1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
45 * 1. slab_mutex (Global Mutex)
47 * 3. slab_lock(page) (Only on some arches and for debugging)
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache
*s
)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
128 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
130 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
131 p
+= s
->red_left_pad
;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s
);
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
195 #define __OBJECT_POISON 0x80000000UL /* Poison object */
196 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
199 * Tracking user of a slab.
201 #define TRACK_ADDRS_COUNT 16
203 unsigned long addr
; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
207 int cpu
; /* Was running on cpu */
208 int pid
; /* Pid context */
209 unsigned long when
; /* When did the operation occur */
212 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
215 static int sysfs_slab_add(struct kmem_cache
*);
216 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static void sysfs_slab_remove(struct kmem_cache
*s
);
220 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
227 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
247 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
248 unsigned long ptr_addr
)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 return (void *)((unsigned long)ptr
^ s
->random
^ ptr_addr
);
257 /* Returns the freelist pointer recorded at location ptr_addr. */
258 static inline void *freelist_dereference(const struct kmem_cache
*s
,
261 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
262 (unsigned long)ptr_addr
);
265 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
267 return freelist_dereference(s
, object
+ s
->offset
);
270 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
273 prefetch(freelist_dereference(s
, object
+ s
->offset
));
276 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
278 unsigned long freepointer_addr
;
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s
, object
);
284 freepointer_addr
= (unsigned long)object
+ s
->offset
;
285 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
286 return freelist_ptr(s
, p
, freepointer_addr
);
289 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
291 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
297 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
311 /* Determine object index from a given position */
312 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
314 return (p
- addr
) / s
->size
;
317 static inline int order_objects(int order
, unsigned long size
, int reserved
)
319 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
322 static inline struct kmem_cache_order_objects
oo_make(int order
,
323 unsigned long size
, int reserved
)
325 struct kmem_cache_order_objects x
= {
326 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
332 static inline int oo_order(struct kmem_cache_order_objects x
)
334 return x
.x
>> OO_SHIFT
;
337 static inline int oo_objects(struct kmem_cache_order_objects x
)
339 return x
.x
& OO_MASK
;
343 * Per slab locking using the pagelock
345 static __always_inline
void slab_lock(struct page
*page
)
347 VM_BUG_ON_PAGE(PageTail(page
), page
);
348 bit_spin_lock(PG_locked
, &page
->flags
);
351 static __always_inline
void slab_unlock(struct page
*page
)
353 VM_BUG_ON_PAGE(PageTail(page
), page
);
354 __bit_spin_unlock(PG_locked
, &page
->flags
);
357 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
360 tmp
.counters
= counters_new
;
362 * page->counters can cover frozen/inuse/objects as well
363 * as page->_refcount. If we assign to ->counters directly
364 * we run the risk of losing updates to page->_refcount, so
365 * be careful and only assign to the fields we need.
367 page
->frozen
= tmp
.frozen
;
368 page
->inuse
= tmp
.inuse
;
369 page
->objects
= tmp
.objects
;
372 /* Interrupts must be disabled (for the fallback code to work right) */
373 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
374 void *freelist_old
, unsigned long counters_old
,
375 void *freelist_new
, unsigned long counters_new
,
378 VM_BUG_ON(!irqs_disabled());
379 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
380 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
381 if (s
->flags
& __CMPXCHG_DOUBLE
) {
382 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
383 freelist_old
, counters_old
,
384 freelist_new
, counters_new
))
390 if (page
->freelist
== freelist_old
&&
391 page
->counters
== counters_old
) {
392 page
->freelist
= freelist_new
;
393 set_page_slub_counters(page
, counters_new
);
401 stat(s
, CMPXCHG_DOUBLE_FAIL
);
403 #ifdef SLUB_DEBUG_CMPXCHG
404 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
410 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
411 void *freelist_old
, unsigned long counters_old
,
412 void *freelist_new
, unsigned long counters_new
,
415 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
416 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
417 if (s
->flags
& __CMPXCHG_DOUBLE
) {
418 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
419 freelist_old
, counters_old
,
420 freelist_new
, counters_new
))
427 local_irq_save(flags
);
429 if (page
->freelist
== freelist_old
&&
430 page
->counters
== counters_old
) {
431 page
->freelist
= freelist_new
;
432 set_page_slub_counters(page
, counters_new
);
434 local_irq_restore(flags
);
438 local_irq_restore(flags
);
442 stat(s
, CMPXCHG_DOUBLE_FAIL
);
444 #ifdef SLUB_DEBUG_CMPXCHG
445 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
451 #ifdef CONFIG_SLUB_DEBUG
453 * Determine a map of object in use on a page.
455 * Node listlock must be held to guarantee that the page does
456 * not vanish from under us.
458 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
461 void *addr
= page_address(page
);
463 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
464 set_bit(slab_index(p
, s
, addr
), map
);
467 static inline int size_from_object(struct kmem_cache
*s
)
469 if (s
->flags
& SLAB_RED_ZONE
)
470 return s
->size
- s
->red_left_pad
;
475 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
477 if (s
->flags
& SLAB_RED_ZONE
)
478 p
-= s
->red_left_pad
;
486 #if defined(CONFIG_SLUB_DEBUG_ON)
487 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
489 static int slub_debug
;
492 static char *slub_debug_slabs
;
493 static int disable_higher_order_debug
;
496 * slub is about to manipulate internal object metadata. This memory lies
497 * outside the range of the allocated object, so accessing it would normally
498 * be reported by kasan as a bounds error. metadata_access_enable() is used
499 * to tell kasan that these accesses are OK.
501 static inline void metadata_access_enable(void)
503 kasan_disable_current();
506 static inline void metadata_access_disable(void)
508 kasan_enable_current();
515 /* Verify that a pointer has an address that is valid within a slab page */
516 static inline int check_valid_pointer(struct kmem_cache
*s
,
517 struct page
*page
, void *object
)
524 base
= page_address(page
);
525 object
= restore_red_left(s
, object
);
526 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
527 (object
- base
) % s
->size
) {
534 static void print_section(char *level
, char *text
, u8
*addr
,
537 metadata_access_enable();
538 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
540 metadata_access_disable();
543 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
544 enum track_item alloc
)
549 p
= object
+ s
->offset
+ sizeof(void *);
551 p
= object
+ s
->inuse
;
556 static void set_track(struct kmem_cache
*s
, void *object
,
557 enum track_item alloc
, unsigned long addr
)
559 struct track
*p
= get_track(s
, object
, alloc
);
562 #ifdef CONFIG_STACKTRACE
563 struct stack_trace trace
;
566 trace
.nr_entries
= 0;
567 trace
.max_entries
= TRACK_ADDRS_COUNT
;
568 trace
.entries
= p
->addrs
;
570 metadata_access_enable();
571 save_stack_trace(&trace
);
572 metadata_access_disable();
574 /* See rant in lockdep.c */
575 if (trace
.nr_entries
!= 0 &&
576 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
579 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
583 p
->cpu
= smp_processor_id();
584 p
->pid
= current
->pid
;
587 memset(p
, 0, sizeof(struct track
));
590 static void init_tracking(struct kmem_cache
*s
, void *object
)
592 if (!(s
->flags
& SLAB_STORE_USER
))
595 set_track(s
, object
, TRACK_FREE
, 0UL);
596 set_track(s
, object
, TRACK_ALLOC
, 0UL);
599 static void print_track(const char *s
, struct track
*t
)
604 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
605 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
606 #ifdef CONFIG_STACKTRACE
609 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
611 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
618 static void print_tracking(struct kmem_cache
*s
, void *object
)
620 if (!(s
->flags
& SLAB_STORE_USER
))
623 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
624 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
627 static void print_page_info(struct page
*page
)
629 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
630 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
634 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
636 struct va_format vaf
;
642 pr_err("=============================================================================\n");
643 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
644 pr_err("-----------------------------------------------------------------------------\n\n");
646 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
650 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
652 struct va_format vaf
;
658 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
662 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
664 unsigned int off
; /* Offset of last byte */
665 u8
*addr
= page_address(page
);
667 print_tracking(s
, p
);
669 print_page_info(page
);
671 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
672 p
, p
- addr
, get_freepointer(s
, p
));
674 if (s
->flags
& SLAB_RED_ZONE
)
675 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
677 else if (p
> addr
+ 16)
678 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
680 print_section(KERN_ERR
, "Object ", p
,
681 min_t(unsigned long, s
->object_size
, PAGE_SIZE
));
682 if (s
->flags
& SLAB_RED_ZONE
)
683 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
684 s
->inuse
- s
->object_size
);
687 off
= s
->offset
+ sizeof(void *);
691 if (s
->flags
& SLAB_STORE_USER
)
692 off
+= 2 * sizeof(struct track
);
694 off
+= kasan_metadata_size(s
);
696 if (off
!= size_from_object(s
))
697 /* Beginning of the filler is the free pointer */
698 print_section(KERN_ERR
, "Padding ", p
+ off
,
699 size_from_object(s
) - off
);
704 void object_err(struct kmem_cache
*s
, struct page
*page
,
705 u8
*object
, char *reason
)
707 slab_bug(s
, "%s", reason
);
708 print_trailer(s
, page
, object
);
711 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
712 const char *fmt
, ...)
