x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / mm / memory.c
blobf99b64ca13031f63d56ee3b11d361ee97fb221dc
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
82 #include "internal.h"
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
108 * Randomize the address space (stacks, mmaps, brk, etc.).
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
116 #else
118 #endif
120 static int __init disable_randmaps(char *s)
122 randomize_va_space = 0;
123 return 1;
125 __setup("norandmaps", disable_randmaps);
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
130 unsigned long highest_memmap_pfn __read_mostly;
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 static int __init init_zero_pfn(void)
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
140 core_initcall(init_zero_pfn);
143 #if defined(SPLIT_RSS_COUNTING)
145 void sync_mm_rss(struct mm_struct *mm)
147 int i;
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
155 current->rss_stat.events = 0;
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 struct task_struct *task = current;
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
179 #else /* SPLIT_RSS_COUNTING */
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 static void check_sync_rss_stat(struct task_struct *task)
188 #endif /* SPLIT_RSS_COUNTING */
190 #ifdef HAVE_GENERIC_MMU_GATHER
192 static bool tlb_next_batch(struct mmu_gather *tlb)
194 struct mmu_gather_batch *batch;
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
214 tlb->active->next = batch;
215 tlb->active = batch;
217 return true;
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
223 tlb->mm = mm;
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
239 __tlb_reset_range(tlb);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
244 if (!tlb->end)
245 return;
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 __tlb_reset_range(tlb);
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 struct mmu_gather_batch *batch;
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb);
258 #endif
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
263 tlb->active = &tlb->local;
266 void tlb_flush_mmu(struct mmu_gather *tlb)
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
279 struct mmu_gather_batch *batch, *next;
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
284 tlb_flush_mmu(tlb);
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
293 tlb->local.next = NULL;
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 struct mmu_gather_batch *batch;
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
310 batch = tlb->active;
312 * Add the page and check if we are full. If so
313 * force a flush.
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323 return false;
326 #endif /* HAVE_GENERIC_MMU_GATHER */
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
331 * See the comment near struct mmu_table_batch.
335 * If we want tlb_remove_table() to imply TLB invalidates.
337 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
345 tlb_flush_mmu_tlbonly(tlb);
346 #endif
349 static void tlb_remove_table_smp_sync(void *arg)
351 /* Simply deliver the interrupt */
354 static void tlb_remove_table_one(void *table)
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
363 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 __tlb_remove_table(table);
367 static void tlb_remove_table_rcu(struct rcu_head *head)
369 struct mmu_table_batch *batch;
370 int i;
372 batch = container_of(head, struct mmu_table_batch, rcu);
374 for (i = 0; i < batch->nr; i++)
375 __tlb_remove_table(batch->tables[i]);
377 free_page((unsigned long)batch);
380 void tlb_table_flush(struct mmu_gather *tlb)
382 struct mmu_table_batch **batch = &tlb->batch;
384 if (*batch) {
385 tlb_table_invalidate(tlb);
386 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 *batch = NULL;
391 void tlb_remove_table(struct mmu_gather *tlb, void *table)
393 struct mmu_table_batch **batch = &tlb->batch;
395 if (*batch == NULL) {
396 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 if (*batch == NULL) {
398 tlb_table_invalidate(tlb);
399 tlb_remove_table_one(table);
400 return;
402 (*batch)->nr = 0;
405 (*batch)->tables[(*batch)->nr++] = table;
406 if ((*batch)->nr == MAX_TABLE_BATCH)
407 tlb_table_flush(tlb);
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
412 /* tlb_gather_mmu
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
417 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 unsigned long start, unsigned long end)
420 arch_tlb_gather_mmu(tlb, mm, start, end);
421 inc_tlb_flush_pending(tlb->mm);
424 void tlb_finish_mmu(struct mmu_gather *tlb,
425 unsigned long start, unsigned long end)
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
434 bool force = mm_tlb_flush_nested(tlb->mm);
436 arch_tlb_finish_mmu(tlb, start, end, force);
437 dec_tlb_flush_pending(tlb->mm);
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
444 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 unsigned long addr)
447 pgtable_t token = pmd_pgtable(*pmd);
448 pmd_clear(pmd);
449 pte_free_tlb(tlb, token, addr);
450 atomic_long_dec(&tlb->mm->nr_ptes);
453 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
457 pmd_t *pmd;
458 unsigned long next;
459 unsigned long start;
461 start = addr;
462 pmd = pmd_offset(pud, addr);
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(pmd))
466 continue;
467 free_pte_range(tlb, pmd, addr);
468 } while (pmd++, addr = next, addr != end);
470 start &= PUD_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PUD_MASK;
475 if (!ceiling)
476 return;
478 if (end - 1 > ceiling - 1)
479 return;
481 pmd = pmd_offset(pud, start);
482 pud_clear(pud);
483 pmd_free_tlb(tlb, pmd, start);
484 mm_dec_nr_pmds(tlb->mm);
487 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
488 unsigned long addr, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
491 pud_t *pud;
492 unsigned long next;
493 unsigned long start;
495 start = addr;
496 pud = pud_offset(p4d, addr);
497 do {
498 next = pud_addr_end(addr, end);
499 if (pud_none_or_clear_bad(pud))
500 continue;
501 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
502 } while (pud++, addr = next, addr != end);
504 start &= P4D_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= P4D_MASK;
509 if (!ceiling)
510 return;
512 if (end - 1 > ceiling - 1)
513 return;
515 pud = pud_offset(p4d, start);
516 p4d_clear(p4d);
517 pud_free_tlb(tlb, pud, start);
520 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
521 unsigned long addr, unsigned long end,
522 unsigned long floor, unsigned long ceiling)
524 p4d_t *p4d;
525 unsigned long next;
526 unsigned long start;
528 start = addr;
529 p4d = p4d_offset(pgd, addr);
530 do {
531 next = p4d_addr_end(addr, end);
532 if (p4d_none_or_clear_bad(p4d))
533 continue;
534 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
535 } while (p4d++, addr = next, addr != end);
537 start &= PGDIR_MASK;
538 if (start < floor)
539 return;
540 if (ceiling) {
541 ceiling &= PGDIR_MASK;
542 if (!ceiling)
543 return;
545 if (end - 1 > ceiling - 1)
546 return;
548 p4d = p4d_offset(pgd, start);
549 pgd_clear(pgd);
550 p4d_free_tlb(tlb, p4d, start);
554 * This function frees user-level page tables of a process.
556 void free_pgd_range(struct mmu_gather *tlb,
557 unsigned long addr, unsigned long end,
558 unsigned long floor, unsigned long ceiling)
560 pgd_t *pgd;
561 unsigned long next;
564 * The next few lines have given us lots of grief...
566 * Why are we testing PMD* at this top level? Because often
567 * there will be no work to do at all, and we'd prefer not to
568 * go all the way down to the bottom just to discover that.
570 * Why all these "- 1"s? Because 0 represents both the bottom
571 * of the address space and the top of it (using -1 for the
572 * top wouldn't help much: the masks would do the wrong thing).
573 * The rule is that addr 0 and floor 0 refer to the bottom of
574 * the address space, but end 0 and ceiling 0 refer to the top
575 * Comparisons need to use "end - 1" and "ceiling - 1" (though
576 * that end 0 case should be mythical).
578 * Wherever addr is brought up or ceiling brought down, we must
579 * be careful to reject "the opposite 0" before it confuses the
580 * subsequent tests. But what about where end is brought down
581 * by PMD_SIZE below? no, end can't go down to 0 there.
583 * Whereas we round start (addr) and ceiling down, by different
584 * masks at different levels, in order to test whether a table
585 * now has no other vmas using it, so can be freed, we don't
586 * bother to round floor or end up - the tests don't need that.
589 addr &= PMD_MASK;
590 if (addr < floor) {
591 addr += PMD_SIZE;
592 if (!addr)
593 return;
595 if (ceiling) {
596 ceiling &= PMD_MASK;
597 if (!ceiling)
598 return;
600 if (end - 1 > ceiling - 1)
601 end -= PMD_SIZE;
602 if (addr > end - 1)
603 return;
605 * We add page table cache pages with PAGE_SIZE,
606 * (see pte_free_tlb()), flush the tlb if we need
608 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
609 pgd = pgd_offset(tlb->mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(pgd))
613 continue;
614 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
615 } while (pgd++, addr = next, addr != end);
618 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
619 unsigned long floor, unsigned long ceiling)
621 while (vma) {
622 struct vm_area_struct *next = vma->vm_next;
623 unsigned long addr = vma->vm_start;
626 * Hide vma from rmap and truncate_pagecache before freeing
627 * pgtables
629 unlink_anon_vmas(vma);
630 unlink_file_vma(vma);
632 if (is_vm_hugetlb_page(vma)) {
633 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
634 floor, next ? next->vm_start : ceiling);
635 } else {
637 * Optimization: gather nearby vmas into one call down
639 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
640 && !is_vm_hugetlb_page(next)) {
641 vma = next;
642 next = vma->vm_next;
643 unlink_anon_vmas(vma);
644 unlink_file_vma(vma);
646 free_pgd_range(tlb, addr, vma->vm_end,
647 floor, next ? next->vm_start : ceiling);
649 vma = next;
653 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
655 spinlock_t *ptl;
656 pgtable_t new = pte_alloc_one(mm, address);
657 if (!new)
658 return -ENOMEM;
661 * Ensure all pte setup (eg. pte page lock and page clearing) are
662 * visible before the pte is made visible to other CPUs by being
663 * put into page tables.
665 * The other side of the story is the pointer chasing in the page
666 * table walking code (when walking the page table without locking;
667 * ie. most of the time). Fortunately, these data accesses consist
668 * of a chain of data-dependent loads, meaning most CPUs (alpha
669 * being the notable exception) will already guarantee loads are
670 * seen in-order. See the alpha page table accessors for the
671 * smp_read_barrier_depends() barriers in page table walking code.
673 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
675 ptl = pmd_lock(mm, pmd);
676 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
677 atomic_long_inc(&mm->nr_ptes);
678 pmd_populate(mm, pmd, new);
679 new = NULL;
681 spin_unlock(ptl);
682 if (new)
683 pte_free(mm, new);
684 return 0;
687 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
689 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
690 if (!new)
691 return -ENOMEM;
693 smp_wmb(); /* See comment in __pte_alloc */
695 spin_lock(&init_mm.page_table_lock);
696 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
697 pmd_populate_kernel(&init_mm, pmd, new);
698 new = NULL;
700 spin_unlock(&init_mm.page_table_lock);
701 if (new)
702 pte_free_kernel(&init_mm, new);
703 return 0;
706 static inline void init_rss_vec(int *rss)
708 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
711 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
713 int i;
715 if (current->mm == mm)
716 sync_mm_rss(mm);
717 for (i = 0; i < NR_MM_COUNTERS; i++)
718 if (rss[i])
719 add_mm_counter(mm, i, rss[i]);
723 * This function is called to print an error when a bad pte
724 * is found. For example, we might have a PFN-mapped pte in
725 * a region that doesn't allow it.
727 * The calling function must still handle the error.
729 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
730 pte_t pte, struct page *page)
732 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
733 p4d_t *p4d = p4d_offset(pgd, addr);
734 pud_t *pud = pud_offset(p4d, addr);
735 pmd_t *pmd = pmd_offset(pud, addr);
736 struct address_space *mapping;
737 pgoff_t index;
738 static unsigned long resume;
739 static unsigned long nr_shown;
740 static unsigned long nr_unshown;
743 * Allow a burst of 60 reports, then keep quiet for that minute;
744 * or allow a steady drip of one report per second.
746 if (nr_shown == 60) {
747 if (time_before(jiffies, resume)) {
748 nr_unshown++;
749 return;
751 if (nr_unshown) {
752 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
753 nr_unshown);
754 nr_unshown = 0;
756 nr_shown = 0;
758 if (nr_shown++ == 0)
759 resume = jiffies + 60 * HZ;
761 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
762 index = linear_page_index(vma, addr);
764 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
765 current->comm,
766 (long long)pte_val(pte), (long long)pmd_val(*pmd));
767 if (page)
768 dump_page(page, "bad pte");
769 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
770 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
772 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
774 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
775 vma->vm_file,
776 vma->vm_ops ? vma->vm_ops->fault : NULL,
777 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
778 mapping ? mapping->a_ops->readpage : NULL);
779 dump_stack();
780 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
784 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 * "Special" mappings do not wish to be associated with a "struct page" (either
787 * it doesn't exist, or it exists but they don't want to touch it). In this
788 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
791 * pte bit, in which case this function is trivial. Secondly, an architecture
792 * may not have a spare pte bit, which requires a more complicated scheme,
793 * described below.
795 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
796 * special mapping (even if there are underlying and valid "struct pages").
797 * COWed pages of a VM_PFNMAP are always normal.
799 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
800 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
801 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
802 * mapping will always honor the rule
804 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 * And for normal mappings this is false.
808 * This restricts such mappings to be a linear translation from virtual address
809 * to pfn. To get around this restriction, we allow arbitrary mappings so long
810 * as the vma is not a COW mapping; in that case, we know that all ptes are
811 * special (because none can have been COWed).
814 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
817 * page" backing, however the difference is that _all_ pages with a struct
818 * page (that is, those where pfn_valid is true) are refcounted and considered
819 * normal pages by the VM. The disadvantage is that pages are refcounted
820 * (which can be slower and simply not an option for some PFNMAP users). The
821 * advantage is that we don't have to follow the strict linearity rule of
822 * PFNMAP mappings in order to support COWable mappings.
825 #ifdef __HAVE_ARCH_PTE_SPECIAL
826 # define HAVE_PTE_SPECIAL 1
827 #else
828 # define HAVE_PTE_SPECIAL 0
829 #endif
830 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
831 pte_t pte, bool with_public_device)
833 unsigned long pfn = pte_pfn(pte);
835 if (HAVE_PTE_SPECIAL) {
836 if (likely(!pte_special(pte)))
837 goto check_pfn;
838 if (vma->vm_ops && vma->vm_ops->find_special_page)
839 return vma->vm_ops->find_special_page(vma, addr);
840 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
841 return NULL;
842 if (is_zero_pfn(pfn))
843 return NULL;
846 * Device public pages are special pages (they are ZONE_DEVICE
847 * pages but different from persistent memory). They behave
848 * allmost like normal pages. The difference is that they are
849 * not on the lru and thus should never be involve with any-
850 * thing that involve lru manipulation (mlock, numa balancing,
851 * ...).
853 * This is why we still want to return NULL for such page from
854 * vm_normal_page() so that we do not have to special case all
855 * call site of vm_normal_page().
857 if (likely(pfn <= highest_memmap_pfn)) {
858 struct page *page = pfn_to_page(pfn);
860 if (is_device_public_page(page)) {
861 if (with_public_device)
862 return page;
863 return NULL;
866 print_bad_pte(vma, addr, pte, NULL);
867 return NULL;
870 /* !HAVE_PTE_SPECIAL case follows: */
872 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 if (vma->vm_flags & VM_MIXEDMAP) {
874 if (!pfn_valid(pfn))
875 return NULL;
876 goto out;
877 } else {
878 unsigned long off;
879 off = (addr - vma->vm_start) >> PAGE_SHIFT;
880 if (pfn == vma->vm_pgoff + off)
881 return NULL;
882 if (!is_cow_mapping(vma->vm_flags))
883 return NULL;
887 if (is_zero_pfn(pfn))
888 return NULL;
889 check_pfn:
890 if (unlikely(pfn > highest_memmap_pfn)) {
891 print_bad_pte(vma, addr, pte, NULL);
892 return NULL;
896 * NOTE! We still have PageReserved() pages in the page tables.
