x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / include / rdma / ib_verbs.h
blob5a24b4c700e5974464d3280f80c9c44fead89737
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
69 extern struct workqueue_struct *ib_wq;
70 extern struct workqueue_struct *ib_comp_wq;
72 union ib_gid {
73 u8 raw[16];
74 struct {
75 __be64 subnet_prefix;
76 __be64 interface_id;
77 } global;
80 extern union ib_gid zgid;
82 enum ib_gid_type {
83 /* If link layer is Ethernet, this is RoCE V1 */
84 IB_GID_TYPE_IB = 0,
85 IB_GID_TYPE_ROCE = 0,
86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
87 IB_GID_TYPE_SIZE
90 #define ROCE_V2_UDP_DPORT 4791
91 struct ib_gid_attr {
92 enum ib_gid_type gid_type;
93 struct net_device *ndev;
96 enum rdma_node_type {
97 /* IB values map to NodeInfo:NodeType. */
98 RDMA_NODE_IB_CA = 1,
99 RDMA_NODE_IB_SWITCH,
100 RDMA_NODE_IB_ROUTER,
101 RDMA_NODE_RNIC,
102 RDMA_NODE_USNIC,
103 RDMA_NODE_USNIC_UDP,
106 enum {
107 /* set the local administered indication */
108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
111 enum rdma_transport_type {
112 RDMA_TRANSPORT_IB,
113 RDMA_TRANSPORT_IWARP,
114 RDMA_TRANSPORT_USNIC,
115 RDMA_TRANSPORT_USNIC_UDP
118 enum rdma_protocol_type {
119 RDMA_PROTOCOL_IB,
120 RDMA_PROTOCOL_IBOE,
121 RDMA_PROTOCOL_IWARP,
122 RDMA_PROTOCOL_USNIC_UDP
125 __attribute_const__ enum rdma_transport_type
126 rdma_node_get_transport(enum rdma_node_type node_type);
128 enum rdma_network_type {
129 RDMA_NETWORK_IB,
130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131 RDMA_NETWORK_IPV4,
132 RDMA_NETWORK_IPV6
135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
137 if (network_type == RDMA_NETWORK_IPV4 ||
138 network_type == RDMA_NETWORK_IPV6)
139 return IB_GID_TYPE_ROCE_UDP_ENCAP;
141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142 return IB_GID_TYPE_IB;
145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146 union ib_gid *gid)
148 if (gid_type == IB_GID_TYPE_IB)
149 return RDMA_NETWORK_IB;
151 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152 return RDMA_NETWORK_IPV4;
153 else
154 return RDMA_NETWORK_IPV6;
157 enum rdma_link_layer {
158 IB_LINK_LAYER_UNSPECIFIED,
159 IB_LINK_LAYER_INFINIBAND,
160 IB_LINK_LAYER_ETHERNET,
163 enum ib_device_cap_flags {
164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
167 IB_DEVICE_RAW_MULTI = (1 << 3),
168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
173 /* Not in use, former INIT_TYPE = (1 << 9),*/
174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
177 IB_DEVICE_SRQ_RESIZE = (1 << 13),
178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
181 * This device supports a per-device lkey or stag that can be
182 * used without performing a memory registration for the local
183 * memory. Note that ULPs should never check this flag, but
184 * instead of use the local_dma_lkey flag in the ib_pd structure,
185 * which will always contain a usable lkey.
187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
188 /* Reserved, old SEND_W_INV = (1 << 16),*/
189 IB_DEVICE_MEM_WINDOW = (1 << 17),
191 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193 * messages and can verify the validity of checksum for
194 * incoming messages. Setting this flag implies that the
195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
197 IB_DEVICE_UD_IP_CSUM = (1 << 18),
198 IB_DEVICE_UD_TSO = (1 << 19),
199 IB_DEVICE_XRC = (1 << 20),
202 * This device supports the IB "base memory management extension",
203 * which includes support for fast registrations (IB_WR_REG_MR,
204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
205 * also be set by any iWarp device which must support FRs to comply
206 * to the iWarp verbs spec. iWarp devices also support the
207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208 * stag.
210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
214 IB_DEVICE_RC_IP_CSUM = (1 << 25),
215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
216 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
219 * support execution of WQEs that involve synchronization
220 * of I/O operations with single completion queue managed
221 * by hardware.
223 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
234 enum ib_signature_prot_cap {
235 IB_PROT_T10DIF_TYPE_1 = 1,
236 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
237 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
240 enum ib_signature_guard_cap {
241 IB_GUARD_T10DIF_CRC = 1,
242 IB_GUARD_T10DIF_CSUM = 1 << 1,
245 enum ib_atomic_cap {
246 IB_ATOMIC_NONE,
247 IB_ATOMIC_HCA,
248 IB_ATOMIC_GLOB
251 enum ib_odp_general_cap_bits {
252 IB_ODP_SUPPORT = 1 << 0,
253 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
256 enum ib_odp_transport_cap_bits {
257 IB_ODP_SUPPORT_SEND = 1 << 0,
258 IB_ODP_SUPPORT_RECV = 1 << 1,
259 IB_ODP_SUPPORT_WRITE = 1 << 2,
260 IB_ODP_SUPPORT_READ = 1 << 3,
261 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
264 struct ib_odp_caps {
265 uint64_t general_caps;
266 struct {
267 uint32_t rc_odp_caps;
268 uint32_t uc_odp_caps;
269 uint32_t ud_odp_caps;
270 } per_transport_caps;
273 struct ib_rss_caps {
274 /* Corresponding bit will be set if qp type from
275 * 'enum ib_qp_type' is supported, e.g.
276 * supported_qpts |= 1 << IB_QPT_UD
278 u32 supported_qpts;
279 u32 max_rwq_indirection_tables;
280 u32 max_rwq_indirection_table_size;
283 enum ib_tm_cap_flags {
284 /* Support tag matching on RC transport */
285 IB_TM_CAP_RC = 1 << 0,
288 struct ib_tm_caps {
289 /* Max size of RNDV header */
290 u32 max_rndv_hdr_size;
291 /* Max number of entries in tag matching list */
292 u32 max_num_tags;
293 /* From enum ib_tm_cap_flags */
294 u32 flags;
295 /* Max number of outstanding list operations */
296 u32 max_ops;
297 /* Max number of SGE in tag matching entry */
298 u32 max_sge;
301 enum ib_cq_creation_flags {
302 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
303 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
306 struct ib_cq_init_attr {
307 unsigned int cqe;
308 int comp_vector;
309 u32 flags;
312 struct ib_device_attr {
313 u64 fw_ver;
314 __be64 sys_image_guid;
315 u64 max_mr_size;
316 u64 page_size_cap;
317 u32 vendor_id;
318 u32 vendor_part_id;
319 u32 hw_ver;
320 int max_qp;
321 int max_qp_wr;
322 u64 device_cap_flags;
323 int max_sge;
324 int max_sge_rd;
325 int max_cq;
326 int max_cqe;
327 int max_mr;
328 int max_pd;
329 int max_qp_rd_atom;
330 int max_ee_rd_atom;
331 int max_res_rd_atom;
332 int max_qp_init_rd_atom;
333 int max_ee_init_rd_atom;
334 enum ib_atomic_cap atomic_cap;
335 enum ib_atomic_cap masked_atomic_cap;
336 int max_ee;
337 int max_rdd;
338 int max_mw;
339 int max_raw_ipv6_qp;
340 int max_raw_ethy_qp;
341 int max_mcast_grp;
342 int max_mcast_qp_attach;
343 int max_total_mcast_qp_attach;
344 int max_ah;
345 int max_fmr;
346 int max_map_per_fmr;
347 int max_srq;
348 int max_srq_wr;
349 int max_srq_sge;
350 unsigned int max_fast_reg_page_list_len;
351 u16 max_pkeys;
352 u8 local_ca_ack_delay;
353 int sig_prot_cap;
354 int sig_guard_cap;
355 struct ib_odp_caps odp_caps;
356 uint64_t timestamp_mask;
357 uint64_t hca_core_clock; /* in KHZ */
358 struct ib_rss_caps rss_caps;
359 u32 max_wq_type_rq;
360 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
361 struct ib_tm_caps tm_caps;
364 enum ib_mtu {
365 IB_MTU_256 = 1,
366 IB_MTU_512 = 2,
367 IB_MTU_1024 = 3,
368 IB_MTU_2048 = 4,
369 IB_MTU_4096 = 5
372 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
374 switch (mtu) {
375 case IB_MTU_256: return 256;
376 case IB_MTU_512: return 512;
377 case IB_MTU_1024: return 1024;
378 case IB_MTU_2048: return 2048;
379 case IB_MTU_4096: return 4096;
380 default: return -1;
384 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
386 if (mtu >= 4096)
387 return IB_MTU_4096;
388 else if (mtu >= 2048)
389 return IB_MTU_2048;
390 else if (mtu >= 1024)
391 return IB_MTU_1024;
392 else if (mtu >= 512)
393 return IB_MTU_512;
394 else
395 return IB_MTU_256;
398 enum ib_port_state {
399 IB_PORT_NOP = 0,
400 IB_PORT_DOWN = 1,
401 IB_PORT_INIT = 2,
402 IB_PORT_ARMED = 3,
403 IB_PORT_ACTIVE = 4,
404 IB_PORT_ACTIVE_DEFER = 5
407 enum ib_port_cap_flags {
408 IB_PORT_SM = 1 << 1,
409 IB_PORT_NOTICE_SUP = 1 << 2,
410 IB_PORT_TRAP_SUP = 1 << 3,
411 IB_PORT_OPT_IPD_SUP = 1 << 4,
412 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
413 IB_PORT_SL_MAP_SUP = 1 << 6,
414 IB_PORT_MKEY_NVRAM = 1 << 7,
415 IB_PORT_PKEY_NVRAM = 1 << 8,
416 IB_PORT_LED_INFO_SUP = 1 << 9,
417 IB_PORT_SM_DISABLED = 1 << 10,
418 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
419 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
420 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
421 IB_PORT_CM_SUP = 1 << 16,
422 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
423 IB_PORT_REINIT_SUP = 1 << 18,
424 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
425 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
426 IB_PORT_DR_NOTICE_SUP = 1 << 21,
427 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
428 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
429 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
430 IB_PORT_CLIENT_REG_SUP = 1 << 25,
431 IB_PORT_IP_BASED_GIDS = 1 << 26,
434 enum ib_port_width {
435 IB_WIDTH_1X = 1,
436 IB_WIDTH_4X = 2,
437 IB_WIDTH_8X = 4,
438 IB_WIDTH_12X = 8
441 static inline int ib_width_enum_to_int(enum ib_port_width width)
443 switch (width) {
444 case IB_WIDTH_1X: return 1;
445 case IB_WIDTH_4X: return 4;
446 case IB_WIDTH_8X: return 8;
447 case IB_WIDTH_12X: return 12;
448 default: return -1;
452 enum ib_port_speed {
453 IB_SPEED_SDR = 1,
454 IB_SPEED_DDR = 2,
455 IB_SPEED_QDR = 4,
456 IB_SPEED_FDR10 = 8,
457 IB_SPEED_FDR = 16,
458 IB_SPEED_EDR = 32,
459 IB_SPEED_HDR = 64
463 * struct rdma_hw_stats
464 * @timestamp - Used by the core code to track when the last update was
465 * @lifespan - Used by the core code to determine how old the counters
466 * should be before being updated again. Stored in jiffies, defaults
467 * to 10 milliseconds, drivers can override the default be specifying
468 * their own value during their allocation routine.
469 * @name - Array of pointers to static names used for the counters in
470 * directory.
471 * @num_counters - How many hardware counters there are. If name is
472 * shorter than this number, a kernel oops will result. Driver authors
473 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
474 * in their code to prevent this.
475 * @value - Array of u64 counters that are accessed by the sysfs code and
476 * filled in by the drivers get_stats routine
478 struct rdma_hw_stats {
479 unsigned long timestamp;
480 unsigned long lifespan;
481 const char * const *names;
482 int num_counters;
483 u64 value[];
486 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
488 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
489 * for drivers.
490 * @names - Array of static const char *
491 * @num_counters - How many elements in array
492 * @lifespan - How many milliseconds between updates
494 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
495 const char * const *names, int num_counters,
496 unsigned long lifespan)
498 struct rdma_hw_stats *stats;
500 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
501 GFP_KERNEL);
502 if (!stats)
503 return NULL;
504 stats->names = names;
505 stats->num_counters = num_counters;
506 stats->lifespan = msecs_to_jiffies(lifespan);
508 return stats;
512 /* Define bits for the various functionality this port needs to be supported by
513 * the core.
