4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr
;
91 EXPORT_SYMBOL(max_mapnr
);
94 EXPORT_SYMBOL(mem_map
);
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 EXPORT_SYMBOL(high_memory
);
108 * Randomize the address space (stacks, mmaps, brk, etc.).
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
113 int randomize_va_space __read_mostly
=
114 #ifdef CONFIG_COMPAT_BRK
120 static int __init
disable_randmaps(char *s
)
122 randomize_va_space
= 0;
125 __setup("norandmaps", disable_randmaps
);
127 unsigned long zero_pfn __read_mostly
;
128 EXPORT_SYMBOL(zero_pfn
);
130 unsigned long highest_memmap_pfn __read_mostly
;
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 static int __init
init_zero_pfn(void)
137 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
140 core_initcall(init_zero_pfn
);
143 #if defined(SPLIT_RSS_COUNTING)
145 void sync_mm_rss(struct mm_struct
*mm
)
149 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
150 if (current
->rss_stat
.count
[i
]) {
151 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
152 current
->rss_stat
.count
[i
] = 0;
155 current
->rss_stat
.events
= 0;
158 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
160 struct task_struct
*task
= current
;
162 if (likely(task
->mm
== mm
))
163 task
->rss_stat
.count
[member
] += val
;
165 add_mm_counter(mm
, member
, val
);
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct
*task
)
174 if (unlikely(task
!= current
))
176 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
177 sync_mm_rss(task
->mm
);
179 #else /* SPLIT_RSS_COUNTING */
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 static void check_sync_rss_stat(struct task_struct
*task
)
188 #endif /* SPLIT_RSS_COUNTING */
190 #ifdef HAVE_GENERIC_MMU_GATHER
192 static bool tlb_next_batch(struct mmu_gather
*tlb
)
194 struct mmu_gather_batch
*batch
;
198 tlb
->active
= batch
->next
;
202 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
205 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
212 batch
->max
= MAX_GATHER_BATCH
;
214 tlb
->active
->next
= batch
;
220 void arch_tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
221 unsigned long start
, unsigned long end
)
225 /* Is it from 0 to ~0? */
226 tlb
->fullmm
= !(start
| (end
+1));
227 tlb
->need_flush_all
= 0;
228 tlb
->local
.next
= NULL
;
230 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
231 tlb
->active
= &tlb
->local
;
232 tlb
->batch_count
= 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 __tlb_reset_range(tlb
);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
248 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
249 __tlb_reset_range(tlb
);
252 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
254 struct mmu_gather_batch
*batch
;
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb
);
259 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
260 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
263 tlb
->active
= &tlb
->local
;
266 void tlb_flush_mmu(struct mmu_gather
*tlb
)
268 tlb_flush_mmu_tlbonly(tlb
);
269 tlb_flush_mmu_free(tlb
);
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void arch_tlb_finish_mmu(struct mmu_gather
*tlb
,
277 unsigned long start
, unsigned long end
, bool force
)
279 struct mmu_gather_batch
*batch
, *next
;
282 __tlb_adjust_range(tlb
, start
, end
- start
);
286 /* keep the page table cache within bounds */
289 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
291 free_pages((unsigned long)batch
, 0);
293 tlb
->local
.next
= NULL
;
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
303 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
305 struct mmu_gather_batch
*batch
;
307 VM_BUG_ON(!tlb
->end
);
308 VM_WARN_ON(tlb
->page_size
!= page_size
);
312 * Add the page and check if we are full. If so
315 batch
->pages
[batch
->nr
++] = page
;
316 if (batch
->nr
== batch
->max
) {
317 if (!tlb_next_batch(tlb
))
321 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
326 #endif /* HAVE_GENERIC_MMU_GATHER */
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
331 * See the comment near struct mmu_table_batch.
335 * If we want tlb_remove_table() to imply TLB invalidates.
337 static inline void tlb_table_invalidate(struct mmu_gather
*tlb
)
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
345 tlb_flush_mmu_tlbonly(tlb
);
349 static void tlb_remove_table_smp_sync(void *arg
)
351 /* Simply deliver the interrupt */
354 static void tlb_remove_table_one(void *table
)
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
363 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
364 __tlb_remove_table(table
);
367 static void tlb_remove_table_rcu(struct rcu_head
*head
)
369 struct mmu_table_batch
*batch
;
372 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
374 for (i
= 0; i
< batch
->nr
; i
++)
375 __tlb_remove_table(batch
->tables
[i
]);
377 free_page((unsigned long)batch
);
380 void tlb_table_flush(struct mmu_gather
*tlb
)
382 struct mmu_table_batch
**batch
= &tlb
->batch
;
385 tlb_table_invalidate(tlb
);
386 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
391 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
393 struct mmu_table_batch
**batch
= &tlb
->batch
;
395 if (*batch
== NULL
) {
396 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
397 if (*batch
== NULL
) {
398 tlb_table_invalidate(tlb
);
399 tlb_remove_table_one(table
);
405 (*batch
)->tables
[(*batch
)->nr
++] = table
;
406 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
407 tlb_table_flush(tlb
);
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
417 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
418 unsigned long start
, unsigned long end
)
420 arch_tlb_gather_mmu(tlb
, mm
, start
, end
);
421 inc_tlb_flush_pending(tlb
->mm
);
424 void tlb_finish_mmu(struct mmu_gather
*tlb
,
425 unsigned long start
, unsigned long end
)
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
434 bool force
= mm_tlb_flush_nested(tlb
->mm
);
436 arch_tlb_finish_mmu(tlb
, start
, end
, force
);
437 dec_tlb_flush_pending(tlb
->mm
);
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
444 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
447 pgtable_t token
= pmd_pgtable(*pmd
);
449 pte_free_tlb(tlb
, token
, addr
);
450 atomic_long_dec(&tlb
->mm
->nr_ptes
);
453 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
454 unsigned long addr
, unsigned long end
,
455 unsigned long floor
, unsigned long ceiling
)
462 pmd
= pmd_offset(pud
, addr
);
464 next
= pmd_addr_end(addr
, end
);
465 if (pmd_none_or_clear_bad(pmd
))
467 free_pte_range(tlb
, pmd
, addr
);
468 } while (pmd
++, addr
= next
, addr
!= end
);
478 if (end
- 1 > ceiling
- 1)
481 pmd
= pmd_offset(pud
, start
);
483 pmd_free_tlb(tlb
, pmd
, start
);
484 mm_dec_nr_pmds(tlb
->mm
);
487 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
488 unsigned long addr
, unsigned long end
,
489 unsigned long floor
, unsigned long ceiling
)
496 pud
= pud_offset(p4d
, addr
);
498 next
= pud_addr_end(addr
, end
);
499 if (pud_none_or_clear_bad(pud
))
501 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
502 } while (pud
++, addr
= next
, addr
!= end
);
512 if (end
- 1 > ceiling
- 1)
515 pud
= pud_offset(p4d
, start
);
517 pud_free_tlb(tlb
, pud
, start
);
520 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
521 unsigned long addr
, unsigned long end
,
522 unsigned long floor
, unsigned long ceiling
)
529 p4d
= p4d_offset(pgd
, addr
);
531 next
= p4d_addr_end(addr
, end
);
532 if (p4d_none_or_clear_bad(p4d
))
534 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
535 } while (p4d
++, addr
= next
, addr
!= end
);
541 ceiling
&= PGDIR_MASK
;
545 if (end
- 1 > ceiling
- 1)
548 p4d
= p4d_offset(pgd
, start
);
550 p4d_free_tlb(tlb
, p4d
, start
);
554 * This function frees user-level page tables of a process.
556 void free_pgd_range(struct mmu_gather
*tlb
,
557 unsigned long addr
, unsigned long end
,
558 unsigned long floor
, unsigned long ceiling
)
564 * The next few lines have given us lots of grief...
566 * Why are we testing PMD* at this top level? Because often
567 * there will be no work to do at all, and we'd prefer not to
568 * go all the way down to the bottom just to discover that.
570 * Why all these "- 1"s? Because 0 represents both the bottom
571 * of the address space and the top of it (using -1 for the
572 * top wouldn't help much: the masks would do the wrong thing).
573 * The rule is that addr 0 and floor 0 refer to the bottom of
574 * the address space, but end 0 and ceiling 0 refer to the top
575 * Comparisons need to use "end - 1" and "ceiling - 1" (though
576 * that end 0 case should be mythical).
578 * Wherever addr is brought up or ceiling brought down, we must
579 * be careful to reject "the opposite 0" before it confuses the
580 * subsequent tests. But what about where end is brought down
581 * by PMD_SIZE below? no, end can't go down to 0 there.
583 * Whereas we round start (addr) and ceiling down, by different
584 * masks at different levels, in order to test whether a table
585 * now has no other vmas using it, so can be freed, we don't
586 * bother to round floor or end up - the tests don't need that.
600 if (end
- 1 > ceiling
- 1)
605 * We add page table cache pages with PAGE_SIZE,
606 * (see pte_free_tlb()), flush the tlb if we need
608 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
609 pgd
= pgd_offset(tlb
->mm
, addr
);
611 next
= pgd_addr_end(addr
, end
);
612 if (pgd_none_or_clear_bad(pgd
))
614 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
615 } while (pgd
++, addr
= next
, addr
!= end
);
618 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
619 unsigned long floor
, unsigned long ceiling
)
622 struct vm_area_struct
*next
= vma
->vm_next
;
623 unsigned long addr
= vma
->vm_start
;
626 * Hide vma from rmap and truncate_pagecache before freeing
629 unlink_anon_vmas(vma
);
630 unlink_file_vma(vma
);
632 if (is_vm_hugetlb_page(vma
)) {
633 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
634 floor
, next
? next
->vm_start
: ceiling
);
637 * Optimization: gather nearby vmas into one call down
639 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
640 && !is_vm_hugetlb_page(next
)) {
643 unlink_anon_vmas(vma
);
644 unlink_file_vma(vma
);
646 free_pgd_range(tlb
, addr
, vma
->vm_end
,
647 floor
, next
? next
->vm_start
: ceiling
);
653 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
656 pgtable_t
new = pte_alloc_one(mm
, address
);
661 * Ensure all pte setup (eg. pte page lock and page clearing) are
662 * visible before the pte is made visible to other CPUs by being
663 * put into page tables.
665 * The other side of the story is the pointer chasing in the page
666 * table walking code (when walking the page table without locking;
667 * ie. most of the time). Fortunately, these data accesses consist
668 * of a chain of data-dependent loads, meaning most CPUs (alpha
669 * being the notable exception) will already guarantee loads are
670 * seen in-order. See the alpha page table accessors for the
671 * smp_read_barrier_depends() barriers in page table walking code.
673 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
675 ptl
= pmd_lock(mm
, pmd
);
676 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
677 atomic_long_inc(&mm
->nr_ptes
);
678 pmd_populate(mm
, pmd
, new);
687 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
689 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
693 smp_wmb(); /* See comment in __pte_alloc */
695 spin_lock(&init_mm
.page_table_lock
);
696 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
697 pmd_populate_kernel(&init_mm
, pmd
, new);
700 spin_unlock(&init_mm
.page_table_lock
);
702 pte_free_kernel(&init_mm
, new);
706 static inline void init_rss_vec(int *rss
)
708 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
711 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
715 if (current
->mm
== mm
)
717 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
719 add_mm_counter(mm
, i
, rss
[i
]);
723 * This function is called to print an error when a bad pte
724 * is found. For example, we might have a PFN-mapped pte in
725 * a region that doesn't allow it.
727 * The calling function must still handle the error.
729 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
730 pte_t pte
, struct page
*page
)
732 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
733 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
734 pud_t
*pud
= pud_offset(p4d
, addr
);
735 pmd_t
*pmd
= pmd_offset(pud
, addr
);
736 struct address_space
*mapping
;
738 static unsigned long resume
;
739 static unsigned long nr_shown
;
740 static unsigned long nr_unshown
;
743 * Allow a burst of 60 reports, then keep quiet for that minute;
744 * or allow a steady drip of one report per second.
