x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / usb / dwc2 / hcd_queue.c
blob56e61220efc66a5571159ca2f46932576ab451dd
1 /*
2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the functions to manage Queue Heads and Queue
39 * Transfer Descriptors for Host mode
41 #include <linux/gcd.h>
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
54 #include "core.h"
55 #include "hcd.h"
57 /* Wait this long before releasing periodic reservation */
58 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
60 /**
61 * dwc2_periodic_channel_available() - Checks that a channel is available for a
62 * periodic transfer
64 * @hsotg: The HCD state structure for the DWC OTG controller
66 * Return: 0 if successful, negative error code otherwise
68 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
71 * Currently assuming that there is a dedicated host channel for
72 * each periodic transaction plus at least one host channel for
73 * non-periodic transactions
75 int status;
76 int num_channels;
78 num_channels = hsotg->params.host_channels;
79 if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
80 num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
81 status = 0;
82 } else {
83 dev_dbg(hsotg->dev,
84 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
85 __func__, num_channels,
86 hsotg->periodic_channels, hsotg->non_periodic_channels);
87 status = -ENOSPC;
90 return status;
93 /**
94 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
95 * for the specified QH in the periodic schedule
97 * @hsotg: The HCD state structure for the DWC OTG controller
98 * @qh: QH containing periodic bandwidth required
100 * Return: 0 if successful, negative error code otherwise
102 * For simplicity, this calculation assumes that all the transfers in the
103 * periodic schedule may occur in the same (micro)frame
105 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
106 struct dwc2_qh *qh)
108 int status;
109 s16 max_claimed_usecs;
111 status = 0;
113 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
115 * High speed mode
116 * Max periodic usecs is 80% x 125 usec = 100 usec
118 max_claimed_usecs = 100 - qh->host_us;
119 } else {
121 * Full speed mode
122 * Max periodic usecs is 90% x 1000 usec = 900 usec
124 max_claimed_usecs = 900 - qh->host_us;
127 if (hsotg->periodic_usecs > max_claimed_usecs) {
128 dev_err(hsotg->dev,
129 "%s: already claimed usecs %d, required usecs %d\n",
130 __func__, hsotg->periodic_usecs, qh->host_us);
131 status = -ENOSPC;
134 return status;
138 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
140 * @map: The bitmap representing the schedule; will be updated
141 * upon success.
142 * @bits_per_period: The schedule represents several periods. This is how many
143 * bits are in each period. It's assumed that the beginning
144 * of the schedule will repeat after its end.
145 * @periods_in_map: The number of periods in the schedule.
146 * @num_bits: The number of bits we need per period we want to reserve
147 * in this function call.
148 * @interval: How often we need to be scheduled for the reservation this
149 * time. 1 means every period. 2 means every other period.
150 * ...you get the picture?
151 * @start: The bit number to start at. Normally 0. Must be within
152 * the interval or we return failure right away.
153 * @only_one_period: Normally we'll allow picking a start anywhere within the
154 * first interval, since we can still make all repetition
155 * requirements by doing that. However, if you pass true
156 * here then we'll return failure if we can't fit within
157 * the period that "start" is in.
159 * The idea here is that we want to schedule time for repeating events that all
160 * want the same resource. The resource is divided into fixed-sized periods
161 * and the events want to repeat every "interval" periods. The schedule
162 * granularity is one bit.
164 * To keep things "simple", we'll represent our schedule with a bitmap that
165 * contains a fixed number of periods. This gets rid of a lot of complexity
166 * but does mean that we need to handle things specially (and non-ideally) if
167 * the number of the periods in the schedule doesn't match well with the
168 * intervals that we're trying to schedule.
170 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
171 * - If interval is 1, we need to take up space in each of the 8
172 * periods we're scheduling. Easy.
173 * - If interval is 2, we need to take up space in half of the
174 * periods. Again, easy.
175 * - If interval is 3, we actually need to fall back to interval 1.
176 * Why? Because we might need time in any period. AKA for the
177 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be
178 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to
179 * 0, 3, and 6. Since we could be in any frame we need to reserve
180 * for all of them. Sucks, but that's what you gotta do. Note that
181 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but
182 * then we need more memory and time to do scheduling.
183 * - If interval is 4, easy.
184 * - If interval is 5, we again need interval 1. The schedule will be
185 * 0, 5, 2, 7, 4, 1, 6, 3, 0
186 * - If interval is 6, we need interval 2. 0, 6, 4, 2.
187 * - If interval is 7, we need interval 1.
188 * - If interval is 8, we need interval 8.
190 * If you do the math, you'll see that we need to pretend that interval is
191 * equal to the greatest_common_divisor(interval, periods_in_map).
193 * Note that at the moment this function tends to front-pack the schedule.
194 * In some cases that's really non-ideal (it's hard to schedule things that
195 * need to repeat every period). In other cases it's perfect (you can easily
196 * schedule bigger, less often repeating things).
198 * Here's the algorithm in action (8 periods, 5 bits per period):
199 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
200 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2
201 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5
202 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2
203 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2
204 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3
205 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6
206 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4
207 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
208 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0
209 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5
210 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2
211 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3
212 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6
213 * | | | | | | | | | Remv 1 bits, intv 1 at 4
214 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
215 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2
216 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3
217 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5
218 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6
219 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8
220 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12
222 * This function is pretty generic and could be easily abstracted if anything
223 * needed similar scheduling.
225 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
226 * unschedule routine. The map bitmap will be updated on a non-error result.
228 static int pmap_schedule(unsigned long *map, int bits_per_period,
229 int periods_in_map, int num_bits,
230 int interval, int start, bool only_one_period)
232 int interval_bits;
233 int to_reserve;
234 int first_end;
235 int i;
237 if (num_bits > bits_per_period)
238 return -ENOSPC;
240 /* Adjust interval as per description */
241 interval = gcd(interval, periods_in_map);
243 interval_bits = bits_per_period * interval;
244 to_reserve = periods_in_map / interval;
246 /* If start has gotten us past interval then we can't schedule */
247 if (start >= interval_bits)
248 return -ENOSPC;
250 if (only_one_period)
251 /* Must fit within same period as start; end at begin of next */
252 first_end = (start / bits_per_period + 1) * bits_per_period;
253 else
254 /* Can fit anywhere in the first interval */
255 first_end = interval_bits;
258 * We'll try to pick the first repetition, then see if that time
259 * is free for each of the subsequent repetitions. If it's not
260 * we'll adjust the start time for the next search of the first
261 * repetition.
263 while (start + num_bits <= first_end) {
264 int end;
266 /* Need to stay within this period */
267 end = (start / bits_per_period + 1) * bits_per_period;
269 /* Look for num_bits us in this microframe starting at start */
270 start = bitmap_find_next_zero_area(map, end, start, num_bits,
274 * We should get start >= end if we fail. We might be
275 * able to check the next microframe depending on the
276 * interval, so continue on (start already updated).