718 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
720 slab_bug(s
, "%s", buf
);
721 print_page_info(page
);
725 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
729 if (s
->flags
& SLAB_RED_ZONE
)
730 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
732 if (s
->flags
& __OBJECT_POISON
) {
733 memset(p
, POISON_FREE
, s
->object_size
- 1);
734 p
[s
->object_size
- 1] = POISON_END
;
737 if (s
->flags
& SLAB_RED_ZONE
)
738 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
741 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
742 void *from
, void *to
)
744 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
745 memset(from
, data
, to
- from
);
748 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
749 u8
*object
, char *what
,
750 u8
*start
, unsigned int value
, unsigned int bytes
)
755 metadata_access_enable();
756 fault
= memchr_inv(start
, value
, bytes
);
757 metadata_access_disable();
762 while (end
> fault
&& end
[-1] == value
)
765 slab_bug(s
, "%s overwritten", what
);
766 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
767 fault
, end
- 1, fault
[0], value
);
768 print_trailer(s
, page
, object
);
770 restore_bytes(s
, what
, value
, fault
, end
);
778 * Bytes of the object to be managed.
779 * If the freepointer may overlay the object then the free
780 * pointer is the first word of the object.
782 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
785 * object + s->object_size
786 * Padding to reach word boundary. This is also used for Redzoning.
787 * Padding is extended by another word if Redzoning is enabled and
788 * object_size == inuse.
790 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
791 * 0xcc (RED_ACTIVE) for objects in use.
794 * Meta data starts here.
796 * A. Free pointer (if we cannot overwrite object on free)
797 * B. Tracking data for SLAB_STORE_USER
798 * C. Padding to reach required alignment boundary or at mininum
799 * one word if debugging is on to be able to detect writes
800 * before the word boundary.
802 * Padding is done using 0x5a (POISON_INUSE)
805 * Nothing is used beyond s->size.
807 * If slabcaches are merged then the object_size and inuse boundaries are mostly
808 * ignored. And therefore no slab options that rely on these boundaries
809 * may be used with merged slabcaches.
812 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
814 unsigned long off
= s
->inuse
; /* The end of info */
817 /* Freepointer is placed after the object. */
818 off
+= sizeof(void *);
820 if (s
->flags
& SLAB_STORE_USER
)
821 /* We also have user information there */
822 off
+= 2 * sizeof(struct track
);
824 off
+= kasan_metadata_size(s
);
826 if (size_from_object(s
) == off
)
829 return check_bytes_and_report(s
, page
, p
, "Object padding",
830 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
833 /* Check the pad bytes at the end of a slab page */
834 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
842 if (!(s
->flags
& SLAB_POISON
))
845 start
= page_address(page
);
846 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
847 end
= start
+ length
;
848 remainder
= length
% s
->size
;
852 metadata_access_enable();
853 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
854 metadata_access_disable();
857 while (end
> fault
&& end
[-1] == POISON_INUSE
)
860 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
861 print_section(KERN_ERR
, "Padding ", end
- remainder
, remainder
);
863 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
867 static int check_object(struct kmem_cache
*s
, struct page
*page
,
868 void *object
, u8 val
)
871 u8
*endobject
= object
+ s
->object_size
;
873 if (s
->flags
& SLAB_RED_ZONE
) {
874 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
875 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
878 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
879 endobject
, val
, s
->inuse
- s
->object_size
))
882 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
883 check_bytes_and_report(s
, page
, p
, "Alignment padding",
884 endobject
, POISON_INUSE
,
885 s
->inuse
- s
->object_size
);
889 if (s
->flags
& SLAB_POISON
) {
890 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
891 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
892 POISON_FREE
, s
->object_size
- 1) ||
893 !check_bytes_and_report(s
, page
, p
, "Poison",
894 p
+ s
->object_size
- 1, POISON_END
, 1)))
897 * check_pad_bytes cleans up on its own.
899 check_pad_bytes(s
, page
, p
);
902 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
904 * Object and freepointer overlap. Cannot check
905 * freepointer while object is allocated.
909 /* Check free pointer validity */
910 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
911 object_err(s
, page
, p
, "Freepointer corrupt");
913 * No choice but to zap it and thus lose the remainder
914 * of the free objects in this slab. May cause
915 * another error because the object count is now wrong.
917 set_freepointer(s
, p
, NULL
);
923 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
927 VM_BUG_ON(!irqs_disabled());
929 if (!PageSlab(page
)) {
930 slab_err(s
, page
, "Not a valid slab page");
934 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
935 if (page
->objects
> maxobj
) {
936 slab_err(s
, page
, "objects %u > max %u",
937 page
->objects
, maxobj
);
940 if (page
->inuse
> page
->objects
) {
941 slab_err(s
, page
, "inuse %u > max %u",
942 page
->inuse
, page
->objects
);
945 /* Slab_pad_check fixes things up after itself */
946 slab_pad_check(s
, page
);
951 * Determine if a certain object on a page is on the freelist. Must hold the
952 * slab lock to guarantee that the chains are in a consistent state.
954 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
962 while (fp
&& nr
<= page
->objects
) {
965 if (!check_valid_pointer(s
, page
, fp
)) {
967 object_err(s
, page
, object
,
968 "Freechain corrupt");
969 set_freepointer(s
, object
, NULL
);
971 slab_err(s
, page
, "Freepointer corrupt");
972 page
->freelist
= NULL
;
973 page
->inuse
= page
->objects
;
974 slab_fix(s
, "Freelist cleared");
980 fp
= get_freepointer(s
, object
);
984 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
985 if (max_objects
> MAX_OBJS_PER_PAGE
)
986 max_objects
= MAX_OBJS_PER_PAGE
;
988 if (page
->objects
!= max_objects
) {
989 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
990 page
->objects
, max_objects
);
991 page
->objects
= max_objects
;
992 slab_fix(s
, "Number of objects adjusted.");
994 if (page
->inuse
!= page
->objects
- nr
) {
995 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
996 page
->inuse
, page
->objects
- nr
);
997 page
->inuse
= page
->objects
- nr
;
998 slab_fix(s
, "Object count adjusted.");
1000 return search
== NULL
;
1003 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1006 if (s
->flags
& SLAB_TRACE
) {
1007 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1009 alloc
? "alloc" : "free",
1010 object
, page
->inuse
,
1014 print_section(KERN_INFO
, "Object ", (void *)object
,
1022 * Tracking of fully allocated slabs for debugging purposes.
1024 static void add_full(struct kmem_cache
*s
,
1025 struct kmem_cache_node
*n
, struct page
*page
)
1027 if (!(s
->flags
& SLAB_STORE_USER
))
1030 lockdep_assert_held(&n
->list_lock
);
1031 list_add(&page
->lru
, &n
->full
);
1034 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1036 if (!(s
->flags
& SLAB_STORE_USER
))
1039 lockdep_assert_held(&n
->list_lock
);
1040 list_del(&page
->lru
);
1043 /* Tracking of the number of slabs for debugging purposes */
1044 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1046 struct kmem_cache_node
*n
= get_node(s
, node
);
1048 return atomic_long_read(&n
->nr_slabs
);
1051 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1053 return atomic_long_read(&n
->nr_slabs
);
1056 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1058 struct kmem_cache_node
*n
= get_node(s
, node
);
1061 * May be called early in order to allocate a slab for the
1062 * kmem_cache_node structure. Solve the chicken-egg
1063 * dilemma by deferring the increment of the count during
1064 * bootstrap (see early_kmem_cache_node_alloc).
1067 atomic_long_inc(&n
->nr_slabs
);
1068 atomic_long_add(objects
, &n
->total_objects
);
1071 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1073 struct kmem_cache_node
*n
= get_node(s
, node
);
1075 atomic_long_dec(&n
->nr_slabs
);
1076 atomic_long_sub(objects
, &n
->total_objects
);
1079 /* Object debug checks for alloc/free paths */
1080 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1083 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1086 init_object(s
, object
, SLUB_RED_INACTIVE
);
1087 init_tracking(s
, object
);
1090 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1092 void *object
, unsigned long addr
)
1094 if (!check_slab(s
, page
))
1097 if (!check_valid_pointer(s
, page
, object
)) {
1098 object_err(s
, page
, object
, "Freelist Pointer check fails");
1102 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1108 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1110 void *object
, unsigned long addr
)
1112 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1113 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1117 /* Success perform special debug activities for allocs */
1118 if (s
->flags
& SLAB_STORE_USER
)
1119 set_track(s
, object
, TRACK_ALLOC
, addr
);
1120 trace(s
, page
, object
, 1);
1121 init_object(s
, object
, SLUB_RED_ACTIVE
);
1125 if (PageSlab(page
)) {
1127 * If this is a slab page then lets do the best we can
1128 * to avoid issues in the future. Marking all objects
1129 * as used avoids touching the remaining objects.
