warn(hsotg
->dev
,
1578 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1579 __func__
, chan
->hc_num
, hcchar
);
1581 /* Set host channel enable after all other setup is complete */
1582 hcchar
|= HCCHAR_CHENA
;
1583 hcchar
&= ~HCCHAR_CHDIS
;
1586 dev_vdbg(hsotg
->dev
, " Multi Cnt: %d\n",
1587 (hcchar
& HCCHAR_MULTICNT_MASK
) >>
1588 HCCHAR_MULTICNT_SHIFT
);
1590 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1592 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCCHAR(%d)\n", hcchar
,
1595 chan
->xfer_started
= 1;
1598 if (!hsotg
->params
.host_dma
&&
1599 !chan
->ep_is_in
&& chan
->xfer_len
> 0)
1600 /* Load OUT packet into the appropriate Tx FIFO */
1601 dwc2_hc_write_packet(hsotg
, chan
);
1605 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1606 * host channel and starts the transfer in Descriptor DMA mode
1608 * @hsotg: Programming view of DWC_otg controller
1609 * @chan: Information needed to initialize the host channel
1611 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1612 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1613 * with micro-frame bitmap.
1615 * Initializes HCDMA register with descriptor list address and CTD value then
1616 * starts the transfer via enabling the channel.
1618 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg
*hsotg
,
1619 struct dwc2_host_chan
*chan
)
1625 hctsiz
|= TSIZ_DOPNG
;
1627 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1628 dwc2_set_pid_isoc(chan
);
1630 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1631 hctsiz
|= chan
->data_pid_start
<< TSIZ_SC_MC_PID_SHIFT
&
1632 TSIZ_SC_MC_PID_MASK
;
1634 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1635 hctsiz
|= (chan
->ntd
- 1) << TSIZ_NTD_SHIFT
& TSIZ_NTD_MASK
;
1637 /* Non-zero only for high-speed interrupt endpoints */
1638 hctsiz
|= chan
->schinfo
<< TSIZ_SCHINFO_SHIFT
& TSIZ_SCHINFO_MASK
;
1641 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1643 dev_vdbg(hsotg
->dev
, " Start PID: %d\n",
1644 chan
->data_pid_start
);
1645 dev_vdbg(hsotg
->dev
, " NTD: %d\n", chan
->ntd
- 1);
1648 dwc2_writel(hctsiz
, hsotg
->regs
+ HCTSIZ(chan
->hc_num
));
1650 dma_sync_single_for_device(hsotg
->dev
, chan
->desc_list_addr
,
1651 chan
->desc_list_sz
, DMA_TO_DEVICE
);
1653 dwc2_writel(chan
->desc_list_addr
, hsotg
->regs
+ HCDMA(chan
->hc_num
));
1656 dev_vdbg(hsotg
->dev
, "Wrote %pad to HCDMA(%d)\n",
1657 &chan
->desc_list_addr
, chan
->hc_num
);
1659 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1660 hcchar
&= ~HCCHAR_MULTICNT_MASK
;
1661 hcchar
|= chan
->multi_count
<< HCCHAR_MULTICNT_SHIFT
&
1662 HCCHAR_MULTICNT_MASK
;
1664 if (hcchar
& HCCHAR_CHDIS
)
1665 dev_warn(hsotg
->dev
,
1666 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1667 __func__
, chan
->hc_num
, hcchar
);
1669 /* Set host channel enable after all other setup is complete */
1670 hcchar
|= HCCHAR_CHENA
;
1671 hcchar
&= ~HCCHAR_CHDIS
;
1674 dev_vdbg(hsotg
->dev
, " Multi Cnt: %d\n",
1675 (hcchar
& HCCHAR_MULTICNT_MASK
) >>
1676 HCCHAR_MULTICNT_SHIFT
);
1678 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1680 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCCHAR(%d)\n", hcchar
,
1683 chan
->xfer_started
= 1;
1688 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1689 * a previous call to dwc2_hc_start_transfer()
1691 * @hsotg: Programming view of DWC_otg controller
1692 * @chan: Information needed to initialize the host channel
1694 * The caller must ensure there is sufficient space in the request queue and Tx
1695 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1696 * the controller acts autonomously to complete transfers programmed to a host
1699 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1700 * if there is any data remaining to be queued. For an IN transfer, another
1701 * data packet is always requested. For the SETUP phase of a control transfer,
1702 * this function does nothing.
1704 * Return: 1 if a new request is queued, 0 if no more requests are required
1707 static int dwc2_hc_continue_transfer(struct dwc2_hsotg
*hsotg
,
1708 struct dwc2_host_chan
*chan
)
1711 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1715 /* SPLITs always queue just once per channel */
1718 if (chan
->data_pid_start
== DWC2_HC_PID_SETUP
)
1719 /* SETUPs are queued only once since they can't be NAK'd */
1722 if (chan
->ep_is_in
) {
1724 * Always queue another request for other IN transfers. If
1725 * back-to-back INs are issued and NAKs are received for both,
1726 * the driver may still be processing the first NAK when the
1727 * second NAK is received. When the interrupt handler clears
1728 * the NAK interrupt for the first NAK, the second NAK will
1729 * not be seen. So we can't depend on the NAK interrupt
1730 * handler to requeue a NAK'd request. Instead, IN requests
1731 * are issued each time this function is called. When the
1732 * transfer completes, the extra requests for the channel will
1735 u32 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1737 dwc2_hc_set_even_odd_frame(hsotg
, chan
, &hcchar
);
1738 hcchar
|= HCCHAR_CHENA
;
1739 hcchar
&= ~HCCHAR_CHDIS
;
1741 dev_vdbg(hsotg
->dev
, " IN xfer: hcchar = 0x%08x\n",
1743 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(chan
->hc_num
));
1750 if (chan
->xfer_count
< chan
->xfer_len
) {
1751 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1752 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1753 u32 hcchar
= dwc2_readl(hsotg
->regs
+
1754 HCCHAR(chan
->hc_num
));
1756 dwc2_hc_set_even_odd_frame(hsotg
, chan
,
1760 /* Load OUT packet into the appropriate Tx FIFO */
1761 dwc2_hc_write_packet(hsotg
, chan
);
1770 * =========================================================================
1772 * =========================================================================
1776 * Processes all the URBs in a single list of QHs. Completes them with
1777 * -ETIMEDOUT and frees the QTD.
1779 * Must be called with interrupt disabled and spinlock held
1781 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg
*hsotg
,
1782 struct list_head
*qh_list
)
1784 struct dwc2_qh
*qh
, *qh_tmp
;
1785 struct dwc2_qtd
*qtd
, *qtd_tmp
;
1787 list_for_each_entry_safe(qh
, qh_tmp
, qh_list
, qh_list_entry
) {
1788 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
,
1790 dwc2_host_complete(hsotg
, qtd
, -ECONNRESET
);
1791 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
1796 static void dwc2_qh_list_free(struct dwc2_hsotg
*hsotg
,
1797 struct list_head
*qh_list
)
1799 struct dwc2_qtd
*qtd
, *qtd_tmp
;
1800 struct dwc2_qh
*qh
, *qh_tmp
;
1801 unsigned long flags
;
1804 /* The list hasn't been initialized yet */
1807 spin_lock_irqsave(&hsotg
->lock
, flags
);
1809 /* Ensure there are no QTDs or URBs left */
1810 dwc2_kill_urbs_in_qh_list(hsotg
, qh_list
);
1812 list_for_each_entry_safe(qh
, qh_tmp
, qh_list
, qh_list_entry
) {
1813 dwc2_hcd_qh_unlink(hsotg
, qh
);
1815 /* Free each QTD in the QH's QTD list */
1816 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
,
1818 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
1820 if (qh
->channel
&& qh
->channel
->qh
== qh
)
1821 qh
->channel
->qh
= NULL
;
1823 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1824 dwc2_hcd_qh_free(hsotg
, qh
);
1825 spin_lock_irqsave(&hsotg
->lock
, flags
);
1828 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1832 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1833 * and periodic schedules. The QTD associated with each URB is removed from
1834 * the schedule and freed. This function may be called when a disconnect is
1835 * detected or when the HCD is being stopped.
1837 * Must be called with interrupt disabled and spinlock held
1839 static void dwc2_kill_all_urbs(struct dwc2_hsotg
*hsotg
)
1841 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_inactive
);
1842 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_active
);
1843 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_inactive
);
1844 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_ready
);
1845 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_assigned
);
1846 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_queued
);
1850 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1852 * @hsotg: Pointer to struct dwc2_hsotg
1854 void dwc2_hcd_start(struct dwc2_hsotg
*hsotg
)
1858 if (hsotg
->op_state
== OTG_STATE_B_HOST
) {
1860 * Reset the port. During a HNP mode switch the reset
1861 * needs to occur within 1ms and have a duration of at
1864 hprt0
= dwc2_read_hprt0(hsotg
);
1866 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
1869 queue_delayed_work(hsotg
->wq_otg
, &hsotg
->start_work
,
1870 msecs_to_jiffies(50));
1873 /* Must be called with interrupt disabled and spinlock held */
1874 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg
*hsotg
)
1876 int num_channels
= hsotg
->params
.host_channels
;
1877 struct dwc2_host_chan
*channel
;
1881 if (!hsotg
->params
.host_dma
) {
1882 /* Flush out any channel requests in slave mode */
1883 for (i
= 0; i
< num_channels
; i
++) {
1884 channel
= hsotg
->hc_ptr_array
[i
];
1885 if (!list_empty(&channel
->hc_list_entry
))
1887 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(i
));
1888 if (hcchar
& HCCHAR_CHENA
) {
1889 hcchar
&= ~(HCCHAR_CHENA
| HCCHAR_EPDIR
);
1890 hcchar
|= HCCHAR_CHDIS
;
1891 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(i
));
1896 for (i
= 0; i
< num_channels
; i
++) {
1897 channel
= hsotg
->hc_ptr_array
[i
];
1898 if (!list_empty(&channel
->hc_list_entry
))
1900 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(i
));
1901 if (hcchar
& HCCHAR_CHENA
) {
1902 /* Halt the channel */
1903 hcchar
|= HCCHAR_CHDIS
;
1904 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(i
));
1907 dwc2_hc_cleanup(hsotg
, channel
);
1908 list_add_tail(&channel
->hc_list_entry
, &hsotg
->free_hc_list
);
1910 * Added for Descriptor DMA to prevent channel double cleanup in
1911 * release_channel_ddma(), which is called from ep_disable when
1912 * device disconnects
1916 /* All channels have been freed, mark them available */
1917 if (hsotg
->params
.uframe_sched
) {
1918 hsotg
->available_host_channels
=
1919 hsotg
->params
.host_channels
;
1921 hsotg
->non_periodic_channels
= 0;
1922 hsotg
->periodic_channels
= 0;
1927 * dwc2_hcd_connect() - Handles connect of the HCD
1929 * @hsotg: Pointer to struct dwc2_hsotg
1931 * Must be called with interrupt disabled and spinlock held
1933 void dwc2_hcd_connect(struct dwc2_hsotg
*hsotg
)
1935 if (hsotg
->lx_state
!= DWC2_L0
)
1936 usb_hcd_resume_root_hub(hsotg
->priv
);
1938 hsotg
->flags
.b
.port_connect_status_change
= 1;
1939 hsotg
->flags
.b
.port_connect_status
= 1;
1943 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1945 * @hsotg: Pointer to struct dwc2_hsotg
1946 * @force: If true, we won't try to reconnect even if we see device connected.
1948 * Must be called with interrupt disabled and spinlock held
1950 void dwc2_hcd_disconnect(struct dwc2_hsotg
*hsotg
, bool force
)
1955 /* Set status flags for the hub driver */
1956 hsotg
->flags
.b
.port_connect_status_change
= 1;
1957 hsotg
->flags
.b
.port_connect_status
= 0;
1960 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1961 * interrupt mask and status bits and disabling subsequent host
1962 * channel interrupts.
1964 intr
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
1965 intr
&= ~(GINTSTS_NPTXFEMP
| GINTSTS_PTXFEMP
| GINTSTS_HCHINT
);
1966 dwc2_writel(intr
, hsotg
->regs
+ GINTMSK
);
1967 intr
= GINTSTS_NPTXFEMP
| GINTSTS_PTXFEMP
| GINTSTS_HCHINT
;
1968 dwc2_writel(intr
, hsotg
->regs
+ GINTSTS
);
1971 * Turn off the vbus power only if the core has transitioned to device
1972 * mode. If still in host mode, need to keep power on to detect a
1975 if (dwc2_is_device_mode(hsotg
)) {
1976 if (hsotg
->op_state
!= OTG_STATE_A_SUSPEND
) {
1977 dev_dbg(hsotg
->dev
, "Disconnect: PortPower off\n");
1978 dwc2_writel(0, hsotg
->regs
+ HPRT0
);
1981 dwc2_disable_host_interrupts(hsotg
);
1984 /* Respond with an error status to all URBs in the schedule */
1985 dwc2_kill_all_urbs(hsotg
);
1987 if (dwc2_is_host_mode(hsotg
))
1988 /* Clean up any host channels that were in use */
1989 dwc2_hcd_cleanup_channels(hsotg
);
1991 dwc2_host_disconnect(hsotg
);
1994 * Add an extra check here to see if we're actually connected but
1995 * we don't have a detection interrupt pending. This can happen if:
1996 * 1. hardware sees connect
1997 * 2. hardware sees disconnect
1998 * 3. hardware sees connect
1999 * 4. dwc2_port_intr() - clears connect interrupt
2000 * 5. dwc2_handle_common_intr() - calls here
2002 * Without the extra check here we will end calling disconnect
2003 * and won't get any future interrupts to handle the connect.
2006 hprt0
= dwc2_readl(hsotg
->regs
+ HPRT0
);
2007 if (!(hprt0
& HPRT0_CONNDET
) && (hprt0
& HPRT0_CONNSTS
))
2008 dwc2_hcd_connect(hsotg
);
2013 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2015 * @hsotg: Pointer to struct dwc2_hsotg
2017 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg
*hsotg
)
2019 if (hsotg
->bus_suspended
) {
2020 hsotg
->flags
.b
.port_suspend_change
= 1;
2021 usb_hcd_resume_root_hub(hsotg
->priv
);
2024 if (hsotg
->lx_state
== DWC2_L1
)
2025 hsotg
->flags
.b
.port_l1_change
= 1;
2029 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2031 * @hsotg: Pointer to struct dwc2_hsotg
2033 * Must be called with interrupt disabled and spinlock held
2035 void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
)
2037 dev_dbg(hsotg
->dev
, "DWC OTG HCD STOP\n");
2040 * The root hub should be disconnected before this function is called.
2041 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2042 * and the QH lists (via ..._hcd_endpoint_disable).
