x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / mm / compaction.c
blob85395dc6eb137f128961a4429ed69b8e030ca816
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include "internal.h"
27 #ifdef CONFIG_COMPACTION
28 static inline void count_compact_event(enum vm_event_item item)
30 count_vm_event(item);
33 static inline void count_compact_events(enum vm_event_item item, long delta)
35 count_vm_events(item, delta);
37 #else
38 #define count_compact_event(item) do { } while (0)
39 #define count_compact_events(item, delta) do { } while (0)
40 #endif
42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/compaction.h>
47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52 static unsigned long release_freepages(struct list_head *freelist)
54 struct page *page, *next;
55 unsigned long high_pfn = 0;
57 list_for_each_entry_safe(page, next, freelist, lru) {
58 unsigned long pfn = page_to_pfn(page);
59 list_del(&page->lru);
60 __free_page(page);
61 if (pfn > high_pfn)
62 high_pfn = pfn;
65 return high_pfn;
68 static void map_pages(struct list_head *list)
70 unsigned int i, order, nr_pages;
71 struct page *page, *next;
72 LIST_HEAD(tmp_list);
74 list_for_each_entry_safe(page, next, list, lru) {
75 list_del(&page->lru);
77 order = page_private(page);
78 nr_pages = 1 << order;
80 post_alloc_hook(page, order, __GFP_MOVABLE);
81 if (order)
82 split_page(page, order);
84 for (i = 0; i < nr_pages; i++) {
85 list_add(&page->lru, &tmp_list);
86 page++;
90 list_splice(&tmp_list, list);
93 #ifdef CONFIG_COMPACTION
95 int PageMovable(struct page *page)
97 struct address_space *mapping;
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 if (!__PageMovable(page))
101 return 0;
103 mapping = page_mapping(page);
104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105 return 1;
107 return 0;
109 EXPORT_SYMBOL(PageMovable);
111 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 VM_BUG_ON_PAGE(!PageLocked(page), page);
114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 EXPORT_SYMBOL(__SetPageMovable);
119 void __ClearPageMovable(struct page *page)
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
128 page->mapping = (void *)((unsigned long)page->mapping &
129 PAGE_MAPPING_MOVABLE);
131 EXPORT_SYMBOL(__ClearPageMovable);
133 /* Do not skip compaction more than 64 times */
134 #define COMPACT_MAX_DEFER_SHIFT 6
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 void defer_compaction(struct zone *zone, int order)
143 zone->compact_considered = 0;
144 zone->compact_defer_shift++;
146 if (order < zone->compact_order_failed)
147 zone->compact_order_failed = order;
149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 trace_mm_compaction_defer_compaction(zone, order);
155 /* Returns true if compaction should be skipped this time */
156 bool compaction_deferred(struct zone *zone, int order)
158 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 if (order < zone->compact_order_failed)
161 return false;
163 /* Avoid possible overflow */
164 if (++zone->compact_considered > defer_limit)
165 zone->compact_considered = defer_limit;
167 if (zone->compact_considered >= defer_limit)
168 return false;
170 trace_mm_compaction_deferred(zone, order);
172 return true;
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
180 void compaction_defer_reset(struct zone *zone, int order,
181 bool alloc_success)
183 if (alloc_success) {
184 zone->compact_considered = 0;
185 zone->compact_defer_shift = 0;
187 if (order >= zone->compact_order_failed)
188 zone->compact_order_failed = order + 1;
190 trace_mm_compaction_defer_reset(zone, order);
193 /* Returns true if restarting compaction after many failures */
194 bool compaction_restarting(struct zone *zone, int order)
196 if (order < zone->compact_order_failed)
197 return false;
199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200 zone->compact_considered >= 1UL << zone->compact_defer_shift;
203 /* Returns true if the pageblock should be scanned for pages to isolate. */
204 static inline bool isolation_suitable(struct compact_control *cc,
205 struct page *page)
207 if (cc->ignore_skip_hint)
208 return true;
210 return !get_pageblock_skip(page);
213 static void reset_cached_positions(struct zone *zone)
215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
217 zone->compact_cached_free_pfn =
218 pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 * This function is called to clear all cached information on pageblocks that
223 * should be skipped for page isolation when the migrate and free page scanner
224 * meet.
226 static void __reset_isolation_suitable(struct zone *zone)
228 unsigned long start_pfn = zone->zone_start_pfn;
229 unsigned long end_pfn = zone_end_pfn(zone);
230 unsigned long pfn;
232 zone->compact_blockskip_flush = false;
234 /* Walk the zone and mark every pageblock as suitable for isolation */
235 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
236 struct page *page;
238 cond_resched();
240 page = pfn_to_online_page(pfn);
241 if (!page)
242 continue;
243 if (zone != page_zone(page))
244 continue;
246 clear_pageblock_skip(page);
249 reset_cached_positions(zone);
252 void reset_isolation_suitable(pg_data_t *pgdat)
254 int zoneid;
256 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
257 struct zone *zone = &pgdat->node_zones[zoneid];
258 if (!populated_zone(zone))
259 continue;
261 /* Only flush if a full compaction finished recently */
262 if (zone->compact_blockskip_flush)
263 __reset_isolation_suitable(zone);
268 * If no pages were isolated then mark this pageblock to be skipped in the
269 * future. The information is later cleared by __reset_isolation_suitable().
271 static void update_pageblock_skip(struct compact_control *cc,
272 struct page *page, unsigned long nr_isolated,
273 bool migrate_scanner)
275 struct zone *zone = cc->zone;
276 unsigned long pfn;
278 if (cc->ignore_skip_hint)
279 return;
281 if (!page)
282 return;
284 if (nr_isolated)
285 return;
287 set_pageblock_skip(page);
289 pfn = page_to_pfn(page);
291 /* Update where async and sync compaction should restart */
292 if (migrate_scanner) {
293 if (pfn > zone->compact_cached_migrate_pfn[0])
294 zone->compact_cached_migrate_pfn[0] = pfn;
295 if (cc->mode != MIGRATE_ASYNC &&
296 pfn > zone->compact_cached_migrate_pfn[1])
297 zone->compact_cached_migrate_pfn[1] = pfn;
298 } else {
299 if (pfn < zone->compact_cached_free_pfn)
300 zone->compact_cached_free_pfn = pfn;
303 #else
304 static inline bool isolation_suitable(struct compact_control *cc,
305 struct page *page)
307 return true;
310 static void update_pageblock_skip(struct compact_control *cc,
311 struct page *page, unsigned long nr_isolated,
312 bool migrate_scanner)
315 #endif /* CONFIG_COMPACTION */
318 * Compaction requires the taking of some coarse locks that are potentially
319 * very heavily contended. For async compaction, back out if the lock cannot
320 * be taken immediately. For sync compaction, spin on the lock if needed.