515 /* Management 0x00000FFF */
516 #define RDMA_CORE_CAP_IB_MAD 0x00000001
517 #define RDMA_CORE_CAP_IB_SMI 0x00000002
518 #define RDMA_CORE_CAP_IB_CM 0x00000004
519 #define RDMA_CORE_CAP_IW_CM 0x00000008
520 #define RDMA_CORE_CAP_IB_SA 0x00000010
521 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
523 /* Address format 0x000FF000 */
524 #define RDMA_CORE_CAP_AF_IB 0x00001000
525 #define RDMA_CORE_CAP_ETH_AH 0x00002000
526 #define RDMA_CORE_CAP_OPA_AH 0x00004000
528 /* Protocol 0xFFF00000 */
529 #define RDMA_CORE_CAP_PROT_IB 0x00100000
530 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
531 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
532 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
533 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
534 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
536 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
537 | RDMA_CORE_CAP_IB_MAD \
538 | RDMA_CORE_CAP_IB_SMI \
539 | RDMA_CORE_CAP_IB_CM \
540 | RDMA_CORE_CAP_IB_SA \
541 | RDMA_CORE_CAP_AF_IB)
542 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
543 | RDMA_CORE_CAP_IB_MAD \
544 | RDMA_CORE_CAP_IB_CM \
545 | RDMA_CORE_CAP_AF_IB \
546 | RDMA_CORE_CAP_ETH_AH)
547 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
548 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
549 | RDMA_CORE_CAP_IB_MAD \
550 | RDMA_CORE_CAP_IB_CM \
551 | RDMA_CORE_CAP_AF_IB \
552 | RDMA_CORE_CAP_ETH_AH)
553 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
554 | RDMA_CORE_CAP_IW_CM)
555 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
556 | RDMA_CORE_CAP_OPA_MAD)
558 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
560 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
562 struct ib_port_attr {
563 u64 subnet_prefix;
564 enum ib_port_state state;
565 enum ib_mtu max_mtu;
566 enum ib_mtu active_mtu;
567 int gid_tbl_len;
568 u32 port_cap_flags;
569 u32 max_msg_sz;
570 u32 bad_pkey_cntr;
571 u32 qkey_viol_cntr;
572 u16 pkey_tbl_len;
573 u32 sm_lid;
574 u32 lid;
575 u8 lmc;
576 u8 max_vl_num;
577 u8 sm_sl;
578 u8 subnet_timeout;
579 u8 init_type_reply;
580 u8 active_width;
581 u8 active_speed;
582 u8 phys_state;
583 bool grh_required;
586 enum ib_device_modify_flags {
587 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
588 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
591 #define IB_DEVICE_NODE_DESC_MAX 64
593 struct ib_device_modify {
594 u64 sys_image_guid;
595 char node_desc[IB_DEVICE_NODE_DESC_MAX];
598 enum ib_port_modify_flags {
599 IB_PORT_SHUTDOWN = 1,
600 IB_PORT_INIT_TYPE = (1<<2),
601 IB_PORT_RESET_QKEY_CNTR = (1<<3),
602 IB_PORT_OPA_MASK_CHG = (1<<4)
605 struct ib_port_modify {
606 u32 set_port_cap_mask;
607 u32 clr_port_cap_mask;
608 u8 init_type;
611 enum ib_event_type {
612 IB_EVENT_CQ_ERR,
613 IB_EVENT_QP_FATAL,
614 IB_EVENT_QP_REQ_ERR,
615 IB_EVENT_QP_ACCESS_ERR,
616 IB_EVENT_COMM_EST,
617 IB_EVENT_SQ_DRAINED,
618 IB_EVENT_PATH_MIG,
619 IB_EVENT_PATH_MIG_ERR,
620 IB_EVENT_DEVICE_FATAL,
621 IB_EVENT_PORT_ACTIVE,
622 IB_EVENT_PORT_ERR,
623 IB_EVENT_LID_CHANGE,
624 IB_EVENT_PKEY_CHANGE,
625 IB_EVENT_SM_CHANGE,
626 IB_EVENT_SRQ_ERR,
627 IB_EVENT_SRQ_LIMIT_REACHED,
628 IB_EVENT_QP_LAST_WQE_REACHED,
629 IB_EVENT_CLIENT_REREGISTER,
630 IB_EVENT_GID_CHANGE,
631 IB_EVENT_WQ_FATAL,
634 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
636 struct ib_event {
637 struct ib_device *device;
638 union {
639 struct ib_cq *cq;
640 struct ib_qp *qp;
641 struct ib_srq *srq;
642 struct ib_wq *wq;
643 u8 port_num;
644 } element;
645 enum ib_event_type event;
648 struct ib_event_handler {
649 struct ib_device *device;
650 void (*handler)(struct ib_event_handler *, struct ib_event *);
651 struct list_head list;
654 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
655 do { \
656 (_ptr)->device = _device; \
657 (_ptr)->handler = _handler; \
658 INIT_LIST_HEAD(&(_ptr)->list); \
659 } while (0)
661 struct ib_global_route {
662 union ib_gid dgid;
663 u32 flow_label;
664 u8 sgid_index;
665 u8 hop_limit;
666 u8 traffic_class;
669 struct ib_grh {
670 __be32 version_tclass_flow;
671 __be16 paylen;
672 u8 next_hdr;
673 u8 hop_limit;
674 union ib_gid sgid;
675 union ib_gid dgid;
678 union rdma_network_hdr {
679 struct ib_grh ibgrh;
680 struct {
681 /* The IB spec states that if it's IPv4, the header
682 * is located in the last 20 bytes of the header.
684 u8 reserved[20];
685 struct iphdr roce4grh;
689 #define IB_QPN_MASK 0xFFFFFF
691 enum {
692 IB_MULTICAST_QPN = 0xffffff
695 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
696 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
698 enum ib_ah_flags {
699 IB_AH_GRH = 1
702 enum ib_rate {
703 IB_RATE_PORT_CURRENT = 0,
704 IB_RATE_2_5_GBPS = 2,
705 IB_RATE_5_GBPS = 5,
706 IB_RATE_10_GBPS = 3,
707 IB_RATE_20_GBPS = 6,
708 IB_RATE_30_GBPS = 4,
709 IB_RATE_40_GBPS = 7,
710 IB_RATE_60_GBPS = 8,
711 IB_RATE_80_GBPS = 9,
712 IB_RATE_120_GBPS = 10,
713 IB_RATE_14_GBPS = 11,
714 IB_RATE_56_GBPS = 12,
715 IB_RATE_112_GBPS = 13,
716 IB_RATE_168_GBPS = 14,
717 IB_RATE_25_GBPS = 15,
718 IB_RATE_100_GBPS = 16,
719 IB_RATE_200_GBPS = 17,
720 IB_RATE_300_GBPS = 18
724 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
725 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
726 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
727 * @rate: rate to convert.
729 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
732 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
733 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
734 * @rate: rate to convert.
736 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
740 * enum ib_mr_type - memory region type
741 * @IB_MR_TYPE_MEM_REG: memory region that is used for
742 * normal registration
743 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
744 * signature operations (data-integrity
745 * capable regions)
746 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
747 * register any arbitrary sg lists (without
748 * the normal mr constraints - see
749 * ib_map_mr_sg)
751 enum ib_mr_type {
752 IB_MR_TYPE_MEM_REG,
753 IB_MR_TYPE_SIGNATURE,
754 IB_MR_TYPE_SG_GAPS,
758 * Signature types
759 * IB_SIG_TYPE_NONE: Unprotected.
760 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
762 enum ib_signature_type {
763 IB_SIG_TYPE_NONE,
764 IB_SIG_TYPE_T10_DIF,
768 * Signature T10-DIF block-guard types
769 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
770 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
772 enum ib_t10_dif_bg_type {
773 IB_T10DIF_CRC,
774 IB_T10DIF_CSUM
778 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
779 * domain.
780 * @bg_type: T10-DIF block guard type (CRC|CSUM)
781 * @pi_interval: protection information interval.
782 * @bg: seed of guard computation.
783 * @app_tag: application tag of guard block
784 * @ref_tag: initial guard block reference tag.
785 * @ref_remap: Indicate wethear the reftag increments each block
786 * @app_escape: Indicate to skip block check if apptag=0xffff
787 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
788 * @apptag_check_mask: check bitmask of application tag.
790 struct ib_t10_dif_domain {
791 enum ib_t10_dif_bg_type bg_type;
792 u16 pi_interval;
793 u16 bg;
794 u16 app_tag;
795 u32 ref_tag;
796 bool ref_remap;
797 bool app_escape;
798 bool ref_escape;
799 u16 apptag_check_mask;
803 * struct ib_sig_domain - Parameters for signature domain
804 * @sig_type: specific signauture type
805 * @sig: union of all signature domain attributes that may
806 * be used to set domain layout.
808 struct ib_sig_domain {
809 enum ib_signature_type sig_type;
810 union {
811 struct ib_t10_dif_domain dif;
812 } sig;
816 * struct ib_sig_attrs - Parameters for signature handover operation
817 * @check_mask: bitmask for signature byte check (8 bytes)
818 * @mem: memory domain layout desciptor.
819 * @wire: wire domain layout desciptor.
821 struct ib_sig_attrs {
822 u8 check_mask;
823 struct ib_sig_domain mem;
824 struct ib_sig_domain wire;
827 enum ib_sig_err_type {
828 IB_SIG_BAD_GUARD,
829 IB_SIG_BAD_REFTAG,
830 IB_SIG_BAD_APPTAG,
834 * struct ib_sig_err - signature error descriptor
836 struct ib_sig_err {
837 enum ib_sig_err_type err_type;
838 u32 expected;
839 u32 actual;
840 u64 sig_err_offset;
841 u32 key;
844 enum ib_mr_status_check {
845 IB_MR_CHECK_SIG_STATUS = 1,
849 * struct ib_mr_status - Memory region status container
851 * @fail_status: Bitmask of MR checks status. For each
852 * failed check a corresponding status bit is set.
853 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
854 * failure.
856 struct ib_mr_status {
857 u32 fail_status;
858 struct ib_sig_err sig_err;
862 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
863 * enum.
864 * @mult: multiple to convert.
866 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
868 enum rdma_ah_attr_type {
869 RDMA_AH_ATTR_TYPE_UNDEFINED,
870 RDMA_AH_ATTR_TYPE_IB,
871 RDMA_AH_ATTR_TYPE_ROCE,
872 RDMA_AH_ATTR_TYPE_OPA,
875 struct ib_ah_attr {
876 u16 dlid;
877 u8 src_path_bits;
880 struct roce_ah_attr {
881 u8 dmac[ETH_ALEN];
884 struct opa_ah_attr {
885 u32 dlid;
886 u8 src_path_bits;
887 bool make_grd;
890 struct rdma_ah_attr {
891 struct ib_global_route grh;
892 u8 sl;
893 u8 static_rate;
894 u8 port_num;
895 u8 ah_flags;
896 enum rdma_ah_attr_type type;
897 union {
898 struct ib_ah_attr ib;
899 struct roce_ah_attr roce;
900 struct opa_ah_attr opa;
904 enum ib_wc_status {
905 IB_WC_SUCCESS,
906 IB_WC_LOC_LEN_ERR,
907 IB_WC_LOC_QP_OP_ERR,
908 IB_WC_LOC_EEC_OP_ERR,
909 IB_WC_LOC_PROT_ERR,
910 IB_WC_WR_FLUSH_ERR,
911 IB_WC_MW_BIND_ERR,
912 IB_WC_BAD_RESP_ERR,
913 IB_WC_LOC_ACCESS_ERR,
914 IB_WC_REM_INV_REQ_ERR,
915 IB_WC_REM_ACCESS_ERR,
916 IB_WC_REM_OP_ERR,
917 IB_WC_RETRY_EXC_ERR,
918 IB_WC_RNR_RETRY_EXC_ERR,
919 IB_WC_LOC_RDD_VIOL_ERR,
920 IB_WC_REM_INV_RD_REQ_ERR,
921 IB_WC_REM_ABORT_ERR,
922 IB_WC_INV_EECN_ERR,
923 IB_WC_INV_EEC_STATE_ERR,
924 IB_WC_FATAL_ERR,
925 IB_WC_RESP_TIMEOUT_ERR,
926 IB_WC_GENERAL_ERR
929 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
931 enum ib_wc_opcode {
932 IB_WC_SEND,
933 IB_WC_RDMA_WRITE,
934 IB_WC_RDMA_READ,
935 IB_WC_COMP_SWAP,
936 IB_WC_FETCH_ADD,
937 IB_WC_LSO,
938 IB_WC_LOCAL_INV,
939 IB_WC_REG_MR,
940 IB_WC_MASKED_COMP_SWAP,
941 IB_WC_MASKED_FETCH_ADD,
943 * Set value of IB_WC_RECV so consumers can test if a completion is a
944 * receive by testing (opcode & IB_WC_RECV).
946 IB_WC_RECV = 1 << 7,
947 IB_WC_RECV_RDMA_WITH_IMM
950 enum ib_wc_flags {
951 IB_WC_GRH = 1,
952 IB_WC_WITH_IMM = (1<<1),
953 IB_WC_WITH_INVALIDATE = (1<<2),
954 IB_WC_IP_CSUM_OK = (1<<3),
955 IB_WC_WITH_SMAC = (1<<4),
956 IB_WC_WITH_VLAN = (1<<5),
957 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
960 struct ib_wc {
961 union {
962 u64 wr_id;
963 struct ib_cqe *wr_cqe;
965 enum ib_wc_status status;
966 enum ib_wc_opcode opcode;
967 u32 vendor_err;
968 u32 byte_len;
969 struct ib_qp *qp;
970 union {
971 __be32 imm_data;
972 u32 invalidate_rkey;
973 } ex;
974 u32 src_qp;
975 u32 slid;
976 int wc_flags;
977 u16 pkey_index;
978 u8 sl;
979 u8 dlid_path_bits;
980 u8 port_num; /* valid only for DR SMPs on switches */
981 u8 smac[ETH_ALEN];
982 u16 vlan_id;
983 u8 network_hdr_type;
986 enum ib_cq_notify_flags {
987 IB_CQ_SOLICITED = 1 << 0,
988 IB_CQ_NEXT_COMP = 1 << 1,
989 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
990 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
993 enum ib_srq_type {
994 IB_SRQT_BASIC,
995 IB_SRQT_XRC,
996 IB_SRQT_TM,
999 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1001 return srq_type == IB_SRQT_XRC ||
1002 srq_type == IB_SRQT_TM;
1005 enum ib_srq_attr_mask {
1006 IB_SRQ_MAX_WR = 1 << 0,
1007 IB_SRQ_LIMIT = 1 << 1,
1010 struct ib_srq_attr {
1011 u32 max_wr;
1012 u32 max_sge;
1013 u32 srq_limit;
1016 struct ib_srq_init_attr {
1017 void (*event_handler)(struct ib_event *, void *);
1018 void *srq_context;
1019 struct ib_srq_attr attr;
1020 enum ib_srq_type srq_type;
1022 struct {
1023 struct ib_cq *cq;
1024 union {
1025 struct {
1026 struct ib_xrcd *xrcd;
1027 } xrc;
1029 struct {
1030 u32 max_num_tags;
1031 } tag_matching;
1033 } ext;
1036 struct ib_qp_cap {
1037 u32 max_send_wr;
1038 u32 max_recv_wr;
1039 u32 max_send_sge;
1040 u32 max_recv_sge;
1041 u32 max_inline_data;
1044 * Maximum number of rdma_rw_ctx structures in flight at a time.