2045 /* Turn off all host-specific interrupts */
2046 dwc2_disable_host_interrupts(hsotg
);
2048 /* Turn off the vbus power */
2049 dev_dbg(hsotg
->dev
, "PortPower off\n");
2050 dwc2_writel(0, hsotg
->regs
+ HPRT0
);
2053 /* Caller must hold driver lock */
2054 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg
*hsotg
,
2055 struct dwc2_hcd_urb
*urb
, struct dwc2_qh
*qh
,
2056 struct dwc2_qtd
*qtd
)
2062 if (!hsotg
->flags
.b
.port_connect_status
) {
2063 /* No longer connected */
2064 dev_err(hsotg
->dev
, "Not connected\n");
2068 dev_speed
= dwc2_host_get_speed(hsotg
, urb
->priv
);
2070 /* Some configurations cannot support LS traffic on a FS root port */
2071 if ((dev_speed
== USB_SPEED_LOW
) &&
2072 (hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
) &&
2073 (hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_UTMI
)) {
2074 u32 hprt0
= dwc2_readl(hsotg
->regs
+ HPRT0
);
2075 u32 prtspd
= (hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
2077 if (prtspd
== HPRT0_SPD_FULL_SPEED
)
2084 dwc2_hcd_qtd_init(qtd
, urb
);
2085 retval
= dwc2_hcd_qtd_add(hsotg
, qtd
, qh
);
2088 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2093 intr_mask
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
2094 if (!(intr_mask
& GINTSTS_SOF
)) {
2095 enum dwc2_transaction_type tr_type
;
2097 if (qtd
->qh
->ep_type
== USB_ENDPOINT_XFER_BULK
&&
2098 !(qtd
->urb
->flags
& URB_GIVEBACK_ASAP
))
2100 * Do not schedule SG transactions until qtd has
2101 * URB_GIVEBACK_ASAP set
2105 tr_type
= dwc2_hcd_select_transactions(hsotg
);
2106 if (tr_type
!= DWC2_TRANSACTION_NONE
)
2107 dwc2_hcd_queue_transactions(hsotg
, tr_type
);
2113 /* Must be called with interrupt disabled and spinlock held */
2114 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg
*hsotg
,
2115 struct dwc2_hcd_urb
*urb
)
2118 struct dwc2_qtd
*urb_qtd
;
2122 dev_dbg(hsotg
->dev
, "## Urb QTD is NULL ##\n");
2128 dev_dbg(hsotg
->dev
, "## Urb QTD QH is NULL ##\n");
2134 if (urb_qtd
->in_process
&& qh
->channel
) {
2135 dwc2_dump_channel_info(hsotg
, qh
->channel
);
2137 /* The QTD is in process (it has been assigned to a channel) */
2138 if (hsotg
->flags
.b
.port_connect_status
)
2140 * If still connected (i.e. in host mode), halt the
2141 * channel so it can be used for other transfers. If
2142 * no longer connected, the host registers can't be
2143 * written to halt the channel since the core is in
2146 dwc2_hc_halt(hsotg
, qh
->channel
,
2147 DWC2_HC_XFER_URB_DEQUEUE
);
2151 * Free the QTD and clean up the associated QH. Leave the QH in the
2152 * schedule if it has any remaining QTDs.
2154 if (!hsotg
->params
.dma_desc_enable
) {
2155 u8 in_process
= urb_qtd
->in_process
;
2157 dwc2_hcd_qtd_unlink_and_free(hsotg
, urb_qtd
, qh
);
2159 dwc2_hcd_qh_deactivate(hsotg
, qh
, 0);
2161 } else if (list_empty(&qh
->qtd_list
)) {
2162 dwc2_hcd_qh_unlink(hsotg
, qh
);
2165 dwc2_hcd_qtd_unlink_and_free(hsotg
, urb_qtd
, qh
);
2171 /* Must NOT be called with interrupt disabled or spinlock held */
2172 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg
*hsotg
,
2173 struct usb_host_endpoint
*ep
, int retry
)
2175 struct dwc2_qtd
*qtd
, *qtd_tmp
;
2177 unsigned long flags
;
2180 spin_lock_irqsave(&hsotg
->lock
, flags
);
2188 while (!list_empty(&qh
->qtd_list
) && retry
--) {
2191 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2196 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2198 spin_lock_irqsave(&hsotg
->lock
, flags
);
2206 dwc2_hcd_qh_unlink(hsotg
, qh
);
2208 /* Free each QTD in the QH's QTD list */
2209 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
, qtd_list_entry
)
2210 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
2214 if (qh
->channel
&& qh
->channel
->qh
== qh
)
2215 qh
->channel
->qh
= NULL
;
2217 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2219 dwc2_hcd_qh_free(hsotg
, qh
);
2225 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2230 /* Must be called with interrupt disabled and spinlock held */
2231 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg
*hsotg
,
2232 struct usb_host_endpoint
*ep
)
2234 struct dwc2_qh
*qh
= ep
->hcpriv
;
2239 qh
->data_toggle
= DWC2_HC_PID_DATA0
;
2245 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2246 * prepares the core for device mode or host mode operation
2248 * @hsotg: Programming view of the DWC_otg controller
2249 * @initial_setup: If true then this is the first init for this instance.
2251 static int dwc2_core_init(struct dwc2_hsotg
*hsotg
, bool initial_setup
)
2256 dev_dbg(hsotg
->dev
, "%s(%p)\n", __func__
, hsotg
);
2258 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
2260 /* Set ULPI External VBUS bit if needed */
2261 usbcfg
&= ~GUSBCFG_ULPI_EXT_VBUS_DRV
;
2262 if (hsotg
->params
.phy_ulpi_ext_vbus
)
2263 usbcfg
|= GUSBCFG_ULPI_EXT_VBUS_DRV
;
2265 /* Set external TS Dline pulsing bit if needed */
2266 usbcfg
&= ~GUSBCFG_TERMSELDLPULSE
;
2267 if (hsotg
->params
.ts_dline
)
2268 usbcfg
|= GUSBCFG_TERMSELDLPULSE
;
2270 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
2273 * Reset the Controller
2275 * We only need to reset the controller if this is a re-init.
2276 * For the first init we know for sure that earlier code reset us (it
2277 * needed to in order to properly detect various parameters).
2279 if (!initial_setup
) {
2280 retval
= dwc2_core_reset_and_force_dr_mode(hsotg
);
2282 dev_err(hsotg
->dev
, "%s(): Reset failed, aborting\n",
2289 * This needs to happen in FS mode before any other programming occurs
2291 retval
= dwc2_phy_init(hsotg
, initial_setup
);
2295 /* Program the GAHBCFG Register */
2296 retval
= dwc2_gahbcfg_init(hsotg
);
2300 /* Program the GUSBCFG register */
2301 dwc2_gusbcfg_init(hsotg
);
2303 /* Program the GOTGCTL register */
2304 otgctl
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
2305 otgctl
&= ~GOTGCTL_OTGVER
;
2306 dwc2_writel(otgctl
, hsotg
->regs
+ GOTGCTL
);
2308 /* Clear the SRP success bit for FS-I2c */
2309 hsotg
->srp_success
= 0;
2311 /* Enable common interrupts */
2312 dwc2_enable_common_interrupts(hsotg
);
2315 * Do device or host initialization based on mode during PCD and
2316 * HCD initialization
2318 if (dwc2_is_host_mode(hsotg
)) {
2319 dev_dbg(hsotg
->dev
, "Host Mode\n");
2320 hsotg
->op_state
= OTG_STATE_A_HOST
;
2322 dev_dbg(hsotg
->dev
, "Device Mode\n");
2323 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
2330 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2333 * @hsotg: Programming view of DWC_otg controller
2335 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2336 * request queues. Host channels are reset to ensure that they are ready for
2337 * performing transfers.
2339 static void dwc2_core_host_init(struct dwc2_hsotg
*hsotg
)
2341 u32 hcfg
, hfir
, otgctl
, usbcfg
;
2343 dev_dbg(hsotg
->dev
, "%s(%p)\n", __func__
, hsotg
);
2345 /* Set HS/FS Timeout Calibration to 7 (max available value).
2346 * The number of PHY clocks that the application programs in
2347 * this field is added to the high/full speed interpacket timeout
2348 * duration in the core to account for any additional delays
2349 * introduced by the PHY. This can be required, because the delay
2350 * introduced by the PHY in generating the linestate condition
2351 * can vary from one PHY to another.
2353 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
2354 usbcfg
|= GUSBCFG_TOUTCAL(7);
2355 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
2357 /* Restart the Phy Clock */
2358 dwc2_writel(0, hsotg
->regs
+ PCGCTL
);
2360 /* Initialize Host Configuration Register */
2361 dwc2_init_fs_ls_pclk_sel(hsotg
);
2362 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
2363 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
) {
2364 hcfg
= dwc2_readl(hsotg
->regs
+ HCFG
);
2365 hcfg
|= HCFG_FSLSSUPP
;
2366 dwc2_writel(hcfg
, hsotg
->regs
+ HCFG
);
2370 * This bit allows dynamic reloading of the HFIR register during
2371 * runtime. This bit needs to be programmed during initial configuration
2372 * and its value must not be changed during runtime.
2374 if (hsotg
->params
.reload_ctl
) {
2375 hfir
= dwc2_readl(hsotg
->regs
+ HFIR
);
2376 hfir
|= HFIR_RLDCTRL
;
2377 dwc2_writel(hfir
, hsotg
->regs
+ HFIR
);
2380 if (hsotg
->params
.dma_desc_enable
) {
2381 u32 op_mode
= hsotg
->hw_params
.op_mode
;
2383 if (hsotg
->hw_params
.snpsid
< DWC2_CORE_REV_2_90a
||
2384 !hsotg
->hw_params
.dma_desc_enable
||
2385 op_mode
== GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE
||
2386 op_mode
== GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE
||
2387 op_mode
== GHWCFG2_OP_MODE_UNDEFINED
) {
2389 "Hardware does not support descriptor DMA mode -\n");
2391 "falling back to buffer DMA mode.\n");
2392 hsotg
->params
.dma_desc_enable
= false;
2394 hcfg
= dwc2_readl(hsotg
->regs
+ HCFG
);
2395 hcfg
|= HCFG_DESCDMA
;
2396 dwc2_writel(hcfg
, hsotg
->regs
+ HCFG
);
2400 /* Configure data FIFO sizes */
2401 dwc2_config_fifos(hsotg
);
2403 /* TODO - check this */
2404 /* Clear Host Set HNP Enable in the OTG Control Register */
2405 otgctl
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
2406 otgctl
&= ~GOTGCTL_HSTSETHNPEN
;
2407 dwc2_writel(otgctl
, hsotg
->regs
+ GOTGCTL
);
2409 /* Make sure the FIFOs are flushed */
2410 dwc2_flush_tx_fifo(hsotg
, 0x10 /* all TX FIFOs */);
2411 dwc2_flush_rx_fifo(hsotg
);
2413 /* Clear Host Set HNP Enable in the OTG Control Register */
2414 otgctl
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
2415 otgctl
&= ~GOTGCTL_HSTSETHNPEN
;
2416 dwc2_writel(otgctl
, hsotg
->regs
+ GOTGCTL
);
2418 if (!hsotg
->params
.dma_desc_enable
) {
2419 int num_channels
, i
;
2422 /* Flush out any leftover queued requests */
2423 num_channels
= hsotg
->params
.host_channels
;
2424 for (i
= 0; i
< num_channels
; i
++) {
2425 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(i
));
2426 hcchar
&= ~HCCHAR_CHENA
;
2427 hcchar
|= HCCHAR_CHDIS
;
2428 hcchar
&= ~HCCHAR_EPDIR
;
2429 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(i
));
2432 /* Halt all channels to put them into a known state */
2433 for (i
= 0; i
< num_channels
; i
++) {
2436 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(i
));
2437 hcchar
|= HCCHAR_CHENA
| HCCHAR_CHDIS
;
2438 hcchar
&= ~HCCHAR_EPDIR
;
2439 dwc2_writel(hcchar
, hsotg
->regs
+ HCCHAR(i
));
2440 dev_dbg(hsotg
->dev
, "%s: Halt channel %d\n",
2443 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(i
));
2444 if (++count
> 1000) {
2446 "Unable to clear enable on channel %d\n",
2451 } while (hcchar
& HCCHAR_CHENA
);
2455 /* Turn on the vbus power */
2456 dev_dbg(hsotg
->dev
, "Init: Port Power? op_state=%d\n", hsotg
->op_state
);
2457 if (hsotg
->op_state
== OTG_STATE_A_HOST
) {
2458 u32 hprt0
= dwc2_read_hprt0(hsotg
);
2460 dev_dbg(hsotg
->dev
, "Init: Power Port (%d)\n",
2461 !!(hprt0
& HPRT0_PWR
));
2462 if (!(hprt0
& HPRT0_PWR
)) {
2464 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
2468 dwc2_enable_host_interrupts(hsotg
);
2472 * Initializes dynamic portions of the DWC_otg HCD state
2474 * Must be called with interrupt disabled and spinlock held
2476 static void dwc2_hcd_reinit(struct dwc2_hsotg
*hsotg
)
2478 struct dwc2_host_chan
*chan
, *chan_tmp
;
2482 hsotg
->flags
.d32
= 0;
2483 hsotg
->non_periodic_qh_ptr
= &hsotg
->non_periodic_sched_active
;
2485 if (hsotg
->params
.uframe_sched
) {
2486 hsotg
->available_host_channels
=
2487 hsotg
->params
.host_channels
;
2489 hsotg
->non_periodic_channels
= 0;
2490 hsotg
->periodic_channels
= 0;
2494 * Put all channels in the free channel list and clean up channel
2497 list_for_each_entry_safe(chan
, chan_tmp
, &hsotg
->free_hc_list
,
2499 list_del_init(&chan
->hc_list_entry
);
2501 num_channels
= hsotg
->params
.host_channels
;
2502 for (i
= 0; i
< num_channels
; i
++) {
2503 chan
= hsotg
->hc_ptr_array
[i
];
2504 list_add_tail(&chan
->hc_list_entry
, &hsotg
->free_hc_list
);
2505 dwc2_hc_cleanup(hsotg
, chan
);
2508 /* Initialize the DWC core for host mode operation */
2509 dwc2_core_host_init(hsotg
);
2512 static void dwc2_hc_init_split(struct dwc2_hsotg
*hsotg
,
2513 struct dwc2_host_chan
*chan
,
2514 struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
)
2516 int hub_addr
, hub_port
;
2519 chan
->xact_pos
= qtd
->isoc_split_pos
;
2520 chan
->complete_split
= qtd
->complete_split
;
2521 dwc2_host_hub_info(hsotg
, urb
->priv
, &hub_addr
, &hub_port
);
2522 chan
->hub_addr
= (u8
)hub_addr
;
2523 chan
->hub_port
= (u8
)hub_port
;
2526 static void dwc2_hc_init_xfer(struct dwc2_hsotg
*hsotg
,
2527 struct dwc2_host_chan
*chan
,
2528 struct dwc2_qtd
*qtd
)
2530 struct dwc2_hcd_urb
*urb
= qtd
->urb
;
2531 struct dwc2_hcd_iso_packet_desc
*frame_desc
;
2533 switch (dwc2_hcd_get_pipe_type(&urb
->pipe_info
)) {
2534 case USB_ENDPOINT_XFER_CONTROL
:
2535 chan
->ep_type
= USB_ENDPOINT_XFER_CONTROL
;
2537 switch (qtd
->control_phase
) {
2538 case DWC2_CONTROL_SETUP
:
2539 dev_vdbg(hsotg
->dev
, " Control setup transaction\n");
2542 chan
->data_pid_start
= DWC2_HC_PID_SETUP
;
2543 if (hsotg
->params
.host_dma
)
2544 chan
->xfer_dma
= urb
->setup_dma
;
2546 chan
->xfer_buf
= urb
->setup_packet
;
2550 case DWC2_CONTROL_DATA
:
2551 dev_vdbg(hsotg
->dev
, " Control data transaction\n");
2552 chan
->data_pid_start
= qtd
->data_toggle
;
2555 case DWC2_CONTROL_STATUS
:
2557 * Direction is opposite of data direction or IN if no
2560 dev_vdbg(hsotg
->dev
, " Control status transaction\n");
2561 if (urb
->length
== 0)
2565 dwc2_hcd_is_pipe_out(&urb
->pipe_info
);
2568 chan
->data_pid_start
= DWC2_HC_PID_DATA1
;
2570 if (hsotg
->params
.host_dma
)
2571 chan
->xfer_dma
= hsotg
->status_buf_dma
;
2573 chan
->xfer_buf
= hsotg
->status_buf
;
2578 case USB_ENDPOINT_XFER_BULK
:
2579 chan
->ep_type
= USB_ENDPOINT_XFER_BULK
;
2582 case USB_ENDPOINT_XFER_INT
:
2583 chan
->ep_type
= USB_ENDPOINT_XFER_INT
;
2586 case USB_ENDPOINT_XFER_ISOC
:
2587 chan
->ep_type
= USB_ENDPOINT_XFER_ISOC
;
2588 if (hsotg
->params
.dma_desc_enable
)
2591 frame_desc
= &urb
->iso_descs
[qtd
->isoc_frame_index
];
2592 frame_desc
->status
= 0;
2594 if (hsotg
->params
.host_dma
) {
2595 chan
->xfer_dma
= urb
->dma
;
2596 chan
->xfer_dma
+= frame_desc
->offset
+
2597 qtd
->isoc_split_offset
;
2599 chan
->xfer_buf
= urb
->buf
;
2600 chan
->xfer_buf
+= frame_desc
->offset
+
2601 qtd
->isoc_split_offset
;
2604 chan
->xfer_len
= frame_desc
->length
- qtd
->isoc_split_offset
;
2606 if (chan
->xact_pos
== DWC2_HCSPLT_XACTPOS_ALL
) {
2607 if (chan
->xfer_len
<= 188)
2608 chan
->xact_pos
= DWC2_HCSPLT_XACTPOS_ALL
;
2610 chan
->xact_pos
= DWC2_HCSPLT_XACTPOS_BEGIN
;
2616 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg
*hsotg
,
2618 struct dwc2_host_chan
*chan
)
2620 if (!hsotg
->unaligned_cache
||
2621 chan
->max_packet
> DWC2_KMEM_UNALIGNED_BUF_SIZE
)
2624 if (!qh
->dw_align_buf
) {
2625 qh
->dw_align_buf
= kmem_cache_alloc(hsotg
->unaligned_cache
,
2626 GFP_ATOMIC
| GFP_DMA
);
2627 if (!qh
->dw_align_buf
)
2631 qh
->dw_align_buf_dma
= dma_map_single(hsotg
->dev
, qh
->dw_align_buf
,
2632 DWC2_KMEM_UNALIGNED_BUF_SIZE
,
2635 if (dma_mapping_error(hsotg
->dev
, qh
->dw_align_buf_dma
)) {
2636 dev_err(hsotg
->dev
, "can't map align_buf\n");
2637 chan
->align_buf
= 0;
2641 chan
->align_buf
= qh
->dw_align_buf_dma
;
2645 #define DWC2_USB_DMA_ALIGN 4
2647 static void dwc2_free_dma_aligned_buffer(struct urb
*urb
)
2649 void *stored_xfer_buffer
;
2651 if (!(urb
->transfer_flags
& URB_ALIGNED_TEMP_BUFFER
))
2654 /* Restore urb->transfer_buffer from the end of the allocated area */
2655 memcpy(&stored_xfer_buffer
, urb
->transfer_buffer
+
2656 urb
->transfer_buffer_length
, sizeof(urb
->transfer_buffer
));
2658 if (usb_urb_dir_in(urb
))
2659 memcpy(stored_xfer_buffer
, urb
->transfer_buffer
,
2660 urb
->transfer_buffer_length
);
2661 kfree(urb
->transfer_buffer
);
2662 urb
->transfer_buffer
= stored_xfer_buffer
;
2664 urb
->transfer_flags
&= ~URB_ALIGNED_TEMP_BUFFER
;
2667 static int dwc2_alloc_dma_aligned_buffer(struct urb
*urb
, gfp_t mem_flags
)
2670 size_t kmalloc_size
;
2672 if (urb
->num_sgs
|| urb
->sg
||
2673 urb
->transfer_buffer_length
== 0 ||
2674 !((uintptr_t)urb
->transfer_buffer
& (DWC2_USB_DMA_ALIGN
- 1)))
2678 * Allocate a buffer with enough padding for original transfer_buffer
2679 * pointer. This allocation is guaranteed to be aligned properly for
2682 kmalloc_size
= urb
->transfer_buffer_length
+
2683 sizeof(urb
->transfer_buffer
);
2685 kmalloc_ptr
= kmalloc(kmalloc_size
, mem_flags
);
2690 * Position value of original urb->transfer_buffer pointer to the end
2691 * of allocation for later referencing
2693 memcpy(kmalloc_ptr
+ urb
->transfer_buffer_length
,
2694 &urb
->transfer_buffer
, sizeof(urb
->transfer_buffer
));
2696 if (usb_urb_dir_out(urb
))
2697 memcpy(kmalloc_ptr
, urb
->transfer_buffer
,
2698 urb
->transfer_buffer_length
);
2699 urb
->transfer_buffer
= kmalloc_ptr
;
2701 urb
->transfer_flags
|= URB_ALIGNED_TEMP_BUFFER
;
2706 static int dwc2_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
2711 /* We assume setup_dma is always aligned; warn if not */
2712 WARN_ON_ONCE(urb
->setup_dma
&&
2713 (urb
->setup_dma
& (DWC2_USB_DMA_ALIGN
- 1)));
2715 ret
= dwc2_alloc_dma_aligned_buffer(urb
, mem_flags
);
2719 ret
= usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
2721 dwc2_free_dma_aligned_buffer(urb
);
2726 static void dwc2_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
2728 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
2729 dwc2_free_dma_aligned_buffer(urb
);
2733 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2734 * channel and initializes the host channel to perform the transactions. The
2735 * host channel is removed from the free list.