897 * eg. VDSO mappings can cause them to exist.
899 out:
900 return pfn_to_page(pfn);
903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
905 pmd_t pmd)
907 unsigned long pfn = pmd_pfn(pmd);
910 * There is no pmd_special() but there may be special pmds, e.g.
911 * in a direct-access (dax) mapping, so let's just replicate the
912 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
914 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
915 if (vma->vm_flags & VM_MIXEDMAP) {
916 if (!pfn_valid(pfn))
917 return NULL;
918 goto out;
919 } else {
920 unsigned long off;
921 off = (addr - vma->vm_start) >> PAGE_SHIFT;
922 if (pfn == vma->vm_pgoff + off)
923 return NULL;
924 if (!is_cow_mapping(vma->vm_flags))
925 return NULL;
929 if (is_zero_pfn(pfn))
930 return NULL;
931 if (unlikely(pfn > highest_memmap_pfn))
932 return NULL;
935 * NOTE! We still have PageReserved() pages in the page tables.
936 * eg. VDSO mappings can cause them to exist.
938 out:
939 return pfn_to_page(pfn);
941 #endif
944 * copy one vm_area from one task to the other. Assumes the page tables
945 * already present in the new task to be cleared in the whole range
946 * covered by this vma.
949 static inline unsigned long
950 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
952 unsigned long addr, int *rss)
954 unsigned long vm_flags = vma->vm_flags;
955 pte_t pte = *src_pte;
956 struct page *page;
958 /* pte contains position in swap or file, so copy. */
959 if (unlikely(!pte_present(pte))) {
960 swp_entry_t entry = pte_to_swp_entry(pte);
962 if (likely(!non_swap_entry(entry))) {
963 if (swap_duplicate(entry) < 0)
964 return entry.val;
966 /* make sure dst_mm is on swapoff's mmlist. */
967 if (unlikely(list_empty(&dst_mm->mmlist))) {
968 spin_lock(&mmlist_lock);
969 if (list_empty(&dst_mm->mmlist))
970 list_add(&dst_mm->mmlist,
971 &src_mm->mmlist);
972 spin_unlock(&mmlist_lock);
974 rss[MM_SWAPENTS]++;
975 } else if (is_migration_entry(entry)) {
976 page = migration_entry_to_page(entry);
978 rss[mm_counter(page)]++;
980 if (is_write_migration_entry(entry) &&
981 is_cow_mapping(vm_flags)) {
983 * COW mappings require pages in both
984 * parent and child to be set to read.
986 make_migration_entry_read(&entry);
987 pte = swp_entry_to_pte(entry);
988 if (pte_swp_soft_dirty(*src_pte))
989 pte = pte_swp_mksoft_dirty(pte);
990 set_pte_at(src_mm, addr, src_pte, pte);
992 } else if (is_device_private_entry(entry)) {
993 page = device_private_entry_to_page(entry);
996 * Update rss count even for unaddressable pages, as
997 * they should treated just like normal pages in this
998 * respect.
1000 * We will likely want to have some new rss counters
1001 * for unaddressable pages, at some point. But for now
1002 * keep things as they are.
1004 get_page(page);
1005 rss[mm_counter(page)]++;
1006 page_dup_rmap(page, false);
1009 * We do not preserve soft-dirty information, because so
1010 * far, checkpoint/restore is the only feature that
1011 * requires that. And checkpoint/restore does not work
1012 * when a device driver is involved (you cannot easily
1013 * save and restore device driver state).
1015 if (is_write_device_private_entry(entry) &&
1016 is_cow_mapping(vm_flags)) {
1017 make_device_private_entry_read(&entry);
1018 pte = swp_entry_to_pte(entry);
1019 set_pte_at(src_mm, addr, src_pte, pte);
1022 goto out_set_pte;
1026 * If it's a COW mapping, write protect it both
1027 * in the parent and the child
1029 if (is_cow_mapping(vm_flags)) {
1030 ptep_set_wrprotect(src_mm, addr, src_pte);
1031 pte = pte_wrprotect(pte);
1035 * If it's a shared mapping, mark it clean in
1036 * the child
1038 if (vm_flags & VM_SHARED)
1039 pte = pte_mkclean(pte);
1040 pte = pte_mkold(pte);
1042 page = vm_normal_page(vma, addr, pte);
1043 if (page) {
1044 get_page(page);
1045 page_dup_rmap(page, false);
1046 rss[mm_counter(page)]++;
1047 } else if (pte_devmap(pte)) {
1048 page = pte_page(pte);
1051 * Cache coherent device memory behave like regular page and
1052 * not like persistent memory page. For more informations see
1053 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1055 if (is_device_public_page(page)) {
1056 get_page(page);
1057 page_dup_rmap(page, false);
1058 rss[mm_counter(page)]++;
1062 out_set_pte:
1063 set_pte_at(dst_mm, addr, dst_pte, pte);
1064 return 0;
1067 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1069 unsigned long addr, unsigned long end)
1071 pte_t *orig_src_pte, *orig_dst_pte;
1072 pte_t *src_pte, *dst_pte;
1073 spinlock_t *src_ptl, *dst_ptl;
1074 int progress = 0;
1075 int rss[NR_MM_COUNTERS];
1076 swp_entry_t entry = (swp_entry_t){0};
1078 again:
1079 init_rss_vec(rss);
1081 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1082 if (!dst_pte)
1083 return -ENOMEM;
1084 src_pte = pte_offset_map(src_pmd, addr);
1085 src_ptl = pte_lockptr(src_mm, src_pmd);
1086 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087 orig_src_pte = src_pte;
1088 orig_dst_pte = dst_pte;
1089 arch_enter_lazy_mmu_mode();
1091 do {
1093 * We are holding two locks at this point - either of them
1094 * could generate latencies in another task on another CPU.
1096 if (progress >= 32) {
1097 progress = 0;
1098 if (need_resched() ||
1099 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1100 break;
1102 if (pte_none(*src_pte)) {
1103 progress++;
1104 continue;
1106 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1107 vma, addr, rss);
1108 if (entry.val)
1109 break;
1110 progress += 8;
1111 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1113 arch_leave_lazy_mmu_mode();
1114 spin_unlock(src_ptl);
1115 pte_unmap(orig_src_pte);
1116 add_mm_rss_vec(dst_mm, rss);
1117 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1118 cond_resched();
1120 if (entry.val) {
1121 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1122 return -ENOMEM;
1123 progress = 0;
1125 if (addr != end)
1126 goto again;
1127 return 0;
1130 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1131 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1132 unsigned long addr, unsigned long end)
1134 pmd_t *src_pmd, *dst_pmd;
1135 unsigned long next;
1137 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138 if (!dst_pmd)
1139 return -ENOMEM;
1140 src_pmd = pmd_offset(src_pud, addr);
1141 do {
1142 next = pmd_addr_end(addr, end);
1143 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 || pmd_devmap(*src_pmd)) {
1145 int err;
1146 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1147 err = copy_huge_pmd(dst_mm, src_mm,
1148 dst_pmd, src_pmd, addr, vma);
1149 if (err == -ENOMEM)
1150 return -ENOMEM;
1151 if (!err)
1152 continue;
1153 /* fall through */
1155 if (pmd_none_or_clear_bad(src_pmd))
1156 continue;
1157 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1158 vma, addr, next))
1159 return -ENOMEM;
1160 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161 return 0;
1164 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1165 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1166 unsigned long addr, unsigned long end)
1168 pud_t *src_pud, *dst_pud;
1169 unsigned long next;
1171 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1172 if (!dst_pud)
1173 return -ENOMEM;
1174 src_pud = pud_offset(src_p4d, addr);
1175 do {
1176 next = pud_addr_end(addr, end);
1177 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1178 int err;
1180 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1181 err = copy_huge_pud(dst_mm, src_mm,
1182 dst_pud, src_pud, addr, vma);
1183 if (err == -ENOMEM)
1184 return -ENOMEM;
1185 if (!err)
1186 continue;
1187 /* fall through */
1189 if (pud_none_or_clear_bad(src_pud))
1190 continue;
1191 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1192 vma, addr, next))
1193 return -ENOMEM;
1194 } while (dst_pud++, src_pud++, addr = next, addr != end);
1195 return 0;
1198 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1199 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1200 unsigned long addr, unsigned long end)
1202 p4d_t *src_p4d, *dst_p4d;
1203 unsigned long next;
1205 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1206 if (!dst_p4d)
1207 return -ENOMEM;
1208 src_p4d = p4d_offset(src_pgd, addr);
1209 do {
1210 next = p4d_addr_end(addr, end);
1211 if (p4d_none_or_clear_bad(src_p4d))
1212 continue;
1213 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1214 vma, addr, next))
1215 return -ENOMEM;
1216 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1217 return 0;
1220 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1221 struct vm_area_struct *vma)
1223 pgd_t *src_pgd, *dst_pgd;
1224 unsigned long next;
1225 unsigned long addr = vma->vm_start;
1226 unsigned long end = vma->vm_end;
1227 unsigned long mmun_start; /* For mmu_notifiers */
1228 unsigned long mmun_end; /* For mmu_notifiers */
1229 bool is_cow;
1230 int ret;
1233 * Don't copy ptes where a page fault will fill them correctly.
1234 * Fork becomes much lighter when there are big shared or private
1235 * readonly mappings. The tradeoff is that copy_page_range is more
1236 * efficient than faulting.
1238 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1239 !vma->anon_vma)
1240 return 0;
1242 if (is_vm_hugetlb_page(vma))
1243 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1245 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1247 * We do not free on error cases below as remove_vma
1248 * gets called on error from higher level routine
1250 ret = track_pfn_copy(vma);
1251 if (ret)
1252 return ret;
1256 * We need to invalidate the secondary MMU mappings only when
1257 * there could be a permission downgrade on the ptes of the
1258 * parent mm. And a permission downgrade will only happen if
1259 * is_cow_mapping() returns true.
1261 is_cow = is_cow_mapping(vma->vm_flags);
1262 mmun_start = addr;
1263 mmun_end = end;
1264 if (is_cow)
1265 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1266 mmun_end);
1268 ret = 0;
1269 dst_pgd = pgd_offset(dst_mm, addr);
1270 src_pgd = pgd_offset(src_mm, addr);
1271 do {
1272 next = pgd_addr_end(addr, end);
1273 if (pgd_none_or_clear_bad(src_pgd))
1274 continue;
1275 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1276 vma, addr, next))) {
1277 ret = -ENOMEM;
1278 break;
1280 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1282 if (is_cow)
1283 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1284 return ret;
1287 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1288 struct vm_area_struct *vma, pmd_t *pmd,
1289 unsigned long addr, unsigned long end,
1290 struct zap_details *details)
1292 struct mm_struct *mm = tlb->mm;
1293 int force_flush = 0;
1294 int rss[NR_MM_COUNTERS];
1295 spinlock_t *ptl;
1296 pte_t *start_pte;
1297 pte_t *pte;
1298 swp_entry_t entry;
1300 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1301 again:
1302 init_rss_vec(rss);
1303 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1304 pte = start_pte;
1305 flush_tlb_batched_pending(mm);
1306 arch_enter_lazy_mmu_mode();
1307 do {
1308 pte_t ptent = *pte;
1309 if (pte_none(ptent))
1310 continue;
1312 if (pte_present(ptent)) {
1313 struct page *page;
1315 page = _vm_normal_page(vma, addr, ptent, true);
1316 if (unlikely(details) && page) {
1318 * unmap_shared_mapping_pages() wants to
1319 * invalidate cache without truncating:
1320 * unmap shared but keep private pages.
1322 if (details->check_mapping &&
1323 details->check_mapping != page_rmapping(page))
1324 continue;
1326 ptent = ptep_get_and_clear_full(mm, addr, pte,
1327 tlb->fullmm);
1328 tlb_remove_tlb_entry(tlb, pte, addr);
1329 if (unlikely(!page))
1330 continue;
1332 if (!PageAnon(page)) {
1333 if (pte_dirty(ptent)) {
1334 force_flush = 1;
1335 set_page_dirty(page);
1337 if (pte_young(ptent) &&
1338 likely(!(vma->vm_flags & VM_SEQ_READ)))
1339 mark_page_accessed(page);
1341 rss[mm_counter(page)]--;
1342 page_remove_rmap(page, false);
1343 if (unlikely(page_mapcount(page) < 0))
1344 print_bad_pte(vma, addr, ptent, page);
1345 if (unlikely(__tlb_remove_page(tlb, page))) {
1346 force_flush = 1;
1347 addr += PAGE_SIZE;
1348 break;
1350 continue;
1353 entry = pte_to_swp_entry(ptent);
1354 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1355 struct page *page = device_private_entry_to_page(entry);
1357 if (unlikely(details && details->check_mapping)) {
1359 * unmap_shared_mapping_pages() wants to
1360 * invalidate cache without truncating:
1361 * unmap shared but keep private pages.
1363 if (details->check_mapping !=
1364 page_rmapping(page))
1365 continue;
1368 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1369 rss[mm_counter(page)]--;
1370 page_remove_rmap(page, false);
1371 put_page(page);
1372 continue;
1375 /* If details->check_mapping, we leave swap entries. */
1376 if (unlikely(details))
1377 continue;
1379 entry = pte_to_swp_entry(ptent);
1380 if (!non_swap_entry(entry))
1381 rss[MM_SWAPENTS]--;
1382 else if (is_migration_entry(entry)) {
1383 struct page *page;
1385 page = migration_entry_to_page(entry);
1386 rss[mm_counter(page)]--;
1388 if (unlikely(!free_swap_and_cache(entry)))
1389 print_bad_pte(vma, addr, ptent, NULL);
1390 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1391 } while (pte++, addr += PAGE_SIZE, addr != end);
1393 add_mm_rss_vec(mm, rss);
1394 arch_leave_lazy_mmu_mode();
1396 /* Do the actual TLB flush before dropping ptl */
1397 if (force_flush)
1398 tlb_flush_mmu_tlbonly(tlb);
1399 pte_unmap_unlock(start_pte, ptl);
1402 * If we forced a TLB flush (either due to running out of
1403 * batch buffers or because we needed to flush dirty TLB
1404 * entries before releasing the ptl), free the batched
1405 * memory too. Restart if we didn't do everything.
1407 if (force_flush) {
1408 force_flush = 0;
1409 tlb_flush_mmu_free(tlb);
1410 if (addr != end)
1411 goto again;
1414 return addr;
1417 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1418 struct vm_area_struct *vma, pud_t *pud,
1419 unsigned long addr, unsigned long end,
1420 struct zap_details *details)
1422 pmd_t *pmd;
1423 unsigned long next;
1425 pmd = pmd_offset(pud, addr);
1426 do {
1427 next = pmd_addr_end(addr, end);
1428 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1429 if (next - addr != HPAGE_PMD_SIZE)
1430 __split_huge_pmd(vma, pmd, addr, false, NULL);
1431 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1432 goto next;
1433 /* fall through */
1436 * Here there can be other concurrent MADV_DONTNEED or
1437 * trans huge page faults running, and if the pmd is
1438 * none or trans huge it can change under us. This is
1439 * because MADV_DONTNEED holds the mmap_sem in read
1440 * mode.