278 if (start >= end) {
279 start = end;
280 continue;
283 /* At this point we have a valid point for first one */
284 for (i = 1; i < to_reserve; i++) {
285 int ith_start = start + interval_bits * i;
286 int ith_end = end + interval_bits * i;
287 int ret;
289 /* Use this as a dumb "check if bits are 0" */
290 ret = bitmap_find_next_zero_area(
291 map, ith_start + num_bits, ith_start, num_bits,
294 /* We got the right place, continue checking */
295 if (ret == ith_start)
296 continue;
298 /* Move start up for next time and exit for loop */
299 ith_start = bitmap_find_next_zero_area(
300 map, ith_end, ith_start, num_bits, 0);
301 if (ith_start >= ith_end)
302 /* Need a while new period next time */
303 start = end;
304 else
305 start = ith_start - interval_bits * i;
306 break;
309 /* If didn't exit the for loop with a break, we have success */
310 if (i == to_reserve)
311 break;
314 if (start + num_bits > first_end)
315 return -ENOSPC;
317 for (i = 0; i < to_reserve; i++) {
318 int ith_start = start + interval_bits * i;
320 bitmap_set(map, ith_start, num_bits);
323 return start;
327 * pmap_unschedule() - Undo work done by pmap_schedule()
329 * @map: See pmap_schedule().
330 * @bits_per_period: See pmap_schedule().
331 * @periods_in_map: See pmap_schedule().
332 * @num_bits: The number of bits that was passed to schedule.
333 * @interval: The interval that was passed to schedule.
334 * @start: The return value from pmap_schedule().
336 static void pmap_unschedule(unsigned long *map, int bits_per_period,
337 int periods_in_map, int num_bits,
338 int interval, int start)
340 int interval_bits;
341 int to_release;
342 int i;
344 /* Adjust interval as per description in pmap_schedule() */
345 interval = gcd(interval, periods_in_map);
347 interval_bits = bits_per_period * interval;
348 to_release = periods_in_map / interval;
350 for (i = 0; i < to_release; i++) {
351 int ith_start = start + interval_bits * i;
353 bitmap_clear(map, ith_start, num_bits);
358 * dwc2_get_ls_map() - Get the map used for the given qh
360 * @hsotg: The HCD state structure for the DWC OTG controller.
361 * @qh: QH for the periodic transfer.
363 * We'll always get the periodic map out of our TT. Note that even if we're
364 * running the host straight in low speed / full speed mode it appears as if
365 * a TT is allocated for us, so we'll use it. If that ever changes we can
366 * add logic here to get a map out of "hsotg" if !qh->do_split.
368 * Returns: the map or NULL if a map couldn't be found.
370 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
371 struct dwc2_qh *qh)
373 unsigned long *map;
375 /* Don't expect to be missing a TT and be doing low speed scheduling */
376 if (WARN_ON(!qh->dwc_tt))
377 return NULL;
379 /* Get the map and adjust if this is a multi_tt hub */
380 map = qh->dwc_tt->periodic_bitmaps;
381 if (qh->dwc_tt->usb_tt->multi)
382 map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
384 return map;
387 #ifdef DWC2_PRINT_SCHEDULE
389 * cat_printf() - A printf() + strcat() helper
391 * This is useful for concatenating a bunch of strings where each string is
392 * constructed using printf.
394 * @buf: The destination buffer; will be updated to point after the printed
395 * data.
396 * @size: The number of bytes in the buffer (includes space for '\0').
397 * @fmt: The format for printf.
398 * @...: The args for printf.
400 static __printf(3, 4)
401 void cat_printf(char **buf, size_t *size, const char *fmt, ...)
403 va_list args;
404 int i;
406 if (*size == 0)
407 return;
409 va_start(args, fmt);
410 i = vsnprintf(*buf, *size, fmt, args);
411 va_end(args);
413 if (i >= *size) {
414 (*buf)[*size - 1] = '\0';
415 *buf += *size;
416 *size = 0;
417 } else {
418 *buf += i;
419 *size -= i;
424 * pmap_print() - Print the given periodic map
426 * Will attempt to print out the periodic schedule.
428 * @map: See pmap_schedule().
429 * @bits_per_period: See pmap_schedule().
430 * @periods_in_map: See pmap_schedule().
431 * @period_name: The name of 1 period, like "uFrame"
432 * @units: The name of the units, like "us".
433 * @print_fn: The function to call for printing.
434 * @print_data: Opaque data to pass to the print function.
436 static void pmap_print(unsigned long *map, int bits_per_period,
437 int periods_in_map, const char *period_name,
438 const char *units,
439 void (*print_fn)(const char *str, void *data),
440 void *print_data)
442 int period;
444 for (period = 0; period < periods_in_map; period++) {
445 char tmp[64];
446 char *buf = tmp;
447 size_t buf_size = sizeof(tmp);
448 int period_start = period * bits_per_period;
449 int period_end = period_start + bits_per_period;
450 int start = 0;
451 int count = 0;
452 bool printed = false;
453 int i;
455 for (i = period_start; i < period_end + 1; i++) {
456 /* Handle case when ith bit is set */
457 if (i < period_end &&
458 bitmap_find_next_zero_area(map, i + 1,
459 i, 1, 0) != i) {
460 if (count == 0)
461 start = i - period_start;
462 count++;
463 continue;
466 /* ith bit isn't set; don't care if count == 0 */
467 if (count == 0)
468 continue;
470 if (!printed)
471 cat_printf(&buf, &buf_size, "%s %d: ",
472 period_name, period);
473 else
474 cat_printf(&buf, &buf_size, ", ");
475 printed = true;
477 cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
478 units, start + count - 1, units);
479 count = 0;
482 if (printed)
483 print_fn(tmp, print_data);
487 struct dwc2_qh_print_data {
488 struct dwc2_hsotg *hsotg;
489 struct dwc2_qh *qh;
493 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
495 * @str: The string to print
496 * @data: A pointer to a struct dwc2_qh_print_data
498 static void dwc2_qh_print(const char *str, void *data)
500 struct dwc2_qh_print_data *print_data = data;
502 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
506 * dwc2_qh_schedule_print() - Print the periodic schedule
508 * @hsotg: The HCD state structure for the DWC OTG controller.
509 * @qh: QH to print.
511 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
512 struct dwc2_qh *qh)
514 struct dwc2_qh_print_data print_data = { hsotg, qh };
515 int i;
518 * The printing functions are quite slow and inefficient.
519 * If we don't have tracing turned on, don't run unless the special
520 * define is turned on.