322 * Returns true if the lock is held
323 * Returns false if the lock is not held and compaction should abort
325 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
326 struct compact_control *cc)
328 if (cc->mode == MIGRATE_ASYNC) {
329 if (!spin_trylock_irqsave(lock, *flags)) {
330 cc->contended = true;
331 return false;
333 } else {
334 spin_lock_irqsave(lock, *flags);
337 return true;
341 * Compaction requires the taking of some coarse locks that are potentially
342 * very heavily contended. The lock should be periodically unlocked to avoid
343 * having disabled IRQs for a long time, even when there is nobody waiting on
344 * the lock. It might also be that allowing the IRQs will result in
345 * need_resched() becoming true. If scheduling is needed, async compaction
346 * aborts. Sync compaction schedules.
347 * Either compaction type will also abort if a fatal signal is pending.
348 * In either case if the lock was locked, it is dropped and not regained.
350 * Returns true if compaction should abort due to fatal signal pending, or
351 * async compaction due to need_resched()
352 * Returns false when compaction can continue (sync compaction might have
353 * scheduled)
355 static bool compact_unlock_should_abort(spinlock_t *lock,
356 unsigned long flags, bool *locked, struct compact_control *cc)
358 if (*locked) {
359 spin_unlock_irqrestore(lock, flags);
360 *locked = false;
363 if (fatal_signal_pending(current)) {
364 cc->contended = true;
365 return true;
368 if (need_resched()) {
369 if (cc->mode == MIGRATE_ASYNC) {
370 cc->contended = true;
371 return true;
373 cond_resched();
376 return false;
380 * Aside from avoiding lock contention, compaction also periodically checks
381 * need_resched() and either schedules in sync compaction or aborts async
382 * compaction. This is similar to what compact_unlock_should_abort() does, but
383 * is used where no lock is concerned.
385 * Returns false when no scheduling was needed, or sync compaction scheduled.
386 * Returns true when async compaction should abort.
388 static inline bool compact_should_abort(struct compact_control *cc)
390 /* async compaction aborts if contended */
391 if (need_resched()) {
392 if (cc->mode == MIGRATE_ASYNC) {
393 cc->contended = true;
394 return true;
397 cond_resched();
400 return false;
404 * Isolate free pages onto a private freelist. If @strict is true, will abort
405 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
406 * (even though it may still end up isolating some pages).
408 static unsigned long isolate_freepages_block(struct compact_control *cc,
409 unsigned long *start_pfn,
410 unsigned long end_pfn,
411 struct list_head *freelist,
412 bool strict)
414 int nr_scanned = 0, total_isolated = 0;
415 struct page *cursor, *valid_page = NULL;
416 unsigned long flags = 0;
417 bool locked = false;
418 unsigned long blockpfn = *start_pfn;
419 unsigned int order;
421 cursor = pfn_to_page(blockpfn);
423 /* Isolate free pages. */
424 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
425 int isolated;
426 struct page *page = cursor;
429 * Periodically drop the lock (if held) regardless of its
430 * contention, to give chance to IRQs. Abort if fatal signal
431 * pending or async compaction detects need_resched()
433 if (!(blockpfn % SWAP_CLUSTER_MAX)
434 && compact_unlock_should_abort(&cc->zone->lock, flags,
435 &locked, cc))
436 break;
438 nr_scanned++;
439 if (!pfn_valid_within(blockpfn))
440 goto isolate_fail;
442 if (!valid_page)
443 valid_page = page;
446 * For compound pages such as THP and hugetlbfs, we can save
447 * potentially a lot of iterations if we skip them at once.
448 * The check is racy, but we can consider only valid values
449 * and the only danger is skipping too much.
451 if (PageCompound(page)) {
452 unsigned int comp_order = compound_order(page);
454 if (likely(comp_order < MAX_ORDER)) {
455 blockpfn += (1UL << comp_order) - 1;
456 cursor += (1UL << comp_order) - 1;
459 goto isolate_fail;
462 if (!PageBuddy(page))
463 goto isolate_fail;
466 * If we already hold the lock, we can skip some rechecking.
467 * Note that if we hold the lock now, checked_pageblock was
468 * already set in some previous iteration (or strict is true),
469 * so it is correct to skip the suitable migration target
470 * recheck as well.
472 if (!locked) {
474 * The zone lock must be held to isolate freepages.
475 * Unfortunately this is a very coarse lock and can be
476 * heavily contended if there are parallel allocations
477 * or parallel compactions. For async compaction do not
478 * spin on the lock and we acquire the lock as late as
479 * possible.
481 locked = compact_trylock_irqsave(&cc->zone->lock,
482 &flags, cc);
483 if (!locked)
484 break;
486 /* Recheck this is a buddy page under lock */
487 if (!PageBuddy(page))
488 goto isolate_fail;
491 /* Found a free page, will break it into order-0 pages */
492 order = page_order(page);
493 isolated = __isolate_free_page(page, order);
494 if (!isolated)
495 break;
496 set_page_private(page, order);
498 total_isolated += isolated;
499 cc->nr_freepages += isolated;
500 list_add_tail(&page->lru, freelist);
502 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
503 blockpfn += isolated;
504 break;
506 /* Advance to the end of split page */
507 blockpfn += isolated - 1;
508 cursor += isolated - 1;
509 continue;
511 isolate_fail:
512 if (strict)
513 break;
514 else
515 continue;
519 if (locked)
520 spin_unlock_irqrestore(&cc->zone->lock, flags);
523 * There is a tiny chance that we have read bogus compound_order(),
524 * so be careful to not go outside of the pageblock.
526 if (unlikely(blockpfn > end_pfn))
527 blockpfn = end_pfn;
529 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
530 nr_scanned, total_isolated);
532 /* Record how far we have got within the block */
533 *start_pfn = blockpfn;
536 * If strict isolation is requested by CMA then check that all the
537 * pages requested were isolated. If there were any failures, 0 is
538 * returned and CMA will fail.
540 if (strict && blockpfn < end_pfn)
541 total_isolated = 0;
543 /* Update the pageblock-skip if the whole pageblock was scanned */
544 if (blockpfn == end_pfn)
545 update_pageblock_skip(cc, valid_page, total_isolated, false);
547 cc->total_free_scanned += nr_scanned;
548 if (total_isolated)
549 count_compact_events(COMPACTISOLATED, total_isolated);
550 return total_isolated;
554 * isolate_freepages_range() - isolate free pages.
555 * @start_pfn: The first PFN to start isolating.
556 * @end_pfn: The one-past-last PFN.
558 * Non-free pages, invalid PFNs, or zone boundaries within the
559 * [start_pfn, end_pfn) range are considered errors, cause function to
560 * undo its actions and return zero.
562 * Otherwise, function returns one-past-the-last PFN of isolated page
563 * (which may be greater then end_pfn if end fell in a middle of
564 * a free page).
566 unsigned long
567 isolate_freepages_range(struct compact_control *cc,
568 unsigned long start_pfn, unsigned long end_pfn)
570 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
571 LIST_HEAD(freelist);
573 pfn = start_pfn;
574 block_start_pfn = pageblock_start_pfn(pfn);
575 if (block_start_pfn < cc->zone->zone_start_pfn)
576 block_start_pfn = cc->zone->zone_start_pfn;
577 block_end_pfn = pageblock_end_pfn(pfn);
579 for (; pfn < end_pfn; pfn += isolated,
580 block_start_pfn = block_end_pfn,
581 block_end_pfn += pageblock_nr_pages) {
582 /* Protect pfn from changing by isolate_freepages_block */
583 unsigned long isolate_start_pfn = pfn;
585 block_end_pfn = min(block_end_pfn, end_pfn);
588 * pfn could pass the block_end_pfn if isolated freepage
589 * is more than pageblock order. In this case, we adjust
590 * scanning range to right one.