1442 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1443 goto next;
1444 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1445 next:
1446 cond_resched();
1447 } while (pmd++, addr = next, addr != end);
1449 return addr;
1452 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1453 struct vm_area_struct *vma, p4d_t *p4d,
1454 unsigned long addr, unsigned long end,
1455 struct zap_details *details)
1457 pud_t *pud;
1458 unsigned long next;
1460 pud = pud_offset(p4d, addr);
1461 do {
1462 next = pud_addr_end(addr, end);
1463 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1464 if (next - addr != HPAGE_PUD_SIZE) {
1465 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1466 split_huge_pud(vma, pud, addr);
1467 } else if (zap_huge_pud(tlb, vma, pud, addr))
1468 goto next;
1469 /* fall through */
1471 if (pud_none_or_clear_bad(pud))
1472 continue;
1473 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1474 next:
1475 cond_resched();
1476 } while (pud++, addr = next, addr != end);
1478 return addr;
1481 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1482 struct vm_area_struct *vma, pgd_t *pgd,
1483 unsigned long addr, unsigned long end,
1484 struct zap_details *details)
1486 p4d_t *p4d;
1487 unsigned long next;
1489 p4d = p4d_offset(pgd, addr);
1490 do {
1491 next = p4d_addr_end(addr, end);
1492 if (p4d_none_or_clear_bad(p4d))
1493 continue;
1494 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1495 } while (p4d++, addr = next, addr != end);
1497 return addr;
1500 void unmap_page_range(struct mmu_gather *tlb,
1501 struct vm_area_struct *vma,
1502 unsigned long addr, unsigned long end,
1503 struct zap_details *details)
1505 pgd_t *pgd;
1506 unsigned long next;
1508 BUG_ON(addr >= end);
1509 tlb_start_vma(tlb, vma);
1510 pgd = pgd_offset(vma->vm_mm, addr);
1511 do {
1512 next = pgd_addr_end(addr, end);
1513 if (pgd_none_or_clear_bad(pgd))
1514 continue;
1515 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1516 } while (pgd++, addr = next, addr != end);
1517 tlb_end_vma(tlb, vma);
1521 static void unmap_single_vma(struct mmu_gather *tlb,
1522 struct vm_area_struct *vma, unsigned long start_addr,
1523 unsigned long end_addr,
1524 struct zap_details *details)
1526 unsigned long start = max(vma->vm_start, start_addr);
1527 unsigned long end;
1529 if (start >= vma->vm_end)
1530 return;
1531 end = min(vma->vm_end, end_addr);
1532 if (end <= vma->vm_start)
1533 return;
1535 if (vma->vm_file)
1536 uprobe_munmap(vma, start, end);
1538 if (unlikely(vma->vm_flags & VM_PFNMAP))
1539 untrack_pfn(vma, 0, 0);
1541 if (start != end) {
1542 if (unlikely(is_vm_hugetlb_page(vma))) {
1544 * It is undesirable to test vma->vm_file as it
1545 * should be non-null for valid hugetlb area.
1546 * However, vm_file will be NULL in the error
1547 * cleanup path of mmap_region. When
1548 * hugetlbfs ->mmap method fails,
1549 * mmap_region() nullifies vma->vm_file
1550 * before calling this function to clean up.
1551 * Since no pte has actually been setup, it is
1552 * safe to do nothing in this case.
1554 if (vma->vm_file) {
1555 i_mmap_lock_write(vma->vm_file->f_mapping);
1556 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1557 i_mmap_unlock_write(vma->vm_file->f_mapping);
1559 } else
1560 unmap_page_range(tlb, vma, start, end, details);
1565 * unmap_vmas - unmap a range of memory covered by a list of vma's
1566 * @tlb: address of the caller's struct mmu_gather
1567 * @vma: the starting vma
1568 * @start_addr: virtual address at which to start unmapping
1569 * @end_addr: virtual address at which to end unmapping
1571 * Unmap all pages in the vma list.
1573 * Only addresses between `start' and `end' will be unmapped.
1575 * The VMA list must be sorted in ascending virtual address order.
1577 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1578 * range after unmap_vmas() returns. So the only responsibility here is to
1579 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1580 * drops the lock and schedules.
1582 void unmap_vmas(struct mmu_gather *tlb,
1583 struct vm_area_struct *vma, unsigned long start_addr,
1584 unsigned long end_addr)
1586 struct mm_struct *mm = vma->vm_mm;
1588 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1589 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1590 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1591 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 * zap_page_range - remove user pages in a given range
1596 * @vma: vm_area_struct holding the applicable pages
1597 * @start: starting address of pages to zap
1598 * @size: number of bytes to zap
1600 * Caller must protect the VMA list
1602 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1603 unsigned long size)
1605 struct mm_struct *mm = vma->vm_mm;
1606 struct mmu_gather tlb;
1607 unsigned long end = start + size;
1609 lru_add_drain();
1610 tlb_gather_mmu(&tlb, mm, start, end);
1611 update_hiwater_rss(mm);
1612 mmu_notifier_invalidate_range_start(mm, start, end);
1613 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1614 unmap_single_vma(&tlb, vma, start, end, NULL);
1617 * zap_page_range does not specify whether mmap_sem should be
1618 * held for read or write. That allows parallel zap_page_range
1619 * operations to unmap a PTE and defer a flush meaning that
1620 * this call observes pte_none and fails to flush the TLB.
1621 * Rather than adding a complex API, ensure that no stale
1622 * TLB entries exist when this call returns.
1624 flush_tlb_range(vma, start, end);
1627 mmu_notifier_invalidate_range_end(mm, start, end);
1628 tlb_finish_mmu(&tlb, start, end);
1632 * zap_page_range_single - remove user pages in a given range
1633 * @vma: vm_area_struct holding the applicable pages
1634 * @address: starting address of pages to zap
1635 * @size: number of bytes to zap
1636 * @details: details of shared cache invalidation
1638 * The range must fit into one VMA.
1640 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1641 unsigned long size, struct zap_details *details)
1643 struct mm_struct *mm = vma->vm_mm;
1644 struct mmu_gather tlb;
1645 unsigned long end = address + size;
1647 lru_add_drain();
1648 tlb_gather_mmu(&tlb, mm, address, end);
1649 update_hiwater_rss(mm);
1650 mmu_notifier_invalidate_range_start(mm, address, end);
1651 unmap_single_vma(&tlb, vma, address, end, details);
1652 mmu_notifier_invalidate_range_end(mm, address, end);
1653 tlb_finish_mmu(&tlb, address, end);
1657 * zap_vma_ptes - remove ptes mapping the vma
1658 * @vma: vm_area_struct holding ptes to be zapped
1659 * @address: starting address of pages to zap
1660 * @size: number of bytes to zap
1662 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664 * The entire address range must be fully contained within the vma.
1666 * Returns 0 if successful.
1668 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1669 unsigned long size)
1671 if (address < vma->vm_start || address + size > vma->vm_end ||
1672 !(vma->vm_flags & VM_PFNMAP))
1673 return -1;
1674 zap_page_range_single(vma, address, size, NULL);
1675 return 0;
1677 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1680 spinlock_t **ptl)
1682 pgd_t *pgd;
1683 p4d_t *p4d;
1684 pud_t *pud;
1685 pmd_t *pmd;
1687 pgd = pgd_offset(mm, addr);
1688 p4d = p4d_alloc(mm, pgd, addr);
1689 if (!p4d)
1690 return NULL;
1691 pud = pud_alloc(mm, p4d, addr);
1692 if (!pud)
1693 return NULL;
1694 pmd = pmd_alloc(mm, pud, addr);
1695 if (!pmd)
1696 return NULL;
1698 VM_BUG_ON(pmd_trans_huge(*pmd));
1699 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1703 * This is the old fallback for page remapping.
1705 * For historical reasons, it only allows reserved pages. Only
1706 * old drivers should use this, and they needed to mark their
1707 * pages reserved for the old functions anyway.
1709 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1710 struct page *page, pgprot_t prot)
1712 struct mm_struct *mm = vma->vm_mm;
1713 int retval;
1714 pte_t *pte;
1715 spinlock_t *ptl;
1717 retval = -EINVAL;
1718 if (PageAnon(page))
1719 goto out;
1720 retval = -ENOMEM;
1721 flush_dcache_page(page);
1722 pte = get_locked_pte(mm, addr, &ptl);
1723 if (!pte)
1724 goto out;
1725 retval = -EBUSY;
1726 if (!pte_none(*pte))
1727 goto out_unlock;
1729 /* Ok, finally just insert the thing.. */
1730 get_page(page);
1731 inc_mm_counter_fast(mm, mm_counter_file(page));
1732 page_add_file_rmap(page, false);
1733 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1735 retval = 0;
1736 pte_unmap_unlock(pte, ptl);
1737 return retval;
1738 out_unlock:
1739 pte_unmap_unlock(pte, ptl);
1740 out:
1741 return retval;
1745 * vm_insert_page - insert single page into user vma
1746 * @vma: user vma to map to
1747 * @addr: target user address of this page
1748 * @page: source kernel page
1750 * This allows drivers to insert individual pages they've allocated
1751 * into a user vma.
1753 * The page has to be a nice clean _individual_ kernel allocation.
1754 * If you allocate a compound page, you need to have marked it as
1755 * such (__GFP_COMP), or manually just split the page up yourself
1756 * (see split_page()).
1758 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1759 * took an arbitrary page protection parameter. This doesn't allow
1760 * that. Your vma protection will have to be set up correctly, which
1761 * means that if you want a shared writable mapping, you'd better
1762 * ask for a shared writable mapping!
1764 * The page does not need to be reserved.
1766 * Usually this function is called from f_op->mmap() handler
1767 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1768 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1769 * function from other places, for example from page-fault handler.
1771 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1772 struct page *page)
1774 if (addr < vma->vm_start || addr >= vma->vm_end)
1775 return -EFAULT;
1776 if (!page_count(page))
1777 return -EINVAL;
1778 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1779 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1780 BUG_ON(vma->vm_flags & VM_PFNMAP);
1781 vma->vm_flags |= VM_MIXEDMAP;
1783 return insert_page(vma, addr, page, vma->vm_page_prot);
1785 EXPORT_SYMBOL(vm_insert_page);
1787 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1788 pfn_t pfn, pgprot_t prot, bool mkwrite)
1790 struct mm_struct *mm = vma->vm_mm;
1791 int retval;
1792 pte_t *pte, entry;
1793 spinlock_t *ptl;
1795 retval = -ENOMEM;
1796 pte = get_locked_pte(mm, addr, &ptl);
1797 if (!pte)
1798 goto out;
1799 retval = -EBUSY;
1800 if (!pte_none(*pte)) {
1801 if (mkwrite) {
1803 * For read faults on private mappings the PFN passed
1804 * in may not match the PFN we have mapped if the
1805 * mapped PFN is a writeable COW page. In the mkwrite
1806 * case we are creating a writable PTE for a shared
1807 * mapping and we expect the PFNs to match. If they
1808 * don't match, we are likely racing with block
1809 * allocation and mapping invalidation so just skip the
1810 * update.
1812 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1813 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1814 goto out_unlock;
1816 entry = *pte;
1817 goto out_mkwrite;
1818 } else
1819 goto out_unlock;
1822 /* Ok, finally just insert the thing.. */
1823 if (pfn_t_devmap(pfn))
1824 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1825 else
1826 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1828 out_mkwrite:
1829 if (mkwrite) {
1830 entry = pte_mkyoung(entry);
1831 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1834 set_pte_at(mm, addr, pte, entry);
1835 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1837 retval = 0;
1838 out_unlock:
1839 pte_unmap_unlock(pte, ptl);
1840 out:
1841 return retval;
1845 * vm_insert_pfn - insert single pfn into user vma
1846 * @vma: user vma to map to
1847 * @addr: target user address of this page
1848 * @pfn: source kernel pfn
1850 * Similar to vm_insert_page, this allows drivers to insert individual pages
1851 * they've allocated into a user vma. Same comments apply.
1853 * This function should only be called from a vm_ops->fault handler, and
1854 * in that case the handler should return NULL.
1856 * vma cannot be a COW mapping.
1858 * As this is called only for pages that do not currently exist, we
1859 * do not need to flush old virtual caches or the TLB.
1861 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1862 unsigned long pfn)
1864 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1866 EXPORT_SYMBOL(vm_insert_pfn);
1869 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1870 * @vma: user vma to map to
1871 * @addr: target user address of this page
1872 * @pfn: source kernel pfn
1873 * @pgprot: pgprot flags for the inserted page
1875 * This is exactly like vm_insert_pfn, except that it allows drivers to
1876 * to override pgprot on a per-page basis.
1878 * This only makes sense for IO mappings, and it makes no sense for
1879 * cow mappings. In general, using multiple vmas is preferable;
1880 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1881 * impractical.
1883 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1884 unsigned long pfn, pgprot_t pgprot)
1886 int ret;
1888 * Technically, architectures with pte_special can avoid all these
1889 * restrictions (same for remap_pfn_range). However we would like
1890 * consistency in testing and feature parity among all, so we should
1891 * try to keep these invariants in place for everybody.
1893 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1894 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1895 (VM_PFNMAP|VM_MIXEDMAP));
1896 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1897 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1899 if (addr < vma->vm_start || addr >= vma->vm_end)
1900 return -EFAULT;
1902 if (!pfn_modify_allowed(pfn, pgprot))
1903 return -EACCES;
1905 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1907 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1908 false);
1910 return ret;
1912 EXPORT_SYMBOL(vm_insert_pfn_prot);
1914 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1915 pfn_t pfn, bool mkwrite)
1917 pgprot_t pgprot = vma->vm_page_prot;
1919 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1921 if (addr < vma->vm_start || addr >= vma->vm_end)
1922 return -EFAULT;
1924 track_pfn_insert(vma, &pgprot, pfn);
1926 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1927 return -EACCES;
1930 * If we don't have pte special, then we have to use the pfn_valid()
1931 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932 * refcount the page if pfn_valid is true (hence insert_page rather
1933 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1934 * without pte special, it would there be refcounted as a normal page.
1936 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 struct page *page;
1940 * At this point we are committed to insert_page()
1941 * regardless of whether the caller specified flags that
1942 * result in pfn_t_has_page() == false.