2737 * @hsotg: The HCD state structure
2738 * @qh: Transactions from the first QTD for this QH are selected and assigned
2739 * to a free host channel
2741 static int dwc2_assign_and_init_hc(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
2743 struct dwc2_host_chan
*chan
;
2744 struct dwc2_hcd_urb
*urb
;
2745 struct dwc2_qtd
*qtd
;
2748 dev_vdbg(hsotg
->dev
, "%s(%p,%p)\n", __func__
, hsotg
, qh
);
2750 if (list_empty(&qh
->qtd_list
)) {
2751 dev_dbg(hsotg
->dev
, "No QTDs in QH list\n");
2755 if (list_empty(&hsotg
->free_hc_list
)) {
2756 dev_dbg(hsotg
->dev
, "No free channel to assign\n");
2760 chan
= list_first_entry(&hsotg
->free_hc_list
, struct dwc2_host_chan
,
2763 /* Remove host channel from free list */
2764 list_del_init(&chan
->hc_list_entry
);
2766 qtd
= list_first_entry(&qh
->qtd_list
, struct dwc2_qtd
, qtd_list_entry
);
2769 qtd
->in_process
= 1;
2772 * Use usb_pipedevice to determine device address. This address is
2773 * 0 before the SET_ADDRESS command and the correct address afterward.
2775 chan
->dev_addr
= dwc2_hcd_get_dev_addr(&urb
->pipe_info
);
2776 chan
->ep_num
= dwc2_hcd_get_ep_num(&urb
->pipe_info
);
2777 chan
->speed
= qh
->dev_speed
;
2778 chan
->max_packet
= dwc2_max_packet(qh
->maxp
);
2780 chan
->xfer_started
= 0;
2781 chan
->halt_status
= DWC2_HC_XFER_NO_HALT_STATUS
;
2782 chan
->error_state
= (qtd
->error_count
> 0);
2783 chan
->halt_on_queue
= 0;
2784 chan
->halt_pending
= 0;
2788 * The following values may be modified in the transfer type section
2789 * below. The xfer_len value may be reduced when the transfer is
2790 * started to accommodate the max widths of the XferSize and PktCnt
2791 * fields in the HCTSIZn register.
2794 chan
->ep_is_in
= (dwc2_hcd_is_pipe_in(&urb
->pipe_info
) != 0);
2798 chan
->do_ping
= qh
->ping_state
;
2800 chan
->data_pid_start
= qh
->data_toggle
;
2801 chan
->multi_count
= 1;
2803 if (urb
->actual_length
> urb
->length
&&
2804 !dwc2_hcd_is_pipe_in(&urb
->pipe_info
))
2805 urb
->actual_length
= urb
->length
;
2807 if (hsotg
->params
.host_dma
)
2808 chan
->xfer_dma
= urb
->dma
+ urb
->actual_length
;
2810 chan
->xfer_buf
= (u8
*)urb
->buf
+ urb
->actual_length
;
2812 chan
->xfer_len
= urb
->length
- urb
->actual_length
;
2813 chan
->xfer_count
= 0;
2815 /* Set the split attributes if required */
2817 dwc2_hc_init_split(hsotg
, chan
, qtd
, urb
);
2821 /* Set the transfer attributes */
2822 dwc2_hc_init_xfer(hsotg
, chan
, qtd
);
2824 /* For non-dword aligned buffers */
2825 if (hsotg
->params
.host_dma
&& qh
->do_split
&&
2826 chan
->ep_is_in
&& (chan
->xfer_dma
& 0x3)) {
2827 dev_vdbg(hsotg
->dev
, "Non-aligned buffer\n");
2828 if (dwc2_alloc_split_dma_aligned_buf(hsotg
, qh
, chan
)) {
2830 "Failed to allocate memory to handle non-aligned buffer\n");
2831 /* Add channel back to free list */
2832 chan
->align_buf
= 0;
2833 chan
->multi_count
= 0;
2834 list_add_tail(&chan
->hc_list_entry
,
2835 &hsotg
->free_hc_list
);
2836 qtd
->in_process
= 0;
2842 * We assume that DMA is always aligned in non-split
2843 * case or split out case. Warn if not.
2845 WARN_ON_ONCE(hsotg
->params
.host_dma
&&
2846 (chan
->xfer_dma
& 0x3));
2847 chan
->align_buf
= 0;
2850 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
2851 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
2853 * This value may be modified when the transfer is started
2854 * to reflect the actual transfer length
2856 chan
->multi_count
= dwc2_hb_mult(qh
->maxp
);
2858 if (hsotg
->params
.dma_desc_enable
) {
2859 chan
->desc_list_addr
= qh
->desc_list_dma
;
2860 chan
->desc_list_sz
= qh
->desc_list_sz
;
2863 dwc2_hc_init(hsotg
, chan
);
2870 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2871 * schedule and assigns them to available host channels. Called from the HCD
2872 * interrupt handler functions.
2874 * @hsotg: The HCD state structure
2876 * Return: The types of new transactions that were assigned to host channels
2878 enum dwc2_transaction_type
dwc2_hcd_select_transactions(
2879 struct dwc2_hsotg
*hsotg
)
2881 enum dwc2_transaction_type ret_val
= DWC2_TRANSACTION_NONE
;
2882 struct list_head
*qh_ptr
;
2886 #ifdef DWC2_DEBUG_SOF
2887 dev_vdbg(hsotg
->dev
, " Select Transactions\n");
2890 /* Process entries in the periodic ready list */
2891 qh_ptr
= hsotg
->periodic_sched_ready
.next
;
2892 while (qh_ptr
!= &hsotg
->periodic_sched_ready
) {
2893 if (list_empty(&hsotg
->free_hc_list
))
2895 if (hsotg
->params
.uframe_sched
) {
2896 if (hsotg
->available_host_channels
<= 1)
2898 hsotg
->available_host_channels
--;
2900 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2901 if (dwc2_assign_and_init_hc(hsotg
, qh
))
2905 * Move the QH from the periodic ready schedule to the
2906 * periodic assigned schedule
2908 qh_ptr
= qh_ptr
->next
;
2909 list_move_tail(&qh
->qh_list_entry
,
2910 &hsotg
->periodic_sched_assigned
);
2911 ret_val
= DWC2_TRANSACTION_PERIODIC
;
2915 * Process entries in the inactive portion of the non-periodic
2916 * schedule. Some free host channels may not be used if they are
2917 * reserved for periodic transfers.
2919 num_channels
= hsotg
->params
.host_channels
;
2920 qh_ptr
= hsotg
->non_periodic_sched_inactive
.next
;
2921 while (qh_ptr
!= &hsotg
->non_periodic_sched_inactive
) {
2922 if (!hsotg
->params
.uframe_sched
&&
2923 hsotg
->non_periodic_channels
>= num_channels
-
2924 hsotg
->periodic_channels
)
2926 if (list_empty(&hsotg
->free_hc_list
))
2928 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2929 if (hsotg
->params
.uframe_sched
) {
2930 if (hsotg
->available_host_channels
< 1)
2932 hsotg
->available_host_channels
--;
2935 if (dwc2_assign_and_init_hc(hsotg
, qh
))
2939 * Move the QH from the non-periodic inactive schedule to the
2940 * non-periodic active schedule
2942 qh_ptr
= qh_ptr
->next
;
2943 list_move_tail(&qh
->qh_list_entry
,
2944 &hsotg
->non_periodic_sched_active
);
2946 if (ret_val
== DWC2_TRANSACTION_NONE
)
2947 ret_val
= DWC2_TRANSACTION_NON_PERIODIC
;
2949 ret_val
= DWC2_TRANSACTION_ALL
;
2951 if (!hsotg
->params
.uframe_sched
)
2952 hsotg
->non_periodic_channels
++;
2959 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2960 * a host channel associated with either a periodic or non-periodic transfer
2962 * @hsotg: The HCD state structure
2963 * @chan: Host channel descriptor associated with either a periodic or
2964 * non-periodic transfer
2965 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2966 * for periodic transfers or the non-periodic Tx FIFO
2967 * for non-periodic transfers
2969 * Return: 1 if a request is queued and more requests may be needed to
2970 * complete the transfer, 0 if no more requests are required for this
2971 * transfer, -1 if there is insufficient space in the Tx FIFO
2973 * This function assumes that there is space available in the appropriate
2974 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2975 * it checks whether space is available in the appropriate Tx FIFO.
2977 * Must be called with interrupt disabled and spinlock held
2979 static int dwc2_queue_transaction(struct dwc2_hsotg
*hsotg
,
2980 struct dwc2_host_chan
*chan
,
2981 u16 fifo_dwords_avail
)
2986 /* Put ourselves on the list to keep order straight */
2987 list_move_tail(&chan
->split_order_list_entry
,
2988 &hsotg
->split_order
);
2990 if (hsotg
->params
.host_dma
) {
2991 if (hsotg
->params
.dma_desc_enable
) {
2992 if (!chan
->xfer_started
||
2993 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
2994 dwc2_hcd_start_xfer_ddma(hsotg
, chan
->qh
);
2995 chan
->qh
->ping_state
= 0;
2997 } else if (!chan
->xfer_started
) {
2998 dwc2_hc_start_transfer(hsotg
, chan
);
2999 chan
->qh
->ping_state
= 0;
3001 } else if (chan
->halt_pending
) {
3002 /* Don't queue a request if the channel has been halted */
3003 } else if (chan
->halt_on_queue
) {
3004 dwc2_hc_halt(hsotg
, chan
, chan
->halt_status
);
3005 } else if (chan
->do_ping
) {
3006 if (!chan
->xfer_started
)
3007 dwc2_hc_start_transfer(hsotg
, chan
);
3008 } else if (!chan
->ep_is_in
||
3009 chan
->data_pid_start
== DWC2_HC_PID_SETUP
) {
3010 if ((fifo_dwords_avail
* 4) >= chan
->max_packet
) {
3011 if (!chan
->xfer_started
) {
3012 dwc2_hc_start_transfer(hsotg
, chan
);
3015 retval
= dwc2_hc_continue_transfer(hsotg
, chan
);
3021 if (!chan
->xfer_started
) {
3022 dwc2_hc_start_transfer(hsotg
, chan
);
3025 retval
= dwc2_hc_continue_transfer(hsotg
, chan
);
3033 * Processes periodic channels for the next frame and queues transactions for
3034 * these channels to the DWC_otg controller. After queueing transactions, the
3035 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3036 * to queue as Periodic Tx FIFO or request queue space becomes available.
3037 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3039 * Must be called with interrupt disabled and spinlock held
3041 static void dwc2_process_periodic_channels(struct dwc2_hsotg
*hsotg
)
3043 struct list_head
*qh_ptr
;
3049 bool no_queue_space
= false;
3050 bool no_fifo_space
= false;
3053 /* If empty list then just adjust interrupt enables */
3054 if (list_empty(&hsotg
->periodic_sched_assigned
))
3058 dev_vdbg(hsotg
->dev
, "Queue periodic transactions\n");
3060 tx_status
= dwc2_readl(hsotg
->regs
+ HPTXSTS
);
3061 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3062 TXSTS_QSPCAVAIL_SHIFT
;
3063 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3064 TXSTS_FSPCAVAIL_SHIFT
;
3067 dev_vdbg(hsotg
->dev
, " P Tx Req Queue Space Avail (before queue): %d\n",
3069 dev_vdbg(hsotg
->dev
, " P Tx FIFO Space Avail (before queue): %d\n",
3073 qh_ptr
= hsotg
->periodic_sched_assigned
.next
;
3074 while (qh_ptr
!= &hsotg
->periodic_sched_assigned
) {
3075 tx_status
= dwc2_readl(hsotg
->regs
+ HPTXSTS
);
3076 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3077 TXSTS_QSPCAVAIL_SHIFT
;
3078 if (qspcavail
== 0) {
3079 no_queue_space
= true;
3083 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
3085 qh_ptr
= qh_ptr
->next
;
3089 /* Make sure EP's TT buffer is clean before queueing qtds */
3090 if (qh
->tt_buffer_dirty
) {
3091 qh_ptr
= qh_ptr
->next
;
3096 * Set a flag if we're queuing high-bandwidth in slave mode.