592 if (pfn >= block_end_pfn) {
593 block_start_pfn = pageblock_start_pfn(pfn);
594 block_end_pfn = pageblock_end_pfn(pfn);
595 block_end_pfn = min(block_end_pfn, end_pfn);
598 if (!pageblock_pfn_to_page(block_start_pfn,
599 block_end_pfn, cc->zone))
600 break;
602 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
603 block_end_pfn, &freelist, true);
606 * In strict mode, isolate_freepages_block() returns 0 if
607 * there are any holes in the block (ie. invalid PFNs or
608 * non-free pages).
610 if (!isolated)
611 break;
614 * If we managed to isolate pages, it is always (1 << n) *
615 * pageblock_nr_pages for some non-negative n. (Max order
616 * page may span two pageblocks).
620 /* __isolate_free_page() does not map the pages */
621 map_pages(&freelist);
623 if (pfn < end_pfn) {
624 /* Loop terminated early, cleanup. */
625 release_freepages(&freelist);
626 return 0;
629 /* We don't use freelists for anything. */
630 return pfn;
633 /* Similar to reclaim, but different enough that they don't share logic */
634 static bool too_many_isolated(struct zone *zone)
636 unsigned long active, inactive, isolated;
638 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
639 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
640 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
641 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
642 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
643 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
645 return isolated > (inactive + active) / 2;
649 * isolate_migratepages_block() - isolate all migrate-able pages within
650 * a single pageblock
651 * @cc: Compaction control structure.
652 * @low_pfn: The first PFN to isolate
653 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
654 * @isolate_mode: Isolation mode to be used.
656 * Isolate all pages that can be migrated from the range specified by
657 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658 * Returns zero if there is a fatal signal pending, otherwise PFN of the
659 * first page that was not scanned (which may be both less, equal to or more
660 * than end_pfn).
662 * The pages are isolated on cc->migratepages list (not required to be empty),
663 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664 * is neither read nor updated.
666 static unsigned long
667 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
668 unsigned long end_pfn, isolate_mode_t isolate_mode)
670 struct zone *zone = cc->zone;
671 unsigned long nr_scanned = 0, nr_isolated = 0;
672 struct lruvec *lruvec;
673 unsigned long flags = 0;
674 bool locked = false;
675 struct page *page = NULL, *valid_page = NULL;
676 unsigned long start_pfn = low_pfn;
677 bool skip_on_failure = false;
678 unsigned long next_skip_pfn = 0;
681 * Ensure that there are not too many pages isolated from the LRU
682 * list by either parallel reclaimers or compaction. If there are,
683 * delay for some time until fewer pages are isolated
685 while (unlikely(too_many_isolated(zone))) {
686 /* async migration should just abort */
687 if (cc->mode == MIGRATE_ASYNC)
688 return 0;
690 congestion_wait(BLK_RW_ASYNC, HZ/10);
692 if (fatal_signal_pending(current))
693 return 0;
696 if (compact_should_abort(cc))
697 return 0;
699 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
700 skip_on_failure = true;
701 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
704 /* Time to isolate some pages for migration */
705 for (; low_pfn < end_pfn; low_pfn++) {
707 if (skip_on_failure && low_pfn >= next_skip_pfn) {
709 * We have isolated all migration candidates in the
710 * previous order-aligned block, and did not skip it due
711 * to failure. We should migrate the pages now and
712 * hopefully succeed compaction.
714 if (nr_isolated)
715 break;
718 * We failed to isolate in the previous order-aligned
719 * block. Set the new boundary to the end of the
720 * current block. Note we can't simply increase
721 * next_skip_pfn by 1 << order, as low_pfn might have
722 * been incremented by a higher number due to skipping
723 * a compound or a high-order buddy page in the
724 * previous loop iteration.
726 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
730 * Periodically drop the lock (if held) regardless of its
731 * contention, to give chance to IRQs. Abort async compaction
732 * if contended.
734 if (!(low_pfn % SWAP_CLUSTER_MAX)
735 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
736 &locked, cc))
737 break;
739 if (!pfn_valid_within(low_pfn))
740 goto isolate_fail;
741 nr_scanned++;
743 page = pfn_to_page(low_pfn);
745 if (!valid_page)
746 valid_page = page;
749 * Skip if free. We read page order here without zone lock
750 * which is generally unsafe, but the race window is small and
751 * the worst thing that can happen is that we skip some
752 * potential isolation targets.
754 if (PageBuddy(page)) {
755 unsigned long freepage_order = page_order_unsafe(page);
758 * Without lock, we cannot be sure that what we got is
759 * a valid page order. Consider only values in the
760 * valid order range to prevent low_pfn overflow.
762 if (freepage_order > 0 && freepage_order < MAX_ORDER)
763 low_pfn += (1UL << freepage_order) - 1;
764 continue;
768 * Regardless of being on LRU, compound pages such as THP and
769 * hugetlbfs are not to be compacted. We can potentially save
770 * a lot of iterations if we skip them at once. The check is
771 * racy, but we can consider only valid values and the only
772 * danger is skipping too much.
774 if (PageCompound(page)) {
775 unsigned int comp_order = compound_order(page);
777 if (likely(comp_order < MAX_ORDER))
778 low_pfn += (1UL << comp_order) - 1;
780 goto isolate_fail;
784 * Check may be lockless but that's ok as we recheck later.
785 * It's possible to migrate LRU and non-lru movable pages.
786 * Skip any other type of page
788 if (!PageLRU(page)) {
790 * __PageMovable can return false positive so we need
791 * to verify it under page_lock.
793 if (unlikely(__PageMovable(page)) &&
794 !PageIsolated(page)) {
795 if (locked) {
796 spin_unlock_irqrestore(zone_lru_lock(zone),
797 flags);
798 locked = false;
801 if (!isolate_movable_page(page, isolate_mode))
802 goto isolate_success;
805 goto isolate_fail;
809 * Migration will fail if an anonymous page is pinned in memory,
810 * so avoid taking lru_lock and isolating it unnecessarily in an
811 * admittedly racy check.
813 if (!page_mapping(page) &&
814 page_count(page) > page_mapcount(page))
815 goto isolate_fail;
818 * Only allow to migrate anonymous pages in GFP_NOFS context
819 * because those do not depend on fs locks.
821 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
822 goto isolate_fail;
824 /* If we already hold the lock, we can skip some rechecking */
825 if (!locked) {
826 locked = compact_trylock_irqsave(zone_lru_lock(zone),
827 &flags, cc);
828 if (!locked)
829 break;
831 /* Recheck PageLRU and PageCompound under lock */
832 if (!PageLRU(page))
833 goto isolate_fail;
836 * Page become compound since the non-locked check,
837 * and it's on LRU. It can only be a THP so the order
838 * is safe to read and it's 0 for tail pages.