1045 * ib_create_qp() will calculate the right amount of neededed WRs
1046 * and MRs based on this.
1048 u32 max_rdma_ctxs;
1051 enum ib_sig_type {
1052 IB_SIGNAL_ALL_WR,
1053 IB_SIGNAL_REQ_WR
1056 enum ib_qp_type {
1058 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1059 * here (and in that order) since the MAD layer uses them as
1060 * indices into a 2-entry table.
1062 IB_QPT_SMI,
1063 IB_QPT_GSI,
1065 IB_QPT_RC,
1066 IB_QPT_UC,
1067 IB_QPT_UD,
1068 IB_QPT_RAW_IPV6,
1069 IB_QPT_RAW_ETHERTYPE,
1070 IB_QPT_RAW_PACKET = 8,
1071 IB_QPT_XRC_INI = 9,
1072 IB_QPT_XRC_TGT,
1073 IB_QPT_MAX,
1074 /* Reserve a range for qp types internal to the low level driver.
1075 * These qp types will not be visible at the IB core layer, so the
1076 * IB_QPT_MAX usages should not be affected in the core layer
1078 IB_QPT_RESERVED1 = 0x1000,
1079 IB_QPT_RESERVED2,
1080 IB_QPT_RESERVED3,
1081 IB_QPT_RESERVED4,
1082 IB_QPT_RESERVED5,
1083 IB_QPT_RESERVED6,
1084 IB_QPT_RESERVED7,
1085 IB_QPT_RESERVED8,
1086 IB_QPT_RESERVED9,
1087 IB_QPT_RESERVED10,
1090 enum ib_qp_create_flags {
1091 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1092 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1093 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1094 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1095 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1096 IB_QP_CREATE_NETIF_QP = 1 << 5,
1097 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1098 /* FREE = 1 << 7, */
1099 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1100 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1101 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1102 /* reserve bits 26-31 for low level drivers' internal use */
1103 IB_QP_CREATE_RESERVED_START = 1 << 26,
1104 IB_QP_CREATE_RESERVED_END = 1 << 31,
1108 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1109 * callback to destroy the passed in QP.
1112 struct ib_qp_init_attr {
1113 void (*event_handler)(struct ib_event *, void *);
1114 void *qp_context;
1115 struct ib_cq *send_cq;
1116 struct ib_cq *recv_cq;
1117 struct ib_srq *srq;
1118 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1119 struct ib_qp_cap cap;
1120 enum ib_sig_type sq_sig_type;
1121 enum ib_qp_type qp_type;
1122 enum ib_qp_create_flags create_flags;
1125 * Only needed for special QP types, or when using the RW API.
1127 u8 port_num;
1128 struct ib_rwq_ind_table *rwq_ind_tbl;
1129 u32 source_qpn;
1132 struct ib_qp_open_attr {
1133 void (*event_handler)(struct ib_event *, void *);
1134 void *qp_context;
1135 u32 qp_num;
1136 enum ib_qp_type qp_type;
1139 enum ib_rnr_timeout {
1140 IB_RNR_TIMER_655_36 = 0,
1141 IB_RNR_TIMER_000_01 = 1,
1142 IB_RNR_TIMER_000_02 = 2,
1143 IB_RNR_TIMER_000_03 = 3,
1144 IB_RNR_TIMER_000_04 = 4,
1145 IB_RNR_TIMER_000_06 = 5,
1146 IB_RNR_TIMER_000_08 = 6,
1147 IB_RNR_TIMER_000_12 = 7,
1148 IB_RNR_TIMER_000_16 = 8,
1149 IB_RNR_TIMER_000_24 = 9,
1150 IB_RNR_TIMER_000_32 = 10,
1151 IB_RNR_TIMER_000_48 = 11,
1152 IB_RNR_TIMER_000_64 = 12,
1153 IB_RNR_TIMER_000_96 = 13,
1154 IB_RNR_TIMER_001_28 = 14,
1155 IB_RNR_TIMER_001_92 = 15,
1156 IB_RNR_TIMER_002_56 = 16,
1157 IB_RNR_TIMER_003_84 = 17,
1158 IB_RNR_TIMER_005_12 = 18,
1159 IB_RNR_TIMER_007_68 = 19,
1160 IB_RNR_TIMER_010_24 = 20,
1161 IB_RNR_TIMER_015_36 = 21,
1162 IB_RNR_TIMER_020_48 = 22,
1163 IB_RNR_TIMER_030_72 = 23,
1164 IB_RNR_TIMER_040_96 = 24,
1165 IB_RNR_TIMER_061_44 = 25,
1166 IB_RNR_TIMER_081_92 = 26,
1167 IB_RNR_TIMER_122_88 = 27,
1168 IB_RNR_TIMER_163_84 = 28,
1169 IB_RNR_TIMER_245_76 = 29,
1170 IB_RNR_TIMER_327_68 = 30,
1171 IB_RNR_TIMER_491_52 = 31
1174 enum ib_qp_attr_mask {
1175 IB_QP_STATE = 1,
1176 IB_QP_CUR_STATE = (1<<1),
1177 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1178 IB_QP_ACCESS_FLAGS = (1<<3),
1179 IB_QP_PKEY_INDEX = (1<<4),
1180 IB_QP_PORT = (1<<5),
1181 IB_QP_QKEY = (1<<6),
1182 IB_QP_AV = (1<<7),
1183 IB_QP_PATH_MTU = (1<<8),
1184 IB_QP_TIMEOUT = (1<<9),
1185 IB_QP_RETRY_CNT = (1<<10),
1186 IB_QP_RNR_RETRY = (1<<11),
1187 IB_QP_RQ_PSN = (1<<12),
1188 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1189 IB_QP_ALT_PATH = (1<<14),
1190 IB_QP_MIN_RNR_TIMER = (1<<15),
1191 IB_QP_SQ_PSN = (1<<16),
1192 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1193 IB_QP_PATH_MIG_STATE = (1<<18),
1194 IB_QP_CAP = (1<<19),
1195 IB_QP_DEST_QPN = (1<<20),
1196 IB_QP_RESERVED1 = (1<<21),
1197 IB_QP_RESERVED2 = (1<<22),
1198 IB_QP_RESERVED3 = (1<<23),
1199 IB_QP_RESERVED4 = (1<<24),
1200 IB_QP_RATE_LIMIT = (1<<25),
1203 enum ib_qp_state {
1204 IB_QPS_RESET,
1205 IB_QPS_INIT,
1206 IB_QPS_RTR,
1207 IB_QPS_RTS,
1208 IB_QPS_SQD,
1209 IB_QPS_SQE,
1210 IB_QPS_ERR
1213 enum ib_mig_state {
1214 IB_MIG_MIGRATED,
1215 IB_MIG_REARM,
1216 IB_MIG_ARMED
1219 enum ib_mw_type {
1220 IB_MW_TYPE_1 = 1,
1221 IB_MW_TYPE_2 = 2
1224 struct ib_qp_attr {
1225 enum ib_qp_state qp_state;
1226 enum ib_qp_state cur_qp_state;
1227 enum ib_mtu path_mtu;
1228 enum ib_mig_state path_mig_state;
1229 u32 qkey;
1230 u32 rq_psn;
1231 u32 sq_psn;
1232 u32 dest_qp_num;
1233 int qp_access_flags;
1234 struct ib_qp_cap cap;
1235 struct rdma_ah_attr ah_attr;
1236 struct rdma_ah_attr alt_ah_attr;
1237 u16 pkey_index;
1238 u16 alt_pkey_index;
1239 u8 en_sqd_async_notify;
1240 u8 sq_draining;
1241 u8 max_rd_atomic;
1242 u8 max_dest_rd_atomic;
1243 u8 min_rnr_timer;
1244 u8 port_num;
1245 u8 timeout;
1246 u8 retry_cnt;
1247 u8 rnr_retry;
1248 u8 alt_port_num;
1249 u8 alt_timeout;
1250 u32 rate_limit;
1253 enum ib_wr_opcode {
1254 IB_WR_RDMA_WRITE,
1255 IB_WR_RDMA_WRITE_WITH_IMM,
1256 IB_WR_SEND,
1257 IB_WR_SEND_WITH_IMM,
1258 IB_WR_RDMA_READ,
1259 IB_WR_ATOMIC_CMP_AND_SWP,
1260 IB_WR_ATOMIC_FETCH_AND_ADD,
1261 IB_WR_LSO,
1262 IB_WR_SEND_WITH_INV,
1263 IB_WR_RDMA_READ_WITH_INV,
1264 IB_WR_LOCAL_INV,
1265 IB_WR_REG_MR,
1266 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1267 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1268 IB_WR_REG_SIG_MR,
1269 /* reserve values for low level drivers' internal use.
1270 * These values will not be used at all in the ib core layer.
1272 IB_WR_RESERVED1 = 0xf0,
1273 IB_WR_RESERVED2,
1274 IB_WR_RESERVED3,
1275 IB_WR_RESERVED4,
1276 IB_WR_RESERVED5,
1277 IB_WR_RESERVED6,
1278 IB_WR_RESERVED7,
1279 IB_WR_RESERVED8,
1280 IB_WR_RESERVED9,
1281 IB_WR_RESERVED10,
1284 enum ib_send_flags {
1285 IB_SEND_FENCE = 1,
1286 IB_SEND_SIGNALED = (1<<1),
1287 IB_SEND_SOLICITED = (1<<2),
1288 IB_SEND_INLINE = (1<<3),
1289 IB_SEND_IP_CSUM = (1<<4),
1291 /* reserve bits 26-31 for low level drivers' internal use */
1292 IB_SEND_RESERVED_START = (1 << 26),
1293 IB_SEND_RESERVED_END = (1 << 31),
1296 struct ib_sge {
1297 u64 addr;
1298 u32 length;
1299 u32 lkey;
1302 struct ib_cqe {
1303 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1306 struct ib_send_wr {
1307 struct ib_send_wr *next;
1308 union {
1309 u64 wr_id;
1310 struct ib_cqe *wr_cqe;
1312 struct ib_sge *sg_list;
1313 int num_sge;
1314 enum ib_wr_opcode opcode;
1315 int send_flags;
1316 union {
1317 __be32 imm_data;
1318 u32 invalidate_rkey;
1319 } ex;
1322 struct ib_rdma_wr {
1323 struct ib_send_wr wr;
1324 u64 remote_addr;
1325 u32 rkey;
1328 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1330 return container_of(wr, struct ib_rdma_wr, wr);
1333 struct ib_atomic_wr {
1334 struct ib_send_wr wr;
1335 u64 remote_addr;
1336 u64 compare_add;
1337 u64 swap;
1338 u64 compare_add_mask;
1339 u64 swap_mask;
1340 u32 rkey;
1343 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1345 return container_of(wr, struct ib_atomic_wr, wr);
1348 struct ib_ud_wr {
1349 struct ib_send_wr wr;
1350 struct ib_ah *ah;
1351 void *header;
1352 int hlen;
1353 int mss;
1354 u32 remote_qpn;
1355 u32 remote_qkey;
1356 u16 pkey_index; /* valid for GSI only */
1357 u8 port_num; /* valid for DR SMPs on switch only */
1360 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1362 return container_of(wr, struct ib_ud_wr, wr);
1365 struct ib_reg_wr {
1366 struct ib_send_wr wr;
1367 struct ib_mr *mr;
1368 u32 key;
1369 int access;
1372 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1374 return container_of(wr, struct ib_reg_wr, wr);
1377 struct ib_sig_handover_wr {
1378 struct ib_send_wr wr;
1379 struct ib_sig_attrs *sig_attrs;
1380 struct ib_mr *sig_mr;
1381 int access_flags;
1382 struct ib_sge *prot;
1385 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1387 return container_of(wr, struct ib_sig_handover_wr, wr);
1390 struct ib_recv_wr {
1391 struct ib_recv_wr *next;
1392 union {
1393 u64 wr_id;
1394 struct ib_cqe *wr_cqe;
1396 struct ib_sge *sg_list;
1397 int num_sge;
1400 enum ib_access_flags {
1401 IB_ACCESS_LOCAL_WRITE = 1,
1402 IB_ACCESS_REMOTE_WRITE = (1<<1),
1403 IB_ACCESS_REMOTE_READ = (1<<2),
1404 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1405 IB_ACCESS_MW_BIND = (1<<4),
1406 IB_ZERO_BASED = (1<<5),
1407 IB_ACCESS_ON_DEMAND = (1<<6),
1408 IB_ACCESS_HUGETLB = (1<<7),
1412 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1413 * are hidden here instead of a uapi header!