746 if (nr_shown
== 60) {
747 if (time_before(jiffies
, resume
)) {
752 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
759 resume
= jiffies
+ 60 * HZ
;
761 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
762 index
= linear_page_index(vma
, addr
);
764 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
766 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
768 dump_page(page
, "bad pte");
769 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
770 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
772 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
774 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
777 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
778 mapping
? mapping
->a_ops
->readpage
: NULL
);
780 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
784 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 * "Special" mappings do not wish to be associated with a "struct page" (either
787 * it doesn't exist, or it exists but they don't want to touch it). In this
788 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
791 * pte bit, in which case this function is trivial. Secondly, an architecture
792 * may not have a spare pte bit, which requires a more complicated scheme,
795 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
796 * special mapping (even if there are underlying and valid "struct pages").
797 * COWed pages of a VM_PFNMAP are always normal.
799 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
800 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
801 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
802 * mapping will always honor the rule
804 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 * And for normal mappings this is false.
808 * This restricts such mappings to be a linear translation from virtual address
809 * to pfn. To get around this restriction, we allow arbitrary mappings so long
810 * as the vma is not a COW mapping; in that case, we know that all ptes are
811 * special (because none can have been COWed).
814 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
817 * page" backing, however the difference is that _all_ pages with a struct
818 * page (that is, those where pfn_valid is true) are refcounted and considered
819 * normal pages by the VM. The disadvantage is that pages are refcounted
820 * (which can be slower and simply not an option for some PFNMAP users). The
821 * advantage is that we don't have to follow the strict linearity rule of
822 * PFNMAP mappings in order to support COWable mappings.
825 #ifdef __HAVE_ARCH_PTE_SPECIAL
826 # define HAVE_PTE_SPECIAL 1
828 # define HAVE_PTE_SPECIAL 0
830 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
831 pte_t pte
, bool with_public_device
)
833 unsigned long pfn
= pte_pfn(pte
);
835 if (HAVE_PTE_SPECIAL
) {
836 if (likely(!pte_special(pte
)))
838 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
839 return vma
->vm_ops
->find_special_page(vma
, addr
);
840 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
842 if (is_zero_pfn(pfn
))
846 * Device public pages are special pages (they are ZONE_DEVICE
847 * pages but different from persistent memory). They behave
848 * allmost like normal pages. The difference is that they are
849 * not on the lru and thus should never be involve with any-
850 * thing that involve lru manipulation (mlock, numa balancing,
853 * This is why we still want to return NULL for such page from
854 * vm_normal_page() so that we do not have to special case all
855 * call site of vm_normal_page().
857 if (likely(pfn
<= highest_memmap_pfn
)) {
858 struct page
*page
= pfn_to_page(pfn
);
860 if (is_device_public_page(page
)) {
861 if (with_public_device
)
866 print_bad_pte(vma
, addr
, pte
, NULL
);
870 /* !HAVE_PTE_SPECIAL case follows: */
872 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
873 if (vma
->vm_flags
& VM_MIXEDMAP
) {
879 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
880 if (pfn
== vma
->vm_pgoff
+ off
)
882 if (!is_cow_mapping(vma
->vm_flags
))
887 if (is_zero_pfn(pfn
))
890 if (unlikely(pfn
> highest_memmap_pfn
)) {
891 print_bad_pte(vma
, addr
, pte
, NULL
);
896 * NOTE! We still have PageReserved() pages in the page tables.
897 * eg. VDSO mappings can cause them to exist.
900 return pfn_to_page(pfn
);
903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
907 unsigned long pfn
= pmd_pfn(pmd
);
910 * There is no pmd_special() but there may be special pmds, e.g.
911 * in a direct-access (dax) mapping, so let's just replicate the
912 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
914 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
915 if (vma
->vm_flags
& VM_MIXEDMAP
) {
921 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
922 if (pfn
== vma
->vm_pgoff
+ off
)
924 if (!is_cow_mapping(vma
->vm_flags
))
929 if (is_zero_pfn(pfn
))
931 if (unlikely(pfn
> highest_memmap_pfn
))
935 * NOTE! We still have PageReserved() pages in the page tables.
936 * eg. VDSO mappings can cause them to exist.
939 return pfn_to_page(pfn
);
944 * copy one vm_area from one task to the other. Assumes the page tables
945 * already present in the new task to be cleared in the whole range
946 * covered by this vma.
949 static inline unsigned long
950 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
951 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
952 unsigned long addr
, int *rss
)
954 unsigned long vm_flags
= vma
->vm_flags
;
955 pte_t pte
= *src_pte
;
958 /* pte contains position in swap or file, so copy. */
959 if (unlikely(!pte_present(pte
))) {
960 swp_entry_t entry
= pte_to_swp_entry(pte
);
962 if (likely(!non_swap_entry(entry
))) {
963 if (swap_duplicate(entry
) < 0)
966 /* make sure dst_mm is on swapoff's mmlist. */
967 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
968 spin_lock(&mmlist_lock
);
969 if (list_empty(&dst_mm
->mmlist
))
970 list_add(&dst_mm
->mmlist
,
972 spin_unlock(&mmlist_lock
);
975 } else if (is_migration_entry(entry
)) {
976 page
= migration_entry_to_page(entry
);
978 rss
[mm_counter(page
)]++;
980 if (is_write_migration_entry(entry
) &&
981 is_cow_mapping(vm_flags
)) {
983 * COW mappings require pages in both
984 * parent and child to be set to read.
986 make_migration_entry_read(&entry
);
987 pte
= swp_entry_to_pte(entry
);
988 if (pte_swp_soft_dirty(*src_pte
))
989 pte
= pte_swp_mksoft_dirty(pte
);
990 set_pte_at(src_mm
, addr
, src_pte
, pte
);
992 } else if (is_device_private_entry(entry
)) {
993 page
= device_private_entry_to_page(entry
);
996 * Update rss count even for unaddressable pages, as
997 * they should treated just like normal pages in this
1000 * We will likely want to have some new rss counters
1001 * for unaddressable pages, at some point. But for now
1002 * keep things as they are.
1005 rss
[mm_counter(page
)]++;
1006 page_dup_rmap(page
, false);
1009 * We do not preserve soft-dirty information, because so
1010 * far, checkpoint/restore is the only feature that
1011 * requires that. And checkpoint/restore does not work
1012 * when a device driver is involved (you cannot easily
1013 * save and restore device driver state).
1015 if (is_write_device_private_entry(entry
) &&
1016 is_cow_mapping(vm_flags
)) {
1017 make_device_private_entry_read(&entry
);
1018 pte
= swp_entry_to_pte(entry
);
1019 set_pte_at(src_mm
, addr
, src_pte
, pte
);
1026 * If it's a COW mapping, write protect it both
1027 * in the parent and the child
1029 if (is_cow_mapping(vm_flags
)) {
1030 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
1031 pte
= pte_wrprotect(pte
);
1035 * If it's a shared mapping, mark it clean in
1038 if (vm_flags
& VM_SHARED
)
1039 pte
= pte_mkclean(pte
);
1040 pte
= pte_mkold(pte
);
1042 page
= vm_normal_page(vma
, addr
, pte
);
1045 page_dup_rmap(page
, false);
1046 rss
[mm_counter(page
)]++;
1047 } else if (pte_devmap(pte
)) {
1048 page
= pte_page(pte
);
1051 * Cache coherent device memory behave like regular page and
1052 * not like persistent memory page. For more informations see
1053 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1055 if (is_device_public_page(page
)) {
1057 page_dup_rmap(page
, false);
1058 rss
[mm_counter(page
)]++;
1063 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
1067 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1068 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
1069 unsigned long addr
, unsigned long end
)
1071 pte_t
*orig_src_pte
, *orig_dst_pte
;
1072 pte_t
*src_pte
, *dst_pte
;
1073 spinlock_t
*src_ptl
, *dst_ptl
;
1075 int rss
[NR_MM_COUNTERS
];
1076 swp_entry_t entry
= (swp_entry_t
){0};
1081 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1084 src_pte
= pte_offset_map(src_pmd
, addr
);
1085 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
1086 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1087 orig_src_pte
= src_pte
;
1088 orig_dst_pte
= dst_pte
;
1089 arch_enter_lazy_mmu_mode();
1093 * We are holding two locks at this point - either of them
1094 * could generate latencies in another task on another CPU.
1096 if (progress
>= 32) {
1098 if (need_resched() ||
1099 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1102 if (pte_none(*src_pte
)) {
1106 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
1111 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1113 arch_leave_lazy_mmu_mode();
1114 spin_unlock(src_ptl
);
1115 pte_unmap(orig_src_pte
);
1116 add_mm_rss_vec(dst_mm
, rss
);
1117 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1121 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
1130 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1131 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1132 unsigned long addr
, unsigned long end
)
1134 pmd_t
*src_pmd
, *dst_pmd
;
1137 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1140 src_pmd
= pmd_offset(src_pud
, addr
);
1142 next
= pmd_addr_end(addr
, end
);
1143 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1144 || pmd_devmap(*src_pmd
)) {
1146 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1147 err
= copy_huge_pmd(dst_mm
, src_mm
,
1148 dst_pmd
, src_pmd
, addr
, vma
);
1155 if (pmd_none_or_clear_bad(src_pmd
))
1157 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1160 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1164 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1165 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
1166 unsigned long addr
, unsigned long end
)
1168 pud_t
*src_pud
, *dst_pud
;
1171 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1174 src_pud
= pud_offset(src_p4d
, addr
);
1176 next
= pud_addr_end(addr
, end
);
1177 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1180 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1181 err
= copy_huge_pud(dst_mm
, src_mm
,
1182 dst_pud
, src_pud
, addr
, vma
);
1189 if (pud_none_or_clear_bad(src_pud
))
1191 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1194 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1198 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1199 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1200 unsigned long addr
, unsigned long end
)
1202 p4d_t
*src_p4d
, *dst_p4d
;
1205 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1208 src_p4d
= p4d_offset(src_pgd
, addr
);
1210 next
= p4d_addr_end(addr
, end
);
1211 if (p4d_none_or_clear_bad(src_p4d
))
1213 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
1216 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1220 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1221 struct vm_area_struct
*vma
)
1223 pgd_t
*src_pgd
, *dst_pgd
;
1225 unsigned long addr
= vma
->vm_start
;
1226 unsigned long end
= vma
->vm_end
;
1227 unsigned long mmun_start
; /* For mmu_notifiers */
1228 unsigned long mmun_end
; /* For mmu_notifiers */
1233 * Don't copy ptes where a page fault will fill them correctly.
1234 * Fork becomes much lighter when there are big shared or private
1235 * readonly mappings. The tradeoff is that copy_page_range is more
1236 * efficient than faulting.
1238 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1242 if (is_vm_hugetlb_page(vma
))
1243 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1245 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1247 * We do not free on error cases below as remove_vma
1248 * gets called on error from higher level routine
1250 ret
= track_pfn_copy(vma
);
1256 * We need to invalidate the secondary MMU mappings only when
1257 * there could be a permission downgrade on the ptes of the
1258 * parent mm. And a permission downgrade will only happen if
1259 * is_cow_mapping() returns true.
1261 is_cow
= is_cow_mapping(vma
->vm_flags
);
1265 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1269 dst_pgd
= pgd_offset(dst_mm
, addr
);
1270 src_pgd
= pgd_offset(src_mm
, addr
);
1272 next
= pgd_addr_end(addr
, end
);
1273 if (pgd_none_or_clear_bad(src_pgd
))
1275 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1276 vma
, addr
, next
))) {
1280 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1283 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1287 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1288 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1289 unsigned long addr
, unsigned long end
,
1290 struct zap_details
*details
)
1292 struct mm_struct
*mm
= tlb
->mm
;
1293 int force_flush
= 0;
1294 int rss
[NR_MM_COUNTERS
];
1300 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1303 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1305 flush_tlb_batched_pending(mm
);
1306 arch_enter_lazy_mmu_mode();
1309 if (pte_none(ptent
))
1312 if (pte_present(ptent
)) {
1315 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1316 if (unlikely(details
) && page
) {
1318 * unmap_shared_mapping_pages() wants to
1319 * invalidate cache without truncating:
1320 * unmap shared but keep private pages.