840 if (unlikely(PageCompound(page))) {
841 low_pfn += (1UL << compound_order(page)) - 1;
842 goto isolate_fail;
846 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
848 /* Try isolate the page */
849 if (__isolate_lru_page(page, isolate_mode) != 0)
850 goto isolate_fail;
852 VM_BUG_ON_PAGE(PageCompound(page), page);
854 /* Successfully isolated */
855 del_page_from_lru_list(page, lruvec, page_lru(page));
856 inc_node_page_state(page,
857 NR_ISOLATED_ANON + page_is_file_cache(page));
859 isolate_success:
860 list_add(&page->lru, &cc->migratepages);
861 cc->nr_migratepages++;
862 nr_isolated++;
865 * Record where we could have freed pages by migration and not
866 * yet flushed them to buddy allocator.
867 * - this is the lowest page that was isolated and likely be
868 * then freed by migration.
870 if (!cc->last_migrated_pfn)
871 cc->last_migrated_pfn = low_pfn;
873 /* Avoid isolating too much */
874 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
875 ++low_pfn;
876 break;
879 continue;
880 isolate_fail:
881 if (!skip_on_failure)
882 continue;
885 * We have isolated some pages, but then failed. Release them
886 * instead of migrating, as we cannot form the cc->order buddy
887 * page anyway.
889 if (nr_isolated) {
890 if (locked) {
891 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
892 locked = false;
894 putback_movable_pages(&cc->migratepages);
895 cc->nr_migratepages = 0;
896 cc->last_migrated_pfn = 0;
897 nr_isolated = 0;
900 if (low_pfn < next_skip_pfn) {
901 low_pfn = next_skip_pfn - 1;
903 * The check near the loop beginning would have updated
904 * next_skip_pfn too, but this is a bit simpler.
906 next_skip_pfn += 1UL << cc->order;
911 * The PageBuddy() check could have potentially brought us outside
912 * the range to be scanned.
914 if (unlikely(low_pfn > end_pfn))
915 low_pfn = end_pfn;
917 if (locked)
918 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
921 * Update the pageblock-skip information and cached scanner pfn,
922 * if the whole pageblock was scanned without isolating any page.
924 if (low_pfn == end_pfn)
925 update_pageblock_skip(cc, valid_page, nr_isolated, true);
927 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
928 nr_scanned, nr_isolated);
930 cc->total_migrate_scanned += nr_scanned;
931 if (nr_isolated)
932 count_compact_events(COMPACTISOLATED, nr_isolated);
934 return low_pfn;
938 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
939 * @cc: Compaction control structure.
940 * @start_pfn: The first PFN to start isolating.
941 * @end_pfn: The one-past-last PFN.
943 * Returns zero if isolation fails fatally due to e.g. pending signal.
944 * Otherwise, function returns one-past-the-last PFN of isolated page
945 * (which may be greater than end_pfn if end fell in a middle of a THP page).
947 unsigned long
948 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
949 unsigned long end_pfn)
951 unsigned long pfn, block_start_pfn, block_end_pfn;
953 /* Scan block by block. First and last block may be incomplete */
954 pfn = start_pfn;
955 block_start_pfn = pageblock_start_pfn(pfn);
956 if (block_start_pfn < cc->zone->zone_start_pfn)
957 block_start_pfn = cc->zone->zone_start_pfn;
958 block_end_pfn = pageblock_end_pfn(pfn);
960 for (; pfn < end_pfn; pfn = block_end_pfn,
961 block_start_pfn = block_end_pfn,
962 block_end_pfn += pageblock_nr_pages) {
964 block_end_pfn = min(block_end_pfn, end_pfn);
966 if (!pageblock_pfn_to_page(block_start_pfn,
967 block_end_pfn, cc->zone))
968 continue;
970 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
971 ISOLATE_UNEVICTABLE);
973 if (!pfn)
974 break;
976 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
977 break;
980 return pfn;
983 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
984 #ifdef CONFIG_COMPACTION
986 static bool suitable_migration_source(struct compact_control *cc,
987 struct page *page)
989 int block_mt;
991 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
992 return true;
994 block_mt = get_pageblock_migratetype(page);
996 if (cc->migratetype == MIGRATE_MOVABLE)
997 return is_migrate_movable(block_mt);
998 else
999 return block_mt == cc->migratetype;
1002 /* Returns true if the page is within a block suitable for migration to */
1003 static bool suitable_migration_target(struct compact_control *cc,
1004 struct page *page)
1006 /* If the page is a large free page, then disallow migration */
1007 if (PageBuddy(page)) {
1009 * We are checking page_order without zone->lock taken. But
1010 * the only small danger is that we skip a potentially suitable
1011 * pageblock, so it's not worth to check order for valid range.
1013 if (page_order_unsafe(page) >= pageblock_order)
1014 return false;
1017 if (cc->ignore_block_suitable)
1018 return true;
1020 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1021 if (is_migrate_movable(get_pageblock_migratetype(page)))
1022 return true;
1024 /* Otherwise skip the block */
1025 return false;
1029 * Test whether the free scanner has reached the same or lower pageblock than
1030 * the migration scanner, and compaction should thus terminate.
1032 static inline bool compact_scanners_met(struct compact_control *cc)
1034 return (cc->free_pfn >> pageblock_order)
1035 <= (cc->migrate_pfn >> pageblock_order);
1039 * Based on information in the current compact_control, find blocks
1040 * suitable for isolating free pages from and then isolate them.
1042 static void isolate_freepages(struct compact_control *cc)
1044 struct zone *zone = cc->zone;
1045 struct page *page;
1046 unsigned long block_start_pfn; /* start of current pageblock */
1047 unsigned long isolate_start_pfn; /* exact pfn we start at */
1048 unsigned long block_end_pfn; /* end of current pageblock */
1049 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1050 struct list_head *freelist = &cc->freepages;
1053 * Initialise the free scanner. The starting point is where we last
1054 * successfully isolated from, zone-cached value, or the end of the
1055 * zone when isolating for the first time. For looping we also need
1056 * this pfn aligned down to the pageblock boundary, because we do
1057 * block_start_pfn -= pageblock_nr_pages in the for loop.
1058 * For ending point, take care when isolating in last pageblock of a
1059 * a zone which ends in the middle of a pageblock.
1060 * The low boundary is the end of the pageblock the migration scanner
1061 * is using.
1063 isolate_start_pfn = cc->free_pfn;
1064 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1065 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1066 zone_end_pfn(zone));
1067 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1070 * Isolate free pages until enough are available to migrate the
1071 * pages on cc->migratepages. We stop searching if the migrate
1072 * and free page scanners meet or enough free pages are isolated.
1074 for (; block_start_pfn >= low_pfn;
1075 block_end_pfn = block_start_pfn,
1076 block_start_pfn -= pageblock_nr_pages,
1077 isolate_start_pfn = block_start_pfn) {
1079 * This can iterate a massively long zone without finding any
1080 * suitable migration targets, so periodically check if we need
1081 * to schedule, or even abort async compaction.