1944 page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 return insert_page(vma, addr, page, pgprot);
1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 pfn_t pfn)
1953 return __vm_insert_mixed(vma, addr, pfn, false);
1956 EXPORT_SYMBOL(vm_insert_mixed);
1958 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959 pfn_t pfn)
1961 return __vm_insert_mixed(vma, addr, pfn, true);
1963 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1966 * maps a range of physical memory into the requested pages. the old
1967 * mappings are removed. any references to nonexistent pages results
1968 * in null mappings (currently treated as "copy-on-access")
1970 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971 unsigned long addr, unsigned long end,
1972 unsigned long pfn, pgprot_t prot)
1974 pte_t *pte;
1975 spinlock_t *ptl;
1976 int err = 0;
1978 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1979 if (!pte)
1980 return -ENOMEM;
1981 arch_enter_lazy_mmu_mode();
1982 do {
1983 BUG_ON(!pte_none(*pte));
1984 if (!pfn_modify_allowed(pfn, prot)) {
1985 err = -EACCES;
1986 break;
1988 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1989 pfn++;
1990 } while (pte++, addr += PAGE_SIZE, addr != end);
1991 arch_leave_lazy_mmu_mode();
1992 pte_unmap_unlock(pte - 1, ptl);
1993 return err;
1996 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1997 unsigned long addr, unsigned long end,
1998 unsigned long pfn, pgprot_t prot)
2000 pmd_t *pmd;
2001 unsigned long next;
2002 int err;
2004 pfn -= addr >> PAGE_SHIFT;
2005 pmd = pmd_alloc(mm, pud, addr);
2006 if (!pmd)
2007 return -ENOMEM;
2008 VM_BUG_ON(pmd_trans_huge(*pmd));
2009 do {
2010 next = pmd_addr_end(addr, end);
2011 err = remap_pte_range(mm, pmd, addr, next,
2012 pfn + (addr >> PAGE_SHIFT), prot);
2013 if (err)
2014 return err;
2015 } while (pmd++, addr = next, addr != end);
2016 return 0;
2019 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2020 unsigned long addr, unsigned long end,
2021 unsigned long pfn, pgprot_t prot)
2023 pud_t *pud;
2024 unsigned long next;
2025 int err;
2027 pfn -= addr >> PAGE_SHIFT;
2028 pud = pud_alloc(mm, p4d, addr);
2029 if (!pud)
2030 return -ENOMEM;
2031 do {
2032 next = pud_addr_end(addr, end);
2033 err = remap_pmd_range(mm, pud, addr, next,
2034 pfn + (addr >> PAGE_SHIFT), prot);
2035 if (err)
2036 return err;
2037 } while (pud++, addr = next, addr != end);
2038 return 0;
2041 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2042 unsigned long addr, unsigned long end,
2043 unsigned long pfn, pgprot_t prot)
2045 p4d_t *p4d;
2046 unsigned long next;
2047 int err;
2049 pfn -= addr >> PAGE_SHIFT;
2050 p4d = p4d_alloc(mm, pgd, addr);
2051 if (!p4d)
2052 return -ENOMEM;
2053 do {
2054 next = p4d_addr_end(addr, end);
2055 err = remap_pud_range(mm, p4d, addr, next,
2056 pfn + (addr >> PAGE_SHIFT), prot);
2057 if (err)
2058 return err;
2059 } while (p4d++, addr = next, addr != end);
2060 return 0;
2064 * remap_pfn_range - remap kernel memory to userspace
2065 * @vma: user vma to map to
2066 * @addr: target user address to start at
2067 * @pfn: physical address of kernel memory
2068 * @size: size of map area
2069 * @prot: page protection flags for this mapping
2071 * Note: this is only safe if the mm semaphore is held when called.
2073 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2074 unsigned long pfn, unsigned long size, pgprot_t prot)
2076 pgd_t *pgd;
2077 unsigned long next;
2078 unsigned long end = addr + PAGE_ALIGN(size);
2079 struct mm_struct *mm = vma->vm_mm;
2080 unsigned long remap_pfn = pfn;
2081 int err;
2084 * Physically remapped pages are special. Tell the
2085 * rest of the world about it:
2086 * VM_IO tells people not to look at these pages
2087 * (accesses can have side effects).
2088 * VM_PFNMAP tells the core MM that the base pages are just
2089 * raw PFN mappings, and do not have a "struct page" associated
2090 * with them.
2091 * VM_DONTEXPAND
2092 * Disable vma merging and expanding with mremap().
2093 * VM_DONTDUMP
2094 * Omit vma from core dump, even when VM_IO turned off.
2096 * There's a horrible special case to handle copy-on-write
2097 * behaviour that some programs depend on. We mark the "original"
2098 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2099 * See vm_normal_page() for details.
2101 if (is_cow_mapping(vma->vm_flags)) {
2102 if (addr != vma->vm_start || end != vma->vm_end)
2103 return -EINVAL;
2104 vma->vm_pgoff = pfn;
2107 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2108 if (err)
2109 return -EINVAL;
2111 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2113 BUG_ON(addr >= end);
2114 pfn -= addr >> PAGE_SHIFT;
2115 pgd = pgd_offset(mm, addr);
2116 flush_cache_range(vma, addr, end);
2117 do {
2118 next = pgd_addr_end(addr, end);
2119 err = remap_p4d_range(mm, pgd, addr, next,
2120 pfn + (addr >> PAGE_SHIFT), prot);
2121 if (err)
2122 break;
2123 } while (pgd++, addr = next, addr != end);
2125 if (err)
2126 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2128 return err;
2130 EXPORT_SYMBOL(remap_pfn_range);
2133 * vm_iomap_memory - remap memory to userspace
2134 * @vma: user vma to map to
2135 * @start: start of area
2136 * @len: size of area
2138 * This is a simplified io_remap_pfn_range() for common driver use. The
2139 * driver just needs to give us the physical memory range to be mapped,
2140 * we'll figure out the rest from the vma information.
2142 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2143 * whatever write-combining details or similar.
2145 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2147 unsigned long vm_len, pfn, pages;
2149 /* Check that the physical memory area passed in looks valid */
2150 if (start + len < start)
2151 return -EINVAL;
2153 * You *really* shouldn't map things that aren't page-aligned,
2154 * but we've historically allowed it because IO memory might
2155 * just have smaller alignment.
2157 len += start & ~PAGE_MASK;
2158 pfn = start >> PAGE_SHIFT;
2159 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2160 if (pfn + pages < pfn)
2161 return -EINVAL;
2163 /* We start the mapping 'vm_pgoff' pages into the area */
2164 if (vma->vm_pgoff > pages)
2165 return -EINVAL;
2166 pfn += vma->vm_pgoff;
2167 pages -= vma->vm_pgoff;
2169 /* Can we fit all of the mapping? */
2170 vm_len = vma->vm_end - vma->vm_start;
2171 if (vm_len >> PAGE_SHIFT > pages)
2172 return -EINVAL;
2174 /* Ok, let it rip */
2175 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2177 EXPORT_SYMBOL(vm_iomap_memory);
2179 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2180 unsigned long addr, unsigned long end,
2181 pte_fn_t fn, void *data)
2183 pte_t *pte;
2184 int err;
2185 pgtable_t token;
2186 spinlock_t *uninitialized_var(ptl);
2188 pte = (mm == &init_mm) ?
2189 pte_alloc_kernel(pmd, addr) :
2190 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2191 if (!pte)
2192 return -ENOMEM;
2194 BUG_ON(pmd_huge(*pmd));
2196 arch_enter_lazy_mmu_mode();
2198 token = pmd_pgtable(*pmd);
2200 do {
2201 err = fn(pte++, token, addr, data);
2202 if (err)
2203 break;
2204 } while (addr += PAGE_SIZE, addr != end);
2206 arch_leave_lazy_mmu_mode();
2208 if (mm != &init_mm)
2209 pte_unmap_unlock(pte-1, ptl);
2210 return err;
2213 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2214 unsigned long addr, unsigned long end,
2215 pte_fn_t fn, void *data)
2217 pmd_t *pmd;
2218 unsigned long next;
2219 int err;
2221 BUG_ON(pud_huge(*pud));
2223 pmd = pmd_alloc(mm, pud, addr);
2224 if (!pmd)
2225 return -ENOMEM;
2226 do {
2227 next = pmd_addr_end(addr, end);
2228 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2229 if (err)
2230 break;
2231 } while (pmd++, addr = next, addr != end);
2232 return err;
2235 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2236 unsigned long addr, unsigned long end,
2237 pte_fn_t fn, void *data)
2239 pud_t *pud;
2240 unsigned long next;
2241 int err;
2243 pud = pud_alloc(mm, p4d, addr);
2244 if (!pud)
2245 return -ENOMEM;
2246 do {
2247 next = pud_addr_end(addr, end);
2248 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2249 if (err)
2250 break;
2251 } while (pud++, addr = next, addr != end);
2252 return err;
2255 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2256 unsigned long addr, unsigned long end,
2257 pte_fn_t fn, void *data)
2259 p4d_t *p4d;
2260 unsigned long next;
2261 int err;
2263 p4d = p4d_alloc(mm, pgd, addr);
2264 if (!p4d)
2265 return -ENOMEM;
2266 do {
2267 next = p4d_addr_end(addr, end);
2268 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2269 if (err)
2270 break;
2271 } while (p4d++, addr = next, addr != end);
2272 return err;
2276 * Scan a region of virtual memory, filling in page tables as necessary
2277 * and calling a provided function on each leaf page table.
2279 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2280 unsigned long size, pte_fn_t fn, void *data)
2282 pgd_t *pgd;
2283 unsigned long next;
2284 unsigned long end = addr + size;
2285 int err;
2287 if (WARN_ON(addr >= end))
2288 return -EINVAL;
2290 pgd = pgd_offset(mm, addr);
2291 do {
2292 next = pgd_addr_end(addr, end);
2293 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2294 if (err)
2295 break;
2296 } while (pgd++, addr = next, addr != end);
2298 return err;
2300 EXPORT_SYMBOL_GPL(apply_to_page_range);
2303 * handle_pte_fault chooses page fault handler according to an entry which was
2304 * read non-atomically. Before making any commitment, on those architectures
2305 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2306 * parts, do_swap_page must check under lock before unmapping the pte and
2307 * proceeding (but do_wp_page is only called after already making such a check;
2308 * and do_anonymous_page can safely check later on).
2310 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2311 pte_t *page_table, pte_t orig_pte)
2313 int same = 1;
2314 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2315 if (sizeof(pte_t) > sizeof(unsigned long)) {
2316 spinlock_t *ptl = pte_lockptr(mm, pmd);
2317 spin_lock(ptl);
2318 same = pte_same(*page_table, orig_pte);
2319 spin_unlock(ptl);
2321 #endif
2322 pte_unmap(page_table);
2323 return same;
2326 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2328 debug_dma_assert_idle(src);
2331 * If the source page was a PFN mapping, we don't have
2332 * a "struct page" for it. We do a best-effort copy by
2333 * just copying from the original user address. If that
2334 * fails, we just zero-fill it. Live with it.
2336 if (unlikely(!src)) {
2337 void *kaddr = kmap_atomic(dst);
2338 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2341 * This really shouldn't fail, because the page is there
2342 * in the page tables. But it might just be unreadable,
2343 * in which case we just give up and fill the result with
2344 * zeroes.
2346 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2347 clear_page(kaddr);
2348 kunmap_atomic(kaddr);
2349 flush_dcache_page(dst);
2350 } else
2351 copy_user_highpage(dst, src, va, vma);
2354 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2356 struct file *vm_file = vma->vm_file;
2358 if (vm_file)
2359 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2362 * Special mappings (e.g. VDSO) do not have any file so fake
2363 * a default GFP_KERNEL for them.
2365 return GFP_KERNEL;
2369 * Notify the address space that the page is about to become writable so that
2370 * it can prohibit this or wait for the page to get into an appropriate state.
2372 * We do this without the lock held, so that it can sleep if it needs to.
2374 static int do_page_mkwrite(struct vm_fault *vmf)
2376 int ret;
2377 struct page *page = vmf->page;
2378 unsigned int old_flags = vmf->flags;
2380 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2382 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2383 /* Restore original flags so that caller is not surprised */
2384 vmf->flags = old_flags;
2385 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2386 return ret;
2387 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2388 lock_page(page);
2389 if (!page->mapping) {
2390 unlock_page(page);
2391 return 0; /* retry */
2393 ret |= VM_FAULT_LOCKED;
2394 } else
2395 VM_BUG_ON_PAGE(!PageLocked(page), page);
2396 return ret;
2400 * Handle dirtying of a page in shared file mapping on a write fault.
2402 * The function expects the page to be locked and unlocks it.
2404 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2405 struct page *page)
2407 struct address_space *mapping;
2408 bool dirtied;
2409 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2411 dirtied = set_page_dirty(page);
2412 VM_BUG_ON_PAGE(PageAnon(page), page);
2414 * Take a local copy of the address_space - page.mapping may be zeroed
2415 * by truncate after unlock_page(). The address_space itself remains
2416 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2417 * release semantics to prevent the compiler from undoing this copying.
2419 mapping = page_rmapping(page);
2420 unlock_page(page);
2422 if ((dirtied || page_mkwrite) && mapping) {
2424 * Some device drivers do not set page.mapping
2425 * but still dirty their pages
2427 balance_dirty_pages_ratelimited(mapping);
2430 if (!page_mkwrite)
2431 file_update_time(vma->vm_file);
2435 * Handle write page faults for pages that can be reused in the current vma
2437 * This can happen either due to the mapping being with the VM_SHARED flag,
2438 * or due to us being the last reference standing to the page. In either
2439 * case, all we need to do here is to mark the page as writable and update
2440 * any related book-keeping.
2442 static inline void wp_page_reuse(struct vm_fault *vmf)
2443 __releases(vmf->ptl)
2445 struct vm_area_struct *vma = vmf->vma;
2446 struct page *page = vmf->page;
2447 pte_t entry;
2449 * Clear the pages cpupid information as the existing
2450 * information potentially belongs to a now completely
2451 * unrelated process.
2453 if (page)
2454 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2456 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2457 entry = pte_mkyoung(vmf->orig_pte);
2458 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2459 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2460 update_mmu_cache(vma, vmf->address, vmf->pte);
2461 pte_unmap_unlock(vmf->pte, vmf->ptl);
2465 * Handle the case of a page which we actually need to copy to a new page.
2467 * Called with mmap_sem locked and the old page referenced, but
2468 * without the ptl held.
2470 * High level logic flow:
2472 * - Allocate a page, copy the content of the old page to the new one.
2473 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2474 * - Take the PTL. If the pte changed, bail out and release the allocated page
2475 * - If the pte is still the way we remember it, update the page table and all
2476 * relevant references. This includes dropping the reference the page-table
2477 * held to the old page, as well as updating the rmap.
2478 * - In any case, unlock the PTL and drop the reference we took to the old page.
2480 static int wp_page_copy(struct vm_fault *vmf)
2482 struct vm_area_struct *vma = vmf->vma;
2483 struct mm_struct *mm = vma->vm_mm;
2484 struct page *old_page = vmf->page;
2485 struct page *new_page = NULL;
2486 pte_t entry;
2487 int page_copied = 0;
2488 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2489 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2490 struct mem_cgroup *memcg;
2492 if (unlikely(anon_vma_prepare(vma)))
2493 goto oom;
2495 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2496 new_page = alloc_zeroed_user_highpage_movable(vma,
2497 vmf->address);
2498 if (!new_page)
2499 goto oom;
2500 } else {
2501 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2502 vmf->address);
2503 if (!new_page)
2504 goto oom;
2505 cow_user_page(new_page, old_page, vmf->address, vma);
2508 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2509 goto oom_free_new;
2511 __SetPageUptodate(new_page);
2513 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2516 * Re-check the pte - we dropped the lock
2518 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2519 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2520 if (old_page) {
2521 if (!PageAnon(old_page)) {
2522 dec_mm_counter_fast(mm,
2523 mm_counter_file(old_page));
2524 inc_mm_counter_fast(mm, MM_ANONPAGES);
2526 } else {
2527 inc_mm_counter_fast(mm, MM_ANONPAGES);
2529 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2530 entry = mk_pte(new_page, vma->vm_page_prot);
2531 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2533 * Clear the pte entry and flush it first, before updating the
2534 * pte with the new entry. This will avoid a race condition
2535 * seen in the presence of one thread doing SMC and another
2536 * thread doing COW.