1415 enum ib_mr_rereg_flags {
1416 IB_MR_REREG_TRANS = 1,
1417 IB_MR_REREG_PD = (1<<1),
1418 IB_MR_REREG_ACCESS = (1<<2),
1419 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1422 struct ib_fmr_attr {
1423 int max_pages;
1424 int max_maps;
1425 u8 page_shift;
1428 struct ib_umem;
1430 enum rdma_remove_reason {
1431 /* Userspace requested uobject deletion. Call could fail */
1432 RDMA_REMOVE_DESTROY,
1433 /* Context deletion. This call should delete the actual object itself */
1434 RDMA_REMOVE_CLOSE,
1435 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1436 RDMA_REMOVE_DRIVER_REMOVE,
1437 /* Context is being cleaned-up, but commit was just completed */
1438 RDMA_REMOVE_DURING_CLEANUP,
1441 struct ib_rdmacg_object {
1442 #ifdef CONFIG_CGROUP_RDMA
1443 struct rdma_cgroup *cg; /* owner rdma cgroup */
1444 #endif
1447 struct ib_ucontext {
1448 struct ib_device *device;
1449 struct ib_uverbs_file *ufile;
1450 int closing;
1452 /* locking the uobjects_list */
1453 struct mutex uobjects_lock;
1454 struct list_head uobjects;
1455 /* protects cleanup process from other actions */
1456 struct rw_semaphore cleanup_rwsem;
1457 enum rdma_remove_reason cleanup_reason;
1459 struct pid *tgid;
1460 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1461 struct rb_root_cached umem_tree;
1463 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1464 * mmu notifiers registration.
1466 struct rw_semaphore umem_rwsem;
1467 void (*invalidate_range)(struct ib_umem *umem,
1468 unsigned long start, unsigned long end);
1470 struct mmu_notifier mn;
1471 atomic_t notifier_count;
1472 /* A list of umems that don't have private mmu notifier counters yet. */
1473 struct list_head no_private_counters;
1474 int odp_mrs_count;
1475 #endif
1477 struct ib_rdmacg_object cg_obj;
1480 struct ib_uobject {
1481 u64 user_handle; /* handle given to us by userspace */
1482 struct ib_ucontext *context; /* associated user context */
1483 void *object; /* containing object */
1484 struct list_head list; /* link to context's list */
1485 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1486 int id; /* index into kernel idr */
1487 struct kref ref;
1488 atomic_t usecnt; /* protects exclusive access */
1489 struct rcu_head rcu; /* kfree_rcu() overhead */
1491 const struct uverbs_obj_type *type;
1494 struct ib_uobject_file {
1495 struct ib_uobject uobj;
1496 /* ufile contains the lock between context release and file close */
1497 struct ib_uverbs_file *ufile;
1500 struct ib_udata {
1501 const void __user *inbuf;
1502 void __user *outbuf;
1503 size_t inlen;
1504 size_t outlen;
1507 struct ib_pd {
1508 u32 local_dma_lkey;
1509 u32 flags;
1510 struct ib_device *device;
1511 struct ib_uobject *uobject;
1512 atomic_t usecnt; /* count all resources */
1514 u32 unsafe_global_rkey;
1517 * Implementation details of the RDMA core, don't use in drivers:
1519 struct ib_mr *__internal_mr;
1522 struct ib_xrcd {
1523 struct ib_device *device;
1524 atomic_t usecnt; /* count all exposed resources */
1525 struct inode *inode;
1527 struct mutex tgt_qp_mutex;
1528 struct list_head tgt_qp_list;
1531 struct ib_ah {
1532 struct ib_device *device;
1533 struct ib_pd *pd;
1534 struct ib_uobject *uobject;
1535 enum rdma_ah_attr_type type;
1538 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1540 enum ib_poll_context {
1541 IB_POLL_DIRECT, /* caller context, no hw completions */
1542 IB_POLL_SOFTIRQ, /* poll from softirq context */
1543 IB_POLL_WORKQUEUE, /* poll from workqueue */
1546 struct ib_cq {
1547 struct ib_device *device;
1548 struct ib_uobject *uobject;
1549 ib_comp_handler comp_handler;
1550 void (*event_handler)(struct ib_event *, void *);
1551 void *cq_context;
1552 int cqe;
1553 atomic_t usecnt; /* count number of work queues */
1554 enum ib_poll_context poll_ctx;
1555 struct ib_wc *wc;
1556 union {
1557 struct irq_poll iop;
1558 struct work_struct work;
1562 struct ib_srq {
1563 struct ib_device *device;
1564 struct ib_pd *pd;
1565 struct ib_uobject *uobject;
1566 void (*event_handler)(struct ib_event *, void *);
1567 void *srq_context;
1568 enum ib_srq_type srq_type;
1569 atomic_t usecnt;
1571 struct {
1572 struct ib_cq *cq;
1573 union {
1574 struct {
1575 struct ib_xrcd *xrcd;
1576 u32 srq_num;
1577 } xrc;
1579 } ext;
1582 enum ib_raw_packet_caps {
1583 /* Strip cvlan from incoming packet and report it in the matching work
1584 * completion is supported.
1586 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1587 /* Scatter FCS field of an incoming packet to host memory is supported.
1589 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1590 /* Checksum offloads are supported (for both send and receive). */
1591 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1592 /* When a packet is received for an RQ with no receive WQEs, the
1593 * packet processing is delayed.
1595 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1598 enum ib_wq_type {
1599 IB_WQT_RQ
1602 enum ib_wq_state {
1603 IB_WQS_RESET,
1604 IB_WQS_RDY,
1605 IB_WQS_ERR
1608 struct ib_wq {
1609 struct ib_device *device;
1610 struct ib_uobject *uobject;
1611 void *wq_context;
1612 void (*event_handler)(struct ib_event *, void *);
1613 struct ib_pd *pd;
1614 struct ib_cq *cq;
1615 u32 wq_num;
1616 enum ib_wq_state state;
1617 enum ib_wq_type wq_type;
1618 atomic_t usecnt;
1621 enum ib_wq_flags {
1622 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1623 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1624 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1627 struct ib_wq_init_attr {
1628 void *wq_context;
1629 enum ib_wq_type wq_type;
1630 u32 max_wr;
1631 u32 max_sge;
1632 struct ib_cq *cq;
1633 void (*event_handler)(struct ib_event *, void *);
1634 u32 create_flags; /* Use enum ib_wq_flags */
1637 enum ib_wq_attr_mask {
1638 IB_WQ_STATE = 1 << 0,
1639 IB_WQ_CUR_STATE = 1 << 1,
1640 IB_WQ_FLAGS = 1 << 2,
1643 struct ib_wq_attr {
1644 enum ib_wq_state wq_state;
1645 enum ib_wq_state curr_wq_state;
1646 u32 flags; /* Use enum ib_wq_flags */
1647 u32 flags_mask; /* Use enum ib_wq_flags */
1650 struct ib_rwq_ind_table {
1651 struct ib_device *device;
1652 struct ib_uobject *uobject;
1653 atomic_t usecnt;
1654 u32 ind_tbl_num;
1655 u32 log_ind_tbl_size;
1656 struct ib_wq **ind_tbl;
1659 struct ib_rwq_ind_table_init_attr {
1660 u32 log_ind_tbl_size;
1661 /* Each entry is a pointer to Receive Work Queue */
1662 struct ib_wq **ind_tbl;
1665 enum port_pkey_state {
1666 IB_PORT_PKEY_NOT_VALID = 0,
1667 IB_PORT_PKEY_VALID = 1,
1668 IB_PORT_PKEY_LISTED = 2,
1671 struct ib_qp_security;
1673 struct ib_port_pkey {
1674 enum port_pkey_state state;
1675 u16 pkey_index;
1676 u8 port_num;
1677 struct list_head qp_list;
1678 struct list_head to_error_list;
1679 struct ib_qp_security *sec;
1682 struct ib_ports_pkeys {
1683 struct ib_port_pkey main;
1684 struct ib_port_pkey alt;
1687 struct ib_qp_security {
1688 struct ib_qp *qp;
1689 struct ib_device *dev;
1690 /* Hold this mutex when changing port and pkey settings. */
1691 struct mutex mutex;
1692 struct ib_ports_pkeys *ports_pkeys;
1693 /* A list of all open shared QP handles. Required to enforce security
1694 * properly for all users of a shared QP.
1696 struct list_head shared_qp_list;
1697 void *security;
1698 bool destroying;
1699 atomic_t error_list_count;
1700 struct completion error_complete;
1701 int error_comps_pending;
1705 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1706 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1708 struct ib_qp {
1709 struct ib_device *device;
1710 struct ib_pd *pd;
1711 struct ib_cq *send_cq;
1712 struct ib_cq *recv_cq;
1713 spinlock_t mr_lock;
1714 int mrs_used;
1715 struct list_head rdma_mrs;
1716 struct list_head sig_mrs;
1717 struct ib_srq *srq;
1718 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1719 struct list_head xrcd_list;
1721 /* count times opened, mcast attaches, flow attaches */
1722 atomic_t usecnt;
1723 struct list_head open_list;
1724 struct ib_qp *real_qp;
1725 struct ib_uobject *uobject;
1726 void (*event_handler)(struct ib_event *, void *);
1727 void *qp_context;
1728 u32 qp_num;
1729 u32 max_write_sge;
1730 u32 max_read_sge;
1731 enum ib_qp_type qp_type;
1732 struct ib_rwq_ind_table *rwq_ind_tbl;
1733 struct ib_qp_security *qp_sec;
1734 u8 port;
1737 struct ib_mr {
1738 struct ib_device *device;
1739 struct ib_pd *pd;
1740 u32 lkey;
1741 u32 rkey;
1742 u64 iova;
1743 u64 length;
1744 unsigned int page_size;
1745 bool need_inval;
1746 union {
1747 struct ib_uobject *uobject; /* user */
1748 struct list_head qp_entry; /* FR */
1752 struct ib_mw {
1753 struct ib_device *device;
1754 struct ib_pd *pd;
1755 struct ib_uobject *uobject;
1756 u32 rkey;
1757 enum ib_mw_type type;
1760 struct ib_fmr {
1761 struct ib_device *device;
1762 struct ib_pd *pd;
1763 struct list_head list;
1764 u32 lkey;
1765 u32 rkey;
1768 /* Supported steering options */
1769 enum ib_flow_attr_type {
1770 /* steering according to rule specifications */
1771 IB_FLOW_ATTR_NORMAL = 0x0,
1772 /* default unicast and multicast rule -
1773 * receive all Eth traffic which isn't steered to any QP
1775 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1776 /* default multicast rule -
1777 * receive all Eth multicast traffic which isn't steered to any QP
1779 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1780 /* sniffer rule - receive all port traffic */
1781 IB_FLOW_ATTR_SNIFFER = 0x3
1784 /* Supported steering header types */
1785 enum ib_flow_spec_type {
1786 /* L2 headers*/
1787 IB_FLOW_SPEC_ETH = 0x20,
1788 IB_FLOW_SPEC_IB = 0x22,
1789 /* L3 header*/
1790 IB_FLOW_SPEC_IPV4 = 0x30,
1791 IB_FLOW_SPEC_IPV6 = 0x31,
1792 /* L4 headers*/
1793 IB_FLOW_SPEC_TCP = 0x40,
1794 IB_FLOW_SPEC_UDP = 0x41,
1795 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1796 IB_FLOW_SPEC_INNER = 0x100,
1797 /* Actions */
1798 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1799 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1801 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1802 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1804 /* Flow steering rule priority is set according to it's domain.
1805 * Lower domain value means higher priority.