3097 * The flag prevents any halts to get into the request queue in
3098 * the middle of multiple high-bandwidth packets getting queued.
3100 if (!hsotg
->params
.host_dma
&&
3101 qh
->channel
->multi_count
> 1)
3102 hsotg
->queuing_high_bandwidth
= 1;
3104 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3105 TXSTS_FSPCAVAIL_SHIFT
;
3106 status
= dwc2_queue_transaction(hsotg
, qh
->channel
, fspcavail
);
3108 no_fifo_space
= true;
3113 * In Slave mode, stay on the current transfer until there is
3114 * nothing more to do or the high-bandwidth request count is
3115 * reached. In DMA mode, only need to queue one request. The
3116 * controller automatically handles multiple packets for
3117 * high-bandwidth transfers.
3119 if (hsotg
->params
.host_dma
|| status
== 0 ||
3120 qh
->channel
->requests
== qh
->channel
->multi_count
) {
3121 qh_ptr
= qh_ptr
->next
;
3123 * Move the QH from the periodic assigned schedule to
3124 * the periodic queued schedule
3126 list_move_tail(&qh
->qh_list_entry
,
3127 &hsotg
->periodic_sched_queued
);
3129 /* done queuing high bandwidth */
3130 hsotg
->queuing_high_bandwidth
= 0;
3135 if (no_queue_space
|| no_fifo_space
||
3136 (!hsotg
->params
.host_dma
&&
3137 !list_empty(&hsotg
->periodic_sched_assigned
))) {
3139 * May need to queue more transactions as the request
3140 * queue or Tx FIFO empties. Enable the periodic Tx
3141 * FIFO empty interrupt. (Always use the half-empty
3142 * level to ensure that new requests are loaded as
3143 * soon as possible.)
3145 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3146 if (!(gintmsk
& GINTSTS_PTXFEMP
)) {
3147 gintmsk
|= GINTSTS_PTXFEMP
;
3148 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3152 * Disable the Tx FIFO empty interrupt since there are
3153 * no more transactions that need to be queued right
3154 * now. This function is called from interrupt
3155 * handlers to queue more transactions as transfer
3158 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3159 if (gintmsk
& GINTSTS_PTXFEMP
) {
3160 gintmsk
&= ~GINTSTS_PTXFEMP
;
3161 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3167 * Processes active non-periodic channels and queues transactions for these
3168 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3169 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3170 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3171 * FIFO Empty interrupt is disabled.
3173 * Must be called with interrupt disabled and spinlock held
3175 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg
*hsotg
)
3177 struct list_head
*orig_qh_ptr
;
3184 int no_queue_space
= 0;
3185 int no_fifo_space
= 0;
3188 dev_vdbg(hsotg
->dev
, "Queue non-periodic transactions\n");
3190 tx_status
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
3191 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3192 TXSTS_QSPCAVAIL_SHIFT
;
3193 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3194 TXSTS_FSPCAVAIL_SHIFT
;
3195 dev_vdbg(hsotg
->dev
, " NP Tx Req Queue Space Avail (before queue): %d\n",
3197 dev_vdbg(hsotg
->dev
, " NP Tx FIFO Space Avail (before queue): %d\n",
3201 * Keep track of the starting point. Skip over the start-of-list
3204 if (hsotg
->non_periodic_qh_ptr
== &hsotg
->non_periodic_sched_active
)
3205 hsotg
->non_periodic_qh_ptr
= hsotg
->non_periodic_qh_ptr
->next
;
3206 orig_qh_ptr
= hsotg
->non_periodic_qh_ptr
;
3209 * Process once through the active list or until no more space is
3210 * available in the request queue or the Tx FIFO
3213 tx_status
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
3214 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3215 TXSTS_QSPCAVAIL_SHIFT
;
3216 if (!hsotg
->params
.host_dma
&& qspcavail
== 0) {
3221 qh
= list_entry(hsotg
->non_periodic_qh_ptr
, struct dwc2_qh
,
3226 /* Make sure EP's TT buffer is clean before queueing qtds */
3227 if (qh
->tt_buffer_dirty
)
3230 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3231 TXSTS_FSPCAVAIL_SHIFT
;
3232 status
= dwc2_queue_transaction(hsotg
, qh
->channel
, fspcavail
);
3236 } else if (status
< 0) {
3241 /* Advance to next QH, skipping start-of-list entry */
3242 hsotg
->non_periodic_qh_ptr
= hsotg
->non_periodic_qh_ptr
->next
;
3243 if (hsotg
->non_periodic_qh_ptr
==
3244 &hsotg
->non_periodic_sched_active
)
3245 hsotg
->non_periodic_qh_ptr
=
3246 hsotg
->non_periodic_qh_ptr
->next
;
3247 } while (hsotg
->non_periodic_qh_ptr
!= orig_qh_ptr
);
3249 if (!hsotg
->params
.host_dma
) {
3250 tx_status
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
3251 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3252 TXSTS_QSPCAVAIL_SHIFT
;
3253 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3254 TXSTS_FSPCAVAIL_SHIFT
;
3255 dev_vdbg(hsotg
->dev
,
3256 " NP Tx Req Queue Space Avail (after queue): %d\n",
3258 dev_vdbg(hsotg
->dev
,
3259 " NP Tx FIFO Space Avail (after queue): %d\n",
3262 if (more_to_do
|| no_queue_space
|| no_fifo_space
) {
3264 * May need to queue more transactions as the request
3265 * queue or Tx FIFO empties. Enable the non-periodic
3266 * Tx FIFO empty interrupt. (Always use the half-empty
3267 * level to ensure that new requests are loaded as
3268 * soon as possible.)
3270 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3271 gintmsk
|= GINTSTS_NPTXFEMP
;
3272 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3275 * Disable the Tx FIFO empty interrupt since there are
3276 * no more transactions that need to be queued right
3277 * now. This function is called from interrupt
3278 * handlers to queue more transactions as transfer
3281 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3282 gintmsk
&= ~GINTSTS_NPTXFEMP
;
3283 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3289 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3290 * and queues transactions for these channels to the DWC_otg controller. Called
3291 * from the HCD interrupt handler functions.
3293 * @hsotg: The HCD state structure
3294 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3297 * Must be called with interrupt disabled and spinlock held
3299 void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
3300 enum dwc2_transaction_type tr_type
)
3302 #ifdef DWC2_DEBUG_SOF
3303 dev_vdbg(hsotg
->dev
, "Queue Transactions\n");
3305 /* Process host channels associated with periodic transfers */
3306 if (tr_type
== DWC2_TRANSACTION_PERIODIC
||
3307 tr_type
== DWC2_TRANSACTION_ALL
)
3308 dwc2_process_periodic_channels(hsotg
);
3310 /* Process host channels associated with non-periodic transfers */
3311 if (tr_type
== DWC2_TRANSACTION_NON_PERIODIC
||
3312 tr_type
== DWC2_TRANSACTION_ALL
) {
3313 if (!list_empty(&hsotg
->non_periodic_sched_active
)) {
3314 dwc2_process_non_periodic_channels(hsotg
);
3317 * Ensure NP Tx FIFO empty interrupt is disabled when
3318 * there are no non-periodic transfers to process
3320 u32 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3322 gintmsk
&= ~GINTSTS_NPTXFEMP
;
3323 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3328 static void dwc2_conn_id_status_change(struct work_struct
*work
)
3330 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
3334 unsigned long flags
;
3336 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3338 gotgctl
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
3339 dev_dbg(hsotg
->dev
, "gotgctl=%0x\n", gotgctl
);
3340 dev_dbg(hsotg
->dev
, "gotgctl.b.conidsts=%d\n",
3341 !!(gotgctl
& GOTGCTL_CONID_B
));
3343 /* B-Device connector (Device Mode) */
3344 if (gotgctl
& GOTGCTL_CONID_B
) {
3345 /* Wait for switch to device mode */
3346 dev_dbg(hsotg
->dev
, "connId B\n");
3347 if (hsotg
->bus_suspended
) {
3348 dev_info(hsotg
->dev
,
3349 "Do port resume before switching to device mode\n");
3350 dwc2_port_resume(hsotg
);
3352 while (!dwc2_is_device_mode(hsotg
)) {
3353 dev_info(hsotg
->dev
,
3354 "Waiting for Peripheral Mode, Mode=%s\n",
3355 dwc2_is_host_mode(hsotg
) ? "Host" :
3359 * Sometimes the initial GOTGCTRL read is wrong, so
3360 * check it again and jump to host mode if that was
3363 gotgctl
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
3364 if (!(gotgctl
& GOTGCTL_CONID_B
))
3371 "Connection id status change timed out\n");
3372 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
3373 dwc2_core_init(hsotg
, false);
3374 dwc2_enable_global_interrupts(hsotg
);
3375 spin_lock_irqsave(&hsotg
->lock
, flags
);
3376 dwc2_hsotg_core_init_disconnected(hsotg
, false);
3377 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3378 dwc2_hsotg_core_connect(hsotg
);
3381 /* A-Device connector (Host Mode) */
3382 dev_dbg(hsotg
->dev
, "connId A\n");
3383 while (!dwc2_is_host_mode(hsotg
)) {
3384 dev_info(hsotg
->dev
, "Waiting for Host Mode, Mode=%s\n",
3385 dwc2_is_host_mode(hsotg
) ?
3386 "Host" : "Peripheral");
3393 "Connection id status change timed out\n");
3395 spin_lock_irqsave(&hsotg
->lock
, flags
);
3396 dwc2_hsotg_disconnect(hsotg
);
3397 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3399 hsotg
->op_state
= OTG_STATE_A_HOST
;
3400 /* Initialize the Core for Host mode */
3401 dwc2_core_init(hsotg
, false);
3402 dwc2_enable_global_interrupts(hsotg
);
3403 dwc2_hcd_start(hsotg
);
3407 static void dwc2_wakeup_detected(unsigned long data
)
3409 struct dwc2_hsotg
*hsotg
= (struct dwc2_hsotg
*)data
;
3412 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3415 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3416 * so that OPT tests pass with all PHYs.)
3418 hprt0
= dwc2_read_hprt0(hsotg
);
3419 dev_dbg(hsotg
->dev
, "Resume: HPRT0=%0x\n", hprt0
);
3420 hprt0
&= ~HPRT0_RES
;
3421 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3422 dev_dbg(hsotg
->dev
, "Clear Resume: HPRT0=%0x\n",
3423 dwc2_readl(hsotg
->regs
+ HPRT0
));
3425 dwc2_hcd_rem_wakeup(hsotg
);
3426 hsotg
->bus_suspended
= false;
3428 /* Change to L0 state */
3429 hsotg
->lx_state
= DWC2_L0
;
3432 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg
*hsotg
)
3434 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
3436 return hcd
->self
.b_hnp_enable
;
3439 /* Must NOT be called with interrupt disabled or spinlock held */
3440 static void dwc2_port_suspend(struct dwc2_hsotg
*hsotg
, u16 windex
)
3442 unsigned long flags
;
3447 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3449 spin_lock_irqsave(&hsotg
->lock
, flags
);
3451 if (windex
== hsotg
->otg_port
&& dwc2_host_is_b_hnp_enabled(hsotg
)) {
3452 gotgctl
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
3453 gotgctl
|= GOTGCTL_HSTSETHNPEN
;
3454 dwc2_writel(gotgctl
, hsotg
->regs
+ GOTGCTL
);
3455 hsotg
->op_state
= OTG_STATE_A_SUSPEND
;
3458 hprt0
= dwc2_read_hprt0(hsotg
);
3459 hprt0
|= HPRT0_SUSP
;
3460 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3462 hsotg
->bus_suspended
= true;
3465 * If hibernation is supported, Phy clock will be suspended
3466 * after registers are backuped.
3468 if (!hsotg
->params
.hibernation
) {
3469 /* Suspend the Phy Clock */
3470 pcgctl
= dwc2_readl(hsotg
->regs
+ PCGCTL
);
3471 pcgctl
|= PCGCTL_STOPPCLK
;
3472 dwc2_writel(pcgctl
, hsotg
->regs
+ PCGCTL
);
3476 /* For HNP the bus must be suspended for at least 200ms */
3477 if (dwc2_host_is_b_hnp_enabled(hsotg
)) {
3478 pcgctl
= dwc2_readl(hsotg
->regs
+ PCGCTL
);
3479 pcgctl
&= ~PCGCTL_STOPPCLK
;
3480 dwc2_writel(pcgctl
, hsotg
->regs
+ PCGCTL
);
3482 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3486 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3490 /* Must NOT be called with interrupt disabled or spinlock held */
3491 static void dwc2_port_resume(struct dwc2_hsotg
*hsotg
)
3493 unsigned long flags
;
3497 spin_lock_irqsave(&hsotg
->lock
, flags
);
3500 * If hibernation is supported, Phy clock is already resumed
3501 * after registers restore.