523 if (qh->schedule_low_speed) {
524 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
526 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
527 qh, qh->device_us,
528 DWC2_ROUND_US_TO_SLICE(qh->device_us),
529 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
531 if (map) {
532 dwc2_sch_dbg(hsotg,
533 "QH=%p Whole low/full speed map %p now:\n",
534 qh, map);
535 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
536 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
537 dwc2_qh_print, &print_data);
541 for (i = 0; i < qh->num_hs_transfers; i++) {
542 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
543 int uframe = trans_time->start_schedule_us /
544 DWC2_HS_PERIODIC_US_PER_UFRAME;
545 int rel_us = trans_time->start_schedule_us %
546 DWC2_HS_PERIODIC_US_PER_UFRAME;
548 dwc2_sch_dbg(hsotg,
549 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
550 qh, i, trans_time->duration_us, uframe, rel_us);
552 if (qh->num_hs_transfers) {
553 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
554 pmap_print(hsotg->hs_periodic_bitmap,
555 DWC2_HS_PERIODIC_US_PER_UFRAME,
556 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
557 dwc2_qh_print, &print_data);
560 #else
561 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
562 struct dwc2_qh *qh) {};
563 #endif
566 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
568 * @hsotg: The HCD state structure for the DWC OTG controller.
569 * @qh: QH for the periodic transfer.
570 * @search_slice: We'll start trying to schedule at the passed slice.
571 * Remember that slices are the units of the low speed
572 * schedule (think 25us or so).
574 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
576 * Normally we schedule low speed devices on the map associated with the TT.
578 * Returns: 0 for success or an error code.
580 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
581 int search_slice)
583 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
584 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
585 int slice;
587 if (!map)
588 return -EINVAL;
591 * Schedule on the proper low speed map with our low speed scheduling
592 * parameters. Note that we use the "device_interval" here since
593 * we want the low speed interval and the only way we'd be in this
594 * function is if the device is low speed.
596 * If we happen to be doing low speed and high speed scheduling for the
597 * same transaction (AKA we have a split) we always do low speed first.
598 * That means we can always pass "false" for only_one_period (that
599 * parameters is only useful when we're trying to get one schedule to
600 * match what we already planned in the other schedule).
602 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
603 DWC2_LS_SCHEDULE_FRAMES, slices,
604 qh->device_interval, search_slice, false);
606 if (slice < 0)
607 return slice;
609 qh->ls_start_schedule_slice = slice;
610 return 0;
614 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
616 * @hsotg: The HCD state structure for the DWC OTG controller.
617 * @qh: QH for the periodic transfer.
619 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
620 struct dwc2_qh *qh)
622 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
623 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
625 /* Schedule should have failed, so no worries about no error code */
626 if (!map)
627 return;
629 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
630 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
631 qh->ls_start_schedule_slice);
635 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
637 * This will schedule something on the main dwc2 schedule.
639 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll
640 * update this with the result upon success. We also use the duration from
641 * the same structure.
643 * @hsotg: The HCD state structure for the DWC OTG controller.
644 * @qh: QH for the periodic transfer.
645 * @only_one_period: If true we will limit ourselves to just looking at
646 * one period (aka one 100us chunk). This is used if we have
647 * already scheduled something on the low speed schedule and
648 * need to find something that matches on the high speed one.
649 * @index: The index into qh->hs_transfers that we're working with.
651 * Returns: 0 for success or an error code. Upon success the
652 * dwc2_hs_transfer_time specified by "index" will be updated.
654 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
655 bool only_one_period, int index)
657 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
658 int us;
660 us = pmap_schedule(hsotg->hs_periodic_bitmap,
661 DWC2_HS_PERIODIC_US_PER_UFRAME,
662 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
663 qh->host_interval, trans_time->start_schedule_us,
664 only_one_period);
666 if (us < 0)
667 return us;
669 trans_time->start_schedule_us = us;
670 return 0;
674 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
676 * @hsotg: The HCD state structure for the DWC OTG controller.
677 * @qh: QH for the periodic transfer.
679 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
680 struct dwc2_qh *qh, int index)
682 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
684 pmap_unschedule(hsotg->hs_periodic_bitmap,
685 DWC2_HS_PERIODIC_US_PER_UFRAME,
686 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
687 qh->host_interval, trans_time->start_schedule_us);
691 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
693 * This is the most complicated thing in USB. We have to find matching time
694 * in both the global high speed schedule for the port and the low speed
695 * schedule for the TT associated with the given device.
697 * Being here means that the host must be running in high speed mode and the
698 * device is in low or full speed mode (and behind a hub).
700 * @hsotg: The HCD state structure for the DWC OTG controller.
701 * @qh: QH for the periodic transfer.
703 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
704 struct dwc2_qh *qh)
706 int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
707 int ls_search_slice;
708 int err = 0;
709 int host_interval_in_sched;
712 * The interval (how often to repeat) in the actual host schedule.
713 * See pmap_schedule() for gcd() explanation.
715 host_interval_in_sched = gcd(qh->host_interval,
716 DWC2_HS_SCHEDULE_UFRAMES);
719 * We always try to find space in the low speed schedule first, then
720 * try to find high speed time that matches. If we don't, we'll bump
721 * up the place we start searching in the low speed schedule and try
722 * again. To start we'll look right at the beginning of the low speed
723 * schedule.
725 * Note that this will tend to front-load the high speed schedule.
726 * We may eventually want to try to avoid this by either considering
727 * both schedules together or doing some sort of round robin.
729 ls_search_slice = 0;
731 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
732 int start_s_uframe;
733 int ssplit_s_uframe;
734 int second_s_uframe;
735 int rel_uframe;
736 int first_count;
737 int middle_count;
738 int end_count;
739 int first_data_bytes;
740 int other_data_bytes;
741 int i;
743 if (qh->schedule_low_speed) {
744 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
747 * If we got an error here there's no other magic we
748 * can do, so bail. All the looping above is only
749 * helpful to redo things if we got a low speed slot
750 * and then couldn't find a matching high speed slot.
752 if (err)
753 return err;
754 } else {
755 /* Must be missing the tt structure? Why? */
756 WARN_ON_ONCE(1);
760 * This will give us a number 0 - 7 if
761 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
763 start_s_uframe = qh->ls_start_schedule_slice /
764 DWC2_SLICES_PER_UFRAME;
766 /* Get a number that's always 0 - 7 */
767 rel_uframe = (start_s_uframe % 8);
770 * If we were going to start in uframe 7 then we would need to
771 * issue a start split in uframe 6, which spec says is not OK.
772 * Move on to the next full frame (assuming there is one).
774 * See 11.18.4 Host Split Transaction Scheduling Requirements
775 * bullet 1.
777 if (rel_uframe == 7) {
778 if (qh->schedule_low_speed)
779 dwc2_ls_pmap_unschedule(hsotg, qh);
780 ls_search_slice =
781 (qh->ls_start_schedule_slice /
782 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
783 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
784 continue;
788 * For ISOC in:
789 * - start split (frame -1)
790 * - complete split w/ data (frame +1)
791 * - complete split w/ data (frame +2)
792 * - ...
793 * - complete split w/ data (frame +num_data_packets)
794 * - complete split w/ data (frame +num_data_packets+1)
795 * - complete split w/ data (frame +num_data_packets+2, max 8)
796 * ...though if frame was "0" then max is 7...
798 * For ISOC out we might need to do:
799 * - start split w/ data (frame -1)
800 * - start split w/ data (frame +0)
801 * - ...