1131 slab_fix(s
, "Marking all objects used");
1132 page
->inuse
= page
->objects
;
1133 page
->freelist
= NULL
;
1138 static inline int free_consistency_checks(struct kmem_cache
*s
,
1139 struct page
*page
, void *object
, unsigned long addr
)
1141 if (!check_valid_pointer(s
, page
, object
)) {
1142 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1146 if (on_freelist(s
, page
, object
)) {
1147 object_err(s
, page
, object
, "Object already free");
1151 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1154 if (unlikely(s
!= page
->slab_cache
)) {
1155 if (!PageSlab(page
)) {
1156 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1158 } else if (!page
->slab_cache
) {
1159 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1163 object_err(s
, page
, object
,
1164 "page slab pointer corrupt.");
1170 /* Supports checking bulk free of a constructed freelist */
1171 static noinline
int free_debug_processing(
1172 struct kmem_cache
*s
, struct page
*page
,
1173 void *head
, void *tail
, int bulk_cnt
,
1176 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1177 void *object
= head
;
1179 unsigned long uninitialized_var(flags
);
1182 spin_lock_irqsave(&n
->list_lock
, flags
);
1185 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1186 if (!check_slab(s
, page
))
1193 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1194 if (!free_consistency_checks(s
, page
, object
, addr
))
1198 if (s
->flags
& SLAB_STORE_USER
)
1199 set_track(s
, object
, TRACK_FREE
, addr
);
1200 trace(s
, page
, object
, 0);
1201 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1202 init_object(s
, object
, SLUB_RED_INACTIVE
);
1204 /* Reached end of constructed freelist yet? */
1205 if (object
!= tail
) {
1206 object
= get_freepointer(s
, object
);
1212 if (cnt
!= bulk_cnt
)
1213 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1217 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1219 slab_fix(s
, "Object at 0x%p not freed", object
);
1223 static int __init
setup_slub_debug(char *str
)
1225 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1226 if (*str
++ != '=' || !*str
)
1228 * No options specified. Switch on full debugging.
1234 * No options but restriction on slabs. This means full
1235 * debugging for slabs matching a pattern.
1242 * Switch off all debugging measures.
1247 * Determine which debug features should be switched on
1249 for (; *str
&& *str
!= ','; str
++) {
1250 switch (tolower(*str
)) {
1252 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1255 slub_debug
|= SLAB_RED_ZONE
;
1258 slub_debug
|= SLAB_POISON
;
1261 slub_debug
|= SLAB_STORE_USER
;
1264 slub_debug
|= SLAB_TRACE
;
1267 slub_debug
|= SLAB_FAILSLAB
;
1271 * Avoid enabling debugging on caches if its minimum
1272 * order would increase as a result.
1274 disable_higher_order_debug
= 1;
1277 pr_err("slub_debug option '%c' unknown. skipped\n",
1284 slub_debug_slabs
= str
+ 1;
1289 __setup("slub_debug", setup_slub_debug
);
1291 unsigned long kmem_cache_flags(unsigned long object_size
,
1292 unsigned long flags
, const char *name
,
1293 void (*ctor
)(void *))
1296 * Enable debugging if selected on the kernel commandline.
1298 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1299 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1300 flags
|= slub_debug
;
1304 #else /* !CONFIG_SLUB_DEBUG */
1305 static inline void setup_object_debug(struct kmem_cache
*s
,
1306 struct page
*page
, void *object
) {}
1308 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1309 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1311 static inline int free_debug_processing(
1312 struct kmem_cache
*s
, struct page
*page
,
1313 void *head
, void *tail
, int bulk_cnt
,
1314 unsigned long addr
) { return 0; }
1316 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1318 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1319 void *object
, u8 val
) { return 1; }
1320 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1321 struct page
*page
) {}
1322 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1323 struct page
*page
) {}
1324 unsigned long kmem_cache_flags(unsigned long object_size
,
1325 unsigned long flags
, const char *name
,
1326 void (*ctor
)(void *))
1330 #define slub_debug 0
1332 #define disable_higher_order_debug 0
1334 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1336 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1338 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1340 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1343 #endif /* CONFIG_SLUB_DEBUG */
1346 * Hooks for other subsystems that check memory allocations. In a typical
1347 * production configuration these hooks all should produce no code at all.
1349 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1351 kmemleak_alloc(ptr
, size
, 1, flags
);
1352 kasan_kmalloc_large(ptr
, size
, flags
);
1355 static inline void kfree_hook(const void *x
)
1358 kasan_kfree_large(x
);
1361 static inline void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1365 kmemleak_free_recursive(x
, s
->flags
);
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1372 #ifdef CONFIG_LOCKDEP
1374 unsigned long flags
;
1376 local_irq_save(flags
);
1377 debug_check_no_locks_freed(x
, s
->object_size
);
1378 local_irq_restore(flags
);
1381 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1382 debug_check_no_obj_freed(x
, s
->object_size
);
1384 freeptr
= get_freepointer(s
, x
);
1386 * kasan_slab_free() may put x into memory quarantine, delaying its
1387 * reuse. In this case the object's freelist pointer is changed.
1389 kasan_slab_free(s
, x
);
1393 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1394 void *head
, void *tail
)
1397 * Compiler cannot detect this function can be removed if slab_free_hook()
1398 * evaluates to nothing. Thus, catch all relevant config debug options here.
1400 #if defined(CONFIG_LOCKDEP) || \
1401 defined(CONFIG_DEBUG_KMEMLEAK) || \
1402 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1403 defined(CONFIG_KASAN)
1405 void *object
= head
;
1406 void *tail_obj
= tail
? : head
;
1410 freeptr
= slab_free_hook(s
, object
);
1411 } while ((object
!= tail_obj
) && (object
= freeptr
));
1415 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1418 setup_object_debug(s
, page
, object
);
1419 kasan_init_slab_obj(s
, object
);
1420 if (unlikely(s
->ctor
)) {
1421 kasan_unpoison_object_data(s
, object
);
1423 kasan_poison_object_data(s
, object
);
1428 * Slab allocation and freeing
1430 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1431 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1434 int order
= oo_order(oo
);
1436 if (node
== NUMA_NO_NODE
)
1437 page
= alloc_pages(flags
, order
);
1439 page
= __alloc_pages_node(node
, flags
, order
);
1441 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1442 __free_pages(page
, order
);
1449 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1450 /* Pre-initialize the random sequence cache */
1451 static int init_cache_random_seq(struct kmem_cache
*s
)
1454 unsigned long i
, count
= oo_objects(s
->oo
);
1456 /* Bailout if already initialised */
1460 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1462 pr_err("SLUB: Unable to initialize free list for %s\n",
1467 /* Transform to an offset on the set of pages */
1468 if (s
->random_seq
) {
1469 for (i
= 0; i
< count
; i
++)
1470 s
->random_seq
[i
] *= s
->size
;
1475 /* Initialize each random sequence freelist per cache */
1476 static void __init
init_freelist_randomization(void)
1478 struct kmem_cache
*s
;
1480 mutex_lock(&slab_mutex
);
1482 list_for_each_entry(s
, &slab_caches
, list
)
1483 init_cache_random_seq(s
);
1485 mutex_unlock(&slab_mutex
);
1488 /* Get the next entry on the pre-computed freelist randomized */
1489 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1490 unsigned long *pos
, void *start
,
1491 unsigned long page_limit
,
1492 unsigned long freelist_count
)
1497 * If the target page allocation failed, the number of objects on the
1498 * page might be smaller than the usual size defined by the cache.
1501 idx
= s
->random_seq
[*pos
];
1503 if (*pos
>= freelist_count
)
1505 } while (unlikely(idx
>= page_limit
));
1507 return (char *)start
+ idx
;
1510 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1511 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1516 unsigned long idx
, pos
, page_limit
, freelist_count
;
1518 if (page
->objects
< 2 || !s
->random_seq
)
1521 freelist_count
= oo_objects(s
->oo
);
1522 pos
= get_random_int() % freelist_count
;
1524 page_limit
= page
->objects
* s
->size
;
1525 start
= fixup_red_left(s
, page_address(page
));
1527 /* First entry is used as the base of the freelist */
1528 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1530 page
->freelist
= cur
;
1532 for (idx
= 1; idx
< page
->objects
; idx
++) {
1533 setup_object(s
, page
, cur
);
1534 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1536 set_freepointer(s
, cur
, next
);
1539 setup_object(s
, page
, cur
);
1540 set_freepointer(s
, cur
, NULL
);
1545 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1549 static inline void init_freelist_randomization(void) { }
1550 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1554 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1556 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1559 struct kmem_cache_order_objects oo
= s
->oo
;
1565 flags
&= gfp_allowed_mask
;
1567 if (gfpflags_allow_blocking(flags
))
1570 flags
|= s
->allocflags
;
1573 * Let the initial higher-order allocation fail under memory pressure
1574 * so we fall-back to the minimum order allocation.
1576 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1577 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1578 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1580 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1581 if (unlikely(!page
)) {
1585 * Allocation may have failed due to fragmentation.