3503 if (!hsotg
->params
.hibernation
) {
3504 pcgctl
= dwc2_readl(hsotg
->regs
+ PCGCTL
);
3505 pcgctl
&= ~PCGCTL_STOPPCLK
;
3506 dwc2_writel(pcgctl
, hsotg
->regs
+ PCGCTL
);
3507 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3509 spin_lock_irqsave(&hsotg
->lock
, flags
);
3512 hprt0
= dwc2_read_hprt0(hsotg
);
3514 hprt0
&= ~HPRT0_SUSP
;
3515 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3516 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3518 msleep(USB_RESUME_TIMEOUT
);
3520 spin_lock_irqsave(&hsotg
->lock
, flags
);
3521 hprt0
= dwc2_read_hprt0(hsotg
);
3522 hprt0
&= ~(HPRT0_RES
| HPRT0_SUSP
);
3523 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3524 hsotg
->bus_suspended
= false;
3525 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3528 /* Handles hub class-specific requests */
3529 static int dwc2_hcd_hub_control(struct dwc2_hsotg
*hsotg
, u16 typereq
,
3530 u16 wvalue
, u16 windex
, char *buf
, u16 wlength
)
3532 struct usb_hub_descriptor
*hub_desc
;
3540 case ClearHubFeature
:
3541 dev_dbg(hsotg
->dev
, "ClearHubFeature %1xh\n", wvalue
);
3544 case C_HUB_LOCAL_POWER
:
3545 case C_HUB_OVER_CURRENT
:
3546 /* Nothing required here */
3552 "ClearHubFeature request %1xh unknown\n",
3557 case ClearPortFeature
:
3558 if (wvalue
!= USB_PORT_FEAT_L1
)
3559 if (!windex
|| windex
> 1)
3562 case USB_PORT_FEAT_ENABLE
:
3564 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3565 hprt0
= dwc2_read_hprt0(hsotg
);
3567 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3570 case USB_PORT_FEAT_SUSPEND
:
3572 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3574 if (hsotg
->bus_suspended
)
3575 dwc2_port_resume(hsotg
);
3578 case USB_PORT_FEAT_POWER
:
3580 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3581 hprt0
= dwc2_read_hprt0(hsotg
);
3582 hprt0
&= ~HPRT0_PWR
;
3583 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3586 case USB_PORT_FEAT_INDICATOR
:
3588 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3589 /* Port indicator not supported */
3592 case USB_PORT_FEAT_C_CONNECTION
:
3594 * Clears driver's internal Connect Status Change flag
3597 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3598 hsotg
->flags
.b
.port_connect_status_change
= 0;
3601 case USB_PORT_FEAT_C_RESET
:
3602 /* Clears driver's internal Port Reset Change flag */
3604 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3605 hsotg
->flags
.b
.port_reset_change
= 0;
3608 case USB_PORT_FEAT_C_ENABLE
:
3610 * Clears the driver's internal Port Enable/Disable
3614 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3615 hsotg
->flags
.b
.port_enable_change
= 0;
3618 case USB_PORT_FEAT_C_SUSPEND
:
3620 * Clears the driver's internal Port Suspend Change
3621 * flag, which is set when resume signaling on the host
3625 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3626 hsotg
->flags
.b
.port_suspend_change
= 0;
3629 case USB_PORT_FEAT_C_PORT_L1
:
3631 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3632 hsotg
->flags
.b
.port_l1_change
= 0;
3635 case USB_PORT_FEAT_C_OVER_CURRENT
:
3637 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3638 hsotg
->flags
.b
.port_over_current_change
= 0;
3644 "ClearPortFeature request %1xh unknown or unsupported\n",
3649 case GetHubDescriptor
:
3650 dev_dbg(hsotg
->dev
, "GetHubDescriptor\n");
3651 hub_desc
= (struct usb_hub_descriptor
*)buf
;
3652 hub_desc
->bDescLength
= 9;
3653 hub_desc
->bDescriptorType
= USB_DT_HUB
;
3654 hub_desc
->bNbrPorts
= 1;
3655 hub_desc
->wHubCharacteristics
=
3656 cpu_to_le16(HUB_CHAR_COMMON_LPSM
|
3657 HUB_CHAR_INDV_PORT_OCPM
);
3658 hub_desc
->bPwrOn2PwrGood
= 1;
3659 hub_desc
->bHubContrCurrent
= 0;
3660 hub_desc
->u
.hs
.DeviceRemovable
[0] = 0;
3661 hub_desc
->u
.hs
.DeviceRemovable
[1] = 0xff;
3665 dev_dbg(hsotg
->dev
, "GetHubStatus\n");
3670 dev_vdbg(hsotg
->dev
,
3671 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex
,
3673 if (!windex
|| windex
> 1)
3677 if (hsotg
->flags
.b
.port_connect_status_change
)
3678 port_status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3679 if (hsotg
->flags
.b
.port_enable_change
)
3680 port_status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3681 if (hsotg
->flags
.b
.port_suspend_change
)
3682 port_status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3683 if (hsotg
->flags
.b
.port_l1_change
)
3684 port_status
|= USB_PORT_STAT_C_L1
<< 16;
3685 if (hsotg
->flags
.b
.port_reset_change
)
3686 port_status
|= USB_PORT_STAT_C_RESET
<< 16;
3687 if (hsotg
->flags
.b
.port_over_current_change
) {
3688 dev_warn(hsotg
->dev
, "Overcurrent change detected\n");
3689 port_status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3692 if (!hsotg
->flags
.b
.port_connect_status
) {
3694 * The port is disconnected, which means the core is
3695 * either in device mode or it soon will be. Just
3696 * return 0's for the remainder of the port status
3697 * since the port register can't be read if the core
3698 * is in device mode.
3700 *(__le32
*)buf
= cpu_to_le32(port_status
);
3704 hprt0
= dwc2_readl(hsotg
->regs
+ HPRT0
);
3705 dev_vdbg(hsotg
->dev
, " HPRT0: 0x%08x\n", hprt0
);
3707 if (hprt0
& HPRT0_CONNSTS
)
3708 port_status
|= USB_PORT_STAT_CONNECTION
;
3709 if (hprt0
& HPRT0_ENA
)
3710 port_status
|= USB_PORT_STAT_ENABLE
;
3711 if (hprt0
& HPRT0_SUSP
)
3712 port_status
|= USB_PORT_STAT_SUSPEND
;
3713 if (hprt0
& HPRT0_OVRCURRACT
)
3714 port_status
|= USB_PORT_STAT_OVERCURRENT
;
3715 if (hprt0
& HPRT0_RST
)
3716 port_status
|= USB_PORT_STAT_RESET
;
3717 if (hprt0
& HPRT0_PWR
)
3718 port_status
|= USB_PORT_STAT_POWER
;
3720 speed
= (hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
3721 if (speed
== HPRT0_SPD_HIGH_SPEED
)
3722 port_status
|= USB_PORT_STAT_HIGH_SPEED
;
3723 else if (speed
== HPRT0_SPD_LOW_SPEED
)
3724 port_status
|= USB_PORT_STAT_LOW_SPEED
;
3726 if (hprt0
& HPRT0_TSTCTL_MASK
)
3727 port_status
|= USB_PORT_STAT_TEST
;
3728 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3730 if (hsotg
->params
.dma_desc_fs_enable
) {
3732 * Enable descriptor DMA only if a full speed
3733 * device is connected.
3735 if (hsotg
->new_connection
&&
3737 (USB_PORT_STAT_CONNECTION
|
3738 USB_PORT_STAT_HIGH_SPEED
|
3739 USB_PORT_STAT_LOW_SPEED
)) ==
3740 USB_PORT_STAT_CONNECTION
)) {
3743 dev_info(hsotg
->dev
, "Enabling descriptor DMA mode\n");
3744 hsotg
->params
.dma_desc_enable
= true;
3745 hcfg
= dwc2_readl(hsotg
->regs
+ HCFG
);
3746 hcfg
|= HCFG_DESCDMA
;
3747 dwc2_writel(hcfg
, hsotg
->regs
+ HCFG
);
3748 hsotg
->new_connection
= false;
3752 dev_vdbg(hsotg
->dev
, "port_status=%08x\n", port_status
);
3753 *(__le32
*)buf
= cpu_to_le32(port_status
);
3757 dev_dbg(hsotg
->dev
, "SetHubFeature\n");
3758 /* No HUB features supported */
3761 case SetPortFeature
:
3762 dev_dbg(hsotg
->dev
, "SetPortFeature\n");
3763 if (wvalue
!= USB_PORT_FEAT_TEST
&& (!windex
|| windex
> 1))
3766 if (!hsotg
->flags
.b
.port_connect_status
) {
3768 * The port is disconnected, which means the core is
3769 * either in device mode or it soon will be. Just
3770 * return without doing anything since the port
3771 * register can't be written if the core is in device
3778 case USB_PORT_FEAT_SUSPEND
:
3780 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3781 if (windex
!= hsotg
->otg_port
)
3783 dwc2_port_suspend(hsotg
, windex
);
3786 case USB_PORT_FEAT_POWER
:
3788 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3789 hprt0
= dwc2_read_hprt0(hsotg
);
3791 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3794 case USB_PORT_FEAT_RESET
:
3795 hprt0
= dwc2_read_hprt0(hsotg
);
3797 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3798 pcgctl
= dwc2_readl(hsotg
->regs
+ PCGCTL
);
3799 pcgctl
&= ~(PCGCTL_ENBL_SLEEP_GATING
| PCGCTL_STOPPCLK
);
3800 dwc2_writel(pcgctl
, hsotg
->regs
+ PCGCTL
);
3801 /* ??? Original driver does this */
3802 dwc2_writel(0, hsotg
->regs
+ PCGCTL
);
3804 hprt0
= dwc2_read_hprt0(hsotg
);
3805 /* Clear suspend bit if resetting from suspend state */
3806 hprt0
&= ~HPRT0_SUSP
;
3809 * When B-Host the Port reset bit is set in the Start
3810 * HCD Callback function, so that the reset is started
3811 * within 1ms of the HNP success interrupt
3813 if (!dwc2_hcd_is_b_host(hsotg
)) {
3814 hprt0
|= HPRT0_PWR
| HPRT0_RST
;
3816 "In host mode, hprt0=%08x\n", hprt0
);
3817 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3820 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3822 hprt0
&= ~HPRT0_RST
;
3823 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3824 hsotg
->lx_state
= DWC2_L0
; /* Now back to On state */
3827 case USB_PORT_FEAT_INDICATOR
:
3829 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3833 case USB_PORT_FEAT_TEST
:
3834 hprt0
= dwc2_read_hprt0(hsotg
);
3836 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3837 hprt0
&= ~HPRT0_TSTCTL_MASK
;
3838 hprt0
|= (windex
>> 8) << HPRT0_TSTCTL_SHIFT
;
3839 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
3845 "SetPortFeature %1xh unknown or unsupported\n",
3855 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3856 typereq
, windex
, wvalue
);
3863 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg
*hsotg
, int port
)
3870 retval
= (hsotg
->flags
.b
.port_connect_status_change
||
3871 hsotg
->flags
.b
.port_reset_change
||
3872 hsotg
->flags
.b
.port_enable_change
||
3873 hsotg
->flags
.b
.port_suspend_change
||
3874 hsotg
->flags
.b
.port_over_current_change
);
3878 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3879 dev_dbg(hsotg
->dev
, " port_connect_status_change: %d\n",
3880 hsotg
->flags
.b
.port_connect_status_change
);
3881 dev_dbg(hsotg
->dev
, " port_reset_change: %d\n",
3882 hsotg
->flags
.b
.port_reset_change
);
3883 dev_dbg(hsotg
->dev
, " port_enable_change: %d\n",
3884 hsotg
->flags
.b
.port_enable_change
);
3885 dev_dbg(hsotg
->dev
, " port_suspend_change: %d\n",
3886 hsotg
->flags
.b
.port_suspend_change
);
3887 dev_dbg(hsotg
->dev
, " port_over_current_change: %d\n",
3888 hsotg
->flags
.b
.port_over_current_change
);
3894 int dwc2_hcd_get_frame_number(struct dwc2_hsotg
*hsotg
)
3896 u32 hfnum
= dwc2_readl(hsotg
->regs
+ HFNUM
);
3898 #ifdef DWC2_DEBUG_SOF
3899 dev_vdbg(hsotg
->dev
, "DWC OTG HCD GET FRAME NUMBER %d\n",
3900 (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
);
3902 return (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
;
3905 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg
*hsotg
, int us
)
3907 u32 hprt
= dwc2_readl(hsotg
->regs
+ HPRT0
);
3908 u32 hfir
= dwc2_readl(hsotg
->regs
+ HFIR
);
3909 u32 hfnum
= dwc2_readl(hsotg
->regs
+ HFNUM
);
3910 unsigned int us_per_frame
;
3911 unsigned int frame_number
;
3912 unsigned int remaining
;
3913 unsigned int interval
;
3914 unsigned int phy_clks
;
3916 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3917 us_per_frame
= (hprt
& HPRT0_SPD_MASK
) ? 1000 : 125;
3919 /* Extract fields */
3920 frame_number
= (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
;
3921 remaining
= (hfnum
& HFNUM_FRREM_MASK
) >> HFNUM_FRREM_SHIFT
;
3922 interval
= (hfir
& HFIR_FRINT_MASK
) >> HFIR_FRINT_SHIFT
;
3925 * Number of phy clocks since the last tick of the frame number after
3928 phy_clks
= (interval
- remaining
) +
3929 DIV_ROUND_UP(interval
* us
, us_per_frame
);
3931 return dwc2_frame_num_inc(frame_number
, phy_clks
/ interval
);
3934 int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
)
3936 return hsotg
->op_state
== OTG_STATE_B_HOST
;
3939 static struct dwc2_hcd_urb
*dwc2_hcd_urb_alloc(struct dwc2_hsotg
*hsotg
,
3943 struct dwc2_hcd_urb
*urb
;
3944 u32 size
= sizeof(*urb
) + iso_desc_count
*
3945 sizeof(struct dwc2_hcd_iso_packet_desc
);
3947 urb
= kzalloc(size
, mem_flags
);
3949 urb
->packet_count
= iso_desc_count
;
3953 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg
*hsotg
,
3954 struct dwc2_hcd_urb
*urb
, u8 dev_addr
,
3955 u8 ep_num
, u8 ep_type
, u8 ep_dir
, u16 mps
)
3958 ep_type
== USB_ENDPOINT_XFER_BULK
||
3959 ep_type
== USB_ENDPOINT_XFER_CONTROL
)
3960 dev_vdbg(hsotg
->dev
,
3961 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3962 dev_addr
, ep_num
, ep_dir
, ep_type
, mps
);
3963 urb
->pipe_info
.dev_addr
= dev_addr
;
3964 urb
->pipe_info
.ep_num
= ep_num
;
3965 urb
->pipe_info
.pipe_type
= ep_type
;
3966 urb
->pipe_info
.pipe_dir
= ep_dir
;
3967 urb
->pipe_info
.mps
= mps
;
3971 * NOTE: This function will be removed once the peripheral controller code
3972 * is integrated and the driver is stable
3974 void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
)
3977 struct dwc2_host_chan
*chan
;
3978 struct dwc2_hcd_urb
*urb
;
3979 struct dwc2_qtd
*qtd
;
3985 num_channels
= hsotg
->params
.host_channels
;
3986 dev_dbg(hsotg
->dev
, "\n");
3988 "************************************************************\n");
3989 dev_dbg(hsotg
->dev
, "HCD State:\n");
3990 dev_dbg(hsotg
->dev
, " Num channels: %d\n", num_channels
);
3992 for (i
= 0; i
< num_channels
; i
++) {
3993 chan
= hsotg
->hc_ptr_array
[i
];
3994 dev_dbg(hsotg
->dev
, " Channel %d:\n", i
);
3996 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3997 chan
->dev_addr
, chan
->ep_num
, chan
->ep_is_in
);
3998 dev_dbg(hsotg
->dev
, " speed: %d\n", chan
->speed
);
3999 dev_dbg(hsotg
->dev
, " ep_type: %d\n", chan
->ep_type
);
4000 dev_dbg(hsotg
->dev
, " max_packet: %d\n", chan
->max_packet
);
4001 dev_dbg(hsotg
->dev
, " data_pid_start: %d\n",
4002 chan
->data_pid_start
);
4003 dev_dbg(hsotg
->dev
, " multi_count: %d\n", chan
->multi_count
);
4004 dev_dbg(hsotg
->dev
, " xfer_started: %d\n",
4005 chan
->xfer_started
);
4006 dev_dbg(hsotg
->dev
, " xfer_buf: %p\n", chan
->xfer_buf
);
4007 dev_dbg(hsotg
->dev
, " xfer_dma: %08lx\n",
4008 (unsigned long)chan
->xfer_dma
);
4009 dev_dbg(hsotg
->dev
, " xfer_len: %d\n", chan
->xfer_len
);
4010 dev_dbg(hsotg
->dev
, " xfer_count: %d\n", chan
->xfer_count
);
4011 dev_dbg(hsotg
->dev
, " halt_on_queue: %d\n",
4012 chan
->halt_on_queue
);
4013 dev_dbg(hsotg
->dev
, " halt_pending: %d\n",
4014 chan
->halt_pending
);
4015 dev_dbg(hsotg
->dev
, " halt_status: %d\n", chan
->halt_status
);
4016 dev_dbg(hsotg
->dev
, " do_split: %d\n", chan
->do_split
);
4017 dev_dbg(hsotg
->dev
, " complete_split: %d\n",
4018 chan
->complete_split
);
4019 dev_dbg(hsotg
->dev
, " hub_addr: %d\n", chan
->hub_addr
);
4020 dev_dbg(hsotg
->dev
, " hub_port: %d\n", chan
->hub_port
);
4021 dev_dbg(hsotg
->dev
, " xact_pos: %d\n", chan
->xact_pos
);
4022 dev_dbg(hsotg
->dev
, " requests: %d\n", chan
->requests
);
4023 dev_dbg(hsotg
->dev
, " qh: %p\n", chan
->qh
);
4025 if (chan
->xfer_started
) {
4026 u32 hfnum
, hcchar
, hctsiz
, hcint
, hcintmsk
;
4028 hfnum
= dwc2_readl(hsotg
->regs
+ HFNUM
);
4029 hcchar
= dwc2_readl(hsotg
->regs
+ HCCHAR(i
));
4030 hctsiz
= dwc2_readl(hsotg
->regs
+ HCTSIZ(i
));
4031 hcint
= dwc2_readl(hsotg
->regs
+ HCINT(i
));
4032 hcintmsk
= dwc2_readl(hsotg
->regs
+ HCINTMSK(i
));
4033 dev_dbg(hsotg
->dev
, " hfnum: 0x%08x\n", hfnum
);
4034 dev_dbg(hsotg
->dev
, " hcchar: 0x%08x\n", hcchar
);
4035 dev_dbg(hsotg
->dev
, " hctsiz: 0x%08x\n", hctsiz
);
4036 dev_dbg(hsotg
->dev
, " hcint: 0x%08x\n", hcint
);
4037 dev_dbg(hsotg
->dev
, " hcintmsk: 0x%08x\n", hcintmsk
);
4040 if (!(chan
->xfer_started
&& chan
->qh
))
4043 list_for_each_entry(qtd
, &chan
->qh
->qtd_list
, qtd_list_entry
) {
4044 if (!qtd
->in_process
)
4047 dev_dbg(hsotg
->dev
, " URB Info:\n");
4048 dev_dbg(hsotg
->dev
, " qtd: %p, urb: %p\n",
4052 " Dev: %d, EP: %d %s\n",
4053 dwc2_hcd_get_dev_addr(&urb
->pipe_info
),
4054 dwc2_hcd_get_ep_num(&urb
->pipe_info
),
4055 dwc2_hcd_is_pipe_in(&urb
->pipe_info
) ?