1083 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 && compact_should_abort(cc))
1085 break;
1087 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1088 zone);
1089 if (!page)
1090 continue;
1092 /* Check the block is suitable for migration */
1093 if (!suitable_migration_target(cc, page))
1094 continue;
1096 /* If isolation recently failed, do not retry */
1097 if (!isolation_suitable(cc, page))
1098 continue;
1100 /* Found a block suitable for isolating free pages from. */
1101 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1102 freelist, false);
1105 * If we isolated enough freepages, or aborted due to lock
1106 * contention, terminate.
1108 if ((cc->nr_freepages >= cc->nr_migratepages)
1109 || cc->contended) {
1110 if (isolate_start_pfn >= block_end_pfn) {
1112 * Restart at previous pageblock if more
1113 * freepages can be isolated next time.
1115 isolate_start_pfn =
1116 block_start_pfn - pageblock_nr_pages;
1118 break;
1119 } else if (isolate_start_pfn < block_end_pfn) {
1121 * If isolation failed early, do not continue
1122 * needlessly.
1124 break;
1128 /* __isolate_free_page() does not map the pages */
1129 map_pages(freelist);
1132 * Record where the free scanner will restart next time. Either we
1133 * broke from the loop and set isolate_start_pfn based on the last
1134 * call to isolate_freepages_block(), or we met the migration scanner
1135 * and the loop terminated due to isolate_start_pfn < low_pfn
1137 cc->free_pfn = isolate_start_pfn;
1141 * This is a migrate-callback that "allocates" freepages by taking pages
1142 * from the isolated freelists in the block we are migrating to.
1144 static struct page *compaction_alloc(struct page *migratepage,
1145 unsigned long data,
1146 int **result)
1148 struct compact_control *cc = (struct compact_control *)data;
1149 struct page *freepage;
1152 * Isolate free pages if necessary, and if we are not aborting due to
1153 * contention.
1155 if (list_empty(&cc->freepages)) {
1156 if (!cc->contended)
1157 isolate_freepages(cc);
1159 if (list_empty(&cc->freepages))
1160 return NULL;
1163 freepage = list_entry(cc->freepages.next, struct page, lru);
1164 list_del(&freepage->lru);
1165 cc->nr_freepages--;
1167 return freepage;
1171 * This is a migrate-callback that "frees" freepages back to the isolated
1172 * freelist. All pages on the freelist are from the same zone, so there is no
1173 * special handling needed for NUMA.
1175 static void compaction_free(struct page *page, unsigned long data)
1177 struct compact_control *cc = (struct compact_control *)data;
1179 list_add(&page->lru, &cc->freepages);
1180 cc->nr_freepages++;
1183 /* possible outcome of isolate_migratepages */
1184 typedef enum {
1185 ISOLATE_ABORT, /* Abort compaction now */
1186 ISOLATE_NONE, /* No pages isolated, continue scanning */
1187 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1188 } isolate_migrate_t;
1191 * Allow userspace to control policy on scanning the unevictable LRU for
1192 * compactable pages.
1194 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1197 * Isolate all pages that can be migrated from the first suitable block,
1198 * starting at the block pointed to by the migrate scanner pfn within
1199 * compact_control.
1201 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1202 struct compact_control *cc)
1204 unsigned long block_start_pfn;
1205 unsigned long block_end_pfn;
1206 unsigned long low_pfn;
1207 struct page *page;
1208 const isolate_mode_t isolate_mode =
1209 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1210 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1213 * Start at where we last stopped, or beginning of the zone as
1214 * initialized by compact_zone()
1216 low_pfn = cc->migrate_pfn;
1217 block_start_pfn = pageblock_start_pfn(low_pfn);
1218 if (block_start_pfn < zone->zone_start_pfn)
1219 block_start_pfn = zone->zone_start_pfn;
1221 /* Only scan within a pageblock boundary */
1222 block_end_pfn = pageblock_end_pfn(low_pfn);
1225 * Iterate over whole pageblocks until we find the first suitable.
1226 * Do not cross the free scanner.
1228 for (; block_end_pfn <= cc->free_pfn;
1229 low_pfn = block_end_pfn,
1230 block_start_pfn = block_end_pfn,
1231 block_end_pfn += pageblock_nr_pages) {
1234 * This can potentially iterate a massively long zone with
1235 * many pageblocks unsuitable, so periodically check if we
1236 * need to schedule, or even abort async compaction.
1238 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1239 && compact_should_abort(cc))
1240 break;
1242 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1243 zone);
1244 if (!page)
1245 continue;
1247 /* If isolation recently failed, do not retry */
1248 if (!isolation_suitable(cc, page))
1249 continue;
1252 * For async compaction, also only scan in MOVABLE blocks.
1253 * Async compaction is optimistic to see if the minimum amount
1254 * of work satisfies the allocation.
1256 if (!suitable_migration_source(cc, page))
1257 continue;
1259 /* Perform the isolation */
1260 low_pfn = isolate_migratepages_block(cc, low_pfn,
1261 block_end_pfn, isolate_mode);
1263 if (!low_pfn || cc->contended)
1264 return ISOLATE_ABORT;
1267 * Either we isolated something and proceed with migration. Or
1268 * we failed and compact_zone should decide if we should
1269 * continue or not.
1271 break;
1274 /* Record where migration scanner will be restarted. */
1275 cc->migrate_pfn = low_pfn;
1277 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1281 * order == -1 is expected when compacting via
1282 * /proc/sys/vm/compact_memory
1284 static inline bool is_via_compact_memory(int order)
1286 return order == -1;
1289 static enum compact_result __compact_finished(struct zone *zone,
1290 struct compact_control *cc)
1292 unsigned int order;
1293 const int migratetype = cc->migratetype;
1295 if (cc->contended || fatal_signal_pending(current))
1296 return COMPACT_CONTENDED;
1298 /* Compaction run completes if the migrate and free scanner meet */
1299 if (compact_scanners_met(cc)) {
1300 /* Let the next compaction start anew. */
1301 reset_cached_positions(zone);
1304 * Mark that the PG_migrate_skip information should be cleared
1305 * by kswapd when it goes to sleep. kcompactd does not set the
1306 * flag itself as the decision to be clear should be directly
1307 * based on an allocation request.
1309 if (cc->direct_compaction)
1310 zone->compact_blockskip_flush = true;
1312 if (cc->whole_zone)
1313 return COMPACT_COMPLETE;
1314 else
1315 return COMPACT_PARTIAL_SKIPPED;
1318 if (is_via_compact_memory(cc->order))
1319 return COMPACT_CONTINUE;
1321 if (cc->finishing_block) {
1323 * We have finished the pageblock, but better check again that
1324 * we really succeeded.
1326 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1327 cc->finishing_block = false;
1328 else
1329 return COMPACT_CONTINUE;
1332 /* Direct compactor: Is a suitable page free? */
1333 for (order = cc->order; order < MAX_ORDER; order++) {
1334 struct free_area *area = &zone->free_area[order];
1335 bool can_steal;
1337 /* Job done if page is free of the right migratetype */
1338 if (!list_empty(&area->free_list[migratetype]))
1339 return COMPACT_SUCCESS;
1341 #ifdef CONFIG_CMA
1342 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1343 if (migratetype == MIGRATE_MOVABLE &&
1344 !list_empty(&area->free_list[MIGRATE_CMA]))
1345 return COMPACT_SUCCESS;
1346 #endif
1348 * Job done if allocation would steal freepages from
1349 * other migratetype buddy lists.