802 * - start split w/ data (frame +num_data_packets-2)
804 * For INTERRUPT in we might need to do:
805 * - start split (frame -1)
806 * - complete split w/ data (frame +1)
807 * - complete split w/ data (frame +2)
808 * - complete split w/ data (frame +3, max 8)
810 * For INTERRUPT out we might need to do:
811 * - start split w/ data (frame -1)
812 * - complete split (frame +1)
813 * - complete split (frame +2)
814 * - complete split (frame +3, max 8)
816 * Start adjusting!
818 ssplit_s_uframe = (start_s_uframe +
819 host_interval_in_sched - 1) %
820 host_interval_in_sched;
821 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
822 second_s_uframe = start_s_uframe;
823 else
824 second_s_uframe = start_s_uframe + 1;
826 /* First data transfer might not be all 188 bytes. */
827 first_data_bytes = 188 -
828 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
829 DWC2_SLICES_PER_UFRAME),
830 DWC2_SLICES_PER_UFRAME);
831 if (first_data_bytes > bytecount)
832 first_data_bytes = bytecount;
833 other_data_bytes = bytecount - first_data_bytes;
836 * For now, skip OUT xfers where first xfer is partial
838 * Main dwc2 code assumes:
839 * - INT transfers never get split in two.
840 * - ISOC transfers can always transfer 188 bytes the first
841 * time.
843 * Until that code is fixed, try again if the first transfer
844 * couldn't transfer everything.
846 * This code can be removed if/when the rest of dwc2 handles
847 * the above cases. Until it's fixed we just won't be able
848 * to schedule quite as tightly.
850 if (!qh->ep_is_in &&
851 (first_data_bytes != min_t(int, 188, bytecount))) {
852 dwc2_sch_dbg(hsotg,
853 "QH=%p avoiding broken 1st xfer (%d, %d)\n",
854 qh, first_data_bytes, bytecount);
855 if (qh->schedule_low_speed)
856 dwc2_ls_pmap_unschedule(hsotg, qh);
857 ls_search_slice = (start_s_uframe + 1) *
858 DWC2_SLICES_PER_UFRAME;
859 continue;
862 /* Start by assuming transfers for the bytes */
863 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
866 * Everything except ISOC OUT has extra transfers. Rules are
867 * complicated. See 11.18.4 Host Split Transaction Scheduling
868 * Requirements bullet 3.
870 if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
871 if (rel_uframe == 6)
872 qh->num_hs_transfers += 2;
873 else
874 qh->num_hs_transfers += 3;
876 if (qh->ep_is_in) {
878 * First is start split, middle/end is data.
879 * Allocate full data bytes for all data.
881 first_count = 4;
882 middle_count = bytecount;
883 end_count = bytecount;
884 } else {
886 * First is data, middle/end is complete.
887 * First transfer and second can have data.
888 * Rest should just have complete split.
890 first_count = first_data_bytes;
891 middle_count = max_t(int, 4, other_data_bytes);
892 end_count = 4;
894 } else {
895 if (qh->ep_is_in) {
896 int last;
898 /* Account for the start split */
899 qh->num_hs_transfers++;
901 /* Calculate "L" value from spec */
902 last = rel_uframe + qh->num_hs_transfers + 1;
904 /* Start with basic case */
905 if (last <= 6)
906 qh->num_hs_transfers += 2;
907 else
908 qh->num_hs_transfers += 1;
910 /* Adjust downwards */
911 if (last >= 6 && rel_uframe == 0)
912 qh->num_hs_transfers--;
914 /* 1st = start; rest can contain data */
915 first_count = 4;
916 middle_count = min_t(int, 188, bytecount);
917 end_count = middle_count;
918 } else {
919 /* All contain data, last might be smaller */
920 first_count = first_data_bytes;
921 middle_count = min_t(int, 188,
922 other_data_bytes);
923 end_count = other_data_bytes % 188;
927 /* Assign durations per uFrame */
928 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
929 for (i = 1; i < qh->num_hs_transfers - 1; i++)
930 qh->hs_transfers[i].duration_us =
931 HS_USECS_ISO(middle_count);
932 if (qh->num_hs_transfers > 1)
933 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
934 HS_USECS_ISO(end_count);
937 * Assign start us. The call below to dwc2_hs_pmap_schedule()
938 * will start with these numbers but may adjust within the same
939 * microframe.
941 qh->hs_transfers[0].start_schedule_us =
942 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
943 for (i = 1; i < qh->num_hs_transfers; i++)
944 qh->hs_transfers[i].start_schedule_us =
945 ((second_s_uframe + i - 1) %
946 DWC2_HS_SCHEDULE_UFRAMES) *
947 DWC2_HS_PERIODIC_US_PER_UFRAME;
949 /* Try to schedule with filled in hs_transfers above */
950 for (i = 0; i < qh->num_hs_transfers; i++) {
951 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
952 if (err)
953 break;
956 /* If we scheduled all w/out breaking out then we're all good */
957 if (i == qh->num_hs_transfers)
958 break;
960 for (; i >= 0; i--)
961 dwc2_hs_pmap_unschedule(hsotg, qh, i);
963 if (qh->schedule_low_speed)
964 dwc2_ls_pmap_unschedule(hsotg, qh);
966 /* Try again starting in the next microframe */
967 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
970 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
971 return -ENOSPC;
973 return 0;
977 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
979 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
980 * interface.
982 * @hsotg: The HCD state structure for the DWC OTG controller.
983 * @qh: QH for the periodic transfer.
985 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
987 /* In non-split host and device time are the same */
988 WARN_ON(qh->host_us != qh->device_us);
989 WARN_ON(qh->host_interval != qh->device_interval);
990 WARN_ON(qh->num_hs_transfers != 1);
992 /* We'll have one transfer; init start to 0 before calling scheduler */
993 qh->hs_transfers[0].start_schedule_us = 0;
994 qh->hs_transfers[0].duration_us = qh->host_us;
996 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
1000 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1002 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1003 * interface.
1005 * @hsotg: The HCD state structure for the DWC OTG controller.
1006 * @qh: QH for the periodic transfer.
1008 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1010 /* In non-split host and device time are the same */
1011 WARN_ON(qh->host_us != qh->device_us);
1012 WARN_ON(qh->host_interval != qh->device_interval);
1013 WARN_ON(!qh->schedule_low_speed);
1015 /* Run on the main low speed schedule (no split = no hub = no TT) */
1016 return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1020 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1022 * Calls one of the 3 sub-function depending on what type of transfer this QH
1023 * is for. Also adds some printing.
1025 * @hsotg: The HCD state structure for the DWC OTG controller.
1026 * @qh: QH for the periodic transfer.
1028 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1030 int ret;
1032 if (qh->dev_speed == USB_SPEED_HIGH)
1033 ret = dwc2_uframe_schedule_hs(hsotg, qh);
1034 else if (!qh->do_split)
1035 ret = dwc2_uframe_schedule_ls(hsotg, qh);
1036 else
1037 ret = dwc2_uframe_schedule_split(hsotg, qh);
1039 if (ret)
1040 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1041 else
1042 dwc2_qh_schedule_print(hsotg, qh);
1044 return ret;
1048 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1050 * @hsotg: The HCD state structure for the DWC OTG controller.