1807 enum ib_flow_domain {
1808 IB_FLOW_DOMAIN_USER,
1809 IB_FLOW_DOMAIN_ETHTOOL,
1810 IB_FLOW_DOMAIN_RFS,
1811 IB_FLOW_DOMAIN_NIC,
1812 IB_FLOW_DOMAIN_NUM /* Must be last */
1815 enum ib_flow_flags {
1816 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1817 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1820 struct ib_flow_eth_filter {
1821 u8 dst_mac[6];
1822 u8 src_mac[6];
1823 __be16 ether_type;
1824 __be16 vlan_tag;
1825 /* Must be last */
1826 u8 real_sz[0];
1829 struct ib_flow_spec_eth {
1830 u32 type;
1831 u16 size;
1832 struct ib_flow_eth_filter val;
1833 struct ib_flow_eth_filter mask;
1836 struct ib_flow_ib_filter {
1837 __be16 dlid;
1838 __u8 sl;
1839 /* Must be last */
1840 u8 real_sz[0];
1843 struct ib_flow_spec_ib {
1844 u32 type;
1845 u16 size;
1846 struct ib_flow_ib_filter val;
1847 struct ib_flow_ib_filter mask;
1850 /* IPv4 header flags */
1851 enum ib_ipv4_flags {
1852 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1853 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1854 last have this flag set */
1857 struct ib_flow_ipv4_filter {
1858 __be32 src_ip;
1859 __be32 dst_ip;
1860 u8 proto;
1861 u8 tos;
1862 u8 ttl;
1863 u8 flags;
1864 /* Must be last */
1865 u8 real_sz[0];
1868 struct ib_flow_spec_ipv4 {
1869 u32 type;
1870 u16 size;
1871 struct ib_flow_ipv4_filter val;
1872 struct ib_flow_ipv4_filter mask;
1875 struct ib_flow_ipv6_filter {
1876 u8 src_ip[16];
1877 u8 dst_ip[16];
1878 __be32 flow_label;
1879 u8 next_hdr;
1880 u8 traffic_class;
1881 u8 hop_limit;
1882 /* Must be last */
1883 u8 real_sz[0];
1886 struct ib_flow_spec_ipv6 {
1887 u32 type;
1888 u16 size;
1889 struct ib_flow_ipv6_filter val;
1890 struct ib_flow_ipv6_filter mask;
1893 struct ib_flow_tcp_udp_filter {
1894 __be16 dst_port;
1895 __be16 src_port;
1896 /* Must be last */
1897 u8 real_sz[0];
1900 struct ib_flow_spec_tcp_udp {
1901 u32 type;
1902 u16 size;
1903 struct ib_flow_tcp_udp_filter val;
1904 struct ib_flow_tcp_udp_filter mask;
1907 struct ib_flow_tunnel_filter {
1908 __be32 tunnel_id;
1909 u8 real_sz[0];
1912 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1913 * the tunnel_id from val has the vni value
1915 struct ib_flow_spec_tunnel {
1916 u32 type;
1917 u16 size;
1918 struct ib_flow_tunnel_filter val;
1919 struct ib_flow_tunnel_filter mask;
1922 struct ib_flow_spec_action_tag {
1923 enum ib_flow_spec_type type;
1924 u16 size;
1925 u32 tag_id;
1928 struct ib_flow_spec_action_drop {
1929 enum ib_flow_spec_type type;
1930 u16 size;
1933 union ib_flow_spec {
1934 struct {
1935 u32 type;
1936 u16 size;
1938 struct ib_flow_spec_eth eth;
1939 struct ib_flow_spec_ib ib;
1940 struct ib_flow_spec_ipv4 ipv4;
1941 struct ib_flow_spec_tcp_udp tcp_udp;
1942 struct ib_flow_spec_ipv6 ipv6;
1943 struct ib_flow_spec_tunnel tunnel;
1944 struct ib_flow_spec_action_tag flow_tag;
1945 struct ib_flow_spec_action_drop drop;
1948 struct ib_flow_attr {
1949 enum ib_flow_attr_type type;
1950 u16 size;
1951 u16 priority;
1952 u32 flags;
1953 u8 num_of_specs;
1954 u8 port;
1955 /* Following are the optional layers according to user request
1956 * struct ib_flow_spec_xxx
1957 * struct ib_flow_spec_yyy
1961 struct ib_flow {
1962 struct ib_qp *qp;
1963 struct ib_uobject *uobject;
1966 struct ib_mad_hdr;
1967 struct ib_grh;
1969 enum ib_process_mad_flags {
1970 IB_MAD_IGNORE_MKEY = 1,
1971 IB_MAD_IGNORE_BKEY = 2,
1972 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1975 enum ib_mad_result {
1976 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1977 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1978 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1979 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1982 struct ib_port_cache {
1983 u64 subnet_prefix;
1984 struct ib_pkey_cache *pkey;
1985 struct ib_gid_table *gid;
1986 u8 lmc;
1987 enum ib_port_state port_state;
1990 struct ib_cache {
1991 rwlock_t lock;
1992 struct ib_event_handler event_handler;
1993 struct ib_port_cache *ports;
1996 struct iw_cm_verbs;
1998 struct ib_port_immutable {
1999 int pkey_tbl_len;
2000 int gid_tbl_len;
2001 u32 core_cap_flags;
2002 u32 max_mad_size;
2005 /* rdma netdev type - specifies protocol type */
2006 enum rdma_netdev_t {
2007 RDMA_NETDEV_OPA_VNIC,
2008 RDMA_NETDEV_IPOIB,
2012 * struct rdma_netdev - rdma netdev
2013 * For cases where netstack interfacing is required.
2015 struct rdma_netdev {
2016 void *clnt_priv;
2017 struct ib_device *hca;
2018 u8 port_num;
2020 /* cleanup function must be specified */
2021 void (*free_rdma_netdev)(struct net_device *netdev);
2023 /* control functions */
2024 void (*set_id)(struct net_device *netdev, int id);
2025 /* send packet */
2026 int (*send)(struct net_device *dev, struct sk_buff *skb,
2027 struct ib_ah *address, u32 dqpn);
2028 /* multicast */
2029 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2030 union ib_gid *gid, u16 mlid,
2031 int set_qkey, u32 qkey);
2032 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2033 union ib_gid *gid, u16 mlid);
2036 struct ib_port_pkey_list {
2037 /* Lock to hold while modifying the list. */
2038 spinlock_t list_lock;
2039 struct list_head pkey_list;
2042 struct ib_device {
2043 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2044 struct device *dma_device;
2046 char name[IB_DEVICE_NAME_MAX];
2048 struct list_head event_handler_list;
2049 spinlock_t event_handler_lock;
2051 spinlock_t client_data_lock;
2052 struct list_head core_list;
2053 /* Access to the client_data_list is protected by the client_data_lock
2054 * spinlock and the lists_rwsem read-write semaphore */
2055 struct list_head client_data_list;
2057 struct ib_cache cache;
2059 * port_immutable is indexed by port number
2061 struct ib_port_immutable *port_immutable;
2063 int num_comp_vectors;
2065 struct ib_port_pkey_list *port_pkey_list;
2067 struct iw_cm_verbs *iwcm;
2070 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2071 * driver initialized data. The struct is kfree()'ed by the sysfs
2072 * core when the device is removed. A lifespan of -1 in the return
2073 * struct tells the core to set a default lifespan.
2075 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2076 u8 port_num);
2078 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2079 * @index - The index in the value array we wish to have updated, or
2080 * num_counters if we want all stats updated
2081 * Return codes -
2082 * < 0 - Error, no counters updated
2083 * index - Updated the single counter pointed to by index
2084 * num_counters - Updated all counters (will reset the timestamp
2085 * and prevent further calls for lifespan milliseconds)
2086 * Drivers are allowed to update all counters in leiu of just the
2087 * one given in index at their option
2089 int (*get_hw_stats)(struct ib_device *device,
2090 struct rdma_hw_stats *stats,
2091 u8 port, int index);
2092 int (*query_device)(struct ib_device *device,
2093 struct ib_device_attr *device_attr,
2094 struct ib_udata *udata);
2095 int (*query_port)(struct ib_device *device,
2096 u8 port_num,
2097 struct ib_port_attr *port_attr);
2098 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2099 u8 port_num);
2100 /* When calling get_netdev, the HW vendor's driver should return the
2101 * net device of device @device at port @port_num or NULL if such
2102 * a net device doesn't exist. The vendor driver should call dev_hold
2103 * on this net device. The HW vendor's device driver must guarantee
2104 * that this function returns NULL before the net device reaches
2105 * NETDEV_UNREGISTER_FINAL state.
2107 struct net_device *(*get_netdev)(struct ib_device *device,
2108 u8 port_num);
2109 int (*query_gid)(struct ib_device *device,
2110 u8 port_num, int index,
2111 union ib_gid *gid);
2112 /* When calling add_gid, the HW vendor's driver should
2113 * add the gid of device @device at gid index @index of
2114 * port @port_num to be @gid. Meta-info of that gid (for example,
2115 * the network device related to this gid is available
2116 * at @attr. @context allows the HW vendor driver to store extra
2117 * information together with a GID entry. The HW vendor may allocate
2118 * memory to contain this information and store it in @context when a
2119 * new GID entry is written to. Params are consistent until the next
2120 * call of add_gid or delete_gid. The function should return 0 on
2121 * success or error otherwise. The function could be called
2122 * concurrently for different ports. This function is only called
2123 * when roce_gid_table is used.
2125 int (*add_gid)(struct ib_device *device,
2126 u8 port_num,
2127 unsigned int index,
2128 const union ib_gid *gid,
2129 const struct ib_gid_attr *attr,
2130 void **context);
2131 /* When calling del_gid, the HW vendor's driver should delete the
2132 * gid of device @device at gid index @index of port @port_num.
2133 * Upon the deletion of a GID entry, the HW vendor must free any
2134 * allocated memory. The caller will clear @context afterwards.
2135 * This function is only called when roce_gid_table is used.
2137 int (*del_gid)(struct ib_device *device,
2138 u8 port_num,
2139 unsigned int index,
2140 void **context);
2141 int (*query_pkey)(struct ib_device *device,
2142 u8 port_num, u16 index, u16 *pkey);
2143 int (*modify_device)(struct ib_device *device,
2144 int device_modify_mask,
2145 struct ib_device_modify *device_modify);
2146 int (*modify_port)(struct ib_device *device,
2147 u8 port_num, int port_modify_mask,
2148 struct ib_port_modify *port_modify);
2149 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2150 struct ib_udata *udata);
2151 int (*dealloc_ucontext)(struct ib_ucontext *context);
2152 int (*mmap)(struct ib_ucontext *context,
2153 struct vm_area_struct *vma);
2154 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2155 struct ib_ucontext *context,
2156 struct ib_udata *udata);
2157 int (*dealloc_pd)(struct ib_pd *pd);
2158 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2159 struct rdma_ah_attr *ah_attr,
2160 struct ib_udata *udata);
2161 int (*modify_ah)(struct ib_ah *ah,
2162 struct rdma_ah_attr *ah_attr);
2163 int (*query_ah)(struct ib_ah *ah,
2164 struct rdma_ah_attr *ah_attr);
2165 int (*destroy_ah)(struct ib_ah *ah);
2166 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2167 struct ib_srq_init_attr *srq_init_attr,
2168 struct ib_udata *udata);
2169 int (*modify_srq)(struct ib_srq *srq,
2170 struct ib_srq_attr *srq_attr,
2171 enum ib_srq_attr_mask srq_attr_mask,
2172 struct ib_udata *udata);
2173 int (*query_srq)(struct ib_srq *srq,
2174 struct ib_srq_attr *srq_attr);
2175 int (*destroy_srq)(struct ib_srq *srq);
2176 int (*post_srq_recv)(struct ib_srq *srq,
2177 struct ib_recv_wr *recv_wr,
2178 struct ib_recv_wr **bad_recv_wr);
2179 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2180 struct ib_qp_init_attr *qp_init_attr,
2181 struct ib_udata *udata);
2182 int (*modify_qp)(struct ib_qp *qp,
2183 struct ib_qp_attr *qp_attr,
2184 int qp_attr_mask,
2185 struct ib_udata *udata);
2186 int (*query_qp)(struct ib_qp *qp,
2187 struct ib_qp_attr *qp_attr,
2188 int qp_attr_mask,
2189 struct ib_qp_init_attr *qp_init_attr);
2190 int (*destroy_qp)(struct ib_qp *qp);
2191 int (*post_send)(struct ib_qp *qp,
2192 struct ib_send_wr *send_wr,
2193 struct ib_send_wr **bad_send_wr);
2194 int (*post_recv)(struct ib_qp *qp,
2195 struct ib_recv_wr *recv_wr,
2196 struct ib_recv_wr **bad_recv_wr);
2197 struct ib_cq * (*create_cq)(struct ib_device *device,
2198 const struct ib_cq_init_attr *attr,
2199 struct ib_ucontext *context,
2200 struct ib_udata *udata);
2201 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2202 u16 cq_period);
2203 int (*destroy_cq)(struct ib_cq *cq);
2204 int (*resize_cq)(struct ib_cq *cq, int cqe,
2205 struct ib_udata *udata);
2206 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2207 struct ib_wc *wc);
2208 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2209 int (*req_notify_cq)(struct ib_cq *cq,
2210 enum ib_cq_notify_flags flags);
2211 int (*req_ncomp_notif)(struct ib_cq *cq,
2212 int wc_cnt);
2213 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2214 int mr_access_flags);
2215 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2216 u64 start, u64 length,
2217 u64 virt_addr,
2218 int mr_access_flags,
2219 struct ib_udata *udata);
2220 int (*rereg_user_mr)(struct ib_mr *mr,
2221 int flags,
2222 u64 start, u64 length,
2223 u64 virt_addr,
2224 int mr_access_flags,
2225 struct ib_pd *pd,
2226 struct ib_udata *udata);
2227 int (*dereg_mr)(struct ib_mr *mr);
2228 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2229 enum ib_mr_type mr_type,
2230 u32 max_num_sg);
2231 int (*map_mr_sg)(struct ib_mr *mr,
2232 struct scatterlist *sg,
2233 int sg_nents,
2234 unsigned int *sg_offset);
2235 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2236 enum ib_mw_type type,
2237 struct ib_udata *udata);
2238 int (*dealloc_mw)(struct ib_mw *mw);
2239 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2240 int mr_access_flags,
2241 struct ib_fmr_attr *fmr_attr);
2242 int (*map_phys_fmr)(struct ib_fmr *fmr,
2243 u64 *page_list, int list_len,
2244 u64 iova);
2245 int (*unmap_fmr)(struct list_head *fmr_list);
2246 int (*dealloc_fmr)(struct ib_fmr *fmr);
2247 int (*attach_mcast)(struct ib_qp *qp,
2248 union ib_gid *gid,
2249 u16 lid);
2250 int (*detach_mcast)(struct ib_qp *qp,
2251 union ib_gid *gid,
2252 u16 lid);
2253 int (*process_mad)(struct ib_device *device,
2254 int process_mad_flags,
2255 u8 port_num,
2256 const struct ib_wc *in_wc,
2257 const struct ib_grh *in_grh,
2258 const struct ib_mad_hdr *in_mad,
2259 size_t in_mad_size,
2260 struct ib_mad_hdr *out_mad,
2261 size_t *out_mad_size,
2262 u16 *out_mad_pkey_index);
2263 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2264 struct ib_ucontext *ucontext,
2265 struct ib_udata *udata);
2266 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2267 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2268 struct ib_flow_attr
2269 *flow_attr,
2270 int domain);
2271 int (*destroy_flow)(struct ib_flow *flow_id);
2272 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2273 struct ib_mr_status *mr_status);
2274 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2275 void (*drain_rq)(struct ib_qp *qp);
2276 void (*drain_sq)(struct ib_qp *qp);
2277 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2278 int state);
2279 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2280 struct ifla_vf_info *ivf);
2281 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2282 struct ifla_vf_stats *stats);
2283 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2284 int type);
2285 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2286 struct ib_wq_init_attr *init_attr,
2287 struct ib_udata *udata);
2288 int (*destroy_wq)(struct ib_wq *wq);
2289 int (*modify_wq)(struct ib_wq *wq,
2290 struct ib_wq_attr *attr,
2291 u32 wq_attr_mask,
2292 struct ib_udata *udata);
2293 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2294 struct ib_rwq_ind_table_init_attr *init_attr,
2295 struct ib_udata *udata);
2296 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2298 * rdma netdev operation
2300 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2301 * doesn't support the specified rdma netdev type.