4058 " Max packet size: %d\n",
4059 dwc2_hcd_get_mps(&urb
->pipe_info
));
4061 " transfer_buffer: %p\n",
4064 " transfer_dma: %08lx\n",
4065 (unsigned long)urb
->dma
);
4067 " transfer_buffer_length: %d\n",
4069 dev_dbg(hsotg
->dev
, " actual_length: %d\n",
4070 urb
->actual_length
);
4075 dev_dbg(hsotg
->dev
, " non_periodic_channels: %d\n",
4076 hsotg
->non_periodic_channels
);
4077 dev_dbg(hsotg
->dev
, " periodic_channels: %d\n",
4078 hsotg
->periodic_channels
);
4079 dev_dbg(hsotg
->dev
, " periodic_usecs: %d\n", hsotg
->periodic_usecs
);
4080 np_tx_status
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
4081 dev_dbg(hsotg
->dev
, " NP Tx Req Queue Space Avail: %d\n",
4082 (np_tx_status
& TXSTS_QSPCAVAIL_MASK
) >> TXSTS_QSPCAVAIL_SHIFT
);
4083 dev_dbg(hsotg
->dev
, " NP Tx FIFO Space Avail: %d\n",
4084 (np_tx_status
& TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
);
4085 p_tx_status
= dwc2_readl(hsotg
->regs
+ HPTXSTS
);
4086 dev_dbg(hsotg
->dev
, " P Tx Req Queue Space Avail: %d\n",
4087 (p_tx_status
& TXSTS_QSPCAVAIL_MASK
) >> TXSTS_QSPCAVAIL_SHIFT
);
4088 dev_dbg(hsotg
->dev
, " P Tx FIFO Space Avail: %d\n",
4089 (p_tx_status
& TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
);
4090 dwc2_hcd_dump_frrem(hsotg
);
4091 dwc2_dump_global_registers(hsotg
);
4092 dwc2_dump_host_registers(hsotg
);
4094 "************************************************************\n");
4095 dev_dbg(hsotg
->dev
, "\n");
4100 * NOTE: This function will be removed once the peripheral controller code
4101 * is integrated and the driver is stable
4103 void dwc2_hcd_dump_frrem(struct dwc2_hsotg
*hsotg
)
4105 #ifdef DWC2_DUMP_FRREM
4106 dev_dbg(hsotg
->dev
, "Frame remaining at SOF:\n");
4107 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4108 hsotg
->frrem_samples
, hsotg
->frrem_accum
,
4109 hsotg
->frrem_samples
> 0 ?
4110 hsotg
->frrem_accum
/ hsotg
->frrem_samples
: 0);
4111 dev_dbg(hsotg
->dev
, "\n");
4112 dev_dbg(hsotg
->dev
, "Frame remaining at start_transfer (uframe 7):\n");
4113 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4114 hsotg
->hfnum_7_samples
,
4115 hsotg
->hfnum_7_frrem_accum
,
4116 hsotg
->hfnum_7_samples
> 0 ?
4117 hsotg
->hfnum_7_frrem_accum
/ hsotg
->hfnum_7_samples
: 0);
4118 dev_dbg(hsotg
->dev
, "Frame remaining at start_transfer (uframe 0):\n");
4119 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4120 hsotg
->hfnum_0_samples
,
4121 hsotg
->hfnum_0_frrem_accum
,
4122 hsotg
->hfnum_0_samples
> 0 ?
4123 hsotg
->hfnum_0_frrem_accum
/ hsotg
->hfnum_0_samples
: 0);
4124 dev_dbg(hsotg
->dev
, "Frame remaining at start_transfer (uframe 1-6):\n");
4125 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4126 hsotg
->hfnum_other_samples
,
4127 hsotg
->hfnum_other_frrem_accum
,
4128 hsotg
->hfnum_other_samples
> 0 ?
4129 hsotg
->hfnum_other_frrem_accum
/ hsotg
->hfnum_other_samples
:
4131 dev_dbg(hsotg
->dev
, "\n");
4132 dev_dbg(hsotg
->dev
, "Frame remaining at sample point A (uframe 7):\n");
4133 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4134 hsotg
->hfnum_7_samples_a
, hsotg
->hfnum_7_frrem_accum_a
,
4135 hsotg
->hfnum_7_samples_a
> 0 ?
4136 hsotg
->hfnum_7_frrem_accum_a
/ hsotg
->hfnum_7_samples_a
: 0);
4137 dev_dbg(hsotg
->dev
, "Frame remaining at sample point A (uframe 0):\n");
4138 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4139 hsotg
->hfnum_0_samples_a
, hsotg
->hfnum_0_frrem_accum_a
,
4140 hsotg
->hfnum_0_samples_a
> 0 ?
4141 hsotg
->hfnum_0_frrem_accum_a
/ hsotg
->hfnum_0_samples_a
: 0);
4142 dev_dbg(hsotg
->dev
, "Frame remaining at sample point A (uframe 1-6):\n");
4143 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4144 hsotg
->hfnum_other_samples_a
, hsotg
->hfnum_other_frrem_accum_a
,
4145 hsotg
->hfnum_other_samples_a
> 0 ?
4146 hsotg
->hfnum_other_frrem_accum_a
/ hsotg
->hfnum_other_samples_a
4148 dev_dbg(hsotg
->dev
, "\n");
4149 dev_dbg(hsotg
->dev
, "Frame remaining at sample point B (uframe 7):\n");
4150 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4151 hsotg
->hfnum_7_samples_b
, hsotg
->hfnum_7_frrem_accum_b
,
4152 hsotg
->hfnum_7_samples_b
> 0 ?
4153 hsotg
->hfnum_7_frrem_accum_b
/ hsotg
->hfnum_7_samples_b
: 0);
4154 dev_dbg(hsotg
->dev
, "Frame remaining at sample point B (uframe 0):\n");
4155 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4156 hsotg
->hfnum_0_samples_b
, hsotg
->hfnum_0_frrem_accum_b
,
4157 (hsotg
->hfnum_0_samples_b
> 0) ?
4158 hsotg
->hfnum_0_frrem_accum_b
/ hsotg
->hfnum_0_samples_b
: 0);
4159 dev_dbg(hsotg
->dev
, "Frame remaining at sample point B (uframe 1-6):\n");
4160 dev_dbg(hsotg
->dev
, " samples %u, accum %llu, avg %llu\n",
4161 hsotg
->hfnum_other_samples_b
, hsotg
->hfnum_other_frrem_accum_b
,
4162 (hsotg
->hfnum_other_samples_b
> 0) ?
4163 hsotg
->hfnum_other_frrem_accum_b
/ hsotg
->hfnum_other_samples_b
4168 struct wrapper_priv_data
{
4169 struct dwc2_hsotg
*hsotg
;
4172 /* Gets the dwc2_hsotg from a usb_hcd */
4173 static struct dwc2_hsotg
*dwc2_hcd_to_hsotg(struct usb_hcd
*hcd
)
4175 struct wrapper_priv_data
*p
;
4177 p
= (struct wrapper_priv_data
*)&hcd
->hcd_priv
;
4182 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4184 * This will get the dwc2_tt structure (and ttport) associated with the given
4185 * context (which is really just a struct urb pointer).
4187 * The first time this is called for a given TT we allocate memory for our
4188 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4189 * then the refcount for the structure will go to 0 and we'll free it.
4191 * @hsotg: The HCD state structure for the DWC OTG controller.
4192 * @qh: The QH structure.
4193 * @context: The priv pointer from a struct dwc2_hcd_urb.
4194 * @mem_flags: Flags for allocating memory.
4195 * @ttport: We'll return this device's port number here. That's used to
4196 * reference into the bitmap if we're on a multi_tt hub.
4198 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4199 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4202 struct dwc2_tt
*dwc2_host_get_tt_info(struct dwc2_hsotg
*hsotg
, void *context
,
4203 gfp_t mem_flags
, int *ttport
)
4205 struct urb
*urb
= context
;
4206 struct dwc2_tt
*dwc_tt
= NULL
;
4209 *ttport
= urb
->dev
->ttport
;
4211 dwc_tt
= urb
->dev
->tt
->hcpriv
;
4216 * For single_tt we need one schedule. For multi_tt
4217 * we need one per port.
4219 bitmap_size
= DWC2_ELEMENTS_PER_LS_BITMAP
*
4220 sizeof(dwc_tt
->periodic_bitmaps
[0]);
4221 if (urb
->dev
->tt
->multi
)
4222 bitmap_size
*= urb
->dev
->tt
->hub
->maxchild
;
4224 dwc_tt
= kzalloc(sizeof(*dwc_tt
) + bitmap_size
,
4229 dwc_tt
->usb_tt
= urb
->dev
->tt
;
4230 dwc_tt
->usb_tt
->hcpriv
= dwc_tt
;
4240 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4242 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4243 * of the structure are done.
4245 * It's OK to call this with NULL.
4247 * @hsotg: The HCD state structure for the DWC OTG controller.
4248 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4250 void dwc2_host_put_tt_info(struct dwc2_hsotg
*hsotg
, struct dwc2_tt
*dwc_tt
)
4252 /* Model kfree and make put of NULL a no-op */
4256 WARN_ON(dwc_tt
->refcount
< 1);
4259 if (!dwc_tt
->refcount
) {
4260 dwc_tt
->usb_tt
->hcpriv
= NULL
;
4265 int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
)
4267 struct urb
*urb
= context
;
4269 return urb
->dev
->speed
;
4272 static void dwc2_allocate_bus_bandwidth(struct usb_hcd
*hcd
, u16 bw
,
4275 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4278 bus
->bandwidth_allocated
+= bw
/ urb
->interval
;
4279 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
4280 bus
->bandwidth_isoc_reqs
++;
4282 bus
->bandwidth_int_reqs
++;
4285 static void dwc2_free_bus_bandwidth(struct usb_hcd
*hcd
, u16 bw
,
4288 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4291 bus
->bandwidth_allocated
-= bw
/ urb
->interval
;
4292 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
4293 bus
->bandwidth_isoc_reqs
--;
4295 bus
->bandwidth_int_reqs
--;
4299 * Sets the final status of an URB and returns it to the upper layer. Any
4300 * required cleanup of the URB is performed.
4302 * Must be called with interrupt disabled and spinlock held
4304 void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
4311 dev_dbg(hsotg
->dev
, "## %s: qtd is NULL ##\n", __func__
);
4316 dev_dbg(hsotg
->dev
, "## %s: qtd->urb is NULL ##\n", __func__
);
4320 urb
= qtd
->urb
->priv
;
4322 dev_dbg(hsotg
->dev
, "## %s: urb->priv is NULL ##\n", __func__
);
4326 urb
->actual_length
= dwc2_hcd_urb_get_actual_length(qtd
->urb
);
4329 dev_vdbg(hsotg
->dev
,
4330 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4331 __func__
, urb
, usb_pipedevice(urb
->pipe
),
4332 usb_pipeendpoint(urb
->pipe
),
4333 usb_pipein(urb
->pipe
) ? "IN" : "OUT", status
,
4334 urb
->actual_length
);
4336 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
4337 urb
->error_count
= dwc2_hcd_urb_get_error_count(qtd
->urb
);
4338 for (i
= 0; i
< urb
->number_of_packets
; ++i
) {
4339 urb
->iso_frame_desc
[i
].actual_length
=
4340 dwc2_hcd_urb_get_iso_desc_actual_length(
4342 urb
->iso_frame_desc
[i
].status
=
4343 dwc2_hcd_urb_get_iso_desc_status(qtd
->urb
, i
);
4347 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
&& dbg_perio()) {
4348 for (i
= 0; i
< urb
->number_of_packets
; i
++)
4349 dev_vdbg(hsotg
->dev
, " ISO Desc %d status %d\n",
4350 i
, urb
->iso_frame_desc
[i
].status
);
4353 urb
->status
= status
;
4355 if ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
4356 urb
->actual_length
< urb
->transfer_buffer_length
)
4357 urb
->status
= -EREMOTEIO
;
4360 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
||
4361 usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
4362 struct usb_host_endpoint
*ep
= urb
->ep
;
4365 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg
),
4366 dwc2_hcd_get_ep_bandwidth(hsotg
, ep
),
4370 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg
), urb
);
4375 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg
), urb
, status
);
4379 * Work queue function for starting the HCD when A-Cable is connected
4381 static void dwc2_hcd_start_func(struct work_struct
*work
)
4383 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4386 dev_dbg(hsotg
->dev
, "%s() %p\n", __func__
, hsotg
);
4387 dwc2_host_start(hsotg
);
4391 * Reset work queue function
4393 static void dwc2_hcd_reset_func(struct work_struct
*work
)
4395 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4397 unsigned long flags
;
4400 dev_dbg(hsotg
->dev
, "USB RESET function called\n");
4402 spin_lock_irqsave(&hsotg
->lock
, flags
);
4404 hprt0
= dwc2_read_hprt0(hsotg
);
4405 hprt0
&= ~HPRT0_RST
;
4406 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
4407 hsotg
->flags
.b
.port_reset_change
= 1;
4409 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4413 * =========================================================================
4414 * Linux HC Driver Functions
4415 * =========================================================================
4419 * Initializes the DWC_otg controller and its root hub and prepares it for host
4420 * mode operation. Activates the root port. Returns 0 on success and a negative
4421 * error code on failure.
4423 static int _dwc2_hcd_start(struct usb_hcd
*hcd
)
4425 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4426 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4427 unsigned long flags
;
4429 dev_dbg(hsotg
->dev
, "DWC OTG HCD START\n");
4431 spin_lock_irqsave(&hsotg
->lock
, flags
);
4432 hsotg
->lx_state
= DWC2_L0
;
4433 hcd
->state
= HC_STATE_RUNNING
;
4434 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4436 if (dwc2_is_device_mode(hsotg
)) {
4437 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4438 return 0; /* why 0 ?? */
4441 dwc2_hcd_reinit(hsotg
);
4443 /* Initialize and connect root hub if one is not already attached */
4444 if (bus
->root_hub
) {
4445 dev_dbg(hsotg
->dev
, "DWC OTG HCD Has Root Hub\n");
4446 /* Inform the HUB driver to resume */
4447 usb_hcd_resume_root_hub(hcd
);
4450 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4455 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4458 static void _dwc2_hcd_stop(struct usb_hcd
*hcd
)
4460 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4461 unsigned long flags
;
4463 /* Turn off all host-specific interrupts */
4464 dwc2_disable_host_interrupts(hsotg
);
4466 /* Wait for interrupt processing to finish */
4467 synchronize_irq(hcd
->irq
);
4469 spin_lock_irqsave(&hsotg
->lock
, flags
);
4470 /* Ensure hcd is disconnected */
4471 dwc2_hcd_disconnect(hsotg
, true);
4472 dwc2_hcd_stop(hsotg
);
4473 hsotg
->lx_state
= DWC2_L3
;
4474 hcd
->state
= HC_STATE_HALT
;
4475 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4476 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4478 usleep_range(1000, 3000);
4481 static int _dwc2_hcd_suspend(struct usb_hcd
*hcd
)
4483 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4484 unsigned long flags
;
4488 spin_lock_irqsave(&hsotg
->lock
, flags
);
4490 if (dwc2_is_device_mode(hsotg
))
4493 if (hsotg
->lx_state
!= DWC2_L0
)
4496 if (!HCD_HW_ACCESSIBLE(hcd
))
4499 if (hsotg
->op_state
== OTG_STATE_B_PERIPHERAL
)
4502 if (!hsotg
->params
.hibernation
)
4503 goto skip_power_saving
;
4506 * Drive USB suspend and disable port Power
4507 * if usb bus is not suspended.