1351 if (find_suitable_fallback(area, order, migratetype,
1352 true, &can_steal) != -1) {
1354 /* movable pages are OK in any pageblock */
1355 if (migratetype == MIGRATE_MOVABLE)
1356 return COMPACT_SUCCESS;
1359 * We are stealing for a non-movable allocation. Make
1360 * sure we finish compacting the current pageblock
1361 * first so it is as free as possible and we won't
1362 * have to steal another one soon. This only applies
1363 * to sync compaction, as async compaction operates
1364 * on pageblocks of the same migratetype.
1366 if (cc->mode == MIGRATE_ASYNC ||
1367 IS_ALIGNED(cc->migrate_pfn,
1368 pageblock_nr_pages)) {
1369 return COMPACT_SUCCESS;
1372 cc->finishing_block = true;
1373 return COMPACT_CONTINUE;
1377 return COMPACT_NO_SUITABLE_PAGE;
1380 static enum compact_result compact_finished(struct zone *zone,
1381 struct compact_control *cc)
1383 int ret;
1385 ret = __compact_finished(zone, cc);
1386 trace_mm_compaction_finished(zone, cc->order, ret);
1387 if (ret == COMPACT_NO_SUITABLE_PAGE)
1388 ret = COMPACT_CONTINUE;
1390 return ret;
1394 * compaction_suitable: Is this suitable to run compaction on this zone now?
1395 * Returns
1396 * COMPACT_SKIPPED - If there are too few free pages for compaction
1397 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1398 * COMPACT_CONTINUE - If compaction should run now
1400 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1401 unsigned int alloc_flags,
1402 int classzone_idx,
1403 unsigned long wmark_target)
1405 unsigned long watermark;
1407 if (is_via_compact_memory(order))
1408 return COMPACT_CONTINUE;
1410 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1412 * If watermarks for high-order allocation are already met, there
1413 * should be no need for compaction at all.
1415 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1416 alloc_flags))
1417 return COMPACT_SUCCESS;
1420 * Watermarks for order-0 must be met for compaction to be able to
1421 * isolate free pages for migration targets. This means that the
1422 * watermark and alloc_flags have to match, or be more pessimistic than
1423 * the check in __isolate_free_page(). We don't use the direct
1424 * compactor's alloc_flags, as they are not relevant for freepage
1425 * isolation. We however do use the direct compactor's classzone_idx to
1426 * skip over zones where lowmem reserves would prevent allocation even
1427 * if compaction succeeds.
1428 * For costly orders, we require low watermark instead of min for
1429 * compaction to proceed to increase its chances.
1430 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1431 * suitable migration targets
1433 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1434 low_wmark_pages(zone) : min_wmark_pages(zone);
1435 watermark += compact_gap(order);
1436 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1437 ALLOC_CMA, wmark_target))
1438 return COMPACT_SKIPPED;
1440 return COMPACT_CONTINUE;
1443 enum compact_result compaction_suitable(struct zone *zone, int order,
1444 unsigned int alloc_flags,
1445 int classzone_idx)
1447 enum compact_result ret;
1448 int fragindex;
1450 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1451 zone_page_state(zone, NR_FREE_PAGES));
1453 * fragmentation index determines if allocation failures are due to
1454 * low memory or external fragmentation
1456 * index of -1000 would imply allocations might succeed depending on
1457 * watermarks, but we already failed the high-order watermark check
1458 * index towards 0 implies failure is due to lack of memory
1459 * index towards 1000 implies failure is due to fragmentation
1461 * Only compact if a failure would be due to fragmentation. Also
1462 * ignore fragindex for non-costly orders where the alternative to
1463 * a successful reclaim/compaction is OOM. Fragindex and the
1464 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1465 * excessive compaction for costly orders, but it should not be at the
1466 * expense of system stability.
1468 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1469 fragindex = fragmentation_index(zone, order);
1470 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1471 ret = COMPACT_NOT_SUITABLE_ZONE;
1474 trace_mm_compaction_suitable(zone, order, ret);
1475 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1476 ret = COMPACT_SKIPPED;
1478 return ret;
1481 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1482 int alloc_flags)
1484 struct zone *zone;
1485 struct zoneref *z;
1488 * Make sure at least one zone would pass __compaction_suitable if we continue
1489 * retrying the reclaim.
1491 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1492 ac->nodemask) {
1493 unsigned long available;
1494 enum compact_result compact_result;
1497 * Do not consider all the reclaimable memory because we do not
1498 * want to trash just for a single high order allocation which
1499 * is even not guaranteed to appear even if __compaction_suitable
1500 * is happy about the watermark check.
1502 available = zone_reclaimable_pages(zone) / order;
1503 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1504 compact_result = __compaction_suitable(zone, order, alloc_flags,
1505 ac_classzone_idx(ac), available);
1506 if (compact_result != COMPACT_SKIPPED)
1507 return true;
1510 return false;
1513 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1515 enum compact_result ret;
1516 unsigned long start_pfn = zone->zone_start_pfn;
1517 unsigned long end_pfn = zone_end_pfn(zone);
1518 const bool sync = cc->mode != MIGRATE_ASYNC;
1520 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1521 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1522 cc->classzone_idx);
1523 /* Compaction is likely to fail */
1524 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1525 return ret;
1527 /* huh, compaction_suitable is returning something unexpected */
1528 VM_BUG_ON(ret != COMPACT_CONTINUE);
1531 * Clear pageblock skip if there were failures recently and compaction
1532 * is about to be retried after being deferred.
1534 if (compaction_restarting(zone, cc->order))
1535 __reset_isolation_suitable(zone);
1538 * Setup to move all movable pages to the end of the zone. Used cached
1539 * information on where the scanners should start (unless we explicitly
1540 * want to compact the whole zone), but check that it is initialised
1541 * by ensuring the values are within zone boundaries.
1543 if (cc->whole_zone) {
1544 cc->migrate_pfn = start_pfn;
1545 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1546 } else {
1547 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1548 cc->free_pfn = zone->compact_cached_free_pfn;
1549 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1550 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1551 zone->compact_cached_free_pfn = cc->free_pfn;
1553 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1554 cc->migrate_pfn = start_pfn;
1555 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1556 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1559 if (cc->migrate_pfn == start_pfn)
1560 cc->whole_zone = true;
1563 cc->last_migrated_pfn = 0;
1565 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1566 cc->free_pfn, end_pfn, sync);
1568 migrate_prep_local();
1570 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1571 int err;
1573 switch (isolate_migratepages(zone, cc)) {
1574 case ISOLATE_ABORT:
1575 ret = COMPACT_CONTENDED;
1576 putback_movable_pages(&cc->migratepages);
1577 cc->nr_migratepages = 0;
1578 goto out;
1579 case ISOLATE_NONE:
1581 * We haven't isolated and migrated anything, but
1582 * there might still be unflushed migrations from
1583 * previous cc->order aligned block.