1322 if (details
->check_mapping
&&
1323 details
->check_mapping
!= page_rmapping(page
))
1326 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1328 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1329 if (unlikely(!page
))
1332 if (!PageAnon(page
)) {
1333 if (pte_dirty(ptent
)) {
1335 set_page_dirty(page
);
1337 if (pte_young(ptent
) &&
1338 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1339 mark_page_accessed(page
);
1341 rss
[mm_counter(page
)]--;
1342 page_remove_rmap(page
, false);
1343 if (unlikely(page_mapcount(page
) < 0))
1344 print_bad_pte(vma
, addr
, ptent
, page
);
1345 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1353 entry
= pte_to_swp_entry(ptent
);
1354 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1355 struct page
*page
= device_private_entry_to_page(entry
);
1357 if (unlikely(details
&& details
->check_mapping
)) {
1359 * unmap_shared_mapping_pages() wants to
1360 * invalidate cache without truncating:
1361 * unmap shared but keep private pages.
1363 if (details
->check_mapping
!=
1364 page_rmapping(page
))
1368 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1369 rss
[mm_counter(page
)]--;
1370 page_remove_rmap(page
, false);
1375 /* If details->check_mapping, we leave swap entries. */
1376 if (unlikely(details
))
1379 entry
= pte_to_swp_entry(ptent
);
1380 if (!non_swap_entry(entry
))
1382 else if (is_migration_entry(entry
)) {
1385 page
= migration_entry_to_page(entry
);
1386 rss
[mm_counter(page
)]--;
1388 if (unlikely(!free_swap_and_cache(entry
)))
1389 print_bad_pte(vma
, addr
, ptent
, NULL
);
1390 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1391 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1393 add_mm_rss_vec(mm
, rss
);
1394 arch_leave_lazy_mmu_mode();
1396 /* Do the actual TLB flush before dropping ptl */
1398 tlb_flush_mmu_tlbonly(tlb
);
1399 pte_unmap_unlock(start_pte
, ptl
);
1402 * If we forced a TLB flush (either due to running out of
1403 * batch buffers or because we needed to flush dirty TLB
1404 * entries before releasing the ptl), free the batched
1405 * memory too. Restart if we didn't do everything.
1409 tlb_flush_mmu_free(tlb
);
1417 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1418 struct vm_area_struct
*vma
, pud_t
*pud
,
1419 unsigned long addr
, unsigned long end
,
1420 struct zap_details
*details
)
1425 pmd
= pmd_offset(pud
, addr
);
1427 next
= pmd_addr_end(addr
, end
);
1428 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1429 if (next
- addr
!= HPAGE_PMD_SIZE
)
1430 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1431 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1436 * Here there can be other concurrent MADV_DONTNEED or
1437 * trans huge page faults running, and if the pmd is
1438 * none or trans huge it can change under us. This is
1439 * because MADV_DONTNEED holds the mmap_sem in read
1442 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1444 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1447 } while (pmd
++, addr
= next
, addr
!= end
);
1452 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1453 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1454 unsigned long addr
, unsigned long end
,
1455 struct zap_details
*details
)
1460 pud
= pud_offset(p4d
, addr
);
1462 next
= pud_addr_end(addr
, end
);
1463 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1464 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1465 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1466 split_huge_pud(vma
, pud
, addr
);
1467 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1471 if (pud_none_or_clear_bad(pud
))
1473 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1476 } while (pud
++, addr
= next
, addr
!= end
);
1481 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1482 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1483 unsigned long addr
, unsigned long end
,
1484 struct zap_details
*details
)
1489 p4d
= p4d_offset(pgd
, addr
);
1491 next
= p4d_addr_end(addr
, end
);
1492 if (p4d_none_or_clear_bad(p4d
))
1494 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1495 } while (p4d
++, addr
= next
, addr
!= end
);
1500 void unmap_page_range(struct mmu_gather
*tlb
,
1501 struct vm_area_struct
*vma
,
1502 unsigned long addr
, unsigned long end
,
1503 struct zap_details
*details
)
1508 BUG_ON(addr
>= end
);
1509 tlb_start_vma(tlb
, vma
);
1510 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1512 next
= pgd_addr_end(addr
, end
);
1513 if (pgd_none_or_clear_bad(pgd
))
1515 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1516 } while (pgd
++, addr
= next
, addr
!= end
);
1517 tlb_end_vma(tlb
, vma
);
1521 static void unmap_single_vma(struct mmu_gather
*tlb
,
1522 struct vm_area_struct
*vma
, unsigned long start_addr
,
1523 unsigned long end_addr
,
1524 struct zap_details
*details
)
1526 unsigned long start
= max(vma
->vm_start
, start_addr
);
1529 if (start
>= vma
->vm_end
)
1531 end
= min(vma
->vm_end
, end_addr
);
1532 if (end
<= vma
->vm_start
)
1536 uprobe_munmap(vma
, start
, end
);
1538 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1539 untrack_pfn(vma
, 0, 0);
1542 if (unlikely(is_vm_hugetlb_page(vma
))) {
1544 * It is undesirable to test vma->vm_file as it
1545 * should be non-null for valid hugetlb area.
1546 * However, vm_file will be NULL in the error
1547 * cleanup path of mmap_region. When
1548 * hugetlbfs ->mmap method fails,
1549 * mmap_region() nullifies vma->vm_file
1550 * before calling this function to clean up.
1551 * Since no pte has actually been setup, it is
1552 * safe to do nothing in this case.
1555 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1556 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1557 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1560 unmap_page_range(tlb
, vma
, start
, end
, details
);
1565 * unmap_vmas - unmap a range of memory covered by a list of vma's
1566 * @tlb: address of the caller's struct mmu_gather
1567 * @vma: the starting vma
1568 * @start_addr: virtual address at which to start unmapping
1569 * @end_addr: virtual address at which to end unmapping
1571 * Unmap all pages in the vma list.
1573 * Only addresses between `start' and `end' will be unmapped.
1575 * The VMA list must be sorted in ascending virtual address order.
1577 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1578 * range after unmap_vmas() returns. So the only responsibility here is to
1579 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1580 * drops the lock and schedules.
1582 void unmap_vmas(struct mmu_gather
*tlb
,
1583 struct vm_area_struct
*vma
, unsigned long start_addr
,
1584 unsigned long end_addr
)
1586 struct mm_struct
*mm
= vma
->vm_mm
;
1588 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1589 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1590 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1591 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1595 * zap_page_range - remove user pages in a given range
1596 * @vma: vm_area_struct holding the applicable pages
1597 * @start: starting address of pages to zap
1598 * @size: number of bytes to zap
1600 * Caller must protect the VMA list
1602 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1605 struct mm_struct
*mm
= vma
->vm_mm
;
1606 struct mmu_gather tlb
;
1607 unsigned long end
= start
+ size
;
1610 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1611 update_hiwater_rss(mm
);
1612 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1613 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
1614 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1617 * zap_page_range does not specify whether mmap_sem should be
1618 * held for read or write. That allows parallel zap_page_range
1619 * operations to unmap a PTE and defer a flush meaning that
1620 * this call observes pte_none and fails to flush the TLB.
1621 * Rather than adding a complex API, ensure that no stale
1622 * TLB entries exist when this call returns.
1624 flush_tlb_range(vma
, start
, end
);
1627 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1628 tlb_finish_mmu(&tlb
, start
, end
);
1632 * zap_page_range_single - remove user pages in a given range
1633 * @vma: vm_area_struct holding the applicable pages
1634 * @address: starting address of pages to zap
1635 * @size: number of bytes to zap
1636 * @details: details of shared cache invalidation
1638 * The range must fit into one VMA.
1640 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1641 unsigned long size
, struct zap_details
*details
)
1643 struct mm_struct
*mm
= vma
->vm_mm
;
1644 struct mmu_gather tlb
;
1645 unsigned long end
= address
+ size
;
1648 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1649 update_hiwater_rss(mm
);
1650 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1651 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1652 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1653 tlb_finish_mmu(&tlb
, address
, end
);
1657 * zap_vma_ptes - remove ptes mapping the vma
1658 * @vma: vm_area_struct holding ptes to be zapped
1659 * @address: starting address of pages to zap
1660 * @size: number of bytes to zap
1662 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664 * The entire address range must be fully contained within the vma.
1666 * Returns 0 if successful.
1668 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1671 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1672 !(vma
->vm_flags
& VM_PFNMAP
))
1674 zap_page_range_single(vma
, address
, size
, NULL
);
1677 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1679 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1687 pgd
= pgd_offset(mm
, addr
);
1688 p4d
= p4d_alloc(mm
, pgd
, addr
);
1691 pud
= pud_alloc(mm
, p4d
, addr
);
1694 pmd
= pmd_alloc(mm
, pud
, addr
);
1698 VM_BUG_ON(pmd_trans_huge(*pmd
));
1699 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1703 * This is the old fallback for page remapping.
1705 * For historical reasons, it only allows reserved pages. Only
1706 * old drivers should use this, and they needed to mark their
1707 * pages reserved for the old functions anyway.
1709 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1710 struct page
*page
, pgprot_t prot
)
1712 struct mm_struct
*mm
= vma
->vm_mm
;
1721 flush_dcache_page(page
);
1722 pte
= get_locked_pte(mm
, addr
, &ptl
);
1726 if (!pte_none(*pte
))
1729 /* Ok, finally just insert the thing.. */
1731 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1732 page_add_file_rmap(page
, false);
1733 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1736 pte_unmap_unlock(pte
, ptl
);
1739 pte_unmap_unlock(pte
, ptl
);
1745 * vm_insert_page - insert single page into user vma
1746 * @vma: user vma to map to
1747 * @addr: target user address of this page
1748 * @page: source kernel page
1750 * This allows drivers to insert individual pages they've allocated
1753 * The page has to be a nice clean _individual_ kernel allocation.
1754 * If you allocate a compound page, you need to have marked it as
1755 * such (__GFP_COMP), or manually just split the page up yourself
1756 * (see split_page()).
1758 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1759 * took an arbitrary page protection parameter. This doesn't allow
1760 * that. Your vma protection will have to be set up correctly, which
1761 * means that if you want a shared writable mapping, you'd better
1762 * ask for a shared writable mapping!
1764 * The page does not need to be reserved.
1766 * Usually this function is called from f_op->mmap() handler
1767 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1768 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1769 * function from other places, for example from page-fault handler.
1771 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1774 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1776 if (!page_count(page
))
1778 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1779 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1780 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1781 vma
->vm_flags
|= VM_MIXEDMAP
;
1783 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1785 EXPORT_SYMBOL(vm_insert_page
);
1787 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1788 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1790 struct mm_struct
*mm
= vma
->vm_mm
;
1796 pte
= get_locked_pte(mm
, addr
, &ptl
);
1800 if (!pte_none(*pte
)) {
1803 * For read faults on private mappings the PFN passed
1804 * in may not match the PFN we have mapped if the
1805 * mapped PFN is a writeable COW page. In the mkwrite
1806 * case we are creating a writable PTE for a shared
1807 * mapping and we expect the PFNs to match. If they
1808 * don't match, we are likely racing with block
1809 * allocation and mapping invalidation so just skip the
1812 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1813 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1822 /* Ok, finally just insert the thing.. */
1823 if (pfn_t_devmap(pfn
))
1824 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1826 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1830 entry
= pte_mkyoung(entry
);
1831 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1834 set_pte_at(mm
, addr
, pte
, entry
);
1835 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1839 pte_unmap_unlock(pte
, ptl
);
1845 * vm_insert_pfn - insert single pfn into user vma
1846 * @vma: user vma to map to
1847 * @addr: target user address of this page
1848 * @pfn: source kernel pfn
1850 * Similar to vm_insert_page, this allows drivers to insert individual pages
1851 * they've allocated into a user vma. Same comments apply.
1853 * This function should only be called from a vm_ops->fault handler, and
1854 * in that case the handler should return NULL.
1856 * vma cannot be a COW mapping.
1858 * As this is called only for pages that do not currently exist, we
1859 * do not need to flush old virtual caches or the TLB.
1861 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1864 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1866 EXPORT_SYMBOL(vm_insert_pfn
);
1869 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1870 * @vma: user vma to map to
1871 * @addr: target user address of this page
1872 * @pfn: source kernel pfn
1873 * @pgprot: pgprot flags for the inserted page
1875 * This is exactly like vm_insert_pfn, except that it allows drivers to
1876 * to override pgprot on a per-page basis.
1878 * This only makes sense for IO mappings, and it makes no sense for
1879 * cow mappings. In general, using multiple vmas is preferable;
1880 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1883 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1884 unsigned long pfn
, pgprot_t pgprot
)
1888 * Technically, architectures with pte_special can avoid all these
1889 * restrictions (same for remap_pfn_range). However we would like
1890 * consistency in testing and feature parity among all, so we should
1891 * try to keep these invariants in place for everybody.