2303 struct net_device *(*alloc_rdma_netdev)(
2304 struct ib_device *device,
2305 u8 port_num,
2306 enum rdma_netdev_t type,
2307 const char *name,
2308 unsigned char name_assign_type,
2309 void (*setup)(struct net_device *));
2311 struct module *owner;
2312 struct device dev;
2313 struct kobject *ports_parent;
2314 struct list_head port_list;
2316 enum {
2317 IB_DEV_UNINITIALIZED,
2318 IB_DEV_REGISTERED,
2319 IB_DEV_UNREGISTERED
2320 } reg_state;
2322 int uverbs_abi_ver;
2323 u64 uverbs_cmd_mask;
2324 u64 uverbs_ex_cmd_mask;
2326 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2327 __be64 node_guid;
2328 u32 local_dma_lkey;
2329 u16 is_switch:1;
2330 u8 node_type;
2331 u8 phys_port_cnt;
2332 struct ib_device_attr attrs;
2333 struct attribute_group *hw_stats_ag;
2334 struct rdma_hw_stats *hw_stats;
2336 #ifdef CONFIG_CGROUP_RDMA
2337 struct rdmacg_device cg_device;
2338 #endif
2340 u32 index;
2343 * The following mandatory functions are used only at device
2344 * registration. Keep functions such as these at the end of this
2345 * structure to avoid cache line misses when accessing struct ib_device
2346 * in fast paths.
2348 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2349 void (*get_dev_fw_str)(struct ib_device *, char *str);
2350 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2351 int comp_vector);
2353 struct uverbs_root_spec *specs_root;
2356 struct ib_client {
2357 char *name;
2358 void (*add) (struct ib_device *);
2359 void (*remove)(struct ib_device *, void *client_data);
2361 /* Returns the net_dev belonging to this ib_client and matching the
2362 * given parameters.
2363 * @dev: An RDMA device that the net_dev use for communication.
2364 * @port: A physical port number on the RDMA device.
2365 * @pkey: P_Key that the net_dev uses if applicable.
2366 * @gid: A GID that the net_dev uses to communicate.
2367 * @addr: An IP address the net_dev is configured with.
2368 * @client_data: The device's client data set by ib_set_client_data().
2370 * An ib_client that implements a net_dev on top of RDMA devices
2371 * (such as IP over IB) should implement this callback, allowing the
2372 * rdma_cm module to find the right net_dev for a given request.
2374 * The caller is responsible for calling dev_put on the returned
2375 * netdev. */
2376 struct net_device *(*get_net_dev_by_params)(
2377 struct ib_device *dev,
2378 u8 port,
2379 u16 pkey,
2380 const union ib_gid *gid,
2381 const struct sockaddr *addr,
2382 void *client_data);
2383 struct list_head list;
2386 struct ib_device *ib_alloc_device(size_t size);
2387 void ib_dealloc_device(struct ib_device *device);
2389 void ib_get_device_fw_str(struct ib_device *device, char *str);
2391 int ib_register_device(struct ib_device *device,
2392 int (*port_callback)(struct ib_device *,
2393 u8, struct kobject *));
2394 void ib_unregister_device(struct ib_device *device);
2396 int ib_register_client (struct ib_client *client);
2397 void ib_unregister_client(struct ib_client *client);
2399 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2400 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2401 void *data);
2403 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2405 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2408 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2410 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2413 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2414 size_t offset,
2415 size_t len)
2417 const void __user *p = udata->inbuf + offset;
2418 bool ret;
2419 u8 *buf;
2421 if (len > USHRT_MAX)
2422 return false;
2424 buf = memdup_user(p, len);
2425 if (IS_ERR(buf))
2426 return false;
2428 ret = !memchr_inv(buf, 0, len);
2429 kfree(buf);
2430 return ret;
2434 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2435 * contains all required attributes and no attributes not allowed for
2436 * the given QP state transition.
2437 * @cur_state: Current QP state
2438 * @next_state: Next QP state
2439 * @type: QP type
2440 * @mask: Mask of supplied QP attributes
2441 * @ll : link layer of port
2443 * This function is a helper function that a low-level driver's
2444 * modify_qp method can use to validate the consumer's input. It
2445 * checks that cur_state and next_state are valid QP states, that a
2446 * transition from cur_state to next_state is allowed by the IB spec,
2447 * and that the attribute mask supplied is allowed for the transition.
2449 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2450 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2451 enum rdma_link_layer ll);
2453 void ib_register_event_handler(struct ib_event_handler *event_handler);
2454 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2455 void ib_dispatch_event(struct ib_event *event);
2457 int ib_query_port(struct ib_device *device,
2458 u8 port_num, struct ib_port_attr *port_attr);
2460 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2461 u8 port_num);
2464 * rdma_cap_ib_switch - Check if the device is IB switch
2465 * @device: Device to check
2467 * Device driver is responsible for setting is_switch bit on
2468 * in ib_device structure at init time.
2470 * Return: true if the device is IB switch.
2472 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2474 return device->is_switch;
2478 * rdma_start_port - Return the first valid port number for the device
2479 * specified
2481 * @device: Device to be checked
2483 * Return start port number
2485 static inline u8 rdma_start_port(const struct ib_device *device)
2487 return rdma_cap_ib_switch(device) ? 0 : 1;
2491 * rdma_end_port - Return the last valid port number for the device
2492 * specified
2494 * @device: Device to be checked
2496 * Return last port number
2498 static inline u8 rdma_end_port(const struct ib_device *device)
2500 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2503 static inline int rdma_is_port_valid(const struct ib_device *device,
2504 unsigned int port)
2506 return (port >= rdma_start_port(device) &&
2507 port <= rdma_end_port(device));
2510 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2512 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2515 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2517 return device->port_immutable[port_num].core_cap_flags &
2518 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2521 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2523 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2526 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2528 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2531 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2533 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2536 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2538 return rdma_protocol_ib(device, port_num) ||
2539 rdma_protocol_roce(device, port_num);
2542 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2544 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2547 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2549 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2553 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2554 * Management Datagrams.
2555 * @device: Device to check
2556 * @port_num: Port number to check
2558 * Management Datagrams (MAD) are a required part of the InfiniBand
2559 * specification and are supported on all InfiniBand devices. A slightly
2560 * extended version are also supported on OPA interfaces.
2562 * Return: true if the port supports sending/receiving of MAD packets.
2564 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2566 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2570 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2571 * Management Datagrams.
2572 * @device: Device to check
2573 * @port_num: Port number to check
2575 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2576 * datagrams with their own versions. These OPA MADs share many but not all of
2577 * the characteristics of InfiniBand MADs.
2579 * OPA MADs differ in the following ways:
2581 * 1) MADs are variable size up to 2K
2582 * IBTA defined MADs remain fixed at 256 bytes
2583 * 2) OPA SMPs must carry valid PKeys
2584 * 3) OPA SMP packets are a different format
2586 * Return: true if the port supports OPA MAD packet formats.
2588 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2590 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2591 == RDMA_CORE_CAP_OPA_MAD;
2595 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2596 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2597 * @device: Device to check
2598 * @port_num: Port number to check
2600 * Each InfiniBand node is required to provide a Subnet Management Agent
2601 * that the subnet manager can access. Prior to the fabric being fully
2602 * configured by the subnet manager, the SMA is accessed via a well known
2603 * interface called the Subnet Management Interface (SMI). This interface
2604 * uses directed route packets to communicate with the SM to get around the
2605 * chicken and egg problem of the SM needing to know what's on the fabric
2606 * in order to configure the fabric, and needing to configure the fabric in
2607 * order to send packets to the devices on the fabric. These directed
2608 * route packets do not need the fabric fully configured in order to reach
2609 * their destination. The SMI is the only method allowed to send
2610 * directed route packets on an InfiniBand fabric.
2612 * Return: true if the port provides an SMI.
2614 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2616 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2620 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2621 * Communication Manager.
2622 * @device: Device to check
2623 * @port_num: Port number to check
2625 * The InfiniBand Communication Manager is one of many pre-defined General
2626 * Service Agents (GSA) that are accessed via the General Service
2627 * Interface (GSI). It's role is to facilitate establishment of connections
2628 * between nodes as well as other management related tasks for established
2629 * connections.
2631 * Return: true if the port supports an IB CM (this does not guarantee that
2632 * a CM is actually running however).
2634 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2636 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2640 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2641 * Communication Manager.
2642 * @device: Device to check
2643 * @port_num: Port number to check
2645 * Similar to above, but specific to iWARP connections which have a different
2646 * managment protocol than InfiniBand.
2648 * Return: true if the port supports an iWARP CM (this does not guarantee that
2649 * a CM is actually running however).
2651 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2653 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2657 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2658 * Subnet Administration.
2659 * @device: Device to check
2660 * @port_num: Port number to check
2662 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2663 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2664 * fabrics, devices should resolve routes to other hosts by contacting the
2665 * SA to query the proper route.
2667 * Return: true if the port should act as a client to the fabric Subnet
2668 * Administration interface. This does not imply that the SA service is
2669 * running locally.
2671 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2673 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2677 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2678 * Multicast.
2679 * @device: Device to check
2680 * @port_num: Port number to check
2682 * InfiniBand multicast registration is more complex than normal IPv4 or
2683 * IPv6 multicast registration. Each Host Channel Adapter must register
2684 * with the Subnet Manager when it wishes to join a multicast group. It
2685 * should do so only once regardless of how many queue pairs it subscribes
2686 * to this group. And it should leave the group only after all queue pairs
2687 * attached to the group have been detached.
2689 * Return: true if the port must undertake the additional adminstrative
2690 * overhead of registering/unregistering with the SM and tracking of the
2691 * total number of queue pairs attached to the multicast group.
2693 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2695 return rdma_cap_ib_sa(device, port_num);
2699 * rdma_cap_af_ib - Check if the port of device has the capability
2700 * Native Infiniband Address.
2701 * @device: Device to check
2702 * @port_num: Port number to check
2704 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2705 * GID. RoCE uses a different mechanism, but still generates a GID via
2706 * a prescribed mechanism and port specific data.
2708 * Return: true if the port uses a GID address to identify devices on the
2709 * network.
2711 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2713 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2717 * rdma_cap_eth_ah - Check if the port of device has the capability
2718 * Ethernet Address Handle.
2719 * @device: Device to check
2720 * @port_num: Port number to check
2722 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2723 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2724 * port. Normally, packet headers are generated by the sending host
2725 * adapter, but when sending connectionless datagrams, we must manually
2726 * inject the proper headers for the fabric we are communicating over.
2728 * Return: true if we are running as a RoCE port and must force the
2729 * addition of a Global Route Header built from our Ethernet Address
2730 * Handle into our header list for connectionless packets.
2732 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2734 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2738 * rdma_cap_opa_ah - Check if the port of device supports
2739 * OPA Address handles
2740 * @device: Device to check
2741 * @port_num: Port number to check
2743 * Return: true if we are running on an OPA device which supports
2744 * the extended OPA addressing.
2746 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2748 return (device->port_immutable[port_num].core_cap_flags &
2749 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2753 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2755 * @device: Device
2756 * @port_num: Port number
2758 * This MAD size includes the MAD headers and MAD payload. No other headers
2759 * are included.
2761 * Return the max MAD size required by the Port. Will return 0 if the port
2762 * does not support MADs
2764 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2766 return device->port_immutable[port_num].max_mad_size;
2770 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2771 * @device: Device to check
2772 * @port_num: Port number to check
2774 * RoCE GID table mechanism manages the various GIDs for a device.
2776 * NOTE: if allocating the port's GID table has failed, this call will still
2777 * return true, but any RoCE GID table API will fail.
2779 * Return: true if the port uses RoCE GID table mechanism in order to manage
2780 * its GIDs.
2782 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2783 u8 port_num)
2785 return rdma_protocol_roce(device, port_num) &&
2786 device->add_gid && device->del_gid;
2790 * Check if the device supports READ W/ INVALIDATE.
2792 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2795 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2796 * has support for it yet.
2798 return rdma_protocol_iwarp(dev, port_num);
2801 int ib_query_gid(struct ib_device *device,
2802 u8 port_num, int index, union ib_gid *gid,
2803 struct ib_gid_attr *attr);
2805 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2806 int state);
2807 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2808 struct ifla_vf_info *info);
2809 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2810 struct ifla_vf_stats *stats);
2811 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2812 int type);
2814 int ib_query_pkey(struct ib_device *device,
2815 u8 port_num, u16 index, u16 *pkey);
2817 int ib_modify_device(struct ib_device *device,
2818 int device_modify_mask,
2819 struct ib_device_modify *device_modify);
2821 int ib_modify_port(struct ib_device *device,
2822 u8 port_num, int port_modify_mask,
2823 struct ib_port_modify *port_modify);
2825 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2826 enum ib_gid_type gid_type, struct net_device *ndev,
2827 u8 *port_num, u16 *index);
2829 int ib_find_pkey(struct ib_device *device,
2830 u8 port_num, u16 pkey, u16 *index);
2832 enum ib_pd_flags {
2834 * Create a memory registration for all memory in the system and place
2835 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2836 * ULPs to avoid the overhead of dynamic MRs.