4509 if (!hsotg
->bus_suspended
) {
4510 hprt0
= dwc2_read_hprt0(hsotg
);
4511 hprt0
|= HPRT0_SUSP
;
4512 hprt0
&= ~HPRT0_PWR
;
4513 dwc2_writel(hprt0
, hsotg
->regs
+ HPRT0
);
4516 /* Enter hibernation */
4517 ret
= dwc2_enter_hibernation(hsotg
);
4519 if (ret
!= -ENOTSUPP
)
4521 "enter hibernation failed\n");
4522 goto skip_power_saving
;
4525 /* Ask phy to be suspended */
4526 if (!IS_ERR_OR_NULL(hsotg
->uphy
)) {
4527 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4528 usb_phy_set_suspend(hsotg
->uphy
, true);
4529 spin_lock_irqsave(&hsotg
->lock
, flags
);
4532 /* After entering hibernation, hardware is no more accessible */
4533 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4536 hsotg
->lx_state
= DWC2_L2
;
4538 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4543 static int _dwc2_hcd_resume(struct usb_hcd
*hcd
)
4545 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4546 unsigned long flags
;
4549 spin_lock_irqsave(&hsotg
->lock
, flags
);
4551 if (dwc2_is_device_mode(hsotg
))
4554 if (hsotg
->lx_state
!= DWC2_L2
)
4557 if (!hsotg
->params
.hibernation
) {
4558 hsotg
->lx_state
= DWC2_L0
;
4563 * Set HW accessible bit before powering on the controller
4564 * since an interrupt may rise.
4566 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4569 * Enable power if not already done.
4570 * This must not be spinlocked since duration
4571 * of this call is unknown.
4573 if (!IS_ERR_OR_NULL(hsotg
->uphy
)) {
4574 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4575 usb_phy_set_suspend(hsotg
->uphy
, false);
4576 spin_lock_irqsave(&hsotg
->lock
, flags
);
4579 /* Exit hibernation */
4580 ret
= dwc2_exit_hibernation(hsotg
, true);
4581 if (ret
&& (ret
!= -ENOTSUPP
))
4582 dev_err(hsotg
->dev
, "exit hibernation failed\n");
4584 hsotg
->lx_state
= DWC2_L0
;
4586 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4588 if (hsotg
->bus_suspended
) {
4589 spin_lock_irqsave(&hsotg
->lock
, flags
);
4590 hsotg
->flags
.b
.port_suspend_change
= 1;
4591 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4592 dwc2_port_resume(hsotg
);
4594 /* Wait for controller to correctly update D+/D- level */
4595 usleep_range(3000, 5000);
4598 * Clear Port Enable and Port Status changes.
4599 * Enable Port Power.
4601 dwc2_writel(HPRT0_PWR
| HPRT0_CONNDET
|
4602 HPRT0_ENACHG
, hsotg
->regs
+ HPRT0
);
4603 /* Wait for controller to detect Port Connect */
4604 usleep_range(5000, 7000);
4609 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4614 /* Returns the current frame number */
4615 static int _dwc2_hcd_get_frame_number(struct usb_hcd
*hcd
)
4617 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4619 return dwc2_hcd_get_frame_number(hsotg
);
4622 static void dwc2_dump_urb_info(struct usb_hcd
*hcd
, struct urb
*urb
,
4625 #ifdef VERBOSE_DEBUG
4626 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4627 char *pipetype
= NULL
;
4630 dev_vdbg(hsotg
->dev
, "%s, urb %p\n", fn_name
, urb
);
4631 dev_vdbg(hsotg
->dev
, " Device address: %d\n",
4632 usb_pipedevice(urb
->pipe
));
4633 dev_vdbg(hsotg
->dev
, " Endpoint: %d, %s\n",
4634 usb_pipeendpoint(urb
->pipe
),
4635 usb_pipein(urb
->pipe
) ? "IN" : "OUT");
4637 switch (usb_pipetype(urb
->pipe
)) {
4639 pipetype
= "CONTROL";
4644 case PIPE_INTERRUPT
:
4645 pipetype
= "INTERRUPT";
4647 case PIPE_ISOCHRONOUS
:
4648 pipetype
= "ISOCHRONOUS";
4652 dev_vdbg(hsotg
->dev
, " Endpoint type: %s %s (%s)\n", pipetype
,
4653 usb_urb_dir_in(urb
) ? "IN" : "OUT", usb_pipein(urb
->pipe
) ?
4656 switch (urb
->dev
->speed
) {
4657 case USB_SPEED_HIGH
:
4660 case USB_SPEED_FULL
:
4671 dev_vdbg(hsotg
->dev
, " Speed: %s\n", speed
);
4672 dev_vdbg(hsotg
->dev
, " Max packet size: %d\n",
4673 usb_maxpacket(urb
->dev
, urb
->pipe
, usb_pipeout(urb
->pipe
)));
4674 dev_vdbg(hsotg
->dev
, " Data buffer length: %d\n",
4675 urb
->transfer_buffer_length
);
4676 dev_vdbg(hsotg
->dev
, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4677 urb
->transfer_buffer
, (unsigned long)urb
->transfer_dma
);
4678 dev_vdbg(hsotg
->dev
, " Setup buffer: %p, Setup DMA: %08lx\n",
4679 urb
->setup_packet
, (unsigned long)urb
->setup_dma
);
4680 dev_vdbg(hsotg
->dev
, " Interval: %d\n", urb
->interval
);
4682 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
4685 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4686 dev_vdbg(hsotg
->dev
, " ISO Desc %d:\n", i
);
4687 dev_vdbg(hsotg
->dev
, " offset: %d, length %d\n",
4688 urb
->iso_frame_desc
[i
].offset
,
4689 urb
->iso_frame_desc
[i
].length
);
4696 * Starts processing a USB transfer request specified by a USB Request Block
4697 * (URB). mem_flags indicates the type of memory allocation to use while
4698 * processing this URB.
4700 static int _dwc2_hcd_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
4703 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4704 struct usb_host_endpoint
*ep
= urb
->ep
;
4705 struct dwc2_hcd_urb
*dwc2_urb
;
4708 int alloc_bandwidth
= 0;
4712 unsigned long flags
;
4714 bool qh_allocated
= false;
4715 struct dwc2_qtd
*qtd
;
4718 dev_vdbg(hsotg
->dev
, "DWC OTG HCD URB Enqueue\n");
4719 dwc2_dump_urb_info(hcd
, urb
, "urb_enqueue");
4725 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
||
4726 usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
4727 spin_lock_irqsave(&hsotg
->lock
, flags
);
4728 if (!dwc2_hcd_is_bandwidth_allocated(hsotg
, ep
))
4729 alloc_bandwidth
= 1;
4730 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4733 switch (usb_pipetype(urb
->pipe
)) {
4735 ep_type
= USB_ENDPOINT_XFER_CONTROL
;
4737 case PIPE_ISOCHRONOUS
:
4738 ep_type
= USB_ENDPOINT_XFER_ISOC
;
4741 ep_type
= USB_ENDPOINT_XFER_BULK
;
4743 case PIPE_INTERRUPT
:
4744 ep_type
= USB_ENDPOINT_XFER_INT
;
4748 dwc2_urb
= dwc2_hcd_urb_alloc(hsotg
, urb
->number_of_packets
,
4753 dwc2_hcd_urb_set_pipeinfo(hsotg
, dwc2_urb
, usb_pipedevice(urb
->pipe
),
4754 usb_pipeendpoint(urb
->pipe
), ep_type
,
4755 usb_pipein(urb
->pipe
),
4756 usb_maxpacket(urb
->dev
, urb
->pipe
,
4757 !(usb_pipein(urb
->pipe
))));
4759 buf
= urb
->transfer_buffer
;
4761 if (hcd
->self
.uses_dma
) {
4762 if (!buf
&& (urb
->transfer_dma
& 3)) {
4764 "%s: unaligned transfer with no transfer_buffer",
4771 if (!(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4772 tflags
|= URB_GIVEBACK_ASAP
;
4773 if (urb
->transfer_flags
& URB_ZERO_PACKET
)
4774 tflags
|= URB_SEND_ZERO_PACKET
;
4776 dwc2_urb
->priv
= urb
;
4777 dwc2_urb
->buf
= buf
;
4778 dwc2_urb
->dma
= urb
->transfer_dma
;
4779 dwc2_urb
->length
= urb
->transfer_buffer_length
;
4780 dwc2_urb
->setup_packet
= urb
->setup_packet
;
4781 dwc2_urb
->setup_dma
= urb
->setup_dma
;
4782 dwc2_urb
->flags
= tflags
;
4783 dwc2_urb
->interval
= urb
->interval
;
4784 dwc2_urb
->status
= -EINPROGRESS
;
4786 for (i
= 0; i
< urb
->number_of_packets
; ++i
)
4787 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb
, i
,
4788 urb
->iso_frame_desc
[i
].offset
,
4789 urb
->iso_frame_desc
[i
].length
);
4791 urb
->hcpriv
= dwc2_urb
;
4792 qh
= (struct dwc2_qh
*)ep
->hcpriv
;
4793 /* Create QH for the endpoint if it doesn't exist */
4795 qh
= dwc2_hcd_qh_create(hsotg
, dwc2_urb
, mem_flags
);
4801 qh_allocated
= true;
4804 qtd
= kzalloc(sizeof(*qtd
), mem_flags
);
4810 spin_lock_irqsave(&hsotg
->lock
, flags
);
4811 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
4815 retval
= dwc2_hcd_urb_enqueue(hsotg
, dwc2_urb
, qh
, qtd
);
4819 if (alloc_bandwidth
) {
4820 dwc2_allocate_bus_bandwidth(hcd
,
4821 dwc2_hcd_get_ep_bandwidth(hsotg
, ep
),
4825 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4830 dwc2_urb
->priv
= NULL
;
4831 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
4832 if (qh_allocated
&& qh
->channel
&& qh
->channel
->qh
== qh
)
4833 qh
->channel
->qh
= NULL
;
4835 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4841 struct dwc2_qtd
*qtd2
, *qtd2_tmp
;
4844 dwc2_hcd_qh_unlink(hsotg
, qh
);
4845 /* Free each QTD in the QH's QTD list */
4846 list_for_each_entry_safe(qtd2
, qtd2_tmp
, &qh
->qtd_list
,
4848 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd2
, qh
);
4849 dwc2_hcd_qh_free(hsotg
, qh
);
4858 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4860 static int _dwc2_hcd_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
,
4863 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4865 unsigned long flags
;
4867 dev_dbg(hsotg
->dev
, "DWC OTG HCD URB Dequeue\n");
4868 dwc2_dump_urb_info(hcd
, urb
, "urb_dequeue");
4870 spin_lock_irqsave(&hsotg
->lock
, flags
);
4872 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
4877 dev_dbg(hsotg
->dev
, "## urb->hcpriv is NULL ##\n");
4881 rc
= dwc2_hcd_urb_dequeue(hsotg
, urb
->hcpriv
);
4883 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
4888 /* Higher layer software sets URB status */
4889 spin_unlock(&hsotg
->lock
);
4890 usb_hcd_giveback_urb(hcd
, urb
, status
);
4891 spin_lock(&hsotg
->lock
);
4893 dev_dbg(hsotg
->dev
, "Called usb_hcd_giveback_urb()\n");
4894 dev_dbg(hsotg
->dev
, " urb->status = %d\n", urb
->status
);
4896 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4902 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4903 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4904 * must already be dequeued.
4906 static void _dwc2_hcd_endpoint_disable(struct usb_hcd
*hcd
,
4907 struct usb_host_endpoint
*ep
)
4909 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4912 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4913 ep
->desc
.bEndpointAddress
, ep
->hcpriv
);
4914 dwc2_hcd_endpoint_disable(hsotg
, ep
, 250);
4918 * Resets endpoint specific parameter values, in current version used to reset
4919 * the data toggle (as a WA). This function can be called from usb_clear_halt
4922 static void _dwc2_hcd_endpoint_reset(struct usb_hcd
*hcd
,
4923 struct usb_host_endpoint
*ep
)
4925 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4926 unsigned long flags
;
4929 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4930 ep
->desc
.bEndpointAddress
);
4932 spin_lock_irqsave(&hsotg
->lock
, flags
);
4933 dwc2_hcd_endpoint_reset(hsotg
, ep
);
4934 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4938 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4939 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4942 * This function is called by the USB core when an interrupt occurs
4944 static irqreturn_t
_dwc2_hcd_irq(struct usb_hcd
*hcd
)
4946 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4948 return dwc2_handle_hcd_intr(hsotg
);
4952 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4953 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4954 * is the status change indicator for the single root port. Returns 1 if either
4955 * change indicator is 1, otherwise returns 0.
4957 static int _dwc2_hcd_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
4959 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4961 buf
[0] = dwc2_hcd_is_status_changed(hsotg
, 1) << 1;
4965 /* Handles hub class-specific requests */
4966 static int _dwc2_hcd_hub_control(struct usb_hcd
*hcd
, u16 typereq
, u16 wvalue
,
4967 u16 windex
, char *buf
, u16 wlength
)
4969 int retval
= dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd
), typereq
,
4970 wvalue
, windex
, buf
, wlength
);
4974 /* Handles hub TT buffer clear completions */
4975 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
4976 struct usb_host_endpoint
*ep
)
4978 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4980 unsigned long flags
;
4986 spin_lock_irqsave(&hsotg
->lock
, flags
);
4987 qh
->tt_buffer_dirty
= 0;
4989 if (hsotg
->flags
.b
.port_connect_status
)
4990 dwc2_hcd_queue_transactions(hsotg
, DWC2_TRANSACTION_ALL
);
4992 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4996 * HPRT0_SPD_HIGH_SPEED: high speed
4997 * HPRT0_SPD_FULL_SPEED: full speed
4999 static void dwc2_change_bus_speed(struct usb_hcd
*hcd
, int speed
)
5001 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
5003 if (hsotg
->params
.speed
== speed
)
5006 hsotg
->params
.speed
= speed
;
5007 queue_work(hsotg
->wq_otg
, &hsotg
->wf_otg
);
5010 static void dwc2_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
5012 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
5014 if (!hsotg
->params
.change_speed_quirk
)
5018 * On removal, set speed to default high-speed.
5020 if (udev
->parent
&& udev
->parent
->speed
> USB_SPEED_UNKNOWN
&&
5021 udev
->parent
->speed
< USB_SPEED_HIGH
) {
5022 dev_info(hsotg
->dev
, "Set speed to default high-speed\n");
5023 dwc2_change_bus_speed(hcd
, HPRT0_SPD_HIGH_SPEED
);
5027 static int dwc2_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
5029 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
5031 if (!hsotg
->params
.change_speed_quirk
)
5034 if (udev
->speed
== USB_SPEED_HIGH
) {
5035 dev_info(hsotg
->dev
, "Set speed to high-speed\n");
5036 dwc2_change_bus_speed(hcd
, HPRT0_SPD_HIGH_SPEED
);
5037 } else if ((udev
->speed
== USB_SPEED_FULL
||
5038 udev
->speed
== USB_SPEED_LOW
)) {
5040 * Change speed setting to full-speed if there's
5041 * a full-speed or low-speed device plugged in.