1893 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1894 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1895 (VM_PFNMAP
|VM_MIXEDMAP
));
1896 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1897 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1899 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1902 if (!pfn_modify_allowed(pfn
, pgprot
))
1905 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1907 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1912 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1914 static int __vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1915 pfn_t pfn
, bool mkwrite
)
1917 pgprot_t pgprot
= vma
->vm_page_prot
;
1919 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1921 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1924 track_pfn_insert(vma
, &pgprot
, pfn
);
1926 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1930 * If we don't have pte special, then we have to use the pfn_valid()
1931 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932 * refcount the page if pfn_valid is true (hence insert_page rather
1933 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1934 * without pte special, it would there be refcounted as a normal page.
1936 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1940 * At this point we are committed to insert_page()
1941 * regardless of whether the caller specified flags that
1942 * result in pfn_t_has_page() == false.
1944 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1945 return insert_page(vma
, addr
, page
, pgprot
);
1947 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1950 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1953 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1956 EXPORT_SYMBOL(vm_insert_mixed
);
1958 int vm_insert_mixed_mkwrite(struct vm_area_struct
*vma
, unsigned long addr
,
1961 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1963 EXPORT_SYMBOL(vm_insert_mixed_mkwrite
);
1966 * maps a range of physical memory into the requested pages. the old
1967 * mappings are removed. any references to nonexistent pages results
1968 * in null mappings (currently treated as "copy-on-access")
1970 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1971 unsigned long addr
, unsigned long end
,
1972 unsigned long pfn
, pgprot_t prot
)
1978 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1981 arch_enter_lazy_mmu_mode();
1983 BUG_ON(!pte_none(*pte
));
1984 if (!pfn_modify_allowed(pfn
, prot
)) {
1988 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1990 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1991 arch_leave_lazy_mmu_mode();
1992 pte_unmap_unlock(pte
- 1, ptl
);
1996 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1997 unsigned long addr
, unsigned long end
,
1998 unsigned long pfn
, pgprot_t prot
)
2004 pfn
-= addr
>> PAGE_SHIFT
;
2005 pmd
= pmd_alloc(mm
, pud
, addr
);
2008 VM_BUG_ON(pmd_trans_huge(*pmd
));
2010 next
= pmd_addr_end(addr
, end
);
2011 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2012 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2015 } while (pmd
++, addr
= next
, addr
!= end
);
2019 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2020 unsigned long addr
, unsigned long end
,
2021 unsigned long pfn
, pgprot_t prot
)
2027 pfn
-= addr
>> PAGE_SHIFT
;
2028 pud
= pud_alloc(mm
, p4d
, addr
);
2032 next
= pud_addr_end(addr
, end
);
2033 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2034 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2037 } while (pud
++, addr
= next
, addr
!= end
);
2041 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2042 unsigned long addr
, unsigned long end
,
2043 unsigned long pfn
, pgprot_t prot
)
2049 pfn
-= addr
>> PAGE_SHIFT
;
2050 p4d
= p4d_alloc(mm
, pgd
, addr
);
2054 next
= p4d_addr_end(addr
, end
);
2055 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2056 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2059 } while (p4d
++, addr
= next
, addr
!= end
);
2064 * remap_pfn_range - remap kernel memory to userspace
2065 * @vma: user vma to map to
2066 * @addr: target user address to start at
2067 * @pfn: physical address of kernel memory
2068 * @size: size of map area
2069 * @prot: page protection flags for this mapping
2071 * Note: this is only safe if the mm semaphore is held when called.
2073 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2074 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2078 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2079 struct mm_struct
*mm
= vma
->vm_mm
;
2080 unsigned long remap_pfn
= pfn
;
2084 * Physically remapped pages are special. Tell the
2085 * rest of the world about it:
2086 * VM_IO tells people not to look at these pages
2087 * (accesses can have side effects).
2088 * VM_PFNMAP tells the core MM that the base pages are just
2089 * raw PFN mappings, and do not have a "struct page" associated
2092 * Disable vma merging and expanding with mremap().
2094 * Omit vma from core dump, even when VM_IO turned off.
2096 * There's a horrible special case to handle copy-on-write
2097 * behaviour that some programs depend on. We mark the "original"
2098 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2099 * See vm_normal_page() for details.
2101 if (is_cow_mapping(vma
->vm_flags
)) {
2102 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2104 vma
->vm_pgoff
= pfn
;
2107 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2111 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2113 BUG_ON(addr
>= end
);
2114 pfn
-= addr
>> PAGE_SHIFT
;
2115 pgd
= pgd_offset(mm
, addr
);
2116 flush_cache_range(vma
, addr
, end
);
2118 next
= pgd_addr_end(addr
, end
);
2119 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2120 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2123 } while (pgd
++, addr
= next
, addr
!= end
);
2126 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2130 EXPORT_SYMBOL(remap_pfn_range
);
2133 * vm_iomap_memory - remap memory to userspace
2134 * @vma: user vma to map to
2135 * @start: start of area
2136 * @len: size of area
2138 * This is a simplified io_remap_pfn_range() for common driver use. The
2139 * driver just needs to give us the physical memory range to be mapped,
2140 * we'll figure out the rest from the vma information.
2142 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2143 * whatever write-combining details or similar.
2145 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2147 unsigned long vm_len
, pfn
, pages
;
2149 /* Check that the physical memory area passed in looks valid */
2150 if (start
+ len
< start
)
2153 * You *really* shouldn't map things that aren't page-aligned,
2154 * but we've historically allowed it because IO memory might
2155 * just have smaller alignment.
2157 len
+= start
& ~PAGE_MASK
;
2158 pfn
= start
>> PAGE_SHIFT
;
2159 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2160 if (pfn
+ pages
< pfn
)
2163 /* We start the mapping 'vm_pgoff' pages into the area */
2164 if (vma
->vm_pgoff
> pages
)
2166 pfn
+= vma
->vm_pgoff
;
2167 pages
-= vma
->vm_pgoff
;
2169 /* Can we fit all of the mapping? */
2170 vm_len
= vma
->vm_end
- vma
->vm_start
;
2171 if (vm_len
>> PAGE_SHIFT
> pages
)
2174 /* Ok, let it rip */
2175 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2177 EXPORT_SYMBOL(vm_iomap_memory
);
2179 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2180 unsigned long addr
, unsigned long end
,
2181 pte_fn_t fn
, void *data
)
2186 spinlock_t
*uninitialized_var(ptl
);
2188 pte
= (mm
== &init_mm
) ?
2189 pte_alloc_kernel(pmd
, addr
) :
2190 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2194 BUG_ON(pmd_huge(*pmd
));
2196 arch_enter_lazy_mmu_mode();
2198 token
= pmd_pgtable(*pmd
);
2201 err
= fn(pte
++, token
, addr
, data
);
2204 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2206 arch_leave_lazy_mmu_mode();
2209 pte_unmap_unlock(pte
-1, ptl
);
2213 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2214 unsigned long addr
, unsigned long end
,
2215 pte_fn_t fn
, void *data
)
2221 BUG_ON(pud_huge(*pud
));
2223 pmd
= pmd_alloc(mm
, pud
, addr
);
2227 next
= pmd_addr_end(addr
, end
);
2228 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2231 } while (pmd
++, addr
= next
, addr
!= end
);
2235 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2236 unsigned long addr
, unsigned long end
,
2237 pte_fn_t fn
, void *data
)
2243 pud
= pud_alloc(mm
, p4d
, addr
);
2247 next
= pud_addr_end(addr
, end
);
2248 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2251 } while (pud
++, addr
= next
, addr
!= end
);
2255 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2256 unsigned long addr
, unsigned long end
,
2257 pte_fn_t fn
, void *data
)
2263 p4d
= p4d_alloc(mm
, pgd
, addr
);
2267 next
= p4d_addr_end(addr
, end
);
2268 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2271 } while (p4d
++, addr
= next
, addr
!= end
);
2276 * Scan a region of virtual memory, filling in page tables as necessary
2277 * and calling a provided function on each leaf page table.
2279 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2280 unsigned long size
, pte_fn_t fn
, void *data
)
2284 unsigned long end
= addr
+ size
;
2287 if (WARN_ON(addr
>= end
))
2290 pgd
= pgd_offset(mm
, addr
);
2292 next
= pgd_addr_end(addr
, end
);
2293 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2296 } while (pgd
++, addr
= next
, addr
!= end
);
2300 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2303 * handle_pte_fault chooses page fault handler according to an entry which was
2304 * read non-atomically. Before making any commitment, on those architectures
2305 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2306 * parts, do_swap_page must check under lock before unmapping the pte and
2307 * proceeding (but do_wp_page is only called after already making such a check;
2308 * and do_anonymous_page can safely check later on).
2310 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2311 pte_t
*page_table
, pte_t orig_pte
)
2314 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2315 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2316 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2318 same
= pte_same(*page_table
, orig_pte
);
2322 pte_unmap(page_table
);
2326 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2328 debug_dma_assert_idle(src
);
2331 * If the source page was a PFN mapping, we don't have
2332 * a "struct page" for it. We do a best-effort copy by
2333 * just copying from the original user address. If that
2334 * fails, we just zero-fill it. Live with it.
2336 if (unlikely(!src
)) {
2337 void *kaddr
= kmap_atomic(dst
);
2338 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2341 * This really shouldn't fail, because the page is there
2342 * in the page tables. But it might just be unreadable,
2343 * in which case we just give up and fill the result with
2346 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2348 kunmap_atomic(kaddr
);
2349 flush_dcache_page(dst
);
2351 copy_user_highpage(dst
, src
, va
, vma
);
2354 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2356 struct file
*vm_file
= vma
->vm_file
;
2359 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2362 * Special mappings (e.g. VDSO) do not have any file so fake
2363 * a default GFP_KERNEL for them.
2369 * Notify the address space that the page is about to become writable so that
2370 * it can prohibit this or wait for the page to get into an appropriate state.
2372 * We do this without the lock held, so that it can sleep if it needs to.
2374 static int do_page_mkwrite(struct vm_fault
*vmf
)
2377 struct page
*page
= vmf
->page
;
2378 unsigned int old_flags
= vmf
->flags
;
2380 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2382 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2383 /* Restore original flags so that caller is not surprised */
2384 vmf
->flags
= old_flags
;
2385 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2387 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2389 if (!page
->mapping
) {
2391 return 0; /* retry */
2393 ret
|= VM_FAULT_LOCKED
;
2395 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2400 * Handle dirtying of a page in shared file mapping on a write fault.
2402 * The function expects the page to be locked and unlocks it.
2404 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2407 struct address_space
*mapping
;
2409 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2411 dirtied
= set_page_dirty(page
);
2412 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2414 * Take a local copy of the address_space - page.mapping may be zeroed
2415 * by truncate after unlock_page(). The address_space itself remains
2416 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2417 * release semantics to prevent the compiler from undoing this copying.
2419 mapping
= page_rmapping(page
);
2422 if ((dirtied
|| page_mkwrite
) && mapping
) {
2424 * Some device drivers do not set page.mapping
2425 * but still dirty their pages
2427 balance_dirty_pages_ratelimited(mapping
);
2431 file_update_time(vma
->vm_file
);
2435 * Handle write page faults for pages that can be reused in the current vma
2437 * This can happen either due to the mapping being with the VM_SHARED flag,
2438 * or due to us being the last reference standing to the page. In either
2439 * case, all we need to do here is to mark the page as writable and update
2440 * any related book-keeping.
2442 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2443 __releases(vmf
->ptl
)
2445 struct vm_area_struct
*vma
= vmf
->vma
;
2446 struct page
*page
= vmf
->page
;
2449 * Clear the pages cpupid information as the existing
2450 * information potentially belongs to a now completely
2451 * unrelated process.
2454 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2456 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2457 entry
= pte_mkyoung(vmf
->orig_pte
);
2458 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2459 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2460 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2461 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2465 * Handle the case of a page which we actually need to copy to a new page.
2467 * Called with mmap_sem locked and the old page referenced, but
2468 * without the ptl held.
2470 * High level logic flow:
2472 * - Allocate a page, copy the content of the old page to the new one.