1585 goto check_drain;
1586 case ISOLATE_SUCCESS:
1590 err = migrate_pages(&cc->migratepages, compaction_alloc,
1591 compaction_free, (unsigned long)cc, cc->mode,
1592 MR_COMPACTION);
1594 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1595 &cc->migratepages);
1597 /* All pages were either migrated or will be released */
1598 cc->nr_migratepages = 0;
1599 if (err) {
1600 putback_movable_pages(&cc->migratepages);
1602 * migrate_pages() may return -ENOMEM when scanners meet
1603 * and we want compact_finished() to detect it
1605 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1606 ret = COMPACT_CONTENDED;
1607 goto out;
1610 * We failed to migrate at least one page in the current
1611 * order-aligned block, so skip the rest of it.
1613 if (cc->direct_compaction &&
1614 (cc->mode == MIGRATE_ASYNC)) {
1615 cc->migrate_pfn = block_end_pfn(
1616 cc->migrate_pfn - 1, cc->order);
1617 /* Draining pcplists is useless in this case */
1618 cc->last_migrated_pfn = 0;
1623 check_drain:
1625 * Has the migration scanner moved away from the previous
1626 * cc->order aligned block where we migrated from? If yes,
1627 * flush the pages that were freed, so that they can merge and
1628 * compact_finished() can detect immediately if allocation
1629 * would succeed.
1631 if (cc->order > 0 && cc->last_migrated_pfn) {
1632 int cpu;
1633 unsigned long current_block_start =
1634 block_start_pfn(cc->migrate_pfn, cc->order);
1636 if (cc->last_migrated_pfn < current_block_start) {
1637 cpu = get_cpu();
1638 lru_add_drain_cpu(cpu);
1639 drain_local_pages(zone);
1640 put_cpu();
1641 /* No more flushing until we migrate again */
1642 cc->last_migrated_pfn = 0;
1648 out:
1650 * Release free pages and update where the free scanner should restart,
1651 * so we don't leave any returned pages behind in the next attempt.
1653 if (cc->nr_freepages > 0) {
1654 unsigned long free_pfn = release_freepages(&cc->freepages);
1656 cc->nr_freepages = 0;
1657 VM_BUG_ON(free_pfn == 0);
1658 /* The cached pfn is always the first in a pageblock */
1659 free_pfn = pageblock_start_pfn(free_pfn);
1661 * Only go back, not forward. The cached pfn might have been
1662 * already reset to zone end in compact_finished()
1664 if (free_pfn > zone->compact_cached_free_pfn)
1665 zone->compact_cached_free_pfn = free_pfn;
1668 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1669 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1671 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1672 cc->free_pfn, end_pfn, sync, ret);
1674 return ret;
1677 static enum compact_result compact_zone_order(struct zone *zone, int order,
1678 gfp_t gfp_mask, enum compact_priority prio,
1679 unsigned int alloc_flags, int classzone_idx)
1681 enum compact_result ret;
1682 struct compact_control cc = {
1683 .nr_freepages = 0,
1684 .nr_migratepages = 0,
1685 .total_migrate_scanned = 0,
1686 .total_free_scanned = 0,
1687 .order = order,
1688 .gfp_mask = gfp_mask,
1689 .zone = zone,
1690 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1691 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1692 .alloc_flags = alloc_flags,
1693 .classzone_idx = classzone_idx,
1694 .direct_compaction = true,
1695 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1696 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1697 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1699 INIT_LIST_HEAD(&cc.freepages);
1700 INIT_LIST_HEAD(&cc.migratepages);
1702 ret = compact_zone(zone, &cc);
1704 VM_BUG_ON(!list_empty(&cc.freepages));
1705 VM_BUG_ON(!list_empty(&cc.migratepages));
1707 return ret;
1710 int sysctl_extfrag_threshold = 500;
1713 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1714 * @gfp_mask: The GFP mask of the current allocation
1715 * @order: The order of the current allocation
1716 * @alloc_flags: The allocation flags of the current allocation
1717 * @ac: The context of current allocation
1718 * @mode: The migration mode for async, sync light, or sync migration
1720 * This is the main entry point for direct page compaction.
1722 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1723 unsigned int alloc_flags, const struct alloc_context *ac,
1724 enum compact_priority prio)
1726 int may_perform_io = gfp_mask & __GFP_IO;
1727 struct zoneref *z;
1728 struct zone *zone;
1729 enum compact_result rc = COMPACT_SKIPPED;
1732 * Check if the GFP flags allow compaction - GFP_NOIO is really
1733 * tricky context because the migration might require IO
1735 if (!may_perform_io)
1736 return COMPACT_SKIPPED;
1738 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1740 /* Compact each zone in the list */
1741 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1742 ac->nodemask) {
1743 enum compact_result status;
1745 if (prio > MIN_COMPACT_PRIORITY
1746 && compaction_deferred(zone, order)) {
1747 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1748 continue;
1751 status = compact_zone_order(zone, order, gfp_mask, prio,
1752 alloc_flags, ac_classzone_idx(ac));
1753 rc = max(status, rc);
1755 /* The allocation should succeed, stop compacting */
1756 if (status == COMPACT_SUCCESS) {
1758 * We think the allocation will succeed in this zone,
1759 * but it is not certain, hence the false. The caller
1760 * will repeat this with true if allocation indeed
1761 * succeeds in this zone.
1763 compaction_defer_reset(zone, order, false);
1765 break;
1768 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1769 status == COMPACT_PARTIAL_SKIPPED))
1771 * We think that allocation won't succeed in this zone
1772 * so we defer compaction there. If it ends up
1773 * succeeding after all, it will be reset.