2538 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2539 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2540 mem_cgroup_commit_charge(new_page, memcg, false, false);
2541 lru_cache_add_active_or_unevictable(new_page, vma);
2543 * We call the notify macro here because, when using secondary
2544 * mmu page tables (such as kvm shadow page tables), we want the
2545 * new page to be mapped directly into the secondary page table.
2547 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2548 update_mmu_cache(vma, vmf->address, vmf->pte);
2549 if (old_page) {
2551 * Only after switching the pte to the new page may
2552 * we remove the mapcount here. Otherwise another
2553 * process may come and find the rmap count decremented
2554 * before the pte is switched to the new page, and
2555 * "reuse" the old page writing into it while our pte
2556 * here still points into it and can be read by other
2557 * threads.
2559 * The critical issue is to order this
2560 * page_remove_rmap with the ptp_clear_flush above.
2561 * Those stores are ordered by (if nothing else,)
2562 * the barrier present in the atomic_add_negative
2563 * in page_remove_rmap.
2565 * Then the TLB flush in ptep_clear_flush ensures that
2566 * no process can access the old page before the
2567 * decremented mapcount is visible. And the old page
2568 * cannot be reused until after the decremented
2569 * mapcount is visible. So transitively, TLBs to
2570 * old page will be flushed before it can be reused.
2572 page_remove_rmap(old_page, false);
2575 /* Free the old page.. */
2576 new_page = old_page;
2577 page_copied = 1;
2578 } else {
2579 mem_cgroup_cancel_charge(new_page, memcg, false);
2582 if (new_page)
2583 put_page(new_page);
2585 pte_unmap_unlock(vmf->pte, vmf->ptl);
2586 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2587 if (old_page) {
2589 * Don't let another task, with possibly unlocked vma,
2590 * keep the mlocked page.
2592 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2593 lock_page(old_page); /* LRU manipulation */
2594 if (PageMlocked(old_page))
2595 munlock_vma_page(old_page);
2596 unlock_page(old_page);
2598 put_page(old_page);
2600 return page_copied ? VM_FAULT_WRITE : 0;
2601 oom_free_new:
2602 put_page(new_page);
2603 oom:
2604 if (old_page)
2605 put_page(old_page);
2606 return VM_FAULT_OOM;
2610 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2611 * writeable once the page is prepared
2613 * @vmf: structure describing the fault
2615 * This function handles all that is needed to finish a write page fault in a
2616 * shared mapping due to PTE being read-only once the mapped page is prepared.
2617 * It handles locking of PTE and modifying it. The function returns
2618 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2619 * lock.
2621 * The function expects the page to be locked or other protection against
2622 * concurrent faults / writeback (such as DAX radix tree locks).
2624 int finish_mkwrite_fault(struct vm_fault *vmf)
2626 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2627 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2628 &vmf->ptl);
2630 * We might have raced with another page fault while we released the
2631 * pte_offset_map_lock.
2633 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2634 pte_unmap_unlock(vmf->pte, vmf->ptl);
2635 return VM_FAULT_NOPAGE;
2637 wp_page_reuse(vmf);
2638 return 0;
2642 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2643 * mapping
2645 static int wp_pfn_shared(struct vm_fault *vmf)
2647 struct vm_area_struct *vma = vmf->vma;
2649 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2650 int ret;
2652 pte_unmap_unlock(vmf->pte, vmf->ptl);
2653 vmf->flags |= FAULT_FLAG_MKWRITE;
2654 ret = vma->vm_ops->pfn_mkwrite(vmf);
2655 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2656 return ret;
2657 return finish_mkwrite_fault(vmf);
2659 wp_page_reuse(vmf);
2660 return VM_FAULT_WRITE;
2663 static int wp_page_shared(struct vm_fault *vmf)
2664 __releases(vmf->ptl)
2666 struct vm_area_struct *vma = vmf->vma;
2668 get_page(vmf->page);
2670 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671 int tmp;
2673 pte_unmap_unlock(vmf->pte, vmf->ptl);
2674 tmp = do_page_mkwrite(vmf);
2675 if (unlikely(!tmp || (tmp &
2676 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2677 put_page(vmf->page);
2678 return tmp;
2680 tmp = finish_mkwrite_fault(vmf);
2681 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2682 unlock_page(vmf->page);
2683 put_page(vmf->page);
2684 return tmp;
2686 } else {
2687 wp_page_reuse(vmf);
2688 lock_page(vmf->page);
2690 fault_dirty_shared_page(vma, vmf->page);
2691 put_page(vmf->page);
2693 return VM_FAULT_WRITE;
2697 * This routine handles present pages, when users try to write
2698 * to a shared page. It is done by copying the page to a new address
2699 * and decrementing the shared-page counter for the old page.
2701 * Note that this routine assumes that the protection checks have been
2702 * done by the caller (the low-level page fault routine in most cases).
2703 * Thus we can safely just mark it writable once we've done any necessary
2704 * COW.
2706 * We also mark the page dirty at this point even though the page will
2707 * change only once the write actually happens. This avoids a few races,
2708 * and potentially makes it more efficient.
2710 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2711 * but allow concurrent faults), with pte both mapped and locked.
2712 * We return with mmap_sem still held, but pte unmapped and unlocked.
2714 static int do_wp_page(struct vm_fault *vmf)
2715 __releases(vmf->ptl)
2717 struct vm_area_struct *vma = vmf->vma;
2719 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2720 if (!vmf->page) {
2722 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2723 * VM_PFNMAP VMA.
2725 * We should not cow pages in a shared writeable mapping.
2726 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2728 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2729 (VM_WRITE|VM_SHARED))
2730 return wp_pfn_shared(vmf);
2732 pte_unmap_unlock(vmf->pte, vmf->ptl);
2733 return wp_page_copy(vmf);
2737 * Take out anonymous pages first, anonymous shared vmas are
2738 * not dirty accountable.
2740 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2741 int total_map_swapcount;
2742 if (!trylock_page(vmf->page)) {
2743 get_page(vmf->page);
2744 pte_unmap_unlock(vmf->pte, vmf->ptl);
2745 lock_page(vmf->page);
2746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2747 vmf->address, &vmf->ptl);
2748 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2749 unlock_page(vmf->page);
2750 pte_unmap_unlock(vmf->pte, vmf->ptl);
2751 put_page(vmf->page);
2752 return 0;
2754 put_page(vmf->page);
2756 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2757 if (total_map_swapcount == 1) {
2759 * The page is all ours. Move it to
2760 * our anon_vma so the rmap code will
2761 * not search our parent or siblings.
2762 * Protected against the rmap code by
2763 * the page lock.
2765 page_move_anon_rmap(vmf->page, vma);
2767 unlock_page(vmf->page);
2768 wp_page_reuse(vmf);
2769 return VM_FAULT_WRITE;
2771 unlock_page(vmf->page);
2772 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2773 (VM_WRITE|VM_SHARED))) {
2774 return wp_page_shared(vmf);
2778 * Ok, we need to copy. Oh, well..
2780 get_page(vmf->page);
2782 pte_unmap_unlock(vmf->pte, vmf->ptl);
2783 return wp_page_copy(vmf);
2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787 unsigned long start_addr, unsigned long end_addr,
2788 struct zap_details *details)
2790 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2793 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2794 struct zap_details *details)
2796 struct vm_area_struct *vma;
2797 pgoff_t vba, vea, zba, zea;
2799 vma_interval_tree_foreach(vma, root,
2800 details->first_index, details->last_index) {
2802 vba = vma->vm_pgoff;
2803 vea = vba + vma_pages(vma) - 1;
2804 zba = details->first_index;
2805 if (zba < vba)
2806 zba = vba;
2807 zea = details->last_index;
2808 if (zea > vea)
2809 zea = vea;
2811 unmap_mapping_range_vma(vma,
2812 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2813 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2814 details);
2819 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2820 * address_space corresponding to the specified page range in the underlying
2821 * file.
2823 * @mapping: the address space containing mmaps to be unmapped.
2824 * @holebegin: byte in first page to unmap, relative to the start of
2825 * the underlying file. This will be rounded down to a PAGE_SIZE
2826 * boundary. Note that this is different from truncate_pagecache(), which
2827 * must keep the partial page. In contrast, we must get rid of
2828 * partial pages.
2829 * @holelen: size of prospective hole in bytes. This will be rounded
2830 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2831 * end of the file.
2832 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2833 * but 0 when invalidating pagecache, don't throw away private data.
2835 void unmap_mapping_range(struct address_space *mapping,
2836 loff_t const holebegin, loff_t const holelen, int even_cows)
2838 struct zap_details details = { };
2839 pgoff_t hba = holebegin >> PAGE_SHIFT;
2840 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2842 /* Check for overflow. */
2843 if (sizeof(holelen) > sizeof(hlen)) {
2844 long long holeend =
2845 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2846 if (holeend & ~(long long)ULONG_MAX)
2847 hlen = ULONG_MAX - hba + 1;
2850 details.check_mapping = even_cows ? NULL : mapping;
2851 details.first_index = hba;
2852 details.last_index = hba + hlen - 1;
2853 if (details.last_index < details.first_index)
2854 details.last_index = ULONG_MAX;
2856 i_mmap_lock_write(mapping);
2857 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2858 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2859 i_mmap_unlock_write(mapping);
2861 EXPORT_SYMBOL(unmap_mapping_range);
2864 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2865 * but allow concurrent faults), and pte mapped but not yet locked.
2866 * We return with pte unmapped and unlocked.
2868 * We return with the mmap_sem locked or unlocked in the same cases
2869 * as does filemap_fault().
2871 int do_swap_page(struct vm_fault *vmf)
2873 struct vm_area_struct *vma = vmf->vma;
2874 struct page *page = NULL, *swapcache;
2875 struct mem_cgroup *memcg;
2876 struct vma_swap_readahead swap_ra;
2877 swp_entry_t entry;
2878 pte_t pte;
2879 int locked;
2880 int exclusive = 0;
2881 int ret = 0;
2882 bool vma_readahead = swap_use_vma_readahead();
2884 if (vma_readahead)
2885 page = swap_readahead_detect(vmf, &swap_ra);
2886 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2887 if (page)
2888 put_page(page);
2889 goto out;
2892 entry = pte_to_swp_entry(vmf->orig_pte);
2893 if (unlikely(non_swap_entry(entry))) {
2894 if (is_migration_entry(entry)) {
2895 migration_entry_wait(vma->vm_mm, vmf->pmd,
2896 vmf->address);
2897 } else if (is_device_private_entry(entry)) {
2899 * For un-addressable device memory we call the pgmap
2900 * fault handler callback. The callback must migrate
2901 * the page back to some CPU accessible page.
2903 ret = device_private_entry_fault(vma, vmf->address, entry,
2904 vmf->flags, vmf->pmd);
2905 } else if (is_hwpoison_entry(entry)) {
2906 ret = VM_FAULT_HWPOISON;
2907 } else {
2908 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2909 ret = VM_FAULT_SIGBUS;
2911 goto out;
2913 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2914 if (!page)
2915 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2916 vmf->address);
2917 if (!page) {
2918 if (vma_readahead)
2919 page = do_swap_page_readahead(entry,
2920 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2921 else
2922 page = swapin_readahead(entry,
2923 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2924 if (!page) {
2926 * Back out if somebody else faulted in this pte
2927 * while we released the pte lock.
2929 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2930 vmf->address, &vmf->ptl);
2931 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2932 ret = VM_FAULT_OOM;
2933 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2934 goto unlock;
2937 /* Had to read the page from swap area: Major fault */
2938 ret = VM_FAULT_MAJOR;
2939 count_vm_event(PGMAJFAULT);
2940 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2941 } else if (PageHWPoison(page)) {
2943 * hwpoisoned dirty swapcache pages are kept for killing
2944 * owner processes (which may be unknown at hwpoison time)
2946 ret = VM_FAULT_HWPOISON;
2947 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2948 swapcache = page;
2949 goto out_release;
2952 swapcache = page;
2953 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2955 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2956 if (!locked) {
2957 ret |= VM_FAULT_RETRY;
2958 goto out_release;
2962 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2963 * release the swapcache from under us. The page pin, and pte_same
2964 * test below, are not enough to exclude that. Even if it is still
2965 * swapcache, we need to check that the page's swap has not changed.
2967 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2968 goto out_page;
2970 page = ksm_might_need_to_copy(page, vma, vmf->address);
2971 if (unlikely(!page)) {
2972 ret = VM_FAULT_OOM;
2973 page = swapcache;
2974 goto out_page;
2977 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2978 &memcg, false)) {
2979 ret = VM_FAULT_OOM;
2980 goto out_page;
2984 * Back out if somebody else already faulted in this pte.
2986 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2987 &vmf->ptl);
2988 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2989 goto out_nomap;
2991 if (unlikely(!PageUptodate(page))) {
2992 ret = VM_FAULT_SIGBUS;
2993 goto out_nomap;
2997 * The page isn't present yet, go ahead with the fault.
2999 * Be careful about the sequence of operations here.
3000 * To get its accounting right, reuse_swap_page() must be called
3001 * while the page is counted on swap but not yet in mapcount i.e.
3002 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3003 * must be called after the swap_free(), or it will never succeed.
3006 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3007 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3008 pte = mk_pte(page, vma->vm_page_prot);
3009 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3010 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3011 vmf->flags &= ~FAULT_FLAG_WRITE;
3012 ret |= VM_FAULT_WRITE;
3013 exclusive = RMAP_EXCLUSIVE;
3015 flush_icache_page(vma, page);
3016 if (pte_swp_soft_dirty(vmf->orig_pte))
3017 pte = pte_mksoft_dirty(pte);
3018 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3019 vmf->orig_pte = pte;
3020 if (page == swapcache) {
3021 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3022 mem_cgroup_commit_charge(page, memcg, true, false);
3023 activate_page(page);
3024 } else { /* ksm created a completely new copy */
3025 page_add_new_anon_rmap(page, vma, vmf->address, false);
3026 mem_cgroup_commit_charge(page, memcg, false, false);
3027 lru_cache_add_active_or_unevictable(page, vma);
3030 swap_free(entry);
3031 if (mem_cgroup_swap_full(page) ||
3032 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3033 try_to_free_swap(page);
3034 unlock_page(page);
3035 if (page != swapcache) {
3037 * Hold the lock to avoid the swap entry to be reused
3038 * until we take the PT lock for the pte_same() check
3039 * (to avoid false positives from pte_same). For
3040 * further safety release the lock after the swap_free
3041 * so that the swap count won't change under a
3042 * parallel locked swapcache.
3044 unlock_page(swapcache);
3045 put_page(swapcache);
3048 if (vmf->flags & FAULT_FLAG_WRITE) {
3049 ret |= do_wp_page(vmf);
3050 if (ret & VM_FAULT_ERROR)
3051 ret &= VM_FAULT_ERROR;
3052 goto out;
3055 /* No need to invalidate - it was non-present before */
3056 update_mmu_cache(vma, vmf->address, vmf->pte);
3057 unlock:
3058 pte_unmap_unlock(vmf->pte, vmf->ptl);
3059 out:
3060 return ret;
3061 out_nomap:
3062 mem_cgroup_cancel_charge(page, memcg, false);
3063 pte_unmap_unlock(vmf->pte, vmf->ptl);
3064 out_page:
3065 unlock_page(page);
3066 out_release:
3067 put_page(page);
3068 if (page != swapcache) {
3069 unlock_page(swapcache);
3070 put_page(swapcache);
3072 return ret;
3076 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3077 * but allow concurrent faults), and pte mapped but not yet locked.