2838 * This flag is generally considered unsafe and must only be used in
2839 * extremly trusted environments. Every use of it will log a warning
2840 * in the kernel log.
2842 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2845 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2846 const char *caller);
2847 #define ib_alloc_pd(device, flags) \
2848 __ib_alloc_pd((device), (flags), __func__)
2849 void ib_dealloc_pd(struct ib_pd *pd);
2852 * rdma_create_ah - Creates an address handle for the given address vector.
2853 * @pd: The protection domain associated with the address handle.
2854 * @ah_attr: The attributes of the address vector.
2856 * The address handle is used to reference a local or global destination
2857 * in all UD QP post sends.
2859 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2862 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2863 * work completion.
2864 * @hdr: the L3 header to parse
2865 * @net_type: type of header to parse
2866 * @sgid: place to store source gid
2867 * @dgid: place to store destination gid
2869 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2870 enum rdma_network_type net_type,
2871 union ib_gid *sgid, union ib_gid *dgid);
2874 * ib_get_rdma_header_version - Get the header version
2875 * @hdr: the L3 header to parse
2877 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2880 * ib_init_ah_from_wc - Initializes address handle attributes from a
2881 * work completion.
2882 * @device: Device on which the received message arrived.
2883 * @port_num: Port on which the received message arrived.
2884 * @wc: Work completion associated with the received message.
2885 * @grh: References the received global route header. This parameter is
2886 * ignored unless the work completion indicates that the GRH is valid.
2887 * @ah_attr: Returned attributes that can be used when creating an address
2888 * handle for replying to the message.
2890 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2891 const struct ib_wc *wc, const struct ib_grh *grh,
2892 struct rdma_ah_attr *ah_attr);
2895 * ib_create_ah_from_wc - Creates an address handle associated with the
2896 * sender of the specified work completion.
2897 * @pd: The protection domain associated with the address handle.
2898 * @wc: Work completion information associated with a received message.
2899 * @grh: References the received global route header. This parameter is
2900 * ignored unless the work completion indicates that the GRH is valid.
2901 * @port_num: The outbound port number to associate with the address.
2903 * The address handle is used to reference a local or global destination
2904 * in all UD QP post sends.
2906 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2907 const struct ib_grh *grh, u8 port_num);
2910 * rdma_modify_ah - Modifies the address vector associated with an address
2911 * handle.
2912 * @ah: The address handle to modify.
2913 * @ah_attr: The new address vector attributes to associate with the
2914 * address handle.
2916 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2919 * rdma_query_ah - Queries the address vector associated with an address
2920 * handle.
2921 * @ah: The address handle to query.
2922 * @ah_attr: The address vector attributes associated with the address
2923 * handle.
2925 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2928 * rdma_destroy_ah - Destroys an address handle.
2929 * @ah: The address handle to destroy.
2931 int rdma_destroy_ah(struct ib_ah *ah);
2934 * ib_create_srq - Creates a SRQ associated with the specified protection
2935 * domain.
2936 * @pd: The protection domain associated with the SRQ.
2937 * @srq_init_attr: A list of initial attributes required to create the
2938 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2939 * the actual capabilities of the created SRQ.
2941 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2942 * requested size of the SRQ, and set to the actual values allocated
2943 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2944 * will always be at least as large as the requested values.
2946 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2947 struct ib_srq_init_attr *srq_init_attr);
2950 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2951 * @srq: The SRQ to modify.
2952 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2953 * the current values of selected SRQ attributes are returned.
2954 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2955 * are being modified.
2957 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2958 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2959 * the number of receives queued drops below the limit.
2961 int ib_modify_srq(struct ib_srq *srq,
2962 struct ib_srq_attr *srq_attr,
2963 enum ib_srq_attr_mask srq_attr_mask);
2966 * ib_query_srq - Returns the attribute list and current values for the
2967 * specified SRQ.
2968 * @srq: The SRQ to query.
2969 * @srq_attr: The attributes of the specified SRQ.
2971 int ib_query_srq(struct ib_srq *srq,
2972 struct ib_srq_attr *srq_attr);
2975 * ib_destroy_srq - Destroys the specified SRQ.
2976 * @srq: The SRQ to destroy.
2978 int ib_destroy_srq(struct ib_srq *srq);
2981 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2982 * @srq: The SRQ to post the work request on.
2983 * @recv_wr: A list of work requests to post on the receive queue.
2984 * @bad_recv_wr: On an immediate failure, this parameter will reference
2985 * the work request that failed to be posted on the QP.
2987 static inline int ib_post_srq_recv(struct ib_srq *srq,
2988 struct ib_recv_wr *recv_wr,
2989 struct ib_recv_wr **bad_recv_wr)
2991 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2995 * ib_create_qp - Creates a QP associated with the specified protection
2996 * domain.
2997 * @pd: The protection domain associated with the QP.
2998 * @qp_init_attr: A list of initial attributes required to create the
2999 * QP. If QP creation succeeds, then the attributes are updated to
3000 * the actual capabilities of the created QP.
3002 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3003 struct ib_qp_init_attr *qp_init_attr);
3006 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3007 * @qp: The QP to modify.
3008 * @attr: On input, specifies the QP attributes to modify. On output,
3009 * the current values of selected QP attributes are returned.
3010 * @attr_mask: A bit-mask used to specify which attributes of the QP
3011 * are being modified.
3012 * @udata: pointer to user's input output buffer information
3013 * are being modified.
3014 * It returns 0 on success and returns appropriate error code on error.
3016 int ib_modify_qp_with_udata(struct ib_qp *qp,
3017 struct ib_qp_attr *attr,
3018 int attr_mask,
3019 struct ib_udata *udata);
3022 * ib_modify_qp - Modifies the attributes for the specified QP and then
3023 * transitions the QP to the given state.
3024 * @qp: The QP to modify.
3025 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3026 * the current values of selected QP attributes are returned.
3027 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3028 * are being modified.
3030 int ib_modify_qp(struct ib_qp *qp,
3031 struct ib_qp_attr *qp_attr,
3032 int qp_attr_mask);
3035 * ib_query_qp - Returns the attribute list and current values for the
3036 * specified QP.
3037 * @qp: The QP to query.
3038 * @qp_attr: The attributes of the specified QP.
3039 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3040 * @qp_init_attr: Additional attributes of the selected QP.
3042 * The qp_attr_mask may be used to limit the query to gathering only the
3043 * selected attributes.
3045 int ib_query_qp(struct ib_qp *qp,
3046 struct ib_qp_attr *qp_attr,
3047 int qp_attr_mask,
3048 struct ib_qp_init_attr *qp_init_attr);
3051 * ib_destroy_qp - Destroys the specified QP.
3052 * @qp: The QP to destroy.
3054 int ib_destroy_qp(struct ib_qp *qp);
3057 * ib_open_qp - Obtain a reference to an existing sharable QP.
3058 * @xrcd - XRC domain
3059 * @qp_open_attr: Attributes identifying the QP to open.
3061 * Returns a reference to a sharable QP.
3063 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3064 struct ib_qp_open_attr *qp_open_attr);
3067 * ib_close_qp - Release an external reference to a QP.
3068 * @qp: The QP handle to release
3070 * The opened QP handle is released by the caller. The underlying
3071 * shared QP is not destroyed until all internal references are released.
3073 int ib_close_qp(struct ib_qp *qp);
3076 * ib_post_send - Posts a list of work requests to the send queue of
3077 * the specified QP.
3078 * @qp: The QP to post the work request on.
3079 * @send_wr: A list of work requests to post on the send queue.
3080 * @bad_send_wr: On an immediate failure, this parameter will reference
3081 * the work request that failed to be posted on the QP.
3083 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3084 * error is returned, the QP state shall not be affected,
3085 * ib_post_send() will return an immediate error after queueing any
3086 * earlier work requests in the list.
3088 static inline int ib_post_send(struct ib_qp *qp,
3089 struct ib_send_wr *send_wr,
3090 struct ib_send_wr **bad_send_wr)
3092 return qp->device->post_send(qp, send_wr, bad_send_wr);
3096 * ib_post_recv - Posts a list of work requests to the receive queue of
3097 * the specified QP.
3098 * @qp: The QP to post the work request on.
3099 * @recv_wr: A list of work requests to post on the receive queue.
3100 * @bad_recv_wr: On an immediate failure, this parameter will reference
3101 * the work request that failed to be posted on the QP.
3103 static inline int ib_post_recv(struct ib_qp *qp,
3104 struct ib_recv_wr *recv_wr,
3105 struct ib_recv_wr **bad_recv_wr)
3107 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3110 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3111 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3112 void ib_free_cq(struct ib_cq *cq);
3113 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3116 * ib_create_cq - Creates a CQ on the specified device.
3117 * @device: The device on which to create the CQ.
3118 * @comp_handler: A user-specified callback that is invoked when a
3119 * completion event occurs on the CQ.
3120 * @event_handler: A user-specified callback that is invoked when an
3121 * asynchronous event not associated with a completion occurs on the CQ.
3122 * @cq_context: Context associated with the CQ returned to the user via
3123 * the associated completion and event handlers.
3124 * @cq_attr: The attributes the CQ should be created upon.
3126 * Users can examine the cq structure to determine the actual CQ size.
3128 struct ib_cq *ib_create_cq(struct ib_device *device,
3129 ib_comp_handler comp_handler,
3130 void (*event_handler)(struct ib_event *, void *),
3131 void *cq_context,
3132 const struct ib_cq_init_attr *cq_attr);
3135 * ib_resize_cq - Modifies the capacity of the CQ.
3136 * @cq: The CQ to resize.
3137 * @cqe: The minimum size of the CQ.
3139 * Users can examine the cq structure to determine the actual CQ size.
3141 int ib_resize_cq(struct ib_cq *cq, int cqe);
3144 * ib_modify_cq - Modifies moderation params of the CQ
3145 * @cq: The CQ to modify.
3146 * @cq_count: number of CQEs that will trigger an event
3147 * @cq_period: max period of time in usec before triggering an event
3150 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3153 * ib_destroy_cq - Destroys the specified CQ.
3154 * @cq: The CQ to destroy.
3156 int ib_destroy_cq(struct ib_cq *cq);
3159 * ib_poll_cq - poll a CQ for completion(s)
3160 * @cq:the CQ being polled
3161 * @num_entries:maximum number of completions to return
3162 * @wc:array of at least @num_entries &struct ib_wc where completions
3163 * will be returned
3165 * Poll a CQ for (possibly multiple) completions. If the return value
3166 * is < 0, an error occurred. If the return value is >= 0, it is the
3167 * number of completions returned. If the return value is
3168 * non-negative and < num_entries, then the CQ was emptied.
3170 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3171 struct ib_wc *wc)
3173 return cq->device->poll_cq(cq, num_entries, wc);
3177 * ib_peek_cq - Returns the number of unreaped completions currently
3178 * on the specified CQ.
3179 * @cq: The CQ to peek.
3180 * @wc_cnt: A minimum number of unreaped completions to check for.
3182 * If the number of unreaped completions is greater than or equal to wc_cnt,
3183 * this function returns wc_cnt, otherwise, it returns the actual number of
3184 * unreaped completions.
3186 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3189 * ib_req_notify_cq - Request completion notification on a CQ.
3190 * @cq: The CQ to generate an event for.
3191 * @flags:
3192 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3193 * to request an event on the next solicited event or next work
3194 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3195 * may also be |ed in to request a hint about missed events, as
3196 * described below.
3198 * Return Value:
3199 * < 0 means an error occurred while requesting notification
3200 * == 0 means notification was requested successfully, and if
3201 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3202 * were missed and it is safe to wait for another event. In
3203 * this case is it guaranteed that any work completions added
3204 * to the CQ since the last CQ poll will trigger a completion
3205 * notification event.
3206 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3207 * in. It means that the consumer must poll the CQ again to
3208 * make sure it is empty to avoid missing an event because of a
3209 * race between requesting notification and an entry being
3210 * added to the CQ. This return value means it is possible
3211 * (but not guaranteed) that a work completion has been added
3212 * to the CQ since the last poll without triggering a
3213 * completion notification event.
3215 static inline int ib_req_notify_cq(struct ib_cq *cq,
3216 enum ib_cq_notify_flags flags)
3218 return cq->device->req_notify_cq(cq, flags);
3222 * ib_req_ncomp_notif - Request completion notification when there are
3223 * at least the specified number of unreaped completions on the CQ.
3224 * @cq: The CQ to generate an event for.
3225 * @wc_cnt: The number of unreaped completions that should be on the
3226 * CQ before an event is generated.
3228 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3230 return cq->device->req_ncomp_notif ?