1586 * Try a lower order alloc if possible
1588 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1589 if (unlikely(!page
))
1591 stat(s
, ORDER_FALLBACK
);
1594 page
->objects
= oo_objects(oo
);
1596 order
= compound_order(page
);
1597 page
->slab_cache
= s
;
1598 __SetPageSlab(page
);
1599 if (page_is_pfmemalloc(page
))
1600 SetPageSlabPfmemalloc(page
);
1602 start
= page_address(page
);
1604 if (unlikely(s
->flags
& SLAB_POISON
))
1605 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1607 kasan_poison_slab(page
);
1609 shuffle
= shuffle_freelist(s
, page
);
1612 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1613 setup_object(s
, page
, p
);
1614 if (likely(idx
< page
->objects
))
1615 set_freepointer(s
, p
, p
+ s
->size
);
1617 set_freepointer(s
, p
, NULL
);
1619 page
->freelist
= fixup_red_left(s
, start
);
1622 page
->inuse
= page
->objects
;
1626 if (gfpflags_allow_blocking(flags
))
1627 local_irq_disable();
1631 mod_lruvec_page_state(page
,
1632 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1633 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1636 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1641 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1643 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1644 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1645 flags
&= ~GFP_SLAB_BUG_MASK
;
1646 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1647 invalid_mask
, &invalid_mask
, flags
, &flags
);
1651 return allocate_slab(s
,
1652 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1655 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1657 int order
= compound_order(page
);
1658 int pages
= 1 << order
;
1660 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1663 slab_pad_check(s
, page
);
1664 for_each_object(p
, s
, page_address(page
),
1666 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1669 mod_lruvec_page_state(page
,
1670 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1671 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1674 __ClearPageSlabPfmemalloc(page
);
1675 __ClearPageSlab(page
);
1677 page_mapcount_reset(page
);
1678 if (current
->reclaim_state
)
1679 current
->reclaim_state
->reclaimed_slab
+= pages
;
1680 memcg_uncharge_slab(page
, order
, s
);
1681 __free_pages(page
, order
);
1684 #define need_reserve_slab_rcu \
1685 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1687 static void rcu_free_slab(struct rcu_head
*h
)
1691 if (need_reserve_slab_rcu
)
1692 page
= virt_to_head_page(h
);
1694 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1696 __free_slab(page
->slab_cache
, page
);
1699 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1701 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1702 struct rcu_head
*head
;
1704 if (need_reserve_slab_rcu
) {
1705 int order
= compound_order(page
);
1706 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1708 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1709 head
= page_address(page
) + offset
;
1711 head
= &page
->rcu_head
;
1714 call_rcu(head
, rcu_free_slab
);
1716 __free_slab(s
, page
);
1719 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1721 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1726 * Management of partially allocated slabs.
1729 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1732 if (tail
== DEACTIVATE_TO_TAIL
)
1733 list_add_tail(&page
->lru
, &n
->partial
);
1735 list_add(&page
->lru
, &n
->partial
);
1738 static inline void add_partial(struct kmem_cache_node
*n
,
1739 struct page
*page
, int tail
)
1741 lockdep_assert_held(&n
->list_lock
);
1742 __add_partial(n
, page
, tail
);
1745 static inline void remove_partial(struct kmem_cache_node
*n
,
1748 lockdep_assert_held(&n
->list_lock
);
1749 list_del(&page
->lru
);
1754 * Remove slab from the partial list, freeze it and
1755 * return the pointer to the freelist.
1757 * Returns a list of objects or NULL if it fails.
1759 static inline void *acquire_slab(struct kmem_cache
*s
,
1760 struct kmem_cache_node
*n
, struct page
*page
,
1761 int mode
, int *objects
)
1764 unsigned long counters
;
1767 lockdep_assert_held(&n
->list_lock
);
1770 * Zap the freelist and set the frozen bit.
1771 * The old freelist is the list of objects for the
1772 * per cpu allocation list.
1774 freelist
= page
->freelist
;
1775 counters
= page
->counters
;
1776 new.counters
= counters
;
1777 *objects
= new.objects
- new.inuse
;
1779 new.inuse
= page
->objects
;
1780 new.freelist
= NULL
;
1782 new.freelist
= freelist
;
1785 VM_BUG_ON(new.frozen
);
1788 if (!__cmpxchg_double_slab(s
, page
,
1790 new.freelist
, new.counters
,
1794 remove_partial(n
, page
);
1799 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1800 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1803 * Try to allocate a partial slab from a specific node.
1805 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1806 struct kmem_cache_cpu
*c
, gfp_t flags
)
1808 struct page
*page
, *page2
;
1809 void *object
= NULL
;
1810 unsigned int available
= 0;
1814 * Racy check. If we mistakenly see no partial slabs then we
1815 * just allocate an empty slab. If we mistakenly try to get a
1816 * partial slab and there is none available then get_partials()
1819 if (!n
|| !n
->nr_partial
)
1822 spin_lock(&n
->list_lock
);
1823 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1826 if (!pfmemalloc_match(page
, flags
))
1829 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1833 available
+= objects
;
1836 stat(s
, ALLOC_FROM_PARTIAL
);
1839 put_cpu_partial(s
, page
, 0);
1840 stat(s
, CPU_PARTIAL_NODE
);
1842 if (!kmem_cache_has_cpu_partial(s
)
1843 || available
> slub_cpu_partial(s
) / 2)
1847 spin_unlock(&n
->list_lock
);
1852 * Get a page from somewhere. Search in increasing NUMA distances.
1854 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1855 struct kmem_cache_cpu
*c
)
1858 struct zonelist
*zonelist
;
1861 enum zone_type high_zoneidx
= gfp_zone(flags
);
1863 unsigned int cpuset_mems_cookie
;
1866 * The defrag ratio allows a configuration of the tradeoffs between
1867 * inter node defragmentation and node local allocations. A lower
1868 * defrag_ratio increases the tendency to do local allocations
1869 * instead of attempting to obtain partial slabs from other nodes.
1871 * If the defrag_ratio is set to 0 then kmalloc() always
1872 * returns node local objects. If the ratio is higher then kmalloc()
1873 * may return off node objects because partial slabs are obtained
1874 * from other nodes and filled up.
1876 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1877 * (which makes defrag_ratio = 1000) then every (well almost)
1878 * allocation will first attempt to defrag slab caches on other nodes.
1879 * This means scanning over all nodes to look for partial slabs which
1880 * may be expensive if we do it every time we are trying to find a slab
1881 * with available objects.
1883 if (!s
->remote_node_defrag_ratio
||
1884 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1888 cpuset_mems_cookie
= read_mems_allowed_begin();
1889 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1890 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1891 struct kmem_cache_node
*n
;
1893 n
= get_node(s
, zone_to_nid(zone
));
1895 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1896 n
->nr_partial
> s
->min_partial
) {
1897 object
= get_partial_node(s
, n
, c
, flags
);
1900 * Don't check read_mems_allowed_retry()
1901 * here - if mems_allowed was updated in
1902 * parallel, that was a harmless race
1903 * between allocation and the cpuset
1910 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1916 * Get a partial page, lock it and return it.
1918 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1919 struct kmem_cache_cpu
*c
)
1922 int searchnode
= node
;
1924 if (node
== NUMA_NO_NODE
)
1925 searchnode
= numa_mem_id();
1926 else if (!node_present_pages(node
))
1927 searchnode
= node_to_mem_node(node
);
1929 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1930 if (object
|| node
!= NUMA_NO_NODE
)
1933 return get_any_partial(s
, flags
, c
);
1936 #ifdef CONFIG_PREEMPT
1938 * Calculate the next globally unique transaction for disambiguiation
1939 * during cmpxchg. The transactions start with the cpu number and are then
1940 * incremented by CONFIG_NR_CPUS.
1942 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1945 * No preemption supported therefore also no need to check for
1951 static inline unsigned long next_tid(unsigned long tid
)
1953 return tid
+ TID_STEP
;
1956 static inline unsigned int tid_to_cpu(unsigned long tid
)
1958 return tid
% TID_STEP
;
1961 static inline unsigned long tid_to_event(unsigned long tid
)
1963 return tid
/ TID_STEP
;
1966 static inline unsigned int init_tid(int cpu
)
1971 static inline void note_cmpxchg_failure(const char *n
,
1972 const struct kmem_cache
*s
, unsigned long tid
)
1974 #ifdef SLUB_DEBUG_CMPXCHG
1975 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1977 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1979 #ifdef CONFIG_PREEMPT
1980 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1981 pr_warn("due to cpu change %d -> %d\n",
1982 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1985 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1986 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1987 tid_to_event(tid
), tid_to_event(actual_tid
));
1989 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1990 actual_tid
, tid
, next_tid(tid
));
1992 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1995 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1999 for_each_possible_cpu(cpu
)
2000 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2004 * Remove the cpu slab
2006 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2007 void *freelist
, struct kmem_cache_cpu
*c
)
2009 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2010 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2012 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2014 int tail
= DEACTIVATE_TO_HEAD
;
2018 if (page
->freelist
) {
2019 stat(s
, DEACTIVATE_REMOTE_FREES
);
2020 tail
= DEACTIVATE_TO_TAIL
;
2024 * Stage one: Free all available per cpu objects back
2025 * to the page freelist while it is still frozen. Leave the
2028 * There is no need to take the list->lock because the page
2031 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2033 unsigned long counters
;
2036 prior
= page
->freelist
;
2037 counters
= page
->counters
;
2038 set_freepointer(s
, freelist
, prior
);
2039 new.counters
= counters
;
2041 VM_BUG_ON(!new.frozen
);
2043 } while (!__cmpxchg_double_slab(s
, page
,
2045 freelist
, new.counters
,
2046 "drain percpu freelist"));
2048 freelist
= nextfree
;
2052 * Stage two: Ensure that the page is unfrozen while the
2053 * list presence reflects the actual number of objects
2056 * We setup the list membership and then perform a cmpxchg
2057 * with the count. If there is a mismatch then the page
2058 * is not unfrozen but the page is on the wrong list.