2473 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2474 * - Take the PTL. If the pte changed, bail out and release the allocated page
2475 * - If the pte is still the way we remember it, update the page table and all
2476 * relevant references. This includes dropping the reference the page-table
2477 * held to the old page, as well as updating the rmap.
2478 * - In any case, unlock the PTL and drop the reference we took to the old page.
2480 static int wp_page_copy(struct vm_fault
*vmf
)
2482 struct vm_area_struct
*vma
= vmf
->vma
;
2483 struct mm_struct
*mm
= vma
->vm_mm
;
2484 struct page
*old_page
= vmf
->page
;
2485 struct page
*new_page
= NULL
;
2487 int page_copied
= 0;
2488 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2489 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2490 struct mem_cgroup
*memcg
;
2492 if (unlikely(anon_vma_prepare(vma
)))
2495 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2496 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2501 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2505 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2508 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2511 __SetPageUptodate(new_page
);
2513 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2516 * Re-check the pte - we dropped the lock
2518 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2519 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2521 if (!PageAnon(old_page
)) {
2522 dec_mm_counter_fast(mm
,
2523 mm_counter_file(old_page
));
2524 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2527 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2529 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2530 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2531 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2533 * Clear the pte entry and flush it first, before updating the
2534 * pte with the new entry. This will avoid a race condition
2535 * seen in the presence of one thread doing SMC and another
2538 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2539 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2540 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2541 lru_cache_add_active_or_unevictable(new_page
, vma
);
2543 * We call the notify macro here because, when using secondary
2544 * mmu page tables (such as kvm shadow page tables), we want the
2545 * new page to be mapped directly into the secondary page table.
2547 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2548 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2551 * Only after switching the pte to the new page may
2552 * we remove the mapcount here. Otherwise another
2553 * process may come and find the rmap count decremented
2554 * before the pte is switched to the new page, and
2555 * "reuse" the old page writing into it while our pte
2556 * here still points into it and can be read by other
2559 * The critical issue is to order this
2560 * page_remove_rmap with the ptp_clear_flush above.
2561 * Those stores are ordered by (if nothing else,)
2562 * the barrier present in the atomic_add_negative
2563 * in page_remove_rmap.
2565 * Then the TLB flush in ptep_clear_flush ensures that
2566 * no process can access the old page before the
2567 * decremented mapcount is visible. And the old page
2568 * cannot be reused until after the decremented
2569 * mapcount is visible. So transitively, TLBs to
2570 * old page will be flushed before it can be reused.
2572 page_remove_rmap(old_page
, false);
2575 /* Free the old page.. */
2576 new_page
= old_page
;
2579 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2585 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2586 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2589 * Don't let another task, with possibly unlocked vma,
2590 * keep the mlocked page.
2592 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2593 lock_page(old_page
); /* LRU manipulation */
2594 if (PageMlocked(old_page
))
2595 munlock_vma_page(old_page
);
2596 unlock_page(old_page
);
2600 return page_copied
? VM_FAULT_WRITE
: 0;
2606 return VM_FAULT_OOM
;
2610 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2611 * writeable once the page is prepared
2613 * @vmf: structure describing the fault
2615 * This function handles all that is needed to finish a write page fault in a
2616 * shared mapping due to PTE being read-only once the mapped page is prepared.
2617 * It handles locking of PTE and modifying it. The function returns
2618 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2621 * The function expects the page to be locked or other protection against
2622 * concurrent faults / writeback (such as DAX radix tree locks).
2624 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2626 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2627 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2630 * We might have raced with another page fault while we released the
2631 * pte_offset_map_lock.
2633 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2634 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2635 return VM_FAULT_NOPAGE
;
2642 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2645 static int wp_pfn_shared(struct vm_fault
*vmf
)
2647 struct vm_area_struct
*vma
= vmf
->vma
;
2649 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2652 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2653 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2654 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2655 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2657 return finish_mkwrite_fault(vmf
);
2660 return VM_FAULT_WRITE
;
2663 static int wp_page_shared(struct vm_fault
*vmf
)
2664 __releases(vmf
->ptl
)
2666 struct vm_area_struct
*vma
= vmf
->vma
;
2668 get_page(vmf
->page
);
2670 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2673 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2674 tmp
= do_page_mkwrite(vmf
);
2675 if (unlikely(!tmp
|| (tmp
&
2676 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2677 put_page(vmf
->page
);
2680 tmp
= finish_mkwrite_fault(vmf
);
2681 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2682 unlock_page(vmf
->page
);
2683 put_page(vmf
->page
);
2688 lock_page(vmf
->page
);
2690 fault_dirty_shared_page(vma
, vmf
->page
);
2691 put_page(vmf
->page
);
2693 return VM_FAULT_WRITE
;
2697 * This routine handles present pages, when users try to write
2698 * to a shared page. It is done by copying the page to a new address
2699 * and decrementing the shared-page counter for the old page.
2701 * Note that this routine assumes that the protection checks have been
2702 * done by the caller (the low-level page fault routine in most cases).
2703 * Thus we can safely just mark it writable once we've done any necessary
2706 * We also mark the page dirty at this point even though the page will
2707 * change only once the write actually happens. This avoids a few races,
2708 * and potentially makes it more efficient.
2710 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2711 * but allow concurrent faults), with pte both mapped and locked.
2712 * We return with mmap_sem still held, but pte unmapped and unlocked.
2714 static int do_wp_page(struct vm_fault
*vmf
)
2715 __releases(vmf
->ptl
)
2717 struct vm_area_struct
*vma
= vmf
->vma
;
2719 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2722 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2725 * We should not cow pages in a shared writeable mapping.
2726 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2728 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2729 (VM_WRITE
|VM_SHARED
))
2730 return wp_pfn_shared(vmf
);
2732 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2733 return wp_page_copy(vmf
);
2737 * Take out anonymous pages first, anonymous shared vmas are
2738 * not dirty accountable.
2740 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2741 int total_map_swapcount
;
2742 if (!trylock_page(vmf
->page
)) {
2743 get_page(vmf
->page
);
2744 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2745 lock_page(vmf
->page
);
2746 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2747 vmf
->address
, &vmf
->ptl
);
2748 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2749 unlock_page(vmf
->page
);
2750 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2751 put_page(vmf
->page
);
2754 put_page(vmf
->page
);
2756 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2757 if (total_map_swapcount
== 1) {
2759 * The page is all ours. Move it to
2760 * our anon_vma so the rmap code will
2761 * not search our parent or siblings.
2762 * Protected against the rmap code by
2765 page_move_anon_rmap(vmf
->page
, vma
);
2767 unlock_page(vmf
->page
);
2769 return VM_FAULT_WRITE
;
2771 unlock_page(vmf
->page
);
2772 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2773 (VM_WRITE
|VM_SHARED
))) {
2774 return wp_page_shared(vmf
);
2778 * Ok, we need to copy. Oh, well..
2780 get_page(vmf
->page
);
2782 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2783 return wp_page_copy(vmf
);
2786 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2787 unsigned long start_addr
, unsigned long end_addr
,
2788 struct zap_details
*details
)
2790 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2793 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2794 struct zap_details
*details
)
2796 struct vm_area_struct
*vma
;
2797 pgoff_t vba
, vea
, zba
, zea
;
2799 vma_interval_tree_foreach(vma
, root
,
2800 details
->first_index
, details
->last_index
) {
2802 vba
= vma
->vm_pgoff
;
2803 vea
= vba
+ vma_pages(vma
) - 1;
2804 zba
= details
->first_index
;
2807 zea
= details
->last_index
;
2811 unmap_mapping_range_vma(vma
,
2812 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2813 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2819 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2820 * address_space corresponding to the specified page range in the underlying
2823 * @mapping: the address space containing mmaps to be unmapped.
2824 * @holebegin: byte in first page to unmap, relative to the start of
2825 * the underlying file. This will be rounded down to a PAGE_SIZE
2826 * boundary. Note that this is different from truncate_pagecache(), which
2827 * must keep the partial page. In contrast, we must get rid of
2829 * @holelen: size of prospective hole in bytes. This will be rounded
2830 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2832 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2833 * but 0 when invalidating pagecache, don't throw away private data.
2835 void unmap_mapping_range(struct address_space
*mapping
,
2836 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2838 struct zap_details details
= { };
2839 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2840 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2842 /* Check for overflow. */
2843 if (sizeof(holelen
) > sizeof(hlen
)) {
2845 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2846 if (holeend
& ~(long long)ULONG_MAX
)
2847 hlen
= ULONG_MAX
- hba
+ 1;
2850 details
.check_mapping
= even_cows
? NULL
: mapping
;
2851 details
.first_index
= hba
;
2852 details
.last_index
= hba
+ hlen
- 1;
2853 if (details
.last_index
< details
.first_index
)
2854 details
.last_index
= ULONG_MAX
;
2856 i_mmap_lock_write(mapping
);
2857 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2858 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2859 i_mmap_unlock_write(mapping
);
2861 EXPORT_SYMBOL(unmap_mapping_range
);
2864 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2865 * but allow concurrent faults), and pte mapped but not yet locked.
2866 * We return with pte unmapped and unlocked.
2868 * We return with the mmap_sem locked or unlocked in the same cases
2869 * as does filemap_fault().
2871 int do_swap_page(struct vm_fault
*vmf
)
2873 struct vm_area_struct
*vma
= vmf
->vma
;
2874 struct page
*page
= NULL
, *swapcache
;
2875 struct mem_cgroup
*memcg
;
2876 struct vma_swap_readahead swap_ra
;
2882 bool vma_readahead
= swap_use_vma_readahead();
2885 page
= swap_readahead_detect(vmf
, &swap_ra
);
2886 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
)) {
2892 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2893 if (unlikely(non_swap_entry(entry
))) {
2894 if (is_migration_entry(entry
)) {
2895 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2897 } else if (is_device_private_entry(entry
)) {
2899 * For un-addressable device memory we call the pgmap
2900 * fault handler callback. The callback must migrate
2901 * the page back to some CPU accessible page.
2903 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
2904 vmf
->flags
, vmf
->pmd
);
2905 } else if (is_hwpoison_entry(entry
)) {
2906 ret
= VM_FAULT_HWPOISON
;
2908 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2909 ret
= VM_FAULT_SIGBUS
;
2913 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2915 page
= lookup_swap_cache(entry
, vma_readahead
? vma
: NULL
,
2919 page
= do_swap_page_readahead(entry
,
2920 GFP_HIGHUSER_MOVABLE
, vmf
, &swap_ra
);
2922 page
= swapin_readahead(entry
,
2923 GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
2926 * Back out if somebody else faulted in this pte
2927 * while we released the pte lock.
2929 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2930 vmf
->address
, &vmf
->ptl
);
2931 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2933 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2937 /* Had to read the page from swap area: Major fault */
2938 ret
= VM_FAULT_MAJOR
;
2939 count_vm_event(PGMAJFAULT
);
2940 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2941 } else if (PageHWPoison(page
)) {
2943 * hwpoisoned dirty swapcache pages are kept for killing
2944 * owner processes (which may be unknown at hwpoison time)
2946 ret
= VM_FAULT_HWPOISON
;
2947 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2953 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2955 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2957 ret
|= VM_FAULT_RETRY
;
2962 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2963 * release the swapcache from under us. The page pin, and pte_same
2964 * test below, are not enough to exclude that. Even if it is still
2965 * swapcache, we need to check that the page's swap has not changed.
2967 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2970 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2971 if (unlikely(!page
)) {
2977 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2984 * Back out if somebody else already faulted in this pte.
2986 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2988 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2991 if (unlikely(!PageUptodate(page
))) {
2992 ret
= VM_FAULT_SIGBUS
;
2997 * The page isn't present yet, go ahead with the fault.
2999 * Be careful about the sequence of operations here.
3000 * To get its accounting right, reuse_swap_page() must be called
3001 * while the page is counted on swap but not yet in mapcount i.e.
3002 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3003 * must be called after the swap_free(), or it will never succeed.