1051 * @qh: QH for the periodic transfer.
1053 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1055 int i;
1057 for (i = 0; i < qh->num_hs_transfers; i++)
1058 dwc2_hs_pmap_unschedule(hsotg, qh, i);
1060 if (qh->schedule_low_speed)
1061 dwc2_ls_pmap_unschedule(hsotg, qh);
1063 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1067 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1069 * Takes a qh that has already been scheduled (which means we know we have the
1070 * bandwdith reserved for us) and set the next_active_frame and the
1071 * start_active_frame.
1073 * This is expected to be called on qh's that weren't previously actively
1074 * running. It just picks the next frame that we can fit into without any
1075 * thought about the past.
1077 * @hsotg: The HCD state structure for the DWC OTG controller
1078 * @qh: QH for a periodic endpoint
1081 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1083 u16 frame_number;
1084 u16 earliest_frame;
1085 u16 next_active_frame;
1086 u16 relative_frame;
1087 u16 interval;
1090 * Use the real frame number rather than the cached value as of the
1091 * last SOF to give us a little extra slop.
1093 frame_number = dwc2_hcd_get_frame_number(hsotg);
1096 * We wouldn't want to start any earlier than the next frame just in
1097 * case the frame number ticks as we're doing this calculation.
1099 * NOTE: if we could quantify how long till we actually get scheduled
1100 * we might be able to avoid the "+ 1" by looking at the upper part of
1101 * HFNUM (the FRREM field). For now we'll just use the + 1 though.
1103 earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1104 next_active_frame = earliest_frame;
1106 /* Get the "no microframe schduler" out of the way... */
1107 if (!hsotg->params.uframe_sched) {
1108 if (qh->do_split)
1109 /* Splits are active at microframe 0 minus 1 */
1110 next_active_frame |= 0x7;
1111 goto exit;
1114 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1116 * We're either at high speed or we're doing a split (which
1117 * means we're talking high speed to a hub). In any case
1118 * the first frame should be based on when the first scheduled
1119 * event is.
1121 WARN_ON(qh->num_hs_transfers < 1);
1123 relative_frame = qh->hs_transfers[0].start_schedule_us /
1124 DWC2_HS_PERIODIC_US_PER_UFRAME;
1126 /* Adjust interval as per high speed schedule */
1127 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1129 } else {
1131 * Low or full speed directly on dwc2. Just about the same
1132 * as high speed but on a different schedule and with slightly
1133 * different adjustments. Note that this works because when
1134 * the host and device are both low speed then frames in the
1135 * controller tick at low speed.
1137 relative_frame = qh->ls_start_schedule_slice /
1138 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1139 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1142 /* Scheduler messed up if frame is past interval */
1143 WARN_ON(relative_frame >= interval);
1146 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1147 * done the gcd(), so it's safe to move to the beginning of the current
1148 * interval like this.
1150 * After this we might be before earliest_frame, but don't worry,
1151 * we'll fix it...
1153 next_active_frame = (next_active_frame / interval) * interval;
1156 * Actually choose to start at the frame number we've been
1157 * scheduled for.
1159 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1160 relative_frame);
1163 * We actually need 1 frame before since the next_active_frame is
1164 * the frame number we'll be put on the ready list and we won't be on
1165 * the bus until 1 frame later.
1167 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1170 * By now we might actually be before the earliest_frame. Let's move
1171 * up intervals until we're not.
1173 while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1174 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1175 interval);
1177 exit:
1178 qh->next_active_frame = next_active_frame;
1179 qh->start_active_frame = next_active_frame;
1181 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1182 qh, frame_number, qh->next_active_frame);
1186 * dwc2_do_reserve() - Make a periodic reservation
1188 * Try to allocate space in the periodic schedule. Depending on parameters
1189 * this might use the microframe scheduler or the dumb scheduler.
1191 * @hsotg: The HCD state structure for the DWC OTG controller
1192 * @qh: QH for the periodic transfer.
1194 * Returns: 0 upon success; error upon failure.
1196 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1198 int status;
1200 if (hsotg->params.uframe_sched) {
1201 status = dwc2_uframe_schedule(hsotg, qh);
1202 } else {
1203 status = dwc2_periodic_channel_available(hsotg);
1204 if (status) {
1205 dev_info(hsotg->dev,
1206 "%s: No host channel available for periodic transfer\n",
1207 __func__);
1208 return status;
1211 status = dwc2_check_periodic_bandwidth(hsotg, qh);
1214 if (status) {
1215 dev_dbg(hsotg->dev,
1216 "%s: Insufficient periodic bandwidth for periodic transfer\n",
1217 __func__);
1218 return status;
1221 if (!hsotg->params.uframe_sched)
1222 /* Reserve periodic channel */
1223 hsotg->periodic_channels++;
1225 /* Update claimed usecs per (micro)frame */
1226 hsotg->periodic_usecs += qh->host_us;
1228 dwc2_pick_first_frame(hsotg, qh);
1230 return 0;
1234 * dwc2_do_unreserve() - Actually release the periodic reservation
1236 * This function actually releases the periodic bandwidth that was reserved
1237 * by the given qh.
1239 * @hsotg: The HCD state structure for the DWC OTG controller
1240 * @qh: QH for the periodic transfer.
1242 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1244 assert_spin_locked(&hsotg->lock);
1246 WARN_ON(!qh->unreserve_pending);
1248 /* No more unreserve pending--we're doing it */
1249 qh->unreserve_pending = false;
1251 if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1252 list_del_init(&qh->qh_list_entry);
1254 /* Update claimed usecs per (micro)frame */
1255 hsotg->periodic_usecs -= qh->host_us;
1257 if (hsotg->params.uframe_sched) {
1258 dwc2_uframe_unschedule(hsotg, qh);
1259 } else {
1260 /* Release periodic channel reservation */
1261 hsotg->periodic_channels--;
1266 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1268 * According to the kernel doc for usb_submit_urb() (specifically the part about
1269 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1270 * long as a device driver keeps submitting. Since we're using HCD_BH to give
1271 * back the URB we need to give the driver a little bit of time before we
1272 * release the reservation. This worker is called after the appropriate
1273 * delay.
1275 * @work: Pointer to a qh unreserve_work.
1277 static void dwc2_unreserve_timer_fn(unsigned long data)
1279 struct dwc2_qh *qh = (struct dwc2_qh *)data;
1280 struct dwc2_hsotg *hsotg = qh->hsotg;
1281 unsigned long flags;
1284 * Wait for the lock, or for us to be scheduled again. We
1285 * could be scheduled again if:
1286 * - We started executing but didn't get the lock yet.
1287 * - A new reservation came in, but cancel didn't take effect
1288 * because we already started executing.
1289 * - The timer has been kicked again.
1290 * In that case cancel and wait for the next call.