2060 * Then we restart the process which may have to remove
2061 * the page from the list that we just put it on again
2062 * because the number of objects in the slab may have
2067 old
.freelist
= page
->freelist
;
2068 old
.counters
= page
->counters
;
2069 VM_BUG_ON(!old
.frozen
);
2071 /* Determine target state of the slab */
2072 new.counters
= old
.counters
;
2075 set_freepointer(s
, freelist
, old
.freelist
);
2076 new.freelist
= freelist
;
2078 new.freelist
= old
.freelist
;
2082 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2084 else if (new.freelist
) {
2089 * Taking the spinlock removes the possiblity
2090 * that acquire_slab() will see a slab page that
2093 spin_lock(&n
->list_lock
);
2097 if (kmem_cache_debug(s
) && !lock
) {
2100 * This also ensures that the scanning of full
2101 * slabs from diagnostic functions will not see
2104 spin_lock(&n
->list_lock
);
2112 remove_partial(n
, page
);
2114 else if (l
== M_FULL
)
2116 remove_full(s
, n
, page
);
2118 if (m
== M_PARTIAL
) {
2120 add_partial(n
, page
, tail
);
2123 } else if (m
== M_FULL
) {
2125 stat(s
, DEACTIVATE_FULL
);
2126 add_full(s
, n
, page
);
2132 if (!__cmpxchg_double_slab(s
, page
,
2133 old
.freelist
, old
.counters
,
2134 new.freelist
, new.counters
,
2139 spin_unlock(&n
->list_lock
);
2142 stat(s
, DEACTIVATE_EMPTY
);
2143 discard_slab(s
, page
);
2152 * Unfreeze all the cpu partial slabs.
2154 * This function must be called with interrupts disabled
2155 * for the cpu using c (or some other guarantee must be there
2156 * to guarantee no concurrent accesses).
2158 static void unfreeze_partials(struct kmem_cache
*s
,
2159 struct kmem_cache_cpu
*c
)
2161 #ifdef CONFIG_SLUB_CPU_PARTIAL
2162 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2163 struct page
*page
, *discard_page
= NULL
;
2165 while ((page
= c
->partial
)) {
2169 c
->partial
= page
->next
;
2171 n2
= get_node(s
, page_to_nid(page
));
2174 spin_unlock(&n
->list_lock
);
2177 spin_lock(&n
->list_lock
);
2182 old
.freelist
= page
->freelist
;
2183 old
.counters
= page
->counters
;
2184 VM_BUG_ON(!old
.frozen
);
2186 new.counters
= old
.counters
;
2187 new.freelist
= old
.freelist
;
2191 } while (!__cmpxchg_double_slab(s
, page
,
2192 old
.freelist
, old
.counters
,
2193 new.freelist
, new.counters
,
2194 "unfreezing slab"));
2196 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2197 page
->next
= discard_page
;
2198 discard_page
= page
;
2200 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2201 stat(s
, FREE_ADD_PARTIAL
);
2206 spin_unlock(&n
->list_lock
);
2208 while (discard_page
) {
2209 page
= discard_page
;
2210 discard_page
= discard_page
->next
;
2212 stat(s
, DEACTIVATE_EMPTY
);
2213 discard_slab(s
, page
);
2220 * Put a page that was just frozen (in __slab_free) into a partial page
2221 * slot if available. This is done without interrupts disabled and without
2222 * preemption disabled. The cmpxchg is racy and may put the partial page
2223 * onto a random cpus partial slot.
2225 * If we did not find a slot then simply move all the partials to the
2226 * per node partial list.
2228 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2230 #ifdef CONFIG_SLUB_CPU_PARTIAL
2231 struct page
*oldpage
;
2239 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2242 pobjects
= oldpage
->pobjects
;
2243 pages
= oldpage
->pages
;
2244 if (drain
&& pobjects
> s
->cpu_partial
) {
2245 unsigned long flags
;
2247 * partial array is full. Move the existing
2248 * set to the per node partial list.
2250 local_irq_save(flags
);
2251 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2252 local_irq_restore(flags
);
2256 stat(s
, CPU_PARTIAL_DRAIN
);
2261 pobjects
+= page
->objects
- page
->inuse
;
2263 page
->pages
= pages
;
2264 page
->pobjects
= pobjects
;
2265 page
->next
= oldpage
;
2267 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2269 if (unlikely(!s
->cpu_partial
)) {
2270 unsigned long flags
;
2272 local_irq_save(flags
);
2273 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2274 local_irq_restore(flags
);
2280 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2282 stat(s
, CPUSLAB_FLUSH
);
2283 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2285 c
->tid
= next_tid(c
->tid
);
2291 * Called from IPI handler with interrupts disabled.
2293 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2295 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2301 unfreeze_partials(s
, c
);
2305 static void flush_cpu_slab(void *d
)
2307 struct kmem_cache
*s
= d
;
2309 __flush_cpu_slab(s
, smp_processor_id());
2312 static bool has_cpu_slab(int cpu
, void *info
)
2314 struct kmem_cache
*s
= info
;
2315 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2317 return c
->page
|| slub_percpu_partial(c
);
2320 static void flush_all(struct kmem_cache
*s
)
2322 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2326 * Use the cpu notifier to insure that the cpu slabs are flushed when
2329 static int slub_cpu_dead(unsigned int cpu
)
2331 struct kmem_cache
*s
;
2332 unsigned long flags
;
2334 mutex_lock(&slab_mutex
);
2335 list_for_each_entry(s
, &slab_caches
, list
) {
2336 local_irq_save(flags
);
2337 __flush_cpu_slab(s
, cpu
);
2338 local_irq_restore(flags
);
2340 mutex_unlock(&slab_mutex
);
2345 * Check if the objects in a per cpu structure fit numa
2346 * locality expectations.
2348 static inline int node_match(struct page
*page
, int node
)
2351 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2357 #ifdef CONFIG_SLUB_DEBUG
2358 static int count_free(struct page
*page
)
2360 return page
->objects
- page
->inuse
;
2363 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2365 return atomic_long_read(&n
->total_objects
);
2367 #endif /* CONFIG_SLUB_DEBUG */
2369 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2370 static unsigned long count_partial(struct kmem_cache_node
*n
,
2371 int (*get_count
)(struct page
*))
2373 unsigned long flags
;
2374 unsigned long x
= 0;
2377 spin_lock_irqsave(&n
->list_lock
, flags
);
2378 list_for_each_entry(page
, &n
->partial
, lru
)
2379 x
+= get_count(page
);
2380 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2383 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2385 static noinline
void
2386 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2388 #ifdef CONFIG_SLUB_DEBUG
2389 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2390 DEFAULT_RATELIMIT_BURST
);
2392 struct kmem_cache_node
*n
;
2394 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2397 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2398 nid
, gfpflags
, &gfpflags
);
2399 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2400 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2403 if (oo_order(s
->min
) > get_order(s
->object_size
))
2404 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2407 for_each_kmem_cache_node(s
, node
, n
) {
2408 unsigned long nr_slabs
;
2409 unsigned long nr_objs
;
2410 unsigned long nr_free
;
2412 nr_free
= count_partial(n
, count_free
);
2413 nr_slabs
= node_nr_slabs(n
);
2414 nr_objs
= node_nr_objs(n
);
2416 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2417 node
, nr_slabs
, nr_objs
, nr_free
);
2422 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2423 int node
, struct kmem_cache_cpu
**pc
)
2426 struct kmem_cache_cpu
*c
= *pc
;
2429 freelist
= get_partial(s
, flags
, node
, c
);
2434 page
= new_slab(s
, flags
, node
);
2436 c
= raw_cpu_ptr(s
->cpu_slab
);
2441 * No other reference to the page yet so we can
2442 * muck around with it freely without cmpxchg
2444 freelist
= page
->freelist
;
2445 page
->freelist
= NULL
;
2447 stat(s
, ALLOC_SLAB
);
2456 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2458 if (unlikely(PageSlabPfmemalloc(page
)))
2459 return gfp_pfmemalloc_allowed(gfpflags
);
2465 * Check the page->freelist of a page and either transfer the freelist to the
2466 * per cpu freelist or deactivate the page.
2468 * The page is still frozen if the return value is not NULL.
2470 * If this function returns NULL then the page has been unfrozen.
2472 * This function must be called with interrupt disabled.
2474 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2477 unsigned long counters
;
2481 freelist
= page
->freelist
;
2482 counters
= page
->counters
;
2484 new.counters
= counters
;
2485 VM_BUG_ON(!new.frozen
);
2487 new.inuse
= page
->objects
;
2488 new.frozen
= freelist
!= NULL
;
2490 } while (!__cmpxchg_double_slab(s
, page
,
2499 * Slow path. The lockless freelist is empty or we need to perform
2502 * Processing is still very fast if new objects have been freed to the
2503 * regular freelist. In that case we simply take over the regular freelist
2504 * as the lockless freelist and zap the regular freelist.