3006 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3007 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3008 pte
= mk_pte(page
, vma
->vm_page_prot
);
3009 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3010 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3011 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3012 ret
|= VM_FAULT_WRITE
;
3013 exclusive
= RMAP_EXCLUSIVE
;
3015 flush_icache_page(vma
, page
);
3016 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3017 pte
= pte_mksoft_dirty(pte
);
3018 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3019 vmf
->orig_pte
= pte
;
3020 if (page
== swapcache
) {
3021 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3022 mem_cgroup_commit_charge(page
, memcg
, true, false);
3023 activate_page(page
);
3024 } else { /* ksm created a completely new copy */
3025 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3026 mem_cgroup_commit_charge(page
, memcg
, false, false);
3027 lru_cache_add_active_or_unevictable(page
, vma
);
3031 if (mem_cgroup_swap_full(page
) ||
3032 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3033 try_to_free_swap(page
);
3035 if (page
!= swapcache
) {
3037 * Hold the lock to avoid the swap entry to be reused
3038 * until we take the PT lock for the pte_same() check
3039 * (to avoid false positives from pte_same). For
3040 * further safety release the lock after the swap_free
3041 * so that the swap count won't change under a
3042 * parallel locked swapcache.
3044 unlock_page(swapcache
);
3045 put_page(swapcache
);
3048 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3049 ret
|= do_wp_page(vmf
);
3050 if (ret
& VM_FAULT_ERROR
)
3051 ret
&= VM_FAULT_ERROR
;
3055 /* No need to invalidate - it was non-present before */
3056 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3058 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3062 mem_cgroup_cancel_charge(page
, memcg
, false);
3063 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3068 if (page
!= swapcache
) {
3069 unlock_page(swapcache
);
3070 put_page(swapcache
);
3076 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3077 * but allow concurrent faults), and pte mapped but not yet locked.
3078 * We return with mmap_sem still held, but pte unmapped and unlocked.
3080 static int do_anonymous_page(struct vm_fault
*vmf
)
3082 struct vm_area_struct
*vma
= vmf
->vma
;
3083 struct mem_cgroup
*memcg
;
3088 /* File mapping without ->vm_ops ? */
3089 if (vma
->vm_flags
& VM_SHARED
)
3090 return VM_FAULT_SIGBUS
;
3093 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3094 * pte_offset_map() on pmds where a huge pmd might be created
3095 * from a different thread.
3097 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3098 * parallel threads are excluded by other means.
3100 * Here we only have down_read(mmap_sem).
3102 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
3103 return VM_FAULT_OOM
;
3105 /* See the comment in pte_alloc_one_map() */
3106 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3109 /* Use the zero-page for reads */
3110 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3111 !mm_forbids_zeropage(vma
->vm_mm
)) {
3112 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3113 vma
->vm_page_prot
));
3114 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3115 vmf
->address
, &vmf
->ptl
);
3116 if (!pte_none(*vmf
->pte
))
3118 ret
= check_stable_address_space(vma
->vm_mm
);
3121 /* Deliver the page fault to userland, check inside PT lock */
3122 if (userfaultfd_missing(vma
)) {
3123 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3124 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3129 /* Allocate our own private page. */
3130 if (unlikely(anon_vma_prepare(vma
)))
3132 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3136 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
3140 * The memory barrier inside __SetPageUptodate makes sure that
3141 * preceeding stores to the page contents become visible before
3142 * the set_pte_at() write.
3144 __SetPageUptodate(page
);
3146 entry
= mk_pte(page
, vma
->vm_page_prot
);
3147 if (vma
->vm_flags
& VM_WRITE
)
3148 entry
= pte_mkwrite(pte_mkdirty(entry
));
3150 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3152 if (!pte_none(*vmf
->pte
))
3155 ret
= check_stable_address_space(vma
->vm_mm
);
3159 /* Deliver the page fault to userland, check inside PT lock */
3160 if (userfaultfd_missing(vma
)) {
3161 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3162 mem_cgroup_cancel_charge(page
, memcg
, false);
3164 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3167 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3168 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3169 mem_cgroup_commit_charge(page
, memcg
, false, false);
3170 lru_cache_add_active_or_unevictable(page
, vma
);
3172 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3174 /* No need to invalidate - it was non-present before */
3175 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3177 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3180 mem_cgroup_cancel_charge(page
, memcg
, false);
3186 return VM_FAULT_OOM
;
3190 * The mmap_sem must have been held on entry, and may have been
3191 * released depending on flags and vma->vm_ops->fault() return value.
3192 * See filemap_fault() and __lock_page_retry().
3194 static int __do_fault(struct vm_fault
*vmf
)
3196 struct vm_area_struct
*vma
= vmf
->vma
;
3200 * Preallocate pte before we take page_lock because this might lead to
3201 * deadlocks for memcg reclaim which waits for pages under writeback:
3203 * SetPageWriteback(A)
3209 * wait_on_page_writeback(A)
3210 * SetPageWriteback(B)
3212 * # flush A, B to clear the writeback
3214 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3215 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3217 if (!vmf
->prealloc_pte
)
3218 return VM_FAULT_OOM
;
3219 smp_wmb(); /* See comment in __pte_alloc() */
3222 ret
= vma
->vm_ops
->fault(vmf
);
3223 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3224 VM_FAULT_DONE_COW
)))
3227 if (unlikely(PageHWPoison(vmf
->page
))) {
3228 if (ret
& VM_FAULT_LOCKED
)
3229 unlock_page(vmf
->page
);
3230 put_page(vmf
->page
);
3232 return VM_FAULT_HWPOISON
;
3235 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3236 lock_page(vmf
->page
);
3238 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3244 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3249 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3251 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3254 static int pte_alloc_one_map(struct vm_fault
*vmf
)
3256 struct vm_area_struct
*vma
= vmf
->vma
;
3258 if (!pmd_none(*vmf
->pmd
))
3260 if (vmf
->prealloc_pte
) {
3261 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3262 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3263 spin_unlock(vmf
->ptl
);
3267 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
3268 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3269 spin_unlock(vmf
->ptl
);
3270 vmf
->prealloc_pte
= NULL
;
3271 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3272 return VM_FAULT_OOM
;
3276 * If a huge pmd materialized under us just retry later. Use
3277 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280 * running immediately after a huge pmd fault in a different thread of
3281 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282 * All we have to ensure is that it is a regular pmd that we can walk
3283 * with pte_offset_map() and we can do that through an atomic read in
3284 * C, which is what pmd_trans_unstable() provides.
3286 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3287 return VM_FAULT_NOPAGE
;
3290 * At this point we know that our vmf->pmd points to a page of ptes
3291 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3293 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294 * be valid and we will re-check to make sure the vmf->pte isn't
3295 * pte_none() under vmf->ptl protection when we return to
3298 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3303 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3305 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3307 unsigned long haddr
)
3309 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3310 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3312 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3317 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3319 struct vm_area_struct
*vma
= vmf
->vma
;
3321 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3323 * We are going to consume the prealloc table,
3324 * count that as nr_ptes.
3326 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
3327 vmf
->prealloc_pte
= NULL
;
3330 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3332 struct vm_area_struct
*vma
= vmf
->vma
;
3333 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3334 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3338 if (!transhuge_vma_suitable(vma
, haddr
))
3339 return VM_FAULT_FALLBACK
;
3341 ret
= VM_FAULT_FALLBACK
;
3342 page
= compound_head(page
);
3345 * Archs like ppc64 need additonal space to store information
3346 * related to pte entry. Use the preallocated table for that.
3348 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3349 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3350 if (!vmf
->prealloc_pte
)
3351 return VM_FAULT_OOM
;
3352 smp_wmb(); /* See comment in __pte_alloc() */
3355 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3356 if (unlikely(!pmd_none(*vmf
->pmd
)))
3359 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3360 flush_icache_page(vma
, page
+ i
);
3362 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3364 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3366 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
3367 page_add_file_rmap(page
, true);
3369 * deposit and withdraw with pmd lock held
3371 if (arch_needs_pgtable_deposit())
3372 deposit_prealloc_pte(vmf
);
3374 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3376 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3378 /* fault is handled */
3380 count_vm_event(THP_FILE_MAPPED
);
3382 spin_unlock(vmf
->ptl
);
3386 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3394 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3397 * @vmf: fault environment
3398 * @memcg: memcg to charge page (only for private mappings)
3399 * @page: page to map
3401 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3404 * Target users are page handler itself and implementations of
3405 * vm_ops->map_pages.
3407 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3410 struct vm_area_struct
*vma
= vmf
->vma
;
3411 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3415 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3416 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3418 VM_BUG_ON_PAGE(memcg
, page
);
3420 ret
= do_set_pmd(vmf
, page
);
3421 if (ret
!= VM_FAULT_FALLBACK
)
3426 ret
= pte_alloc_one_map(vmf
);
3431 /* Re-check under ptl */
3432 if (unlikely(!pte_none(*vmf
->pte
)))
3433 return VM_FAULT_NOPAGE
;
3435 flush_icache_page(vma
, page
);
3436 entry
= mk_pte(page
, vma
->vm_page_prot
);
3438 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3439 /* copy-on-write page */
3440 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3441 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3442 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3443 mem_cgroup_commit_charge(page
, memcg
, false, false);
3444 lru_cache_add_active_or_unevictable(page
, vma
);
3446 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3447 page_add_file_rmap(page
, false);
3449 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3451 /* no need to invalidate: a not-present page won't be cached */
3452 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3459 * finish_fault - finish page fault once we have prepared the page to fault
3461 * @vmf: structure describing the fault
3463 * This function handles all that is needed to finish a page fault once the
3464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465 * given page, adds reverse page mapping, handles memcg charges and LRU
3466 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3469 * The function expects the page to be locked and on success it consumes a
3470 * reference of a page being mapped (for the PTE which maps it).
3472 int finish_fault(struct vm_fault
*vmf
)
3477 /* Did we COW the page? */
3478 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3479 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3480 page
= vmf
->cow_page
;
3485 * check even for read faults because we might have lost our CoWed
3488 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3489 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3491 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3493 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3497 static unsigned long fault_around_bytes __read_mostly
=
3498 rounddown_pow_of_two(65536);
3500 #ifdef CONFIG_DEBUG_FS
3501 static int fault_around_bytes_get(void *data
, u64
*val
)
3503 *val
= fault_around_bytes
;
3508 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3509 * rounded down to nearest page order. It's what do_fault_around() expects to
3512 static int fault_around_bytes_set(void *data
, u64 val
)
3514 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3516 if (val
> PAGE_SIZE
)
3517 fault_around_bytes
= rounddown_pow_of_two(val
);
3519 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3522 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3523 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3525 static int __init
fault_around_debugfs(void)
3529 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3530 &fault_around_bytes_fops
);
3532 pr_warn("Failed to create fault_around_bytes in debugfs");
3535 late_initcall(fault_around_debugfs
);
3539 * do_fault_around() tries to map few pages around the fault address. The hope
3540 * is that the pages will be needed soon and this will lower the number of
3543 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3544 * not ready to be mapped: not up-to-date, locked, etc.
3546 * This function is called with the page table lock taken. In the split ptlock
3547 * case the page table lock only protects only those entries which belong to
3548 * the page table corresponding to the fault address.
3550 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3553 * fault_around_pages() defines how many pages we'll try to map.
3554 * do_fault_around() expects it to return a power of two less than or equal to
3557 * The virtual address of the area that we map is naturally aligned to the
3558 * fault_around_pages() value (and therefore to page order). This way it's
3559 * easier to guarantee that we don't cross page table boundaries.
3561 static int do_fault_around(struct vm_fault
*vmf
)
3563 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3564 pgoff_t start_pgoff
= vmf
->pgoff
;
3568 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3569 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3571 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3572 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3576 * end_pgoff is either end of page table or end of vma
3577 * or fault_around_pages() from start_pgoff, depending what is nearest.