5043 dev_info(hsotg
->dev
, "Set speed to full-speed\n");
5044 dwc2_change_bus_speed(hcd
, HPRT0_SPD_FULL_SPEED
);
5050 static struct hc_driver dwc2_hc_driver
= {
5051 .description
= "dwc2_hsotg",
5052 .product_desc
= "DWC OTG Controller",
5053 .hcd_priv_size
= sizeof(struct wrapper_priv_data
),
5055 .irq
= _dwc2_hcd_irq
,
5056 .flags
= HCD_MEMORY
| HCD_USB2
| HCD_BH
,
5058 .start
= _dwc2_hcd_start
,
5059 .stop
= _dwc2_hcd_stop
,
5060 .urb_enqueue
= _dwc2_hcd_urb_enqueue
,
5061 .urb_dequeue
= _dwc2_hcd_urb_dequeue
,
5062 .endpoint_disable
= _dwc2_hcd_endpoint_disable
,
5063 .endpoint_reset
= _dwc2_hcd_endpoint_reset
,
5064 .get_frame_number
= _dwc2_hcd_get_frame_number
,
5066 .hub_status_data
= _dwc2_hcd_hub_status_data
,
5067 .hub_control
= _dwc2_hcd_hub_control
,
5068 .clear_tt_buffer_complete
= _dwc2_hcd_clear_tt_buffer_complete
,
5070 .bus_suspend
= _dwc2_hcd_suspend
,
5071 .bus_resume
= _dwc2_hcd_resume
,
5073 .map_urb_for_dma
= dwc2_map_urb_for_dma
,
5074 .unmap_urb_for_dma
= dwc2_unmap_urb_for_dma
,
5078 * Frees secondary storage associated with the dwc2_hsotg structure contained
5079 * in the struct usb_hcd field
5081 static void dwc2_hcd_free(struct dwc2_hsotg
*hsotg
)
5087 dev_dbg(hsotg
->dev
, "DWC OTG HCD FREE\n");
5089 /* Free memory for QH/QTD lists */
5090 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_inactive
);
5091 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_active
);
5092 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_inactive
);
5093 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_ready
);
5094 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_assigned
);
5095 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_queued
);
5097 /* Free memory for the host channels */
5098 for (i
= 0; i
< MAX_EPS_CHANNELS
; i
++) {
5099 struct dwc2_host_chan
*chan
= hsotg
->hc_ptr_array
[i
];
5102 dev_dbg(hsotg
->dev
, "HCD Free channel #%i, chan=%p\n",
5104 hsotg
->hc_ptr_array
[i
] = NULL
;
5109 if (hsotg
->params
.host_dma
) {
5110 if (hsotg
->status_buf
) {
5111 dma_free_coherent(hsotg
->dev
, DWC2_HCD_STATUS_BUF_SIZE
,
5113 hsotg
->status_buf_dma
);
5114 hsotg
->status_buf
= NULL
;
5117 kfree(hsotg
->status_buf
);
5118 hsotg
->status_buf
= NULL
;
5121 ahbcfg
= dwc2_readl(hsotg
->regs
+ GAHBCFG
);
5123 /* Disable all interrupts */
5124 ahbcfg
&= ~GAHBCFG_GLBL_INTR_EN
;
5125 dwc2_writel(ahbcfg
, hsotg
->regs
+ GAHBCFG
);
5126 dwc2_writel(0, hsotg
->regs
+ GINTMSK
);
5128 if (hsotg
->hw_params
.snpsid
>= DWC2_CORE_REV_3_00a
) {
5129 dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
5130 dctl
|= DCTL_SFTDISCON
;
5131 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
5134 if (hsotg
->wq_otg
) {
5135 if (!cancel_work_sync(&hsotg
->wf_otg
))
5136 flush_workqueue(hsotg
->wq_otg
);
5137 destroy_workqueue(hsotg
->wq_otg
);
5140 del_timer(&hsotg
->wkp_timer
);
5143 static void dwc2_hcd_release(struct dwc2_hsotg
*hsotg
)
5145 /* Turn off all host-specific interrupts */
5146 dwc2_disable_host_interrupts(hsotg
);
5148 dwc2_hcd_free(hsotg
);
5152 * Initializes the HCD. This function allocates memory for and initializes the
5153 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5154 * USB bus with the core and calls the hc_driver->start() function. It returns
5155 * a negative error on failure.
5157 int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
)
5159 struct platform_device
*pdev
= to_platform_device(hsotg
->dev
);
5160 struct resource
*res
;
5161 struct usb_hcd
*hcd
;
5162 struct dwc2_host_chan
*channel
;
5164 int i
, num_channels
;
5170 dev_dbg(hsotg
->dev
, "DWC OTG HCD INIT\n");
5174 hcfg
= dwc2_readl(hsotg
->regs
+ HCFG
);
5175 dev_dbg(hsotg
->dev
, "hcfg=%08x\n", hcfg
);
5177 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5178 hsotg
->frame_num_array
= kzalloc(sizeof(*hsotg
->frame_num_array
) *
5179 FRAME_NUM_ARRAY_SIZE
, GFP_KERNEL
);
5180 if (!hsotg
->frame_num_array
)
5182 hsotg
->last_frame_num_array
= kzalloc(
5183 sizeof(*hsotg
->last_frame_num_array
) *
5184 FRAME_NUM_ARRAY_SIZE
, GFP_KERNEL
);
5185 if (!hsotg
->last_frame_num_array
)
5188 hsotg
->last_frame_num
= HFNUM_MAX_FRNUM
;
5190 /* Check if the bus driver or platform code has setup a dma_mask */
5191 if (hsotg
->params
.host_dma
&&
5192 !hsotg
->dev
->dma_mask
) {
5193 dev_warn(hsotg
->dev
,
5194 "dma_mask not set, disabling DMA\n");
5195 hsotg
->params
.host_dma
= false;
5196 hsotg
->params
.dma_desc_enable
= false;
5199 /* Set device flags indicating whether the HCD supports DMA */
5200 if (hsotg
->params
.host_dma
) {
5201 if (dma_set_mask(hsotg
->dev
, DMA_BIT_MASK(32)) < 0)
5202 dev_warn(hsotg
->dev
, "can't set DMA mask\n");
5203 if (dma_set_coherent_mask(hsotg
->dev
, DMA_BIT_MASK(32)) < 0)
5204 dev_warn(hsotg
->dev
, "can't set coherent DMA mask\n");
5207 if (hsotg
->params
.change_speed_quirk
) {
5208 dwc2_hc_driver
.free_dev
= dwc2_free_dev
;
5209 dwc2_hc_driver
.reset_device
= dwc2_reset_device
;
5212 hcd
= usb_create_hcd(&dwc2_hc_driver
, hsotg
->dev
, dev_name(hsotg
->dev
));
5216 if (!hsotg
->params
.host_dma
)
5217 hcd
->self
.uses_dma
= 0;
5221 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5222 hcd
->rsrc_start
= res
->start
;
5223 hcd
->rsrc_len
= resource_size(res
);
5225 ((struct wrapper_priv_data
*)&hcd
->hcd_priv
)->hsotg
= hsotg
;
5229 * Disable the global interrupt until all the interrupt handlers are
5232 dwc2_disable_global_interrupts(hsotg
);
5234 /* Initialize the DWC_otg core, and select the Phy type */
5235 retval
= dwc2_core_init(hsotg
, true);
5239 /* Create new workqueue and init work */
5241 hsotg
->wq_otg
= alloc_ordered_workqueue("dwc2", 0);
5242 if (!hsotg
->wq_otg
) {
5243 dev_err(hsotg
->dev
, "Failed to create workqueue\n");
5246 INIT_WORK(&hsotg
->wf_otg
, dwc2_conn_id_status_change
);
5248 setup_timer(&hsotg
->wkp_timer
, dwc2_wakeup_detected
,
5249 (unsigned long)hsotg
);
5251 /* Initialize the non-periodic schedule */
5252 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_inactive
);
5253 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_active
);
5255 /* Initialize the periodic schedule */
5256 INIT_LIST_HEAD(&hsotg
->periodic_sched_inactive
);
5257 INIT_LIST_HEAD(&hsotg
->periodic_sched_ready
);
5258 INIT_LIST_HEAD(&hsotg
->periodic_sched_assigned
);
5259 INIT_LIST_HEAD(&hsotg
->periodic_sched_queued
);
5261 INIT_LIST_HEAD(&hsotg
->split_order
);
5264 * Create a host channel descriptor for each host channel implemented
5265 * in the controller. Initialize the channel descriptor array.
5267 INIT_LIST_HEAD(&hsotg
->free_hc_list
);
5268 num_channels
= hsotg
->params
.host_channels
;
5269 memset(&hsotg
->hc_ptr_array
[0], 0, sizeof(hsotg
->hc_ptr_array
));
5271 for (i
= 0; i
< num_channels
; i
++) {
5272 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
5275 channel
->hc_num
= i
;
5276 INIT_LIST_HEAD(&channel
->split_order_list_entry
);
5277 hsotg
->hc_ptr_array
[i
] = channel
;
5280 /* Initialize hsotg start work */
5281 INIT_DELAYED_WORK(&hsotg
->start_work
, dwc2_hcd_start_func
);
5283 /* Initialize port reset work */
5284 INIT_DELAYED_WORK(&hsotg
->reset_work
, dwc2_hcd_reset_func
);
5287 * Allocate space for storing data on status transactions. Normally no
5288 * data is sent, but this space acts as a bit bucket. This must be
5289 * done after usb_add_hcd since that function allocates the DMA buffer
5292 if (hsotg
->params
.host_dma
)
5293 hsotg
->status_buf
= dma_alloc_coherent(hsotg
->dev
,
5294 DWC2_HCD_STATUS_BUF_SIZE
,
5295 &hsotg
->status_buf_dma
, GFP_KERNEL
);
5297 hsotg
->status_buf
= kzalloc(DWC2_HCD_STATUS_BUF_SIZE
,
5300 if (!hsotg
->status_buf
)
5304 * Create kmem caches to handle descriptor buffers in descriptor
5306 * Alignment must be set to 512 bytes.
5308 if (hsotg
->params
.dma_desc_enable
||
5309 hsotg
->params
.dma_desc_fs_enable
) {
5310 hsotg
->desc_gen_cache
= kmem_cache_create("dwc2-gen-desc",
5311 sizeof(struct dwc2_dma_desc
) *
5312 MAX_DMA_DESC_NUM_GENERIC
, 512, SLAB_CACHE_DMA
,
5314 if (!hsotg
->desc_gen_cache
) {
5316 "unable to create dwc2 generic desc cache\n");
5319 * Disable descriptor dma mode since it will not be
5322 hsotg
->params
.dma_desc_enable
= false;
5323 hsotg
->params
.dma_desc_fs_enable
= false;
5326 hsotg
->desc_hsisoc_cache
= kmem_cache_create("dwc2-hsisoc-desc",
5327 sizeof(struct dwc2_dma_desc
) *
5328 MAX_DMA_DESC_NUM_HS_ISOC
, 512, 0, NULL
);
5329 if (!hsotg
->desc_hsisoc_cache
) {
5331 "unable to create dwc2 hs isoc desc cache\n");
5333 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5336 * Disable descriptor dma mode since it will not be
5339 hsotg
->params
.dma_desc_enable
= false;
5340 hsotg
->params
.dma_desc_fs_enable
= false;
5344 if (hsotg
->params
.host_dma
) {
5346 * Create kmem caches to handle non-aligned buffer
5347 * in Buffer DMA mode.
5349 hsotg
->unaligned_cache
= kmem_cache_create("dwc2-unaligned-dma",
5350 DWC2_KMEM_UNALIGNED_BUF_SIZE
, 4,
5351 SLAB_CACHE_DMA
, NULL
);
5352 if (!hsotg
->unaligned_cache
)
5354 "unable to create dwc2 unaligned cache\n");
5357 hsotg
->otg_port
= 1;
5358 hsotg
->frame_list
= NULL
;
5359 hsotg
->frame_list_dma
= 0;
5360 hsotg
->periodic_qh_count
= 0;
5362 /* Initiate lx_state to L3 disconnected state */
5363 hsotg
->lx_state
= DWC2_L3
;
5365 hcd
->self
.otg_port
= hsotg
->otg_port
;
5367 /* Don't support SG list at this point */
5368 hcd
->self
.sg_tablesize
= 0;
5370 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
5371 otg_set_host(hsotg
->uphy
->otg
, &hcd
->self
);
5374 * Finish generic HCD initialization and start the HCD. This function
5375 * allocates the DMA buffer pool, registers the USB bus, requests the
5376 * IRQ line, and calls hcd_start method.
5378 retval
= usb_add_hcd(hcd
, hsotg
->irq
, IRQF_SHARED
);
5382 device_wakeup_enable(hcd
->self
.controller
);
5384 dwc2_hcd_dump_state(hsotg
);
5386 dwc2_enable_global_interrupts(hsotg
);
5391 kmem_cache_destroy(hsotg
->unaligned_cache
);
5392 kmem_cache_destroy(hsotg
->desc_hsisoc_cache
);
5393 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5395 dwc2_hcd_release(hsotg
);
5400 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5401 kfree(hsotg
->last_frame_num_array
);
5402 kfree(hsotg
->frame_num_array
);
5405 dev_err(hsotg
->dev
, "%s() FAILED, returning %d\n", __func__
, retval
);
5411 * Frees memory and resources associated with the HCD and deregisters the bus.
5413 void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
)
5415 struct usb_hcd
*hcd
;
5417 dev_dbg(hsotg
->dev
, "DWC OTG HCD REMOVE\n");
5419 hcd
= dwc2_hsotg_to_hcd(hsotg
);
5420 dev_dbg(hsotg
->dev
, "hsotg->hcd = %p\n", hcd
);
5423 dev_dbg(hsotg
->dev
, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5428 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
5429 otg_set_host(hsotg
->uphy
->otg
, NULL
);
5431 usb_remove_hcd(hcd
);
5434 kmem_cache_destroy(hsotg
->unaligned_cache
);
5435 kmem_cache_destroy(hsotg
->desc_hsisoc_cache
);
5436 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5438 dwc2_hcd_release(hsotg
);
5441 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5442 kfree(hsotg
->last_frame_num_array
);
5443 kfree(hsotg
->frame_num_array
);
5448 * dwc2_backup_host_registers() - Backup controller host registers.
5449 * When suspending usb bus, registers needs to be backuped
5450 * if controller power is disabled once suspended.
5452 * @hsotg: Programming view of the DWC_otg controller
5454 int dwc2_backup_host_registers(struct dwc2_hsotg
*hsotg
)
5456 struct dwc2_hregs_backup
*hr
;
5459 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5461 /* Backup Host regs */
5462 hr
= &hsotg
->hr_backup
;
5463 hr
->hcfg
= dwc2_readl(hsotg
->regs
+ HCFG
);
5464 hr
->haintmsk
= dwc2_readl(hsotg
->regs
+ HAINTMSK
);
5465 for (i
= 0; i
< hsotg
->params
.host_channels
; ++i
)
5466 hr
->hcintmsk
[i
] = dwc2_readl(hsotg
->regs
+ HCINTMSK(i
));
5468 hr
->hprt0
= dwc2_read_hprt0(hsotg
);
5469 hr
->hfir
= dwc2_readl(hsotg
->regs
+ HFIR
);
5476 * dwc2_restore_host_registers() - Restore controller host registers.
5477 * When resuming usb bus, device registers needs to be restored
5478 * if controller power were disabled.
5480 * @hsotg: Programming view of the DWC_otg controller
5482 int dwc2_restore_host_registers(struct dwc2_hsotg
*hsotg
)
5484 struct dwc2_hregs_backup
*hr
;
5487 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5489 /* Restore host regs */
5490 hr
= &hsotg
->hr_backup
;
5492 dev_err(hsotg
->dev
, "%s: no host registers to restore\n",
5498 dwc2_writel(hr
->hcfg
, hsotg
->regs
+ HCFG
);
5499 dwc2_writel(hr
->haintmsk
, hsotg
->regs
+ HAINTMSK
);
5501 for (i
= 0; i
< hsotg
->params
.host_channels
; ++i
)
5502 dwc2_writel(hr
->hcintmsk
[i
], hsotg
->regs
+ HCINTMSK(i
));
5504 dwc2_writel(hr
->hprt0
, hsotg
->regs
+ HPRT0
);
5505 dwc2_writel(hr
->hfir
, hsotg
->regs
+ HFIR
);
5506 hsotg
->frame_number
= 0;