3078 * We return with mmap_sem still held, but pte unmapped and unlocked.
3080 static int do_anonymous_page(struct vm_fault *vmf)
3082 struct vm_area_struct *vma = vmf->vma;
3083 struct mem_cgroup *memcg;
3084 struct page *page;
3085 int ret = 0;
3086 pte_t entry;
3088 /* File mapping without ->vm_ops ? */
3089 if (vma->vm_flags & VM_SHARED)
3090 return VM_FAULT_SIGBUS;
3093 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3094 * pte_offset_map() on pmds where a huge pmd might be created
3095 * from a different thread.
3097 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3098 * parallel threads are excluded by other means.
3100 * Here we only have down_read(mmap_sem).
3102 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3103 return VM_FAULT_OOM;
3105 /* See the comment in pte_alloc_one_map() */
3106 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3107 return 0;
3109 /* Use the zero-page for reads */
3110 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3111 !mm_forbids_zeropage(vma->vm_mm)) {
3112 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3113 vma->vm_page_prot));
3114 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3115 vmf->address, &vmf->ptl);
3116 if (!pte_none(*vmf->pte))
3117 goto unlock;
3118 ret = check_stable_address_space(vma->vm_mm);
3119 if (ret)
3120 goto unlock;
3121 /* Deliver the page fault to userland, check inside PT lock */
3122 if (userfaultfd_missing(vma)) {
3123 pte_unmap_unlock(vmf->pte, vmf->ptl);
3124 return handle_userfault(vmf, VM_UFFD_MISSING);
3126 goto setpte;
3129 /* Allocate our own private page. */
3130 if (unlikely(anon_vma_prepare(vma)))
3131 goto oom;
3132 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3133 if (!page)
3134 goto oom;
3136 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3137 goto oom_free_page;
3140 * The memory barrier inside __SetPageUptodate makes sure that
3141 * preceeding stores to the page contents become visible before
3142 * the set_pte_at() write.
3144 __SetPageUptodate(page);
3146 entry = mk_pte(page, vma->vm_page_prot);
3147 if (vma->vm_flags & VM_WRITE)
3148 entry = pte_mkwrite(pte_mkdirty(entry));
3150 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3151 &vmf->ptl);
3152 if (!pte_none(*vmf->pte))
3153 goto release;
3155 ret = check_stable_address_space(vma->vm_mm);
3156 if (ret)
3157 goto release;
3159 /* Deliver the page fault to userland, check inside PT lock */
3160 if (userfaultfd_missing(vma)) {
3161 pte_unmap_unlock(vmf->pte, vmf->ptl);
3162 mem_cgroup_cancel_charge(page, memcg, false);
3163 put_page(page);
3164 return handle_userfault(vmf, VM_UFFD_MISSING);
3167 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3168 page_add_new_anon_rmap(page, vma, vmf->address, false);
3169 mem_cgroup_commit_charge(page, memcg, false, false);
3170 lru_cache_add_active_or_unevictable(page, vma);
3171 setpte:
3172 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3174 /* No need to invalidate - it was non-present before */
3175 update_mmu_cache(vma, vmf->address, vmf->pte);
3176 unlock:
3177 pte_unmap_unlock(vmf->pte, vmf->ptl);
3178 return ret;
3179 release:
3180 mem_cgroup_cancel_charge(page, memcg, false);
3181 put_page(page);
3182 goto unlock;
3183 oom_free_page:
3184 put_page(page);
3185 oom:
3186 return VM_FAULT_OOM;
3190 * The mmap_sem must have been held on entry, and may have been
3191 * released depending on flags and vma->vm_ops->fault() return value.
3192 * See filemap_fault() and __lock_page_retry().
3194 static int __do_fault(struct vm_fault *vmf)
3196 struct vm_area_struct *vma = vmf->vma;
3197 int ret;
3200 * Preallocate pte before we take page_lock because this might lead to
3201 * deadlocks for memcg reclaim which waits for pages under writeback:
3202 * lock_page(A)
3203 * SetPageWriteback(A)
3204 * unlock_page(A)
3205 * lock_page(B)
3206 * lock_page(B)
3207 * pte_alloc_pne
3208 * shrink_page_list
3209 * wait_on_page_writeback(A)
3210 * SetPageWriteback(B)
3211 * unlock_page(B)
3212 * # flush A, B to clear the writeback
3214 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3215 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3216 vmf->address);
3217 if (!vmf->prealloc_pte)
3218 return VM_FAULT_OOM;
3219 smp_wmb(); /* See comment in __pte_alloc() */
3222 ret = vma->vm_ops->fault(vmf);
3223 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3224 VM_FAULT_DONE_COW)))
3225 return ret;
3227 if (unlikely(PageHWPoison(vmf->page))) {
3228 if (ret & VM_FAULT_LOCKED)
3229 unlock_page(vmf->page);
3230 put_page(vmf->page);
3231 vmf->page = NULL;
3232 return VM_FAULT_HWPOISON;
3235 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236 lock_page(vmf->page);
3237 else
3238 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3240 return ret;
3244 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3249 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3251 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3254 static int pte_alloc_one_map(struct vm_fault *vmf)
3256 struct vm_area_struct *vma = vmf->vma;
3258 if (!pmd_none(*vmf->pmd))
3259 goto map_pte;
3260 if (vmf->prealloc_pte) {
3261 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262 if (unlikely(!pmd_none(*vmf->pmd))) {
3263 spin_unlock(vmf->ptl);
3264 goto map_pte;
3267 atomic_long_inc(&vma->vm_mm->nr_ptes);
3268 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3269 spin_unlock(vmf->ptl);
3270 vmf->prealloc_pte = NULL;
3271 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3272 return VM_FAULT_OOM;
3274 map_pte:
3276 * If a huge pmd materialized under us just retry later. Use
3277 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280 * running immediately after a huge pmd fault in a different thread of
3281 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282 * All we have to ensure is that it is a regular pmd that we can walk
3283 * with pte_offset_map() and we can do that through an atomic read in
3284 * C, which is what pmd_trans_unstable() provides.
3286 if (pmd_devmap_trans_unstable(vmf->pmd))
3287 return VM_FAULT_NOPAGE;
3290 * At this point we know that our vmf->pmd points to a page of ptes
3291 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3293 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294 * be valid and we will re-check to make sure the vmf->pte isn't
3295 * pte_none() under vmf->ptl protection when we return to
3296 * alloc_set_pte().
3298 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3299 &vmf->ptl);
3300 return 0;
3303 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3305 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3307 unsigned long haddr)
3309 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3310 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3311 return false;
3312 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3313 return false;
3314 return true;
3317 static void deposit_prealloc_pte(struct vm_fault *vmf)
3319 struct vm_area_struct *vma = vmf->vma;
3321 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3323 * We are going to consume the prealloc table,
3324 * count that as nr_ptes.
3326 atomic_long_inc(&vma->vm_mm->nr_ptes);
3327 vmf->prealloc_pte = NULL;
3330 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3332 struct vm_area_struct *vma = vmf->vma;
3333 bool write = vmf->flags & FAULT_FLAG_WRITE;
3334 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3335 pmd_t entry;
3336 int i, ret;
3338 if (!transhuge_vma_suitable(vma, haddr))
3339 return VM_FAULT_FALLBACK;
3341 ret = VM_FAULT_FALLBACK;
3342 page = compound_head(page);
3345 * Archs like ppc64 need additonal space to store information
3346 * related to pte entry. Use the preallocated table for that.
3348 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3349 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3350 if (!vmf->prealloc_pte)
3351 return VM_FAULT_OOM;
3352 smp_wmb(); /* See comment in __pte_alloc() */
3355 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356 if (unlikely(!pmd_none(*vmf->pmd)))
3357 goto out;
3359 for (i = 0; i < HPAGE_PMD_NR; i++)
3360 flush_icache_page(vma, page + i);
3362 entry = mk_huge_pmd(page, vma->vm_page_prot);
3363 if (write)
3364 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3366 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3367 page_add_file_rmap(page, true);
3369 * deposit and withdraw with pmd lock held
3371 if (arch_needs_pgtable_deposit())
3372 deposit_prealloc_pte(vmf);
3374 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3376 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3378 /* fault is handled */
3379 ret = 0;
3380 count_vm_event(THP_FILE_MAPPED);
3381 out:
3382 spin_unlock(vmf->ptl);
3383 return ret;
3385 #else
3386 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3388 BUILD_BUG();
3389 return 0;
3391 #endif
3394 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3397 * @vmf: fault environment
3398 * @memcg: memcg to charge page (only for private mappings)
3399 * @page: page to map
3401 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3402 * return.
3404 * Target users are page handler itself and implementations of
3405 * vm_ops->map_pages.
3407 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3408 struct page *page)
3410 struct vm_area_struct *vma = vmf->vma;
3411 bool write = vmf->flags & FAULT_FLAG_WRITE;
3412 pte_t entry;
3413 int ret;
3415 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3416 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3417 /* THP on COW? */
3418 VM_BUG_ON_PAGE(memcg, page);
3420 ret = do_set_pmd(vmf, page);
3421 if (ret != VM_FAULT_FALLBACK)
3422 return ret;
3425 if (!vmf->pte) {
3426 ret = pte_alloc_one_map(vmf);
3427 if (ret)
3428 return ret;
3431 /* Re-check under ptl */
3432 if (unlikely(!pte_none(*vmf->pte)))
3433 return VM_FAULT_NOPAGE;
3435 flush_icache_page(vma, page);
3436 entry = mk_pte(page, vma->vm_page_prot);
3437 if (write)
3438 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439 /* copy-on-write page */
3440 if (write && !(vma->vm_flags & VM_SHARED)) {
3441 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3442 page_add_new_anon_rmap(page, vma, vmf->address, false);
3443 mem_cgroup_commit_charge(page, memcg, false, false);
3444 lru_cache_add_active_or_unevictable(page, vma);
3445 } else {
3446 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3447 page_add_file_rmap(page, false);
3449 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3451 /* no need to invalidate: a not-present page won't be cached */
3452 update_mmu_cache(vma, vmf->address, vmf->pte);
3454 return 0;
3459 * finish_fault - finish page fault once we have prepared the page to fault
3461 * @vmf: structure describing the fault
3463 * This function handles all that is needed to finish a page fault once the
3464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465 * given page, adds reverse page mapping, handles memcg charges and LRU
3466 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3467 * error.
3469 * The function expects the page to be locked and on success it consumes a
3470 * reference of a page being mapped (for the PTE which maps it).
3472 int finish_fault(struct vm_fault *vmf)
3474 struct page *page;
3475 int ret = 0;
3477 /* Did we COW the page? */
3478 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3479 !(vmf->vma->vm_flags & VM_SHARED))
3480 page = vmf->cow_page;
3481 else
3482 page = vmf->page;
3485 * check even for read faults because we might have lost our CoWed
3486 * page
3488 if (!(vmf->vma->vm_flags & VM_SHARED))
3489 ret = check_stable_address_space(vmf->vma->vm_mm);
3490 if (!ret)
3491 ret = alloc_set_pte(vmf, vmf->memcg, page);
3492 if (vmf->pte)
3493 pte_unmap_unlock(vmf->pte, vmf->ptl);
3494 return ret;
3497 static unsigned long fault_around_bytes __read_mostly =
3498 rounddown_pow_of_two(65536);
3500 #ifdef CONFIG_DEBUG_FS
3501 static int fault_around_bytes_get(void *data, u64 *val)
3503 *val = fault_around_bytes;
3504 return 0;
3508 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3509 * rounded down to nearest page order. It's what do_fault_around() expects to
3510 * see.
3512 static int fault_around_bytes_set(void *data, u64 val)
3514 if (val / PAGE_SIZE > PTRS_PER_PTE)
3515 return -EINVAL;
3516 if (val > PAGE_SIZE)
3517 fault_around_bytes = rounddown_pow_of_two(val);
3518 else
3519 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3520 return 0;
3522 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3523 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3525 static int __init fault_around_debugfs(void)
3527 void *ret;
3529 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3530 &fault_around_bytes_fops);
3531 if (!ret)
3532 pr_warn("Failed to create fault_around_bytes in debugfs");
3533 return 0;
3535 late_initcall(fault_around_debugfs);
3536 #endif
3539 * do_fault_around() tries to map few pages around the fault address. The hope
3540 * is that the pages will be needed soon and this will lower the number of
3541 * faults to handle.
3543 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3544 * not ready to be mapped: not up-to-date, locked, etc.
3546 * This function is called with the page table lock taken. In the split ptlock
3547 * case the page table lock only protects only those entries which belong to
3548 * the page table corresponding to the fault address.
3550 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3551 * only once.
3553 * fault_around_pages() defines how many pages we'll try to map.
3554 * do_fault_around() expects it to return a power of two less than or equal to
3555 * PTRS_PER_PTE.
3557 * The virtual address of the area that we map is naturally aligned to the
3558 * fault_around_pages() value (and therefore to page order). This way it's
3559 * easier to guarantee that we don't cross page table boundaries.
3561 static int do_fault_around(struct vm_fault *vmf)
3563 unsigned long address = vmf->address, nr_pages, mask;
3564 pgoff_t start_pgoff = vmf->pgoff;
3565 pgoff_t end_pgoff;
3566 int off, ret = 0;
3568 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3569 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3571 vmf->address = max(address & mask, vmf->vma->vm_start);
3572 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3573 start_pgoff -= off;
3576 * end_pgoff is either end of page table or end of vma
3577 * or fault_around_pages() from start_pgoff, depending what is nearest.
3579 end_pgoff = start_pgoff -
3580 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3581 PTRS_PER_PTE - 1;
3582 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3583 start_pgoff + nr_pages - 1);
3585 if (pmd_none(*vmf->pmd)) {
3586 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3587 vmf->address);
3588 if (!vmf->prealloc_pte)
3589 goto out;
3590 smp_wmb(); /* See comment in __pte_alloc() */
3593 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3595 /* Huge page is mapped? Page fault is solved */
3596 if (pmd_trans_huge(*vmf->pmd)) {
3597 ret = VM_FAULT_NOPAGE;
3598 goto out;
3601 /* ->map_pages() haven't done anything useful. Cold page cache? */
3602 if (!vmf->pte)
3603 goto out;
3605 /* check if the page fault is solved */
3606 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3607 if (!pte_none(*vmf->pte))
3608 ret = VM_FAULT_NOPAGE;
3609 pte_unmap_unlock(vmf->pte, vmf->ptl);
3610 out:
3611 vmf->address = address;
3612 vmf->pte = NULL;
3613 return ret;
3616 static int do_read_fault(struct vm_fault *vmf)
3618 struct vm_area_struct *vma = vmf->vma;
3619 int ret = 0;
3622 * Let's call ->map_pages() first and use ->fault() as fallback
3623 * if page by the offset is not ready to be mapped (cold cache or
3624 * something).