1292 while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1293 if (timer_pending(&qh->unreserve_timer))
1294 return;
1298 * Might be no more unreserve pending if:
1299 * - We started executing but didn't get the lock yet.
1300 * - A new reservation came in, but cancel didn't take effect
1301 * because we already started executing.
1303 * We can't put this in the loop above because unreserve_pending needs
1304 * to be accessed under lock, so we can only check it once we got the
1305 * lock.
1307 if (qh->unreserve_pending)
1308 dwc2_do_unreserve(hsotg, qh);
1310 spin_unlock_irqrestore(&hsotg->lock, flags);
1314 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1315 * host channel is large enough to handle the maximum data transfer in a single
1316 * (micro)frame for a periodic transfer
1318 * @hsotg: The HCD state structure for the DWC OTG controller
1319 * @qh: QH for a periodic endpoint
1321 * Return: 0 if successful, negative error code otherwise
1323 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1324 struct dwc2_qh *qh)
1326 u32 max_xfer_size;
1327 u32 max_channel_xfer_size;
1328 int status = 0;
1330 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
1331 max_channel_xfer_size = hsotg->params.max_transfer_size;
1333 if (max_xfer_size > max_channel_xfer_size) {
1334 dev_err(hsotg->dev,
1335 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1336 __func__, max_xfer_size, max_channel_xfer_size);
1337 status = -ENOSPC;
1340 return status;
1344 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1345 * the periodic schedule
1347 * @hsotg: The HCD state structure for the DWC OTG controller
1348 * @qh: QH for the periodic transfer. The QH should already contain the
1349 * scheduling information.
1351 * Return: 0 if successful, negative error code otherwise
1353 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1355 int status;
1357 status = dwc2_check_max_xfer_size(hsotg, qh);
1358 if (status) {
1359 dev_dbg(hsotg->dev,
1360 "%s: Channel max transfer size too small for periodic transfer\n",
1361 __func__);
1362 return status;
1365 /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1366 if (del_timer(&qh->unreserve_timer))
1367 WARN_ON(!qh->unreserve_pending);
1370 * Only need to reserve if there's not an unreserve pending, since if an
1371 * unreserve is pending then by definition our old reservation is still
1372 * valid. Unreserve might still be pending even if we didn't cancel if
1373 * dwc2_unreserve_timer_fn() already started. Code in the timer handles
1374 * that case.
1376 if (!qh->unreserve_pending) {
1377 status = dwc2_do_reserve(hsotg, qh);
1378 if (status)
1379 return status;
1380 } else {
1382 * It might have been a while, so make sure that frame_number
1383 * is still good. Note: we could also try to use the similar
1384 * dwc2_next_periodic_start() but that schedules much more
1385 * tightly and we might need to hurry and queue things up.
1387 if (dwc2_frame_num_le(qh->next_active_frame,
1388 hsotg->frame_number))
1389 dwc2_pick_first_frame(hsotg, qh);
1392 qh->unreserve_pending = 0;
1394 if (hsotg->params.dma_desc_enable)
1395 /* Don't rely on SOF and start in ready schedule */
1396 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1397 else
1398 /* Always start in inactive schedule */
1399 list_add_tail(&qh->qh_list_entry,
1400 &hsotg->periodic_sched_inactive);
1402 return 0;
1406 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1407 * from the periodic schedule
1409 * @hsotg: The HCD state structure for the DWC OTG controller
1410 * @qh: QH for the periodic transfer
1412 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1413 struct dwc2_qh *qh)
1415 bool did_modify;
1417 assert_spin_locked(&hsotg->lock);
1420 * Schedule the unreserve to happen in a little bit. Cases here:
1421 * - Unreserve worker might be sitting there waiting to grab the lock.
1422 * In this case it will notice it's been schedule again and will
1423 * quit.
1424 * - Unreserve worker might not be scheduled.
1426 * We should never already be scheduled since dwc2_schedule_periodic()
1427 * should have canceled the scheduled unreserve timer (hence the
1428 * warning on did_modify).
1430 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1431 * passed (otherwise if the jiffy counter might tick right after we
1432 * read it and we'll get no delay).
1434 did_modify = mod_timer(&qh->unreserve_timer,
1435 jiffies + DWC2_UNRESERVE_DELAY + 1);
1436 WARN_ON(did_modify);
1437 qh->unreserve_pending = 1;
1439 list_del_init(&qh->qh_list_entry);
1443 * dwc2_qh_init() - Initializes a QH structure
1445 * @hsotg: The HCD state structure for the DWC OTG controller
1446 * @qh: The QH to init
1447 * @urb: Holds the information about the device/endpoint needed to initialize
1448 * the QH
1449 * @mem_flags: Flags for allocating memory.
1451 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1452 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1454 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1455 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1456 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1457 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1458 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1459 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
1460 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1461 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1462 dev_speed != USB_SPEED_HIGH);
1463 int maxp = dwc2_hcd_get_mps(&urb->pipe_info);
1464 int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp);
1465 char *speed, *type;
1467 /* Initialize QH */
1468 qh->hsotg = hsotg;
1469 setup_timer(&qh->unreserve_timer, dwc2_unreserve_timer_fn,
1470 (unsigned long)qh);
1471 qh->ep_type = ep_type;
1472 qh->ep_is_in = ep_is_in;
1474 qh->data_toggle = DWC2_HC_PID_DATA0;
1475 qh->maxp = maxp;
1476 INIT_LIST_HEAD(&qh->qtd_list);
1477 INIT_LIST_HEAD(&qh->qh_list_entry);
1479 qh->do_split = do_split;
1480 qh->dev_speed = dev_speed;
1482 if (ep_is_int || ep_is_isoc) {
1483 /* Compute scheduling parameters once and save them */
1484 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1485 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1486 mem_flags,
1487 &qh->ttport);
1488 int device_ns;
1490 qh->dwc_tt = dwc_tt;
1492 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1493 ep_is_isoc, bytecount));
1494 device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1495 ep_is_isoc, bytecount);
1497 if (do_split && dwc_tt)
1498 device_ns += dwc_tt->usb_tt->think_time;
1499 qh->device_us = NS_TO_US(device_ns);
1501 qh->device_interval = urb->interval;
1502 qh->host_interval = urb->interval * (do_split ? 8 : 1);
1505 * Schedule low speed if we're running the host in low or
1506 * full speed OR if we've got a "TT" to deal with to access this
1507 * device.