2506 * If that is not working then we fall back to the partial lists. We take the
2507 * first element of the freelist as the object to allocate now and move the
2508 * rest of the freelist to the lockless freelist.
2510 * And if we were unable to get a new slab from the partial slab lists then
2511 * we need to allocate a new slab. This is the slowest path since it involves
2512 * a call to the page allocator and the setup of a new slab.
2514 * Version of __slab_alloc to use when we know that interrupts are
2515 * already disabled (which is the case for bulk allocation).
2517 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2518 unsigned long addr
, struct kmem_cache_cpu
*c
)
2528 if (unlikely(!node_match(page
, node
))) {
2529 int searchnode
= node
;
2531 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2532 searchnode
= node_to_mem_node(node
);
2534 if (unlikely(!node_match(page
, searchnode
))) {
2535 stat(s
, ALLOC_NODE_MISMATCH
);
2536 deactivate_slab(s
, page
, c
->freelist
, c
);
2542 * By rights, we should be searching for a slab page that was
2543 * PFMEMALLOC but right now, we are losing the pfmemalloc
2544 * information when the page leaves the per-cpu allocator
2546 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2547 deactivate_slab(s
, page
, c
->freelist
, c
);
2551 /* must check again c->freelist in case of cpu migration or IRQ */
2552 freelist
= c
->freelist
;
2556 freelist
= get_freelist(s
, page
);
2560 stat(s
, DEACTIVATE_BYPASS
);
2564 stat(s
, ALLOC_REFILL
);
2568 * freelist is pointing to the list of objects to be used.
2569 * page is pointing to the page from which the objects are obtained.
2570 * That page must be frozen for per cpu allocations to work.
2572 VM_BUG_ON(!c
->page
->frozen
);
2573 c
->freelist
= get_freepointer(s
, freelist
);
2574 c
->tid
= next_tid(c
->tid
);
2579 if (slub_percpu_partial(c
)) {
2580 page
= c
->page
= slub_percpu_partial(c
);
2581 slub_set_percpu_partial(c
, page
);
2582 stat(s
, CPU_PARTIAL_ALLOC
);
2586 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2588 if (unlikely(!freelist
)) {
2589 slab_out_of_memory(s
, gfpflags
, node
);
2594 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2597 /* Only entered in the debug case */
2598 if (kmem_cache_debug(s
) &&
2599 !alloc_debug_processing(s
, page
, freelist
, addr
))
2600 goto new_slab
; /* Slab failed checks. Next slab needed */
2602 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2607 * Another one that disabled interrupt and compensates for possible
2608 * cpu changes by refetching the per cpu area pointer.
2610 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2611 unsigned long addr
, struct kmem_cache_cpu
*c
)
2614 unsigned long flags
;
2616 local_irq_save(flags
);
2617 #ifdef CONFIG_PREEMPT
2619 * We may have been preempted and rescheduled on a different
2620 * cpu before disabling interrupts. Need to reload cpu area
2623 c
= this_cpu_ptr(s
->cpu_slab
);
2626 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2627 local_irq_restore(flags
);
2632 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2633 * have the fastpath folded into their functions. So no function call
2634 * overhead for requests that can be satisfied on the fastpath.
2636 * The fastpath works by first checking if the lockless freelist can be used.
2637 * If not then __slab_alloc is called for slow processing.
2639 * Otherwise we can simply pick the next object from the lockless free list.
2641 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2642 gfp_t gfpflags
, int node
, unsigned long addr
)
2645 struct kmem_cache_cpu
*c
;
2649 s
= slab_pre_alloc_hook(s
, gfpflags
);
2654 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2655 * enabled. We may switch back and forth between cpus while
2656 * reading from one cpu area. That does not matter as long
2657 * as we end up on the original cpu again when doing the cmpxchg.
2659 * We should guarantee that tid and kmem_cache are retrieved on
2660 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2661 * to check if it is matched or not.
2664 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2665 c
= raw_cpu_ptr(s
->cpu_slab
);
2666 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2667 unlikely(tid
!= READ_ONCE(c
->tid
)));
2670 * Irqless object alloc/free algorithm used here depends on sequence
2671 * of fetching cpu_slab's data. tid should be fetched before anything
2672 * on c to guarantee that object and page associated with previous tid
2673 * won't be used with current tid. If we fetch tid first, object and
2674 * page could be one associated with next tid and our alloc/free
2675 * request will be failed. In this case, we will retry. So, no problem.
2680 * The transaction ids are globally unique per cpu and per operation on
2681 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2682 * occurs on the right processor and that there was no operation on the
2683 * linked list in between.
2686 object
= c
->freelist
;
2688 if (unlikely(!object
|| !node_match(page
, node
))) {
2689 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2690 stat(s
, ALLOC_SLOWPATH
);
2692 void *next_object
= get_freepointer_safe(s
, object
);
2695 * The cmpxchg will only match if there was no additional
2696 * operation and if we are on the right processor.
2698 * The cmpxchg does the following atomically (without lock
2700 * 1. Relocate first pointer to the current per cpu area.
2701 * 2. Verify that tid and freelist have not been changed
2702 * 3. If they were not changed replace tid and freelist
2704 * Since this is without lock semantics the protection is only
2705 * against code executing on this cpu *not* from access by
2708 if (unlikely(!this_cpu_cmpxchg_double(
2709 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2711 next_object
, next_tid(tid
)))) {
2713 note_cmpxchg_failure("slab_alloc", s
, tid
);
2716 prefetch_freepointer(s
, next_object
);
2717 stat(s
, ALLOC_FASTPATH
);
2720 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2721 memset(object
, 0, s
->object_size
);
2723 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2728 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2729 gfp_t gfpflags
, unsigned long addr
)
2731 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2734 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2736 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2738 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2743 EXPORT_SYMBOL(kmem_cache_alloc
);
2745 #ifdef CONFIG_TRACING
2746 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2748 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2749 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2750 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2753 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2757 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2759 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2761 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2762 s
->object_size
, s
->size
, gfpflags
, node
);
2766 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2768 #ifdef CONFIG_TRACING
2769 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2771 int node
, size_t size
)
2773 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2775 trace_kmalloc_node(_RET_IP_
, ret
,
2776 size
, s
->size
, gfpflags
, node
);
2778 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2781 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2786 * Slow path handling. This may still be called frequently since objects
2787 * have a longer lifetime than the cpu slabs in most processing loads.
2789 * So we still attempt to reduce cache line usage. Just take the slab
2790 * lock and free the item. If there is no additional partial page
2791 * handling required then we can return immediately.
2793 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2794 void *head
, void *tail
, int cnt
,
2801 unsigned long counters
;
2802 struct kmem_cache_node
*n
= NULL
;
2803 unsigned long uninitialized_var(flags
);
2805 stat(s
, FREE_SLOWPATH
);
2807 if (kmem_cache_debug(s
) &&
2808 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2813 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2816 prior
= page
->freelist
;
2817 counters
= page
->counters
;
2818 set_freepointer(s
, tail
, prior
);
2819 new.counters
= counters
;
2820 was_frozen
= new.frozen
;
2822 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2824 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2827 * Slab was on no list before and will be
2829 * We can defer the list move and instead
2834 } else { /* Needs to be taken off a list */
2836 n
= get_node(s
, page_to_nid(page
));
2838 * Speculatively acquire the list_lock.
2839 * If the cmpxchg does not succeed then we may
2840 * drop the list_lock without any processing.
2842 * Otherwise the list_lock will synchronize with
2843 * other processors updating the list of slabs.
2845 spin_lock_irqsave(&n
->list_lock
, flags
);
2850 } while (!cmpxchg_double_slab(s
, page
,
2858 * If we just froze the page then put it onto the
2859 * per cpu partial list.
2861 if (new.frozen
&& !was_frozen
) {
2862 put_cpu_partial(s
, page
, 1);
2863 stat(s
, CPU_PARTIAL_FREE
);
2866 * The list lock was not taken therefore no list
2867 * activity can be necessary.
2870 stat(s
, FREE_FROZEN
);
2874 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2878 * Objects left in the slab. If it was not on the partial list before
2881 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2882 if (kmem_cache_debug(s
))
2883 remove_full(s
, n
, page
);
2884 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2885 stat(s
, FREE_ADD_PARTIAL
);
2887 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2893 * Slab on the partial list.
2895 remove_partial(n
, page
);
2896 stat(s
, FREE_REMOVE_PARTIAL
);
2898 /* Slab must be on the full list */
2899 remove_full(s
, n
, page
);
2902 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2904 discard_slab(s
, page
);
2908 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2909 * can perform fastpath freeing without additional function calls.
2911 * The fastpath is only possible if we are freeing to the current cpu slab
2912 * of this processor. This typically the case if we have just allocated
2915 * If fastpath is not possible then fall back to __slab_free where we deal
2916 * with all sorts of special processing.
2918 * Bulk free of a freelist with several objects (all pointing to the
2919 * same page) possible by specifying head and tail ptr, plus objects
2920 * count (cnt). Bulk free indicated by tail pointer being set.