3626 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3627 ret = do_fault_around(vmf);
3628 if (ret)
3629 return ret;
3632 ret = __do_fault(vmf);
3633 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3634 return ret;
3636 ret |= finish_fault(vmf);
3637 unlock_page(vmf->page);
3638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639 put_page(vmf->page);
3640 return ret;
3643 static int do_cow_fault(struct vm_fault *vmf)
3645 struct vm_area_struct *vma = vmf->vma;
3646 int ret;
3648 if (unlikely(anon_vma_prepare(vma)))
3649 return VM_FAULT_OOM;
3651 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3652 if (!vmf->cow_page)
3653 return VM_FAULT_OOM;
3655 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3656 &vmf->memcg, false)) {
3657 put_page(vmf->cow_page);
3658 return VM_FAULT_OOM;
3661 ret = __do_fault(vmf);
3662 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 goto uncharge_out;
3664 if (ret & VM_FAULT_DONE_COW)
3665 return ret;
3667 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3668 __SetPageUptodate(vmf->cow_page);
3670 ret |= finish_fault(vmf);
3671 unlock_page(vmf->page);
3672 put_page(vmf->page);
3673 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3674 goto uncharge_out;
3675 return ret;
3676 uncharge_out:
3677 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3678 put_page(vmf->cow_page);
3679 return ret;
3682 static int do_shared_fault(struct vm_fault *vmf)
3684 struct vm_area_struct *vma = vmf->vma;
3685 int ret, tmp;
3687 ret = __do_fault(vmf);
3688 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3689 return ret;
3692 * Check if the backing address space wants to know that the page is
3693 * about to become writable
3695 if (vma->vm_ops->page_mkwrite) {
3696 unlock_page(vmf->page);
3697 tmp = do_page_mkwrite(vmf);
3698 if (unlikely(!tmp ||
3699 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3700 put_page(vmf->page);
3701 return tmp;
3705 ret |= finish_fault(vmf);
3706 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3707 VM_FAULT_RETRY))) {
3708 unlock_page(vmf->page);
3709 put_page(vmf->page);
3710 return ret;
3713 fault_dirty_shared_page(vma, vmf->page);
3714 return ret;
3718 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719 * but allow concurrent faults).
3720 * The mmap_sem may have been released depending on flags and our
3721 * return value. See filemap_fault() and __lock_page_or_retry().
3723 static int do_fault(struct vm_fault *vmf)
3725 struct vm_area_struct *vma = vmf->vma;
3726 int ret;
3729 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3731 if (!vma->vm_ops->fault) {
3733 * If we find a migration pmd entry or a none pmd entry, which
3734 * should never happen, return SIGBUS
3736 if (unlikely(!pmd_present(*vmf->pmd)))
3737 ret = VM_FAULT_SIGBUS;
3738 else {
3739 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3740 vmf->pmd,
3741 vmf->address,
3742 &vmf->ptl);
3744 * Make sure this is not a temporary clearing of pte
3745 * by holding ptl and checking again. A R/M/W update
3746 * of pte involves: take ptl, clearing the pte so that
3747 * we don't have concurrent modification by hardware
3748 * followed by an update.
3750 if (unlikely(pte_none(*vmf->pte)))
3751 ret = VM_FAULT_SIGBUS;
3752 else
3753 ret = VM_FAULT_NOPAGE;
3755 pte_unmap_unlock(vmf->pte, vmf->ptl);
3757 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3758 ret = do_read_fault(vmf);
3759 else if (!(vma->vm_flags & VM_SHARED))
3760 ret = do_cow_fault(vmf);
3761 else
3762 ret = do_shared_fault(vmf);
3764 /* preallocated pagetable is unused: free it */
3765 if (vmf->prealloc_pte) {
3766 pte_free(vma->vm_mm, vmf->prealloc_pte);
3767 vmf->prealloc_pte = NULL;
3769 return ret;
3772 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3773 unsigned long addr, int page_nid,
3774 int *flags)
3776 get_page(page);
3778 count_vm_numa_event(NUMA_HINT_FAULTS);
3779 if (page_nid == numa_node_id()) {
3780 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3781 *flags |= TNF_FAULT_LOCAL;
3784 return mpol_misplaced(page, vma, addr);
3787 static int do_numa_page(struct vm_fault *vmf)
3789 struct vm_area_struct *vma = vmf->vma;
3790 struct page *page = NULL;
3791 int page_nid = -1;
3792 int last_cpupid;
3793 int target_nid;
3794 bool migrated = false;
3795 pte_t pte;
3796 bool was_writable = pte_savedwrite(vmf->orig_pte);
3797 int flags = 0;
3800 * The "pte" at this point cannot be used safely without
3801 * validation through pte_unmap_same(). It's of NUMA type but
3802 * the pfn may be screwed if the read is non atomic.
3804 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3805 spin_lock(vmf->ptl);
3806 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3807 pte_unmap_unlock(vmf->pte, vmf->ptl);
3808 goto out;
3812 * Make it present again, Depending on how arch implementes non
3813 * accessible ptes, some can allow access by kernel mode.
3815 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3816 pte = pte_modify(pte, vma->vm_page_prot);
3817 pte = pte_mkyoung(pte);
3818 if (was_writable)
3819 pte = pte_mkwrite(pte);
3820 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3821 update_mmu_cache(vma, vmf->address, vmf->pte);
3823 page = vm_normal_page(vma, vmf->address, pte);
3824 if (!page) {
3825 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 return 0;
3829 /* TODO: handle PTE-mapped THP */
3830 if (PageCompound(page)) {
3831 pte_unmap_unlock(vmf->pte, vmf->ptl);
3832 return 0;
3836 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3837 * much anyway since they can be in shared cache state. This misses
3838 * the case where a mapping is writable but the process never writes
3839 * to it but pte_write gets cleared during protection updates and
3840 * pte_dirty has unpredictable behaviour between PTE scan updates,
3841 * background writeback, dirty balancing and application behaviour.
3843 if (!pte_write(pte))
3844 flags |= TNF_NO_GROUP;
3847 * Flag if the page is shared between multiple address spaces. This
3848 * is later used when determining whether to group tasks together
3850 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3851 flags |= TNF_SHARED;
3853 last_cpupid = page_cpupid_last(page);
3854 page_nid = page_to_nid(page);
3855 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3856 &flags);
3857 pte_unmap_unlock(vmf->pte, vmf->ptl);
3858 if (target_nid == -1) {
3859 put_page(page);
3860 goto out;
3863 /* Migrate to the requested node */
3864 migrated = migrate_misplaced_page(page, vma, target_nid);
3865 if (migrated) {
3866 page_nid = target_nid;
3867 flags |= TNF_MIGRATED;
3868 } else
3869 flags |= TNF_MIGRATE_FAIL;
3871 out:
3872 if (page_nid != -1)
3873 task_numa_fault(last_cpupid, page_nid, 1, flags);
3874 return 0;
3877 static inline int create_huge_pmd(struct vm_fault *vmf)
3879 if (vma_is_anonymous(vmf->vma))
3880 return do_huge_pmd_anonymous_page(vmf);
3881 if (vmf->vma->vm_ops->huge_fault)
3882 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3883 return VM_FAULT_FALLBACK;
3886 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3888 if (vma_is_anonymous(vmf->vma))
3889 return do_huge_pmd_wp_page(vmf, orig_pmd);
3890 if (vmf->vma->vm_ops->huge_fault)
3891 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3893 /* COW handled on pte level: split pmd */
3894 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3895 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3897 return VM_FAULT_FALLBACK;
3900 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3902 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3905 static int create_huge_pud(struct vm_fault *vmf)
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908 /* No support for anonymous transparent PUD pages yet */
3909 if (vma_is_anonymous(vmf->vma))
3910 return VM_FAULT_FALLBACK;
3911 if (vmf->vma->vm_ops->huge_fault)
3912 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914 return VM_FAULT_FALLBACK;
3917 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf->vma))
3922 return VM_FAULT_FALLBACK;
3923 if (vmf->vma->vm_ops->huge_fault)
3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK;
3930 * These routines also need to handle stuff like marking pages dirty
3931 * and/or accessed for architectures that don't do it in hardware (most
3932 * RISC architectures). The early dirtying is also good on the i386.
3934 * There is also a hook called "update_mmu_cache()" that architectures
3935 * with external mmu caches can use to update those (ie the Sparc or
3936 * PowerPC hashed page tables that act as extended TLBs).
3938 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3939 * concurrent faults).
3941 * The mmap_sem may have been released depending on flags and our return value.
3942 * See filemap_fault() and __lock_page_or_retry().
3944 static int handle_pte_fault(struct vm_fault *vmf)
3946 pte_t entry;
3948 if (unlikely(pmd_none(*vmf->pmd))) {
3950 * Leave __pte_alloc() until later: because vm_ops->fault may
3951 * want to allocate huge page, and if we expose page table
3952 * for an instant, it will be difficult to retract from
3953 * concurrent faults and from rmap lookups.
3955 vmf->pte = NULL;
3956 } else {
3957 /* See comment in pte_alloc_one_map() */
3958 if (pmd_devmap_trans_unstable(vmf->pmd))
3959 return 0;
3961 * A regular pmd is established and it can't morph into a huge
3962 * pmd from under us anymore at this point because we hold the
3963 * mmap_sem read mode and khugepaged takes it in write mode.
3964 * So now it's safe to run pte_offset_map().
3966 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3967 vmf->orig_pte = *vmf->pte;
3970 * some architectures can have larger ptes than wordsize,
3971 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3972 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3973 * atomic accesses. The code below just needs a consistent
3974 * view for the ifs and we later double check anyway with the
3975 * ptl lock held. So here a barrier will do.
3977 barrier();
3978 if (pte_none(vmf->orig_pte)) {
3979 pte_unmap(vmf->pte);
3980 vmf->pte = NULL;
3984 if (!vmf->pte) {
3985 if (vma_is_anonymous(vmf->vma))
3986 return do_anonymous_page(vmf);
3987 else
3988 return do_fault(vmf);
3991 if (!pte_present(vmf->orig_pte))
3992 return do_swap_page(vmf);
3994 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3995 return do_numa_page(vmf);
3997 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3998 spin_lock(vmf->ptl);
3999 entry = vmf->orig_pte;
4000 if (unlikely(!pte_same(*vmf->pte, entry)))
4001 goto unlock;
4002 if (vmf->flags & FAULT_FLAG_WRITE) {
4003 if (!pte_write(entry))
4004 return do_wp_page(vmf);
4005 entry = pte_mkdirty(entry);
4007 entry = pte_mkyoung(entry);
4008 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4009 vmf->flags & FAULT_FLAG_WRITE)) {
4010 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4011 } else {
4013 * This is needed only for protection faults but the arch code
4014 * is not yet telling us if this is a protection fault or not.
4015 * This still avoids useless tlb flushes for .text page faults
4016 * with threads.
4018 if (vmf->flags & FAULT_FLAG_WRITE)
4019 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4021 unlock:
4022 pte_unmap_unlock(vmf->pte, vmf->ptl);
4023 return 0;
4027 * By the time we get here, we already hold the mm semaphore
4029 * The mmap_sem may have been released depending on flags and our
4030 * return value. See filemap_fault() and __lock_page_or_retry().
4032 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4033 unsigned int flags)
4035 struct vm_fault vmf = {
4036 .vma = vma,
4037 .address = address & PAGE_MASK,
4038 .flags = flags,
4039 .pgoff = linear_page_index(vma, address),
4040 .gfp_mask = __get_fault_gfp_mask(vma),
4042 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4043 struct mm_struct *mm = vma->vm_mm;
4044 pgd_t *pgd;
4045 p4d_t *p4d;
4046 int ret;
4048 pgd = pgd_offset(mm, address);
4049 p4d = p4d_alloc(mm, pgd, address);
4050 if (!p4d)
4051 return VM_FAULT_OOM;
4053 vmf.pud = pud_alloc(mm, p4d, address);
4054 if (!vmf.pud)
4055 return VM_FAULT_OOM;
4056 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4057 ret = create_huge_pud(&vmf);
4058 if (!(ret & VM_FAULT_FALLBACK))
4059 return ret;
4060 } else {
4061 pud_t orig_pud = *vmf.pud;
4063 barrier();
4064 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4066 /* NUMA case for anonymous PUDs would go here */
4068 if (dirty && !pud_write(orig_pud)) {
4069 ret = wp_huge_pud(&vmf, orig_pud);
4070 if (!(ret & VM_FAULT_FALLBACK))
4071 return ret;
4072 } else {
4073 huge_pud_set_accessed(&vmf, orig_pud);
4074 return 0;
4079 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4080 if (!vmf.pmd)
4081 return VM_FAULT_OOM;
4082 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4083 ret = create_huge_pmd(&vmf);
4084 if (!(ret & VM_FAULT_FALLBACK))
4085 return ret;
4086 } else {
4087 pmd_t orig_pmd = *vmf.pmd;
4089 barrier();
4090 if (unlikely(is_swap_pmd(orig_pmd))) {
4091 VM_BUG_ON(thp_migration_supported() &&
4092 !is_pmd_migration_entry(orig_pmd));
4093 if (is_pmd_migration_entry(orig_pmd))
4094 pmd_migration_entry_wait(mm, vmf.pmd);
4095 return 0;
4097 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4098 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4099 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4101 if (dirty && !pmd_write(orig_pmd)) {
4102 ret = wp_huge_pmd(&vmf, orig_pmd);
4103 if (!(ret & VM_FAULT_FALLBACK))
4104 return ret;
4105 } else {
4106 huge_pmd_set_accessed(&vmf, orig_pmd);
4107 return 0;
4112 return handle_pte_fault(&vmf);
4116 * By the time we get here, we already hold the mm semaphore
4118 * The mmap_sem may have been released depending on flags and our
4119 * return value. See filemap_fault() and __lock_page_or_retry().
4121 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4122 unsigned int flags)
4124 int ret;
4126 __set_current_state(TASK_RUNNING);
4128 count_vm_event(PGFAULT);
4129 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4131 /* do counter updates before entering really critical section. */
4132 check_sync_rss_stat(current);
4134 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4135 flags & FAULT_FLAG_INSTRUCTION,
4136 flags & FAULT_FLAG_REMOTE))
4137 return VM_FAULT_SIGSEGV;
4140 * Enable the memcg OOM handling for faults triggered in user
4141 * space. Kernel faults are handled more gracefully.
4143 if (flags & FAULT_FLAG_USER)
4144 mem_cgroup_oom_enable();
4146 if (unlikely(is_vm_hugetlb_page(vma)))
4147 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4148 else
4149 ret = __handle_mm_fault(vma, address, flags);
4151 if (flags & FAULT_FLAG_USER) {
4152 mem_cgroup_oom_disable();
4154 * The task may have entered a memcg OOM situation but
4155 * if the allocation error was handled gracefully (no
4156 * VM_FAULT_OOM), there is no need to kill anything.
4157 * Just clean up the OOM state peacefully.
4159 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4160 mem_cgroup_oom_synchronize(false);
4163 return ret;
4165 EXPORT_SYMBOL_GPL(handle_mm_fault);
4167 #ifndef __PAGETABLE_P4D_FOLDED
4169 * Allocate p4d page table.
4170 * We've already handled the fast-path in-line.