3579 end_pgoff
= start_pgoff
-
3580 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3582 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3583 start_pgoff
+ nr_pages
- 1);
3585 if (pmd_none(*vmf
->pmd
)) {
3586 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3588 if (!vmf
->prealloc_pte
)
3590 smp_wmb(); /* See comment in __pte_alloc() */
3593 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3595 /* Huge page is mapped? Page fault is solved */
3596 if (pmd_trans_huge(*vmf
->pmd
)) {
3597 ret
= VM_FAULT_NOPAGE
;
3601 /* ->map_pages() haven't done anything useful. Cold page cache? */
3605 /* check if the page fault is solved */
3606 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3607 if (!pte_none(*vmf
->pte
))
3608 ret
= VM_FAULT_NOPAGE
;
3609 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3611 vmf
->address
= address
;
3616 static int do_read_fault(struct vm_fault
*vmf
)
3618 struct vm_area_struct
*vma
= vmf
->vma
;
3622 * Let's call ->map_pages() first and use ->fault() as fallback
3623 * if page by the offset is not ready to be mapped (cold cache or
3626 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3627 ret
= do_fault_around(vmf
);
3632 ret
= __do_fault(vmf
);
3633 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3636 ret
|= finish_fault(vmf
);
3637 unlock_page(vmf
->page
);
3638 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3639 put_page(vmf
->page
);
3643 static int do_cow_fault(struct vm_fault
*vmf
)
3645 struct vm_area_struct
*vma
= vmf
->vma
;
3648 if (unlikely(anon_vma_prepare(vma
)))
3649 return VM_FAULT_OOM
;
3651 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3653 return VM_FAULT_OOM
;
3655 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3656 &vmf
->memcg
, false)) {
3657 put_page(vmf
->cow_page
);
3658 return VM_FAULT_OOM
;
3661 ret
= __do_fault(vmf
);
3662 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3664 if (ret
& VM_FAULT_DONE_COW
)
3667 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3668 __SetPageUptodate(vmf
->cow_page
);
3670 ret
|= finish_fault(vmf
);
3671 unlock_page(vmf
->page
);
3672 put_page(vmf
->page
);
3673 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3677 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3678 put_page(vmf
->cow_page
);
3682 static int do_shared_fault(struct vm_fault
*vmf
)
3684 struct vm_area_struct
*vma
= vmf
->vma
;
3687 ret
= __do_fault(vmf
);
3688 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3692 * Check if the backing address space wants to know that the page is
3693 * about to become writable
3695 if (vma
->vm_ops
->page_mkwrite
) {
3696 unlock_page(vmf
->page
);
3697 tmp
= do_page_mkwrite(vmf
);
3698 if (unlikely(!tmp
||
3699 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3700 put_page(vmf
->page
);
3705 ret
|= finish_fault(vmf
);
3706 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3708 unlock_page(vmf
->page
);
3709 put_page(vmf
->page
);
3713 fault_dirty_shared_page(vma
, vmf
->page
);
3718 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719 * but allow concurrent faults).
3720 * The mmap_sem may have been released depending on flags and our
3721 * return value. See filemap_fault() and __lock_page_or_retry().
3723 static int do_fault(struct vm_fault
*vmf
)
3725 struct vm_area_struct
*vma
= vmf
->vma
;
3729 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3731 if (!vma
->vm_ops
->fault
) {
3733 * If we find a migration pmd entry or a none pmd entry, which
3734 * should never happen, return SIGBUS
3736 if (unlikely(!pmd_present(*vmf
->pmd
)))
3737 ret
= VM_FAULT_SIGBUS
;
3739 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3744 * Make sure this is not a temporary clearing of pte
3745 * by holding ptl and checking again. A R/M/W update
3746 * of pte involves: take ptl, clearing the pte so that
3747 * we don't have concurrent modification by hardware
3748 * followed by an update.
3750 if (unlikely(pte_none(*vmf
->pte
)))
3751 ret
= VM_FAULT_SIGBUS
;
3753 ret
= VM_FAULT_NOPAGE
;
3755 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3757 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3758 ret
= do_read_fault(vmf
);
3759 else if (!(vma
->vm_flags
& VM_SHARED
))
3760 ret
= do_cow_fault(vmf
);
3762 ret
= do_shared_fault(vmf
);
3764 /* preallocated pagetable is unused: free it */
3765 if (vmf
->prealloc_pte
) {
3766 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3767 vmf
->prealloc_pte
= NULL
;
3772 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3773 unsigned long addr
, int page_nid
,
3778 count_vm_numa_event(NUMA_HINT_FAULTS
);
3779 if (page_nid
== numa_node_id()) {
3780 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3781 *flags
|= TNF_FAULT_LOCAL
;
3784 return mpol_misplaced(page
, vma
, addr
);
3787 static int do_numa_page(struct vm_fault
*vmf
)
3789 struct vm_area_struct
*vma
= vmf
->vma
;
3790 struct page
*page
= NULL
;
3794 bool migrated
= false;
3796 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3800 * The "pte" at this point cannot be used safely without
3801 * validation through pte_unmap_same(). It's of NUMA type but
3802 * the pfn may be screwed if the read is non atomic.
3804 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3805 spin_lock(vmf
->ptl
);
3806 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3807 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3812 * Make it present again, Depending on how arch implementes non
3813 * accessible ptes, some can allow access by kernel mode.
3815 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3816 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3817 pte
= pte_mkyoung(pte
);
3819 pte
= pte_mkwrite(pte
);
3820 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3821 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3823 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3825 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3829 /* TODO: handle PTE-mapped THP */
3830 if (PageCompound(page
)) {
3831 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3836 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3837 * much anyway since they can be in shared cache state. This misses
3838 * the case where a mapping is writable but the process never writes
3839 * to it but pte_write gets cleared during protection updates and
3840 * pte_dirty has unpredictable behaviour between PTE scan updates,
3841 * background writeback, dirty balancing and application behaviour.
3843 if (!pte_write(pte
))
3844 flags
|= TNF_NO_GROUP
;
3847 * Flag if the page is shared between multiple address spaces. This
3848 * is later used when determining whether to group tasks together
3850 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3851 flags
|= TNF_SHARED
;
3853 last_cpupid
= page_cpupid_last(page
);
3854 page_nid
= page_to_nid(page
);
3855 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3857 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3858 if (target_nid
== -1) {
3863 /* Migrate to the requested node */
3864 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3866 page_nid
= target_nid
;
3867 flags
|= TNF_MIGRATED
;
3869 flags
|= TNF_MIGRATE_FAIL
;
3873 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3877 static inline int create_huge_pmd(struct vm_fault
*vmf
)
3879 if (vma_is_anonymous(vmf
->vma
))
3880 return do_huge_pmd_anonymous_page(vmf
);
3881 if (vmf
->vma
->vm_ops
->huge_fault
)
3882 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3883 return VM_FAULT_FALLBACK
;
3886 static int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3888 if (vma_is_anonymous(vmf
->vma
))
3889 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3890 if (vmf
->vma
->vm_ops
->huge_fault
)
3891 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3893 /* COW handled on pte level: split pmd */
3894 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3895 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3897 return VM_FAULT_FALLBACK
;
3900 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3902 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3905 static int create_huge_pud(struct vm_fault
*vmf
)
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908 /* No support for anonymous transparent PUD pages yet */
3909 if (vma_is_anonymous(vmf
->vma
))
3910 return VM_FAULT_FALLBACK
;
3911 if (vmf
->vma
->vm_ops
->huge_fault
)
3912 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914 return VM_FAULT_FALLBACK
;
3917 static int wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf
->vma
))
3922 return VM_FAULT_FALLBACK
;
3923 if (vmf
->vma
->vm_ops
->huge_fault
)
3924 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK
;
3930 * These routines also need to handle stuff like marking pages dirty
3931 * and/or accessed for architectures that don't do it in hardware (most
3932 * RISC architectures). The early dirtying is also good on the i386.
3934 * There is also a hook called "update_mmu_cache()" that architectures
3935 * with external mmu caches can use to update those (ie the Sparc or
3936 * PowerPC hashed page tables that act as extended TLBs).
3938 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3939 * concurrent faults).
3941 * The mmap_sem may have been released depending on flags and our return value.
3942 * See filemap_fault() and __lock_page_or_retry().
3944 static int handle_pte_fault(struct vm_fault
*vmf
)
3948 if (unlikely(pmd_none(*vmf
->pmd
))) {
3950 * Leave __pte_alloc() until later: because vm_ops->fault may
3951 * want to allocate huge page, and if we expose page table
3952 * for an instant, it will be difficult to retract from
3953 * concurrent faults and from rmap lookups.
3957 /* See comment in pte_alloc_one_map() */
3958 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3961 * A regular pmd is established and it can't morph into a huge
3962 * pmd from under us anymore at this point because we hold the
3963 * mmap_sem read mode and khugepaged takes it in write mode.
3964 * So now it's safe to run pte_offset_map().
3966 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3967 vmf
->orig_pte
= *vmf
->pte
;
3970 * some architectures can have larger ptes than wordsize,
3971 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3972 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3973 * atomic accesses. The code below just needs a consistent
3974 * view for the ifs and we later double check anyway with the
3975 * ptl lock held. So here a barrier will do.
3978 if (pte_none(vmf
->orig_pte
)) {
3979 pte_unmap(vmf
->pte
);
3985 if (vma_is_anonymous(vmf
->vma
))
3986 return do_anonymous_page(vmf
);
3988 return do_fault(vmf
);
3991 if (!pte_present(vmf
->orig_pte
))
3992 return do_swap_page(vmf
);
3994 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3995 return do_numa_page(vmf
);
3997 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3998 spin_lock(vmf
->ptl
);
3999 entry
= vmf
->orig_pte
;
4000 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
4002 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4003 if (!pte_write(entry
))
4004 return do_wp_page(vmf
);
4005 entry
= pte_mkdirty(entry
);
4007 entry
= pte_mkyoung(entry
);
4008 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4009 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4010 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4013 * This is needed only for protection faults but the arch code
4014 * is not yet telling us if this is a protection fault or not.
4015 * This still avoids useless tlb flushes for .text page faults
4018 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4019 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4022 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4027 * By the time we get here, we already hold the mm semaphore
4029 * The mmap_sem may have been released depending on flags and our
4030 * return value. See filemap_fault() and __lock_page_or_retry().
4032 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4035 struct vm_fault vmf
= {
4037 .address
= address
& PAGE_MASK
,
4039 .pgoff
= linear_page_index(vma
, address
),
4040 .gfp_mask
= __get_fault_gfp_mask(vma
),
4042 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4043 struct mm_struct
*mm
= vma
->vm_mm
;
4048 pgd
= pgd_offset(mm
, address
);
4049 p4d
= p4d_alloc(mm
, pgd
, address
);
4051 return VM_FAULT_OOM
;
4053 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4055 return VM_FAULT_OOM
;
4056 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
4057 ret
= create_huge_pud(&vmf
);
4058 if (!(ret
& VM_FAULT_FALLBACK
))
4061 pud_t orig_pud
= *vmf
.pud
;
4064 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4066 /* NUMA case for anonymous PUDs would go here */
4068 if (dirty
&& !pud_write(orig_pud
)) {
4069 ret
= wp_huge_pud(&vmf
, orig_pud
);
4070 if (!(ret
& VM_FAULT_FALLBACK
))
4073 huge_pud_set_accessed(&vmf
, orig_pud
);
4079 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4081 return VM_FAULT_OOM
;
4082 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
4083 ret
= create_huge_pmd(&vmf
);
4084 if (!(ret
& VM_FAULT_FALLBACK
))
4087 pmd_t orig_pmd
= *vmf
.pmd
;
4090 if (unlikely(is_swap_pmd(orig_pmd
))) {
4091 VM_BUG_ON(thp_migration_supported() &&
4092 !is_pmd_migration_entry(orig_pmd
));
4093 if (is_pmd_migration_entry(orig_pmd
))
4094 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4097 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4098 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4099 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4101 if (dirty
&& !pmd_write(orig_pmd
)) {
4102 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4103 if (!(ret
& VM_FAULT_FALLBACK
))
4106 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4112 return handle_pte_fault(&vmf
);
4116 * By the time we get here, we already hold the mm semaphore
4118 * The mmap_sem may have been released depending on flags and our
4119 * return value. See filemap_fault() and __lock_page_or_retry().
4121 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4126 __set_current_state(TASK_RUNNING
);
4128 count_vm_event(PGFAULT
);
4129 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4131 /* do counter updates before entering really critical section. */
4132 check_sync_rss_stat(current
);
4134 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4135 flags
& FAULT_FLAG_INSTRUCTION
,
4136 flags
& FAULT_FLAG_REMOTE
))
4137 return VM_FAULT_SIGSEGV
;
4140 * Enable the memcg OOM handling for faults triggered in user
4141 * space. Kernel faults are handled more gracefully.