2922 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2923 struct page
*page
, void *head
, void *tail
,
2924 int cnt
, unsigned long addr
)
2926 void *tail_obj
= tail
? : head
;
2927 struct kmem_cache_cpu
*c
;
2931 * Determine the currently cpus per cpu slab.
2932 * The cpu may change afterward. However that does not matter since
2933 * data is retrieved via this pointer. If we are on the same cpu
2934 * during the cmpxchg then the free will succeed.
2937 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2938 c
= raw_cpu_ptr(s
->cpu_slab
);
2939 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2940 unlikely(tid
!= READ_ONCE(c
->tid
)));
2942 /* Same with comment on barrier() in slab_alloc_node() */
2945 if (likely(page
== c
->page
)) {
2946 set_freepointer(s
, tail_obj
, c
->freelist
);
2948 if (unlikely(!this_cpu_cmpxchg_double(
2949 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2951 head
, next_tid(tid
)))) {
2953 note_cmpxchg_failure("slab_free", s
, tid
);
2956 stat(s
, FREE_FASTPATH
);
2958 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2962 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2963 void *head
, void *tail
, int cnt
,
2966 slab_free_freelist_hook(s
, head
, tail
);
2968 * slab_free_freelist_hook() could have put the items into quarantine.
2969 * If so, no need to free them.
2971 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_TYPESAFE_BY_RCU
))
2973 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2977 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2979 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2983 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2985 s
= cache_from_obj(s
, x
);
2988 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2989 trace_kmem_cache_free(_RET_IP_
, x
);
2991 EXPORT_SYMBOL(kmem_cache_free
);
2993 struct detached_freelist
{
2998 struct kmem_cache
*s
;
3002 * This function progressively scans the array with free objects (with
3003 * a limited look ahead) and extract objects belonging to the same
3004 * page. It builds a detached freelist directly within the given
3005 * page/objects. This can happen without any need for
3006 * synchronization, because the objects are owned by running process.
3007 * The freelist is build up as a single linked list in the objects.
3008 * The idea is, that this detached freelist can then be bulk
3009 * transferred to the real freelist(s), but only requiring a single
3010 * synchronization primitive. Look ahead in the array is limited due
3011 * to performance reasons.
3014 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3015 void **p
, struct detached_freelist
*df
)
3017 size_t first_skipped_index
= 0;
3022 /* Always re-init detached_freelist */
3027 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3028 } while (!object
&& size
);
3033 page
= virt_to_head_page(object
);
3035 /* Handle kalloc'ed objects */
3036 if (unlikely(!PageSlab(page
))) {
3037 BUG_ON(!PageCompound(page
));
3039 __free_pages(page
, compound_order(page
));
3040 p
[size
] = NULL
; /* mark object processed */
3043 /* Derive kmem_cache from object */
3044 df
->s
= page
->slab_cache
;
3046 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3049 /* Start new detached freelist */
3051 set_freepointer(df
->s
, object
, NULL
);
3053 df
->freelist
= object
;
3054 p
[size
] = NULL
; /* mark object processed */
3060 continue; /* Skip processed objects */
3062 /* df->page is always set at this point */
3063 if (df
->page
== virt_to_head_page(object
)) {
3064 /* Opportunity build freelist */
3065 set_freepointer(df
->s
, object
, df
->freelist
);
3066 df
->freelist
= object
;
3068 p
[size
] = NULL
; /* mark object processed */
3073 /* Limit look ahead search */
3077 if (!first_skipped_index
)
3078 first_skipped_index
= size
+ 1;
3081 return first_skipped_index
;
3084 /* Note that interrupts must be enabled when calling this function. */
3085 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3091 struct detached_freelist df
;
3093 size
= build_detached_freelist(s
, size
, p
, &df
);
3097 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3098 } while (likely(size
));
3100 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3102 /* Note that interrupts must be enabled when calling this function. */
3103 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3106 struct kmem_cache_cpu
*c
;
3109 /* memcg and kmem_cache debug support */
3110 s
= slab_pre_alloc_hook(s
, flags
);
3114 * Drain objects in the per cpu slab, while disabling local
3115 * IRQs, which protects against PREEMPT and interrupts
3116 * handlers invoking normal fastpath.
3118 local_irq_disable();
3119 c
= this_cpu_ptr(s
->cpu_slab
);
3121 for (i
= 0; i
< size
; i
++) {
3122 void *object
= c
->freelist
;
3124 if (unlikely(!object
)) {
3126 * Invoking slow path likely have side-effect
3127 * of re-populating per CPU c->freelist
3129 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3131 if (unlikely(!p
[i
]))
3134 c
= this_cpu_ptr(s
->cpu_slab
);
3135 continue; /* goto for-loop */
3137 c
->freelist
= get_freepointer(s
, object
);
3140 c
->tid
= next_tid(c
->tid
);
3143 /* Clear memory outside IRQ disabled fastpath loop */
3144 if (unlikely(flags
& __GFP_ZERO
)) {
3147 for (j
= 0; j
< i
; j
++)
3148 memset(p
[j
], 0, s
->object_size
);
3151 /* memcg and kmem_cache debug support */
3152 slab_post_alloc_hook(s
, flags
, size
, p
);
3156 slab_post_alloc_hook(s
, flags
, i
, p
);
3157 __kmem_cache_free_bulk(s
, i
, p
);
3160 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3164 * Object placement in a slab is made very easy because we always start at
3165 * offset 0. If we tune the size of the object to the alignment then we can
3166 * get the required alignment by putting one properly sized object after
3169 * Notice that the allocation order determines the sizes of the per cpu
3170 * caches. Each processor has always one slab available for allocations.
3171 * Increasing the allocation order reduces the number of times that slabs
3172 * must be moved on and off the partial lists and is therefore a factor in
3177 * Mininum / Maximum order of slab pages. This influences locking overhead
3178 * and slab fragmentation. A higher order reduces the number of partial slabs
3179 * and increases the number of allocations possible without having to
3180 * take the list_lock.
3182 static int slub_min_order
;
3183 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3184 static int slub_min_objects
;
3187 * Calculate the order of allocation given an slab object size.
3189 * The order of allocation has significant impact on performance and other
3190 * system components. Generally order 0 allocations should be preferred since
3191 * order 0 does not cause fragmentation in the page allocator. Larger objects
3192 * be problematic to put into order 0 slabs because there may be too much
3193 * unused space left. We go to a higher order if more than 1/16th of the slab
3196 * In order to reach satisfactory performance we must ensure that a minimum
3197 * number of objects is in one slab. Otherwise we may generate too much
3198 * activity on the partial lists which requires taking the list_lock. This is
3199 * less a concern for large slabs though which are rarely used.
3201 * slub_max_order specifies the order where we begin to stop considering the
3202 * number of objects in a slab as critical. If we reach slub_max_order then
3203 * we try to keep the page order as low as possible. So we accept more waste
3204 * of space in favor of a small page order.
3206 * Higher order allocations also allow the placement of more objects in a
3207 * slab and thereby reduce object handling overhead. If the user has
3208 * requested a higher mininum order then we start with that one instead of
3209 * the smallest order which will fit the object.
3211 static inline int slab_order(int size
, int min_objects
,
3212 int max_order
, int fract_leftover
, int reserved
)
3216 int min_order
= slub_min_order
;
3218 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3219 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3221 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3222 order
<= max_order
; order
++) {
3224 unsigned long slab_size
= PAGE_SIZE
<< order
;
3226 rem
= (slab_size
- reserved
) % size
;
3228 if (rem
<= slab_size
/ fract_leftover
)
3235 static inline int calculate_order(int size
, int reserved
)
3243 * Attempt to find best configuration for a slab. This
3244 * works by first attempting to generate a layout with
3245 * the best configuration and backing off gradually.
3247 * First we increase the acceptable waste in a slab. Then
3248 * we reduce the minimum objects required in a slab.
3250 min_objects
= slub_min_objects
;
3252 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3253 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3254 min_objects
= min(min_objects
, max_objects
);
3256 while (min_objects
> 1) {
3258 while (fraction
>= 4) {
3259 order
= slab_order(size
, min_objects
,
3260 slub_max_order
, fraction
, reserved
);
3261 if (order
<= slub_max_order
)
3269 * We were unable to place multiple objects in a slab. Now
3270 * lets see if we can place a single object there.
3272 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3273 if (order
<= slub_max_order
)
3277 * Doh this slab cannot be placed using slub_max_order.
3279 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3280 if (order
< MAX_ORDER
)
3286 init_kmem_cache_node(struct kmem_cache_node
*n
)
3289 spin_lock_init(&n
->list_lock
);
3290 INIT_LIST_HEAD(&n
->partial
);
3291 #ifdef CONFIG_SLUB_DEBUG
3292 atomic_long_set(&n
->nr_slabs
, 0);
3293 atomic_long_set(&n
->total_objects
, 0);
3294 INIT_LIST_HEAD(&n
->full
);
3298 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3300 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3301 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3304 * Must align to double word boundary for the double cmpxchg
3305 * instructions to work; see __pcpu_double_call_return_bool().