4172 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4174 p4d_t *new = p4d_alloc_one(mm, address);
4175 if (!new)
4176 return -ENOMEM;
4178 smp_wmb(); /* See comment in __pte_alloc */
4180 spin_lock(&mm->page_table_lock);
4181 if (pgd_present(*pgd)) /* Another has populated it */
4182 p4d_free(mm, new);
4183 else
4184 pgd_populate(mm, pgd, new);
4185 spin_unlock(&mm->page_table_lock);
4186 return 0;
4188 #endif /* __PAGETABLE_P4D_FOLDED */
4190 #ifndef __PAGETABLE_PUD_FOLDED
4192 * Allocate page upper directory.
4193 * We've already handled the fast-path in-line.
4195 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4197 pud_t *new = pud_alloc_one(mm, address);
4198 if (!new)
4199 return -ENOMEM;
4201 smp_wmb(); /* See comment in __pte_alloc */
4203 spin_lock(&mm->page_table_lock);
4204 #ifndef __ARCH_HAS_5LEVEL_HACK
4205 if (p4d_present(*p4d)) /* Another has populated it */
4206 pud_free(mm, new);
4207 else
4208 p4d_populate(mm, p4d, new);
4209 #else
4210 if (pgd_present(*p4d)) /* Another has populated it */
4211 pud_free(mm, new);
4212 else
4213 pgd_populate(mm, p4d, new);
4214 #endif /* __ARCH_HAS_5LEVEL_HACK */
4215 spin_unlock(&mm->page_table_lock);
4216 return 0;
4218 #endif /* __PAGETABLE_PUD_FOLDED */
4220 #ifndef __PAGETABLE_PMD_FOLDED
4222 * Allocate page middle directory.
4223 * We've already handled the fast-path in-line.
4225 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4227 spinlock_t *ptl;
4228 pmd_t *new = pmd_alloc_one(mm, address);
4229 if (!new)
4230 return -ENOMEM;
4232 smp_wmb(); /* See comment in __pte_alloc */
4234 ptl = pud_lock(mm, pud);
4235 #ifndef __ARCH_HAS_4LEVEL_HACK
4236 if (!pud_present(*pud)) {
4237 mm_inc_nr_pmds(mm);
4238 pud_populate(mm, pud, new);
4239 } else /* Another has populated it */
4240 pmd_free(mm, new);
4241 #else
4242 if (!pgd_present(*pud)) {
4243 mm_inc_nr_pmds(mm);
4244 pgd_populate(mm, pud, new);
4245 } else /* Another has populated it */
4246 pmd_free(mm, new);
4247 #endif /* __ARCH_HAS_4LEVEL_HACK */
4248 spin_unlock(ptl);
4249 return 0;
4251 #endif /* __PAGETABLE_PMD_FOLDED */
4253 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4254 unsigned long *start, unsigned long *end,
4255 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4257 pgd_t *pgd;
4258 p4d_t *p4d;
4259 pud_t *pud;
4260 pmd_t *pmd;
4261 pte_t *ptep;
4263 pgd = pgd_offset(mm, address);
4264 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4265 goto out;
4267 p4d = p4d_offset(pgd, address);
4268 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4269 goto out;
4271 pud = pud_offset(p4d, address);
4272 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4273 goto out;
4275 pmd = pmd_offset(pud, address);
4276 VM_BUG_ON(pmd_trans_huge(*pmd));
4278 if (pmd_huge(*pmd)) {
4279 if (!pmdpp)
4280 goto out;
4282 if (start && end) {
4283 *start = address & PMD_MASK;
4284 *end = *start + PMD_SIZE;
4285 mmu_notifier_invalidate_range_start(mm, *start, *end);
4287 *ptlp = pmd_lock(mm, pmd);
4288 if (pmd_huge(*pmd)) {
4289 *pmdpp = pmd;
4290 return 0;
4292 spin_unlock(*ptlp);
4293 if (start && end)
4294 mmu_notifier_invalidate_range_end(mm, *start, *end);
4297 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4298 goto out;
4300 if (start && end) {
4301 *start = address & PAGE_MASK;
4302 *end = *start + PAGE_SIZE;
4303 mmu_notifier_invalidate_range_start(mm, *start, *end);
4305 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4306 if (!pte_present(*ptep))
4307 goto unlock;
4308 *ptepp = ptep;
4309 return 0;
4310 unlock:
4311 pte_unmap_unlock(ptep, *ptlp);
4312 if (start && end)
4313 mmu_notifier_invalidate_range_end(mm, *start, *end);
4314 out:
4315 return -EINVAL;
4318 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4319 pte_t **ptepp, spinlock_t **ptlp)
4321 int res;
4323 /* (void) is needed to make gcc happy */
4324 (void) __cond_lock(*ptlp,
4325 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4326 ptepp, NULL, ptlp)));
4327 return res;
4330 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4331 unsigned long *start, unsigned long *end,
4332 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4334 int res;
4336 /* (void) is needed to make gcc happy */
4337 (void) __cond_lock(*ptlp,
4338 !(res = __follow_pte_pmd(mm, address, start, end,
4339 ptepp, pmdpp, ptlp)));
4340 return res;
4342 EXPORT_SYMBOL(follow_pte_pmd);
4345 * follow_pfn - look up PFN at a user virtual address
4346 * @vma: memory mapping
4347 * @address: user virtual address
4348 * @pfn: location to store found PFN
4350 * Only IO mappings and raw PFN mappings are allowed.
4352 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4354 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4355 unsigned long *pfn)
4357 int ret = -EINVAL;
4358 spinlock_t *ptl;
4359 pte_t *ptep;
4361 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4362 return ret;
4364 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4365 if (ret)
4366 return ret;
4367 *pfn = pte_pfn(*ptep);
4368 pte_unmap_unlock(ptep, ptl);
4369 return 0;
4371 EXPORT_SYMBOL(follow_pfn);
4373 #ifdef CONFIG_HAVE_IOREMAP_PROT
4374 int follow_phys(struct vm_area_struct *vma,
4375 unsigned long address, unsigned int flags,
4376 unsigned long *prot, resource_size_t *phys)
4378 int ret = -EINVAL;
4379 pte_t *ptep, pte;
4380 spinlock_t *ptl;
4382 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4383 goto out;
4385 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4386 goto out;
4387 pte = *ptep;
4389 if ((flags & FOLL_WRITE) && !pte_write(pte))
4390 goto unlock;
4392 *prot = pgprot_val(pte_pgprot(pte));
4393 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4395 ret = 0;
4396 unlock:
4397 pte_unmap_unlock(ptep, ptl);
4398 out:
4399 return ret;
4402 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4403 void *buf, int len, int write)
4405 resource_size_t phys_addr;
4406 unsigned long prot = 0;
4407 void __iomem *maddr;
4408 int offset = addr & (PAGE_SIZE-1);
4410 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4411 return -EINVAL;
4413 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4414 if (!maddr)
4415 return -ENOMEM;
4417 if (write)
4418 memcpy_toio(maddr + offset, buf, len);
4419 else
4420 memcpy_fromio(buf, maddr + offset, len);
4421 iounmap(maddr);
4423 return len;
4425 EXPORT_SYMBOL_GPL(generic_access_phys);
4426 #endif
4429 * Access another process' address space as given in mm. If non-NULL, use the
4430 * given task for page fault accounting.
4432 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4433 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4435 struct vm_area_struct *vma;
4436 void *old_buf = buf;
4437 int write = gup_flags & FOLL_WRITE;
4439 down_read(&mm->mmap_sem);
4440 /* ignore errors, just check how much was successfully transferred */
4441 while (len) {
4442 int bytes, ret, offset;
4443 void *maddr;
4444 struct page *page = NULL;
4446 ret = get_user_pages_remote(tsk, mm, addr, 1,
4447 gup_flags, &page, &vma, NULL);
4448 if (ret <= 0) {
4449 #ifndef CONFIG_HAVE_IOREMAP_PROT
4450 break;
4451 #else
4453 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4454 * we can access using slightly different code.
4456 vma = find_vma(mm, addr);
4457 if (!vma || vma->vm_start > addr)
4458 break;
4459 if (vma->vm_ops && vma->vm_ops->access)
4460 ret = vma->vm_ops->access(vma, addr, buf,
4461 len, write);
4462 if (ret <= 0)
4463 break;
4464 bytes = ret;
4465 #endif
4466 } else {
4467 bytes = len;
4468 offset = addr & (PAGE_SIZE-1);
4469 if (bytes > PAGE_SIZE-offset)
4470 bytes = PAGE_SIZE-offset;
4472 maddr = kmap(page);
4473 if (write) {
4474 copy_to_user_page(vma, page, addr,
4475 maddr + offset, buf, bytes);
4476 set_page_dirty_lock(page);
4477 } else {
4478 copy_from_user_page(vma, page, addr,
4479 buf, maddr + offset, bytes);
4481 kunmap(page);
4482 put_page(page);
4484 len -= bytes;
4485 buf += bytes;
4486 addr += bytes;
4488 up_read(&mm->mmap_sem);
4490 return buf - old_buf;
4494 * access_remote_vm - access another process' address space
4495 * @mm: the mm_struct of the target address space
4496 * @addr: start address to access
4497 * @buf: source or destination buffer
4498 * @len: number of bytes to transfer
4499 * @gup_flags: flags modifying lookup behaviour
4501 * The caller must hold a reference on @mm.
4503 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4504 void *buf, int len, unsigned int gup_flags)
4506 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4510 * Access another process' address space.
4511 * Source/target buffer must be kernel space,
4512 * Do not walk the page table directly, use get_user_pages
4514 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4515 void *buf, int len, unsigned int gup_flags)
4517 struct mm_struct *mm;
4518 int ret;
4520 mm = get_task_mm(tsk);
4521 if (!mm)
4522 return 0;
4524 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4526 mmput(mm);
4528 return ret;
4530 EXPORT_SYMBOL_GPL(access_process_vm);
4533 * Print the name of a VMA.
4535 void print_vma_addr(char *prefix, unsigned long ip)
4537 struct mm_struct *mm = current->mm;
4538 struct vm_area_struct *vma;
4541 * Do not print if we are in atomic
4542 * contexts (in exception stacks, etc.):
4544 if (preempt_count())
4545 return;
4547 down_read(&mm->mmap_sem);
4548 vma = find_vma(mm, ip);
4549 if (vma && vma->vm_file) {
4550 struct file *f = vma->vm_file;
4551 char *buf = (char *)__get_free_page(GFP_KERNEL);
4552 if (buf) {
4553 char *p;
4555 p = file_path(f, buf, PAGE_SIZE);
4556 if (IS_ERR(p))
4557 p = "?";
4558 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4559 vma->vm_start,
4560 vma->vm_end - vma->vm_start);
4561 free_page((unsigned long)buf);
4564 up_read(&mm->mmap_sem);
4567 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568 void __might_fault(const char *file, int line)
4571 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4572 * holding the mmap_sem, this is safe because kernel memory doesn't
4573 * get paged out, therefore we'll never actually fault, and the
4574 * below annotations will generate false positives.
4576 if (uaccess_kernel())
4577 return;
4578 if (pagefault_disabled())
4579 return;
4580 __might_sleep(file, line, 0);
4581 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4582 if (current->mm)
4583 might_lock_read(&current->mm->mmap_sem);
4584 #endif
4586 EXPORT_SYMBOL(__might_fault);
4587 #endif
4589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4590 static void clear_gigantic_page(struct page *page,
4591 unsigned long addr,
4592 unsigned int pages_per_huge_page)
4594 int i;
4595 struct page *p = page;
4597 might_sleep();
4598 for (i = 0; i < pages_per_huge_page;
4599 i++, p = mem_map_next(p, page, i)) {
4600 cond_resched();
4601 clear_user_highpage(p, addr + i * PAGE_SIZE);
4604 void clear_huge_page(struct page *page,
4605 unsigned long addr_hint, unsigned int pages_per_huge_page)
4607 int i, n, base, l;
4608 unsigned long addr = addr_hint &
4609 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4611 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4612 clear_gigantic_page(page, addr, pages_per_huge_page);
4613 return;
4616 /* Clear sub-page to access last to keep its cache lines hot */
4617 might_sleep();
4618 n = (addr_hint - addr) / PAGE_SIZE;
4619 if (2 * n <= pages_per_huge_page) {
4620 /* If sub-page to access in first half of huge page */
4621 base = 0;
4622 l = n;
4623 /* Clear sub-pages at the end of huge page */
4624 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4625 cond_resched();
4626 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4628 } else {
4629 /* If sub-page to access in second half of huge page */
4630 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4631 l = pages_per_huge_page - n;
4632 /* Clear sub-pages at the begin of huge page */
4633 for (i = 0; i < base; i++) {
4634 cond_resched();
4635 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4639 * Clear remaining sub-pages in left-right-left-right pattern
4640 * towards the sub-page to access
4642 for (i = 0; i < l; i++) {
4643 int left_idx = base + i;
4644 int right_idx = base + 2 * l - 1 - i;
4646 cond_resched();
4647 clear_user_highpage(page + left_idx,
4648 addr + left_idx * PAGE_SIZE);
4649 cond_resched();
4650 clear_user_highpage(page + right_idx,
4651 addr + right_idx * PAGE_SIZE);
4655 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4656 unsigned long addr,
4657 struct vm_area_struct *vma,
4658 unsigned int pages_per_huge_page)
4660 int i;
4661 struct page *dst_base = dst;
4662 struct page *src_base = src;
4664 for (i = 0; i < pages_per_huge_page; ) {
4665 cond_resched();
4666 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4668 i++;
4669 dst = mem_map_next(dst, dst_base, i);
4670 src = mem_map_next(src, src_base, i);
4674 void copy_user_huge_page(struct page *dst, struct page *src,
4675 unsigned long addr, struct vm_area_struct *vma,
4676 unsigned int pages_per_huge_page)
4678 int i;
4680 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4681 copy_user_gigantic_page(dst, src, addr, vma,
4682 pages_per_huge_page);
4683 return;
4686 might_sleep();
4687 for (i = 0; i < pages_per_huge_page; i++) {
4688 cond_resched();
4689 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4693 long copy_huge_page_from_user(struct page *dst_page,
4694 const void __user *usr_src,
4695 unsigned int pages_per_huge_page,
4696 bool allow_pagefault)
4698 void *src = (void *)usr_src;
4699 void *page_kaddr;
4700 unsigned long i, rc = 0;
4701 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4703 for (i = 0; i < pages_per_huge_page; i++) {
4704 if (allow_pagefault)
4705 page_kaddr = kmap(dst_page + i);
4706 else
4707 page_kaddr = kmap_atomic(dst_page + i);
4708 rc = copy_from_user(page_kaddr,
4709 (const void __user *)(src + i * PAGE_SIZE),
4710 PAGE_SIZE);
4711 if (allow_pagefault)
4712 kunmap(dst_page + i);
4713 else
4714 kunmap_atomic(page_kaddr);
4716 ret_val -= (PAGE_SIZE - rc);
4717 if (rc)
4718 break;
4720 cond_resched();
4722 return ret_val;
4724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4726 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4728 static struct kmem_cache *page_ptl_cachep;
4730 void __init ptlock_cache_init(void)
4732 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4733 SLAB_PANIC, NULL);
4736 bool ptlock_alloc(struct page *page)
4738 spinlock_t *ptl;
4740 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4741 if (!ptl)
4742 return false;
4743 page->ptl = ptl;
4744 return true;
4747 void ptlock_free(struct page *page)
4749 kmem_cache_free(page_ptl_cachep, page->ptl);
4751 #endif