1509 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1510 dwc_tt;
1512 if (do_split) {
1513 /* We won't know num transfers until we schedule */
1514 qh->num_hs_transfers = -1;
1515 } else if (dev_speed == USB_SPEED_HIGH) {
1516 qh->num_hs_transfers = 1;
1517 } else {
1518 qh->num_hs_transfers = 0;
1521 /* We'll schedule later when we have something to do */
1524 switch (dev_speed) {
1525 case USB_SPEED_LOW:
1526 speed = "low";
1527 break;
1528 case USB_SPEED_FULL:
1529 speed = "full";
1530 break;
1531 case USB_SPEED_HIGH:
1532 speed = "high";
1533 break;
1534 default:
1535 speed = "?";
1536 break;
1539 switch (qh->ep_type) {
1540 case USB_ENDPOINT_XFER_ISOC:
1541 type = "isochronous";
1542 break;
1543 case USB_ENDPOINT_XFER_INT:
1544 type = "interrupt";
1545 break;
1546 case USB_ENDPOINT_XFER_CONTROL:
1547 type = "control";
1548 break;
1549 case USB_ENDPOINT_XFER_BULK:
1550 type = "bulk";
1551 break;
1552 default:
1553 type = "?";
1554 break;
1557 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1558 speed, bytecount);
1559 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1560 dwc2_hcd_get_dev_addr(&urb->pipe_info),
1561 dwc2_hcd_get_ep_num(&urb->pipe_info),
1562 ep_is_in ? "IN" : "OUT");
1563 if (ep_is_int || ep_is_isoc) {
1564 dwc2_sch_dbg(hsotg,
1565 "QH=%p ...duration: host=%d us, device=%d us\n",
1566 qh, qh->host_us, qh->device_us);
1567 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1568 qh, qh->host_interval, qh->device_interval);
1569 if (qh->schedule_low_speed)
1570 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1571 qh, dwc2_get_ls_map(hsotg, qh));
1576 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1578 * @hsotg: The HCD state structure for the DWC OTG controller
1579 * @urb: Holds the information about the device/endpoint needed
1580 * to initialize the QH
1581 * @atomic_alloc: Flag to do atomic allocation if needed
1583 * Return: Pointer to the newly allocated QH, or NULL on error
1585 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1586 struct dwc2_hcd_urb *urb,
1587 gfp_t mem_flags)
1589 struct dwc2_qh *qh;
1591 if (!urb->priv)
1592 return NULL;
1594 /* Allocate memory */
1595 qh = kzalloc(sizeof(*qh), mem_flags);
1596 if (!qh)
1597 return NULL;
1599 dwc2_qh_init(hsotg, qh, urb, mem_flags);
1601 if (hsotg->params.dma_desc_enable &&
1602 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1603 dwc2_hcd_qh_free(hsotg, qh);
1604 return NULL;
1607 return qh;
1611 * dwc2_hcd_qh_free() - Frees the QH
1613 * @hsotg: HCD instance
1614 * @qh: The QH to free
1616 * QH should already be removed from the list. QTD list should already be empty
1617 * if called from URB Dequeue.
1619 * Must NOT be called with interrupt disabled or spinlock held
1621 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1623 /* Make sure any unreserve work is finished. */
1624 if (del_timer_sync(&qh->unreserve_timer)) {
1625 unsigned long flags;
1627 spin_lock_irqsave(&hsotg->lock, flags);
1628 dwc2_do_unreserve(hsotg, qh);
1629 spin_unlock_irqrestore(&hsotg->lock, flags);
1631 dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1633 if (qh->desc_list)
1634 dwc2_hcd_qh_free_ddma(hsotg, qh);
1635 else if (hsotg->unaligned_cache && qh->dw_align_buf)
1636 kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1638 kfree(qh);
1642 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1643 * schedule if it is not already in the schedule. If the QH is already in
1644 * the schedule, no action is taken.
1646 * @hsotg: The HCD state structure for the DWC OTG controller
1647 * @qh: The QH to add
1649 * Return: 0 if successful, negative error code otherwise
1651 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1653 int status;
1654 u32 intr_mask;
1656 if (dbg_qh(qh))
1657 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1659 if (!list_empty(&qh->qh_list_entry))
1660 /* QH already in a schedule */
1661 return 0;
1663 /* Add the new QH to the appropriate schedule */
1664 if (dwc2_qh_is_non_per(qh)) {
1665 /* Schedule right away */
1666 qh->start_active_frame = hsotg->frame_number;
1667 qh->next_active_frame = qh->start_active_frame;
1669 /* Always start in inactive schedule */
1670 list_add_tail(&qh->qh_list_entry,
1671 &hsotg->non_periodic_sched_inactive);
1672 return 0;
1675 status = dwc2_schedule_periodic(hsotg, qh);
1676 if (status)
1677 return status;
1678 if (!hsotg->periodic_qh_count) {
1679 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1680 intr_mask |= GINTSTS_SOF;
1681 dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1683 hsotg->periodic_qh_count++;
1685 return 0;
1689 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1690 * schedule. Memory is not freed.
1692 * @hsotg: The HCD state structure
1693 * @qh: QH to remove from schedule
1695 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1697 u32 intr_mask;
1699 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1701 if (list_empty(&qh->qh_list_entry))
1702 /* QH is not in a schedule */
1703 return;
1705 if (dwc2_qh_is_non_per(qh)) {
1706 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1707 hsotg->non_periodic_qh_ptr =
1708 hsotg->non_periodic_qh_ptr->next;
1709 list_del_init(&qh->qh_list_entry);
1710 return;
1713 dwc2_deschedule_periodic(hsotg, qh);
1714 hsotg->periodic_qh_count--;
1715 if (!hsotg->periodic_qh_count &&
1716 !hsotg->params.dma_desc_enable) {
1717 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1718 intr_mask &= ~GINTSTS_SOF;
1719 dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1724 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1726 * This is called for setting next_active_frame for periodic splits for all but
1727 * the first packet of the split. Confusing? I thought so...
1729 * Periodic splits are single low/full speed transfers that we end up splitting
1730 * up into several high speed transfers. They always fit into one full (1 ms)
1731 * frame but might be split over several microframes (125 us each). We to put
1732 * each of the parts on a very specific high speed frame.
1734 * This function figures out where the next active uFrame needs to be.
1736 * @hsotg: The HCD state structure
1737 * @qh: QH for the periodic transfer.
1738 * @frame_number: The current frame number.
1740 * Return: number missed by (or 0 if we didn't miss).
1742 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1743 struct dwc2_qh *qh, u16 frame_number)
1745 u16 old_frame = qh->next_active_frame;
1746 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1747 int missed = 0;
1748 u16 incr;
1751 * See dwc2_uframe_schedule_split() for split scheduling.
1753 * Basically: increment 1 normally, but 2 right after the start split
1754 * (except for ISOC out).
1756 if (old_frame == qh->start_active_frame &&
1757 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1758 incr = 2;
1759 else
1760 incr = 1;
1762 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1765 * Note that it's OK for frame_number to be 1 frame past
1766 * next_active_frame. Remember that next_active_frame is supposed to
1767 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame
1768 * past it just means schedule ASAP.
1770 * It's _not_ OK, however, if we're more than one frame past.
1772 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1774 * OOPS, we missed. That's actually pretty bad since
1775 * the hub will be unhappy; try ASAP I guess.
1777 missed = dwc2_frame_num_dec(prev_frame_number,
1778 qh->next_active_frame);
1779 qh->next_active_frame = frame_number;
1782 return missed;
1786 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1788 * This is called for setting next_active_frame for a periodic transfer for
1789 * all cases other than midway through a periodic split. This will also update
1790 * start_active_frame.