1775 defer_compaction(zone, order);
1778 * We might have stopped compacting due to need_resched() in
1779 * async compaction, or due to a fatal signal detected. In that
1780 * case do not try further zones
1782 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1783 || fatal_signal_pending(current))
1784 break;
1787 return rc;
1791 /* Compact all zones within a node */
1792 static void compact_node(int nid)
1794 pg_data_t *pgdat = NODE_DATA(nid);
1795 int zoneid;
1796 struct zone *zone;
1797 struct compact_control cc = {
1798 .order = -1,
1799 .total_migrate_scanned = 0,
1800 .total_free_scanned = 0,
1801 .mode = MIGRATE_SYNC,
1802 .ignore_skip_hint = true,
1803 .whole_zone = true,
1804 .gfp_mask = GFP_KERNEL,
1808 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1810 zone = &pgdat->node_zones[zoneid];
1811 if (!populated_zone(zone))
1812 continue;
1814 cc.nr_freepages = 0;
1815 cc.nr_migratepages = 0;
1816 cc.zone = zone;
1817 INIT_LIST_HEAD(&cc.freepages);
1818 INIT_LIST_HEAD(&cc.migratepages);
1820 compact_zone(zone, &cc);
1822 VM_BUG_ON(!list_empty(&cc.freepages));
1823 VM_BUG_ON(!list_empty(&cc.migratepages));
1827 /* Compact all nodes in the system */
1828 static void compact_nodes(void)
1830 int nid;
1832 /* Flush pending updates to the LRU lists */
1833 lru_add_drain_all();
1835 for_each_online_node(nid)
1836 compact_node(nid);
1839 /* The written value is actually unused, all memory is compacted */
1840 int sysctl_compact_memory;
1843 * This is the entry point for compacting all nodes via
1844 * /proc/sys/vm/compact_memory
1846 int sysctl_compaction_handler(struct ctl_table *table, int write,
1847 void __user *buffer, size_t *length, loff_t *ppos)
1849 if (write)
1850 compact_nodes();
1852 return 0;
1855 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1856 void __user *buffer, size_t *length, loff_t *ppos)
1858 proc_dointvec_minmax(table, write, buffer, length, ppos);
1860 return 0;
1863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1864 static ssize_t sysfs_compact_node(struct device *dev,
1865 struct device_attribute *attr,
1866 const char *buf, size_t count)
1868 int nid = dev->id;
1870 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1871 /* Flush pending updates to the LRU lists */
1872 lru_add_drain_all();
1874 compact_node(nid);
1877 return count;
1879 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1881 int compaction_register_node(struct node *node)
1883 return device_create_file(&node->dev, &dev_attr_compact);
1886 void compaction_unregister_node(struct node *node)
1888 return device_remove_file(&node->dev, &dev_attr_compact);
1890 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1892 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1894 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1897 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1899 int zoneid;
1900 struct zone *zone;
1901 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1903 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1904 zone = &pgdat->node_zones[zoneid];
1906 if (!populated_zone(zone))
1907 continue;
1909 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1910 classzone_idx) == COMPACT_CONTINUE)
1911 return true;
1914 return false;
1917 static void kcompactd_do_work(pg_data_t *pgdat)
1920 * With no special task, compact all zones so that a page of requested
1921 * order is allocatable.
1923 int zoneid;
1924 struct zone *zone;
1925 struct compact_control cc = {
1926 .order = pgdat->kcompactd_max_order,
1927 .total_migrate_scanned = 0,
1928 .total_free_scanned = 0,
1929 .classzone_idx = pgdat->kcompactd_classzone_idx,
1930 .mode = MIGRATE_SYNC_LIGHT,
1931 .ignore_skip_hint = true,
1932 .gfp_mask = GFP_KERNEL,
1935 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1936 cc.classzone_idx);
1937 count_compact_event(KCOMPACTD_WAKE);
1939 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1940 int status;
1942 zone = &pgdat->node_zones[zoneid];
1943 if (!populated_zone(zone))
1944 continue;
1946 if (compaction_deferred(zone, cc.order))
1947 continue;
1949 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1950 COMPACT_CONTINUE)
1951 continue;
1953 cc.nr_freepages = 0;
1954 cc.nr_migratepages = 0;
1955 cc.total_migrate_scanned = 0;
1956 cc.total_free_scanned = 0;
1957 cc.zone = zone;
1958 INIT_LIST_HEAD(&cc.freepages);
1959 INIT_LIST_HEAD(&cc.migratepages);
1961 if (kthread_should_stop())
1962 return;
1963 status = compact_zone(zone, &cc);
1965 if (status == COMPACT_SUCCESS) {
1966 compaction_defer_reset(zone, cc.order, false);
1967 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1969 * We use sync migration mode here, so we defer like
1970 * sync direct compaction does.
1972 defer_compaction(zone, cc.order);
1975 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1976 cc.total_migrate_scanned);
1977 count_compact_events(KCOMPACTD_FREE_SCANNED,
1978 cc.total_free_scanned);
1980 VM_BUG_ON(!list_empty(&cc.freepages));
1981 VM_BUG_ON(!list_empty(&cc.migratepages));
1985 * Regardless of success, we are done until woken up next. But remember
1986 * the requested order/classzone_idx in case it was higher/tighter than
1987 * our current ones
1989 if (pgdat->kcompactd_max_order <= cc.order)
1990 pgdat->kcompactd_max_order = 0;
1991 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1992 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1995 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1997 if (!order)
1998 return;
2000 if (pgdat->kcompactd_max_order < order)
2001 pgdat->kcompactd_max_order = order;
2003 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2004 pgdat->kcompactd_classzone_idx = classzone_idx;
2007 * Pairs with implicit barrier in wait_event_freezable()
2008 * such that wakeups are not missed.
2010 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2011 return;
2013 if (!kcompactd_node_suitable(pgdat))
2014 return;
2016 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2017 classzone_idx);
2018 wake_up_interruptible(&pgdat->kcompactd_wait);
2022 * The background compaction daemon, started as a kernel thread
2023 * from the init process.
2025 static int kcompactd(void *p)
2027 pg_data_t *pgdat = (pg_data_t*)p;
2028 struct task_struct *tsk = current;
2030 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2032 if (!cpumask_empty(cpumask))
2033 set_cpus_allowed_ptr(tsk, cpumask);
2035 set_freezable();
2037 pgdat->kcompactd_max_order = 0;
2038 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2040 while (!kthread_should_stop()) {
2041 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2042 wait_event_freezable(pgdat->kcompactd_wait,
2043 kcompactd_work_requested(pgdat));
2045 kcompactd_do_work(pgdat);
2048 return 0;
2052 * This kcompactd start function will be called by init and node-hot-add.
2053 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2055 int kcompactd_run(int nid)
2057 pg_data_t *pgdat = NODE_DATA(nid);
2058 int ret = 0;
2060 if (pgdat->kcompactd)
2061 return 0;
2063 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2064 if (IS_ERR(pgdat->kcompactd)) {
2065 pr_err("Failed to start kcompactd on node %d\n", nid);
2066 ret = PTR_ERR(pgdat->kcompactd);
2067 pgdat->kcompactd = NULL;
2069 return ret;
2073 * Called by memory hotplug when all memory in a node is offlined. Caller must
2074 * hold mem_hotplug_begin/end().
2076 void kcompactd_stop(int nid)
2078 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2080 if (kcompactd) {
2081 kthread_stop(kcompactd);
2082 NODE_DATA(nid)->kcompactd = NULL;
2087 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2088 * not required for correctness. So if the last cpu in a node goes
2089 * away, we get changed to run anywhere: as the first one comes back,
2090 * restore their cpu bindings.
2092 static int kcompactd_cpu_online(unsigned int cpu)
2094 int nid;
2096 for_each_node_state(nid, N_MEMORY) {
2097 pg_data_t *pgdat = NODE_DATA(nid);
2098 const struct cpumask *mask;
2100 mask = cpumask_of_node(pgdat->node_id);
2102 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2103 /* One of our CPUs online: restore mask */
2104 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2106 return 0;
2109 static int __init kcompactd_init(void)
2111 int nid;
2112 int ret;
2114 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2115 "mm/compaction:online",
2116 kcompactd_cpu_online, NULL);
2117 if (ret < 0) {
2118 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2119 return ret;
2122 for_each_node_state(nid, N_MEMORY)
2123 kcompactd_run(nid);
2124 return 0;
2126 subsys_initcall(kcompactd_init)
2128 #endif /* CONFIG_COMPACTION */