3231 cq->device->req_ncomp_notif(cq, wc_cnt) :
3232 -ENOSYS;
3236 * ib_dma_mapping_error - check a DMA addr for error
3237 * @dev: The device for which the dma_addr was created
3238 * @dma_addr: The DMA address to check
3240 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3242 return dma_mapping_error(dev->dma_device, dma_addr);
3246 * ib_dma_map_single - Map a kernel virtual address to DMA address
3247 * @dev: The device for which the dma_addr is to be created
3248 * @cpu_addr: The kernel virtual address
3249 * @size: The size of the region in bytes
3250 * @direction: The direction of the DMA
3252 static inline u64 ib_dma_map_single(struct ib_device *dev,
3253 void *cpu_addr, size_t size,
3254 enum dma_data_direction direction)
3256 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3260 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3261 * @dev: The device for which the DMA address was created
3262 * @addr: The DMA address
3263 * @size: The size of the region in bytes
3264 * @direction: The direction of the DMA
3266 static inline void ib_dma_unmap_single(struct ib_device *dev,
3267 u64 addr, size_t size,
3268 enum dma_data_direction direction)
3270 dma_unmap_single(dev->dma_device, addr, size, direction);
3274 * ib_dma_map_page - Map a physical page to DMA address
3275 * @dev: The device for which the dma_addr is to be created
3276 * @page: The page to be mapped
3277 * @offset: The offset within the page
3278 * @size: The size of the region in bytes
3279 * @direction: The direction of the DMA
3281 static inline u64 ib_dma_map_page(struct ib_device *dev,
3282 struct page *page,
3283 unsigned long offset,
3284 size_t size,
3285 enum dma_data_direction direction)
3287 return dma_map_page(dev->dma_device, page, offset, size, direction);
3291 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3292 * @dev: The device for which the DMA address was created
3293 * @addr: The DMA address
3294 * @size: The size of the region in bytes
3295 * @direction: The direction of the DMA
3297 static inline void ib_dma_unmap_page(struct ib_device *dev,
3298 u64 addr, size_t size,
3299 enum dma_data_direction direction)
3301 dma_unmap_page(dev->dma_device, addr, size, direction);
3305 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3306 * @dev: The device for which the DMA addresses are to be created
3307 * @sg: The array of scatter/gather entries
3308 * @nents: The number of scatter/gather entries
3309 * @direction: The direction of the DMA
3311 static inline int ib_dma_map_sg(struct ib_device *dev,
3312 struct scatterlist *sg, int nents,
3313 enum dma_data_direction direction)
3315 return dma_map_sg(dev->dma_device, sg, nents, direction);
3319 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3320 * @dev: The device for which the DMA addresses were created
3321 * @sg: The array of scatter/gather entries
3322 * @nents: The number of scatter/gather entries
3323 * @direction: The direction of the DMA
3325 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3326 struct scatterlist *sg, int nents,
3327 enum dma_data_direction direction)
3329 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3332 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3333 struct scatterlist *sg, int nents,
3334 enum dma_data_direction direction,
3335 unsigned long dma_attrs)
3337 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3338 dma_attrs);
3341 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3342 struct scatterlist *sg, int nents,
3343 enum dma_data_direction direction,
3344 unsigned long dma_attrs)
3346 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3349 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3350 * @dev: The device for which the DMA addresses were created
3351 * @sg: The scatter/gather entry
3353 * Note: this function is obsolete. To do: change all occurrences of
3354 * ib_sg_dma_address() into sg_dma_address().
3356 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3357 struct scatterlist *sg)
3359 return sg_dma_address(sg);
3363 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3364 * @dev: The device for which the DMA addresses were created
3365 * @sg: The scatter/gather entry
3367 * Note: this function is obsolete. To do: change all occurrences of
3368 * ib_sg_dma_len() into sg_dma_len().
3370 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3371 struct scatterlist *sg)
3373 return sg_dma_len(sg);
3377 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3378 * @dev: The device for which the DMA address was created
3379 * @addr: The DMA address
3380 * @size: The size of the region in bytes
3381 * @dir: The direction of the DMA
3383 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3384 u64 addr,
3385 size_t size,
3386 enum dma_data_direction dir)
3388 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3392 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3393 * @dev: The device for which the DMA address was created
3394 * @addr: The DMA address
3395 * @size: The size of the region in bytes
3396 * @dir: The direction of the DMA
3398 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3399 u64 addr,
3400 size_t size,
3401 enum dma_data_direction dir)
3403 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3407 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3408 * @dev: The device for which the DMA address is requested
3409 * @size: The size of the region to allocate in bytes
3410 * @dma_handle: A pointer for returning the DMA address of the region
3411 * @flag: memory allocator flags
3413 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3414 size_t size,
3415 dma_addr_t *dma_handle,
3416 gfp_t flag)
3418 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3422 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3423 * @dev: The device for which the DMA addresses were allocated
3424 * @size: The size of the region
3425 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3426 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3428 static inline void ib_dma_free_coherent(struct ib_device *dev,
3429 size_t size, void *cpu_addr,
3430 dma_addr_t dma_handle)
3432 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3436 * ib_dereg_mr - Deregisters a memory region and removes it from the
3437 * HCA translation table.
3438 * @mr: The memory region to deregister.
3440 * This function can fail, if the memory region has memory windows bound to it.
3442 int ib_dereg_mr(struct ib_mr *mr);
3444 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3445 enum ib_mr_type mr_type,
3446 u32 max_num_sg);
3449 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3450 * R_Key and L_Key.
3451 * @mr - struct ib_mr pointer to be updated.
3452 * @newkey - new key to be used.
3454 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3456 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3457 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3461 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3462 * for calculating a new rkey for type 2 memory windows.
3463 * @rkey - the rkey to increment.
3465 static inline u32 ib_inc_rkey(u32 rkey)
3467 const u32 mask = 0x000000ff;
3468 return ((rkey + 1) & mask) | (rkey & ~mask);
3472 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3473 * @pd: The protection domain associated with the unmapped region.
3474 * @mr_access_flags: Specifies the memory access rights.
3475 * @fmr_attr: Attributes of the unmapped region.
3477 * A fast memory region must be mapped before it can be used as part of
3478 * a work request.
3480 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3481 int mr_access_flags,
3482 struct ib_fmr_attr *fmr_attr);
3485 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3486 * @fmr: The fast memory region to associate with the pages.
3487 * @page_list: An array of physical pages to map to the fast memory region.
3488 * @list_len: The number of pages in page_list.
3489 * @iova: The I/O virtual address to use with the mapped region.
3491 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3492 u64 *page_list, int list_len,
3493 u64 iova)
3495 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3499 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3500 * @fmr_list: A linked list of fast memory regions to unmap.
3502 int ib_unmap_fmr(struct list_head *fmr_list);
3505 * ib_dealloc_fmr - Deallocates a fast memory region.
3506 * @fmr: The fast memory region to deallocate.
3508 int ib_dealloc_fmr(struct ib_fmr *fmr);
3511 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3512 * @qp: QP to attach to the multicast group. The QP must be type
3513 * IB_QPT_UD.
3514 * @gid: Multicast group GID.
3515 * @lid: Multicast group LID in host byte order.
3517 * In order to send and receive multicast packets, subnet
3518 * administration must have created the multicast group and configured
3519 * the fabric appropriately. The port associated with the specified
3520 * QP must also be a member of the multicast group.
3522 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3525 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3526 * @qp: QP to detach from the multicast group.
3527 * @gid: Multicast group GID.
3528 * @lid: Multicast group LID in host byte order.
3530 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3533 * ib_alloc_xrcd - Allocates an XRC domain.
3534 * @device: The device on which to allocate the XRC domain.
3536 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3539 * ib_dealloc_xrcd - Deallocates an XRC domain.
3540 * @xrcd: The XRC domain to deallocate.
3542 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3544 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3545 struct ib_flow_attr *flow_attr, int domain);
3546 int ib_destroy_flow(struct ib_flow *flow_id);
3548 static inline int ib_check_mr_access(int flags)
3551 * Local write permission is required if remote write or
3552 * remote atomic permission is also requested.
3554 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3555 !(flags & IB_ACCESS_LOCAL_WRITE))
3556 return -EINVAL;
3558 return 0;
3561 static inline bool ib_access_writable(int access_flags)
3564 * We have writable memory backing the MR if any of the following
3565 * access flags are set. "Local write" and "remote write" obviously
3566 * require write access. "Remote atomic" can do things like fetch and
3567 * add, which will modify memory, and "MW bind" can change permissions
3568 * by binding a window.
3570 return access_flags &
3571 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3572 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3576 * ib_check_mr_status: lightweight check of MR status.
3577 * This routine may provide status checks on a selected
3578 * ib_mr. first use is for signature status check.
3580 * @mr: A memory region.
3581 * @check_mask: Bitmask of which checks to perform from
3582 * ib_mr_status_check enumeration.
3583 * @mr_status: The container of relevant status checks.
3584 * failed checks will be indicated in the status bitmask
3585 * and the relevant info shall be in the error item.
3587 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3588 struct ib_mr_status *mr_status);
3590 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3591 u16 pkey, const union ib_gid *gid,
3592 const struct sockaddr *addr);
3593 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3594 struct ib_wq_init_attr *init_attr);
3595 int ib_destroy_wq(struct ib_wq *wq);
3596 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3597 u32 wq_attr_mask);
3598 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3599 struct ib_rwq_ind_table_init_attr*
3600 wq_ind_table_init_attr);
3601 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3603 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3604 unsigned int *sg_offset, unsigned int page_size);
3606 static inline int
3607 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3608 unsigned int *sg_offset, unsigned int page_size)
3610 int n;
3612 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3613 mr->iova = 0;
3615 return n;
3618 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3619 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3621 void ib_drain_rq(struct ib_qp *qp);
3622 void ib_drain_sq(struct ib_qp *qp);
3623 void ib_drain_qp(struct ib_qp *qp);
3625 int ib_resolve_eth_dmac(struct ib_device *device,
3626 struct rdma_ah_attr *ah_attr);
3627 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3629 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3631 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3632 return attr->roce.dmac;
3633 return NULL;
3636 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3638 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3639 attr->ib.dlid = (u16)dlid;
3640 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3641 attr->opa.dlid = dlid;
3644 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3646 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3647 return attr->ib.dlid;
3648 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3649 return attr->opa.dlid;
3650 return 0;
3653 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3655 attr->sl = sl;
3658 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3660 return attr->sl;
3663 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3664 u8 src_path_bits)
3666 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3667 attr->ib.src_path_bits = src_path_bits;
3668 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3669 attr->opa.src_path_bits = src_path_bits;
3672 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3674 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3675 return attr->ib.src_path_bits;
3676 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3677 return attr->opa.src_path_bits;
3678 return 0;
3681 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3682 bool make_grd)
3684 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3685 attr->opa.make_grd = make_grd;
3688 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3690 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3691 return attr->opa.make_grd;
3692 return false;
3695 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3697 attr->port_num = port_num;
3700 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3702 return attr->port_num;
3705 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3706 u8 static_rate)
3708 attr->static_rate = static_rate;
3711 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3713 return attr->static_rate;
3716 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3717 enum ib_ah_flags flag)
3719 attr->ah_flags = flag;
3722 static inline enum ib_ah_flags
3723 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3725 return attr->ah_flags;
3728 static inline const struct ib_global_route
3729 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3731 return &attr->grh;
3734 /*To retrieve and modify the grh */
3735 static inline struct ib_global_route
3736 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3738 return &attr->grh;
3741 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3743 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3745 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3748 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3749 __be64 prefix)
3751 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3753 grh->dgid.global.subnet_prefix = prefix;
3756 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3757 __be64 if_id)
3759 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3761 grh->dgid.global.interface_id = if_id;
3764 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3765 union ib_gid *dgid, u32 flow_label,
3766 u8 sgid_index, u8 hop_limit,
3767 u8 traffic_class)
3769 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3771 attr->ah_flags = IB_AH_GRH;
3772 if (dgid)
3773 grh->dgid = *dgid;
3774 grh->flow_label = flow_label;
3775 grh->sgid_index = sgid_index;
3776 grh->hop_limit = hop_limit;
3777 grh->traffic_class = traffic_class;
3781 * rdma_ah_find_type - Return address handle type.
3783 * @dev: Device to be checked
3784 * @port_num: Port number
3786 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3787 u8 port_num)
3789 if (rdma_protocol_roce(dev, port_num))
3790 return RDMA_AH_ATTR_TYPE_ROCE;
3791 if (rdma_protocol_ib(dev, port_num)) {
3792 if (rdma_cap_opa_ah(dev, port_num))
3793 return RDMA_AH_ATTR_TYPE_OPA;
3794 return RDMA_AH_ATTR_TYPE_IB;
3797 return RDMA_AH_ATTR_TYPE_UNDEFINED;
3801 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3802 * In the current implementation the only way to get
3803 * get the 32bit lid is from other sources for OPA.
3804 * For IB, lids will always be 16bits so cast the
3805 * value accordingly.
3807 * @lid: A 32bit LID
3809 static inline u16 ib_lid_cpu16(u32 lid)
3811 WARN_ON_ONCE(lid & 0xFFFF0000);
3812 return (u16)lid;
3816 * ib_lid_be16 - Return lid in 16bit BE encoding.
3818 * @lid: A 32bit LID
3820 static inline __be16 ib_lid_be16(u32 lid)
3822 WARN_ON_ONCE(lid & 0xFFFF0000);
3823 return cpu_to_be16((u16)lid);
3827 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3828 * vector
3829 * @device: the rdma device
3830 * @comp_vector: index of completion vector
3832 * Returns NULL on failure, otherwise a corresponding cpu map of the
3833 * completion vector (returns all-cpus map if the device driver doesn't
3834 * implement get_vector_affinity).
3836 static inline const struct cpumask *
3837 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3839 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3840 !device->get_vector_affinity)
3841 return NULL;
3843 return device->get_vector_affinity(device, comp_vector);
3847 #endif /* IB_VERBS_H */