1792 * Since we _always_ keep start_active_frame as the start of the previous
1793 * transfer this is normally pretty easy: we just add our interval to
1794 * start_active_frame and we've got our answer.
1796 * The tricks come into play if we miss. In that case we'll look for the next
1797 * slot we can fit into.
1799 * @hsotg: The HCD state structure
1800 * @qh: QH for the periodic transfer.
1801 * @frame_number: The current frame number.
1803 * Return: number missed by (or 0 if we didn't miss).
1805 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1806 struct dwc2_qh *qh, u16 frame_number)
1808 int missed = 0;
1809 u16 interval = qh->host_interval;
1810 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1812 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1813 interval);
1816 * The dwc2_frame_num_gt() function used below won't work terribly well
1817 * with if we just incremented by a really large intervals since the
1818 * frame counter only goes to 0x3fff. It's terribly unlikely that we
1819 * will have missed in this case anyway. Just go to exit. If we want
1820 * to try to do better we'll need to keep track of a bigger counter
1821 * somewhere in the driver and handle overflows.
1823 if (interval >= 0x1000)
1824 goto exit;
1827 * Test for misses, which is when it's too late to schedule.
1829 * A few things to note:
1830 * - We compare against prev_frame_number since start_active_frame
1831 * and next_active_frame are always 1 frame before we want things
1832 * to be active and we assume we can still get scheduled in the
1833 * current frame number.
1834 * - It's possible for start_active_frame (now incremented) to be
1835 * next_active_frame if we got an EO MISS (even_odd miss) which
1836 * basically means that we detected there wasn't enough time for
1837 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1838 * at the last second. We want to make sure we don't schedule
1839 * another transfer for the same frame. My test webcam doesn't seem
1840 * terribly upset by missing a transfer but really doesn't like when
1841 * we do two transfers in the same frame.
1842 * - Some misses are expected. Specifically, in order to work
1843 * perfectly dwc2 really needs quite spectacular interrupt latency
1844 * requirements. It needs to be able to handle its interrupts
1845 * completely within 125 us of them being asserted. That not only
1846 * means that the dwc2 interrupt handler needs to be fast but it
1847 * means that nothing else in the system has to block dwc2 for a long
1848 * time. We can help with the dwc2 parts of this, but it's hard to
1849 * guarantee that a system will have interrupt latency < 125 us, so
1850 * we have to be robust to some misses.
1852 if (qh->start_active_frame == qh->next_active_frame ||
1853 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1854 u16 ideal_start = qh->start_active_frame;
1855 int periods_in_map;
1858 * Adjust interval as per gcd with map size.
1859 * See pmap_schedule() for more details here.
1861 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1862 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1863 else
1864 periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1865 interval = gcd(interval, periods_in_map);
1867 do {
1868 qh->start_active_frame = dwc2_frame_num_inc(
1869 qh->start_active_frame, interval);
1870 } while (dwc2_frame_num_gt(prev_frame_number,
1871 qh->start_active_frame));
1873 missed = dwc2_frame_num_dec(qh->start_active_frame,
1874 ideal_start);
1877 exit:
1878 qh->next_active_frame = qh->start_active_frame;
1880 return missed;
1884 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1885 * non-periodic schedule. The QH is added to the inactive non-periodic
1886 * schedule if any QTDs are still attached to the QH.
1888 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1889 * there are any QTDs still attached to the QH, the QH is added to either the
1890 * periodic inactive schedule or the periodic ready schedule and its next
1891 * scheduled frame is calculated. The QH is placed in the ready schedule if
1892 * the scheduled frame has been reached already. Otherwise it's placed in the
1893 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1894 * completely removed from the periodic schedule.
1896 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1897 int sched_next_periodic_split)
1899 u16 old_frame = qh->next_active_frame;
1900 u16 frame_number;
1901 int missed;
1903 if (dbg_qh(qh))
1904 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1906 if (dwc2_qh_is_non_per(qh)) {
1907 dwc2_hcd_qh_unlink(hsotg, qh);
1908 if (!list_empty(&qh->qtd_list))
1909 /* Add back to inactive non-periodic schedule */
1910 dwc2_hcd_qh_add(hsotg, qh);
1911 return;
1915 * Use the real frame number rather than the cached value as of the
1916 * last SOF just to get us a little closer to reality. Note that
1917 * means we don't actually know if we've already handled the SOF
1918 * interrupt for this frame.
1920 frame_number = dwc2_hcd_get_frame_number(hsotg);
1922 if (sched_next_periodic_split)
1923 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1924 else
1925 missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1927 dwc2_sch_vdbg(hsotg,
1928 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1929 qh, sched_next_periodic_split, frame_number, old_frame,
1930 qh->next_active_frame,
1931 dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1932 missed, missed ? "MISS" : "");
1934 if (list_empty(&qh->qtd_list)) {
1935 dwc2_hcd_qh_unlink(hsotg, qh);
1936 return;
1940 * Remove from periodic_sched_queued and move to
1941 * appropriate queue
1943 * Note: we purposely use the frame_number from the "hsotg" structure
1944 * since we know SOF interrupt will handle future frames.
1946 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1947 list_move_tail(&qh->qh_list_entry,
1948 &hsotg->periodic_sched_ready);
1949 else
1950 list_move_tail(&qh->qh_list_entry,
1951 &hsotg->periodic_sched_inactive);
1955 * dwc2_hcd_qtd_init() - Initializes a QTD structure
1957 * @qtd: The QTD to initialize
1958 * @urb: The associated URB
1960 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
1962 qtd->urb = urb;
1963 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
1964 USB_ENDPOINT_XFER_CONTROL) {
1966 * The only time the QTD data toggle is used is on the data
1967 * phase of control transfers. This phase always starts with
1968 * DATA1.
1970 qtd->data_toggle = DWC2_HC_PID_DATA1;
1971 qtd->control_phase = DWC2_CONTROL_SETUP;
1974 /* Start split */
1975 qtd->complete_split = 0;
1976 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
1977 qtd->isoc_split_offset = 0;
1978 qtd->in_process = 0;
1980 /* Store the qtd ptr in the urb to reference the QTD */
1981 urb->qtd = qtd;
1985 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
1986 * Caller must hold driver lock.
1988 * @hsotg: The DWC HCD structure
1989 * @qtd: The QTD to add
1990 * @qh: Queue head to add qtd to
1992 * Return: 0 if successful, negative error code otherwise
1994 * If the QH to which the QTD is added is not currently scheduled, it is placed
1995 * into the proper schedule based on its EP type.
1997 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
1998 struct dwc2_qh *qh)
2000 int retval;
2002 if (unlikely(!qh)) {
2003 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2004 retval = -EINVAL;
2005 goto fail;
2008 retval = dwc2_hcd_qh_add(hsotg, qh);
2009 if (retval)
2010 goto fail;
2012 qtd->qh = qh;
2013 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2015 return 0;
2016 fail:
2017 return retval;