4143 if (flags
& FAULT_FLAG_USER
)
4144 mem_cgroup_oom_enable();
4146 if (unlikely(is_vm_hugetlb_page(vma
)))
4147 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4149 ret
= __handle_mm_fault(vma
, address
, flags
);
4151 if (flags
& FAULT_FLAG_USER
) {
4152 mem_cgroup_oom_disable();
4154 * The task may have entered a memcg OOM situation but
4155 * if the allocation error was handled gracefully (no
4156 * VM_FAULT_OOM), there is no need to kill anything.
4157 * Just clean up the OOM state peacefully.
4159 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4160 mem_cgroup_oom_synchronize(false);
4165 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4167 #ifndef __PAGETABLE_P4D_FOLDED
4169 * Allocate p4d page table.
4170 * We've already handled the fast-path in-line.
4172 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4174 p4d_t
*new = p4d_alloc_one(mm
, address
);
4178 smp_wmb(); /* See comment in __pte_alloc */
4180 spin_lock(&mm
->page_table_lock
);
4181 if (pgd_present(*pgd
)) /* Another has populated it */
4184 pgd_populate(mm
, pgd
, new);
4185 spin_unlock(&mm
->page_table_lock
);
4188 #endif /* __PAGETABLE_P4D_FOLDED */
4190 #ifndef __PAGETABLE_PUD_FOLDED
4192 * Allocate page upper directory.
4193 * We've already handled the fast-path in-line.
4195 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4197 pud_t
*new = pud_alloc_one(mm
, address
);
4201 smp_wmb(); /* See comment in __pte_alloc */
4203 spin_lock(&mm
->page_table_lock
);
4204 #ifndef __ARCH_HAS_5LEVEL_HACK
4205 if (p4d_present(*p4d
)) /* Another has populated it */
4208 p4d_populate(mm
, p4d
, new);
4210 if (pgd_present(*p4d
)) /* Another has populated it */
4213 pgd_populate(mm
, p4d
, new);
4214 #endif /* __ARCH_HAS_5LEVEL_HACK */
4215 spin_unlock(&mm
->page_table_lock
);
4218 #endif /* __PAGETABLE_PUD_FOLDED */
4220 #ifndef __PAGETABLE_PMD_FOLDED
4222 * Allocate page middle directory.
4223 * We've already handled the fast-path in-line.
4225 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4228 pmd_t
*new = pmd_alloc_one(mm
, address
);
4232 smp_wmb(); /* See comment in __pte_alloc */
4234 ptl
= pud_lock(mm
, pud
);
4235 #ifndef __ARCH_HAS_4LEVEL_HACK
4236 if (!pud_present(*pud
)) {
4238 pud_populate(mm
, pud
, new);
4239 } else /* Another has populated it */
4242 if (!pgd_present(*pud
)) {
4244 pgd_populate(mm
, pud
, new);
4245 } else /* Another has populated it */
4247 #endif /* __ARCH_HAS_4LEVEL_HACK */
4251 #endif /* __PAGETABLE_PMD_FOLDED */
4253 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4254 unsigned long *start
, unsigned long *end
,
4255 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4263 pgd
= pgd_offset(mm
, address
);
4264 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4267 p4d
= p4d_offset(pgd
, address
);
4268 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4271 pud
= pud_offset(p4d
, address
);
4272 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4275 pmd
= pmd_offset(pud
, address
);
4276 VM_BUG_ON(pmd_trans_huge(*pmd
));
4278 if (pmd_huge(*pmd
)) {
4283 *start
= address
& PMD_MASK
;
4284 *end
= *start
+ PMD_SIZE
;
4285 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4287 *ptlp
= pmd_lock(mm
, pmd
);
4288 if (pmd_huge(*pmd
)) {
4294 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4297 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4301 *start
= address
& PAGE_MASK
;
4302 *end
= *start
+ PAGE_SIZE
;
4303 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4305 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4306 if (!pte_present(*ptep
))
4311 pte_unmap_unlock(ptep
, *ptlp
);
4313 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4318 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4319 pte_t
**ptepp
, spinlock_t
**ptlp
)
4323 /* (void) is needed to make gcc happy */
4324 (void) __cond_lock(*ptlp
,
4325 !(res
= __follow_pte_pmd(mm
, address
, NULL
, NULL
,
4326 ptepp
, NULL
, ptlp
)));
4330 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4331 unsigned long *start
, unsigned long *end
,
4332 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4336 /* (void) is needed to make gcc happy */
4337 (void) __cond_lock(*ptlp
,
4338 !(res
= __follow_pte_pmd(mm
, address
, start
, end
,
4339 ptepp
, pmdpp
, ptlp
)));
4342 EXPORT_SYMBOL(follow_pte_pmd
);
4345 * follow_pfn - look up PFN at a user virtual address
4346 * @vma: memory mapping
4347 * @address: user virtual address
4348 * @pfn: location to store found PFN
4350 * Only IO mappings and raw PFN mappings are allowed.
4352 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4354 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4361 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4364 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4367 *pfn
= pte_pfn(*ptep
);
4368 pte_unmap_unlock(ptep
, ptl
);
4371 EXPORT_SYMBOL(follow_pfn
);
4373 #ifdef CONFIG_HAVE_IOREMAP_PROT
4374 int follow_phys(struct vm_area_struct
*vma
,
4375 unsigned long address
, unsigned int flags
,
4376 unsigned long *prot
, resource_size_t
*phys
)
4382 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4385 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4389 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4392 *prot
= pgprot_val(pte_pgprot(pte
));
4393 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4397 pte_unmap_unlock(ptep
, ptl
);
4402 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4403 void *buf
, int len
, int write
)
4405 resource_size_t phys_addr
;
4406 unsigned long prot
= 0;
4407 void __iomem
*maddr
;
4408 int offset
= addr
& (PAGE_SIZE
-1);
4410 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4413 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4418 memcpy_toio(maddr
+ offset
, buf
, len
);
4420 memcpy_fromio(buf
, maddr
+ offset
, len
);
4425 EXPORT_SYMBOL_GPL(generic_access_phys
);
4429 * Access another process' address space as given in mm. If non-NULL, use the
4430 * given task for page fault accounting.
4432 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4433 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4435 struct vm_area_struct
*vma
;
4436 void *old_buf
= buf
;
4437 int write
= gup_flags
& FOLL_WRITE
;
4439 down_read(&mm
->mmap_sem
);
4440 /* ignore errors, just check how much was successfully transferred */
4442 int bytes
, ret
, offset
;
4444 struct page
*page
= NULL
;
4446 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4447 gup_flags
, &page
, &vma
, NULL
);
4449 #ifndef CONFIG_HAVE_IOREMAP_PROT
4453 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4454 * we can access using slightly different code.
4456 vma
= find_vma(mm
, addr
);
4457 if (!vma
|| vma
->vm_start
> addr
)
4459 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4460 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4468 offset
= addr
& (PAGE_SIZE
-1);
4469 if (bytes
> PAGE_SIZE
-offset
)
4470 bytes
= PAGE_SIZE
-offset
;
4474 copy_to_user_page(vma
, page
, addr
,
4475 maddr
+ offset
, buf
, bytes
);
4476 set_page_dirty_lock(page
);
4478 copy_from_user_page(vma
, page
, addr
,
4479 buf
, maddr
+ offset
, bytes
);
4488 up_read(&mm
->mmap_sem
);
4490 return buf
- old_buf
;
4494 * access_remote_vm - access another process' address space
4495 * @mm: the mm_struct of the target address space
4496 * @addr: start address to access
4497 * @buf: source or destination buffer
4498 * @len: number of bytes to transfer
4499 * @gup_flags: flags modifying lookup behaviour
4501 * The caller must hold a reference on @mm.
4503 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4504 void *buf
, int len
, unsigned int gup_flags
)
4506 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4510 * Access another process' address space.
4511 * Source/target buffer must be kernel space,
4512 * Do not walk the page table directly, use get_user_pages
4514 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4515 void *buf
, int len
, unsigned int gup_flags
)
4517 struct mm_struct
*mm
;
4520 mm
= get_task_mm(tsk
);
4524 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4530 EXPORT_SYMBOL_GPL(access_process_vm
);
4533 * Print the name of a VMA.
4535 void print_vma_addr(char *prefix
, unsigned long ip
)
4537 struct mm_struct
*mm
= current
->mm
;
4538 struct vm_area_struct
*vma
;
4541 * Do not print if we are in atomic
4542 * contexts (in exception stacks, etc.):
4544 if (preempt_count())
4547 down_read(&mm
->mmap_sem
);
4548 vma
= find_vma(mm
, ip
);
4549 if (vma
&& vma
->vm_file
) {
4550 struct file
*f
= vma
->vm_file
;
4551 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4555 p
= file_path(f
, buf
, PAGE_SIZE
);
4558 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4560 vma
->vm_end
- vma
->vm_start
);
4561 free_page((unsigned long)buf
);
4564 up_read(&mm
->mmap_sem
);
4567 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568 void __might_fault(const char *file
, int line
)
4571 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4572 * holding the mmap_sem, this is safe because kernel memory doesn't
4573 * get paged out, therefore we'll never actually fault, and the
4574 * below annotations will generate false positives.
4576 if (uaccess_kernel())
4578 if (pagefault_disabled())
4580 __might_sleep(file
, line
, 0);
4581 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4583 might_lock_read(¤t
->mm
->mmap_sem
);
4586 EXPORT_SYMBOL(__might_fault
);
4589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4590 static void clear_gigantic_page(struct page
*page
,
4592 unsigned int pages_per_huge_page
)
4595 struct page
*p
= page
;
4598 for (i
= 0; i
< pages_per_huge_page
;
4599 i
++, p
= mem_map_next(p
, page
, i
)) {
4601 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4604 void clear_huge_page(struct page
*page
,
4605 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4608 unsigned long addr
= addr_hint
&
4609 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4611 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4612 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4616 /* Clear sub-page to access last to keep its cache lines hot */
4618 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4619 if (2 * n
<= pages_per_huge_page
) {
4620 /* If sub-page to access in first half of huge page */
4623 /* Clear sub-pages at the end of huge page */
4624 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4626 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4629 /* If sub-page to access in second half of huge page */
4630 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4631 l
= pages_per_huge_page
- n
;
4632 /* Clear sub-pages at the begin of huge page */
4633 for (i
= 0; i
< base
; i
++) {
4635 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4639 * Clear remaining sub-pages in left-right-left-right pattern
4640 * towards the sub-page to access
4642 for (i
= 0; i
< l
; i
++) {
4643 int left_idx
= base
+ i
;
4644 int right_idx
= base
+ 2 * l
- 1 - i
;
4647 clear_user_highpage(page
+ left_idx
,
4648 addr
+ left_idx
* PAGE_SIZE
);
4650 clear_user_highpage(page
+ right_idx
,
4651 addr
+ right_idx
* PAGE_SIZE
);
4655 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4657 struct vm_area_struct
*vma
,
4658 unsigned int pages_per_huge_page
)
4661 struct page
*dst_base
= dst
;
4662 struct page
*src_base
= src
;
4664 for (i
= 0; i
< pages_per_huge_page
; ) {
4666 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4669 dst
= mem_map_next(dst
, dst_base
, i
);
4670 src
= mem_map_next(src
, src_base
, i
);
4674 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4675 unsigned long addr
, struct vm_area_struct
*vma
,
4676 unsigned int pages_per_huge_page
)
4680 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4681 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4682 pages_per_huge_page
);
4687 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4689 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4693 long copy_huge_page_from_user(struct page
*dst_page
,
4694 const void __user
*usr_src
,
4695 unsigned int pages_per_huge_page
,
4696 bool allow_pagefault
)
4698 void *src
= (void *)usr_src
;
4700 unsigned long i
, rc
= 0;
4701 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4703 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4704 if (allow_pagefault
)
4705 page_kaddr
= kmap(dst_page
+ i
);
4707 page_kaddr
= kmap_atomic(dst_page
+ i
);
4708 rc
= copy_from_user(page_kaddr
,
4709 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4711 if (allow_pagefault
)
4712 kunmap(dst_page
+ i
);
4714 kunmap_atomic(page_kaddr
);
4716 ret_val
-= (PAGE_SIZE
- rc
);
4724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4726 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4728 static struct kmem_cache
*page_ptl_cachep
;
4730 void __init
ptlock_cache_init(void)
4732 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4736 bool ptlock_alloc(struct page
*page
)
4740 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4747 void ptlock_free(struct page
*page
)
4749 kmem_cache_free(page_ptl_cachep
, page
->ptl
);