3307 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3308 2 * sizeof(void *));
3313 init_kmem_cache_cpus(s
);
3318 static struct kmem_cache
*kmem_cache_node
;
3321 * No kmalloc_node yet so do it by hand. We know that this is the first
3322 * slab on the node for this slabcache. There are no concurrent accesses
3325 * Note that this function only works on the kmem_cache_node
3326 * when allocating for the kmem_cache_node. This is used for bootstrapping
3327 * memory on a fresh node that has no slab structures yet.
3329 static void early_kmem_cache_node_alloc(int node
)
3332 struct kmem_cache_node
*n
;
3334 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3336 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3339 if (page_to_nid(page
) != node
) {
3340 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3341 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3346 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3349 kmem_cache_node
->node
[node
] = n
;
3350 #ifdef CONFIG_SLUB_DEBUG
3351 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3352 init_tracking(kmem_cache_node
, n
);
3354 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3356 init_kmem_cache_node(n
);
3357 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3360 * No locks need to be taken here as it has just been
3361 * initialized and there is no concurrent access.
3363 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3366 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3369 struct kmem_cache_node
*n
;
3371 for_each_kmem_cache_node(s
, node
, n
) {
3372 s
->node
[node
] = NULL
;
3373 kmem_cache_free(kmem_cache_node
, n
);
3377 void __kmem_cache_release(struct kmem_cache
*s
)
3379 cache_random_seq_destroy(s
);
3380 free_percpu(s
->cpu_slab
);
3381 free_kmem_cache_nodes(s
);
3384 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3388 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3389 struct kmem_cache_node
*n
;
3391 if (slab_state
== DOWN
) {
3392 early_kmem_cache_node_alloc(node
);
3395 n
= kmem_cache_alloc_node(kmem_cache_node
,
3399 free_kmem_cache_nodes(s
);
3403 init_kmem_cache_node(n
);
3409 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3411 if (min
< MIN_PARTIAL
)
3413 else if (min
> MAX_PARTIAL
)
3415 s
->min_partial
= min
;
3418 static void set_cpu_partial(struct kmem_cache
*s
)
3420 #ifdef CONFIG_SLUB_CPU_PARTIAL
3422 * cpu_partial determined the maximum number of objects kept in the
3423 * per cpu partial lists of a processor.
3425 * Per cpu partial lists mainly contain slabs that just have one
3426 * object freed. If they are used for allocation then they can be
3427 * filled up again with minimal effort. The slab will never hit the
3428 * per node partial lists and therefore no locking will be required.
3430 * This setting also determines
3432 * A) The number of objects from per cpu partial slabs dumped to the
3433 * per node list when we reach the limit.
3434 * B) The number of objects in cpu partial slabs to extract from the
3435 * per node list when we run out of per cpu objects. We only fetch
3436 * 50% to keep some capacity around for frees.
3438 if (!kmem_cache_has_cpu_partial(s
))
3440 else if (s
->size
>= PAGE_SIZE
)
3442 else if (s
->size
>= 1024)
3444 else if (s
->size
>= 256)
3445 s
->cpu_partial
= 13;
3447 s
->cpu_partial
= 30;
3452 * calculate_sizes() determines the order and the distribution of data within
3455 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3457 unsigned long flags
= s
->flags
;
3458 size_t size
= s
->object_size
;
3462 * Round up object size to the next word boundary. We can only
3463 * place the free pointer at word boundaries and this determines
3464 * the possible location of the free pointer.
3466 size
= ALIGN(size
, sizeof(void *));
3468 #ifdef CONFIG_SLUB_DEBUG
3470 * Determine if we can poison the object itself. If the user of
3471 * the slab may touch the object after free or before allocation
3472 * then we should never poison the object itself.
3474 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3476 s
->flags
|= __OBJECT_POISON
;
3478 s
->flags
&= ~__OBJECT_POISON
;
3482 * If we are Redzoning then check if there is some space between the
3483 * end of the object and the free pointer. If not then add an
3484 * additional word to have some bytes to store Redzone information.
3486 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3487 size
+= sizeof(void *);
3491 * With that we have determined the number of bytes in actual use
3492 * by the object. This is the potential offset to the free pointer.
3496 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3499 * Relocate free pointer after the object if it is not
3500 * permitted to overwrite the first word of the object on
3503 * This is the case if we do RCU, have a constructor or
3504 * destructor or are poisoning the objects.
3507 size
+= sizeof(void *);
3510 #ifdef CONFIG_SLUB_DEBUG
3511 if (flags
& SLAB_STORE_USER
)
3513 * Need to store information about allocs and frees after
3516 size
+= 2 * sizeof(struct track
);
3519 kasan_cache_create(s
, &size
, &s
->flags
);
3520 #ifdef CONFIG_SLUB_DEBUG
3521 if (flags
& SLAB_RED_ZONE
) {
3523 * Add some empty padding so that we can catch
3524 * overwrites from earlier objects rather than let
3525 * tracking information or the free pointer be
3526 * corrupted if a user writes before the start
3529 size
+= sizeof(void *);
3531 s
->red_left_pad
= sizeof(void *);
3532 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3533 size
+= s
->red_left_pad
;
3538 * SLUB stores one object immediately after another beginning from
3539 * offset 0. In order to align the objects we have to simply size
3540 * each object to conform to the alignment.
3542 size
= ALIGN(size
, s
->align
);
3544 if (forced_order
>= 0)
3545 order
= forced_order
;
3547 order
= calculate_order(size
, s
->reserved
);
3554 s
->allocflags
|= __GFP_COMP
;
3556 if (s
->flags
& SLAB_CACHE_DMA
)
3557 s
->allocflags
|= GFP_DMA
;
3559 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3560 s
->allocflags
|= __GFP_RECLAIMABLE
;
3563 * Determine the number of objects per slab
3565 s
->oo
= oo_make(order
, size
, s
->reserved
);
3566 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3567 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3570 return !!oo_objects(s
->oo
);
3573 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3575 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3577 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3578 s
->random
= get_random_long();
3581 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_TYPESAFE_BY_RCU
))
3582 s
->reserved
= sizeof(struct rcu_head
);
3584 if (!calculate_sizes(s
, -1))
3586 if (disable_higher_order_debug
) {
3588 * Disable debugging flags that store metadata if the min slab
3591 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3592 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3594 if (!calculate_sizes(s
, -1))
3599 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3600 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3601 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3602 /* Enable fast mode */
3603 s
->flags
|= __CMPXCHG_DOUBLE
;
3607 * The larger the object size is, the more pages we want on the partial
3608 * list to avoid pounding the page allocator excessively.
3610 set_min_partial(s
, ilog2(s
->size
) / 2);
3615 s
->remote_node_defrag_ratio
= 1000;
3618 /* Initialize the pre-computed randomized freelist if slab is up */
3619 if (slab_state
>= UP
) {
3620 if (init_cache_random_seq(s
))
3624 if (!init_kmem_cache_nodes(s
))
3627 if (alloc_kmem_cache_cpus(s
))
3630 free_kmem_cache_nodes(s
);
3632 if (flags
& SLAB_PANIC
)
3633 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3634 s
->name
, (unsigned long)s
->size
, s
->size
,
3635 oo_order(s
->oo
), s
->offset
, flags
);
3639 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3642 #ifdef CONFIG_SLUB_DEBUG
3643 void *addr
= page_address(page
);
3645 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3646 sizeof(long), GFP_ATOMIC
);
3649 slab_err(s
, page
, text
, s
->name
);
3652 get_map(s
, page
, map
);
3653 for_each_object(p
, s
, addr
, page
->objects
) {
3655 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3656 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3657 print_tracking(s
, p
);
3666 * Attempt to free all partial slabs on a node.
3667 * This is called from __kmem_cache_shutdown(). We must take list_lock
3668 * because sysfs file might still access partial list after the shutdowning.
3670 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3673 struct page
*page
, *h
;
3675 BUG_ON(irqs_disabled());
3676 spin_lock_irq(&n
->list_lock
);
3677 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3679 remove_partial(n
, page
);
3680 list_add(&page
->lru
, &discard
);
3682 list_slab_objects(s
, page
,
3683 "Objects remaining in %s on __kmem_cache_shutdown()");
3686 spin_unlock_irq(&n
->list_lock
);
3688 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3689 discard_slab(s
, page
);
3693 * Release all resources used by a slab cache.
3695 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3698 struct kmem_cache_node
*n
;
3701 /* Attempt to free all objects */
3702 for_each_kmem_cache_node(s
, node
, n
) {
3704 if (n
->nr_partial
|| slabs_node(s
, node
))
3707 sysfs_slab_remove(s
);
3711 /********************************************************************
3713 *******************************************************************/
3715 static int __init
setup_slub_min_order(char *str
)
3717 get_option(&str
, &slub_min_order
);
3722 __setup("slub_min_order=", setup_slub_min_order
);
3724 static int __init
setup_slub_max_order(char *str
)
3726 get_option(&str
, &slub_max_order
);
3727 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3732 __setup("slub_max_order=", setup_slub_max_order
);
3734 static int __init
setup_slub_min_objects(char *str
)
3736 get_option(&str
, &slub_min_objects
);
3741 __setup("slub_min_objects=", setup_slub_min_objects
);
3743 void *__kmalloc(size_t size
, gfp_t flags
)
3745 struct kmem_cache
*s
;
3748 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3749 return kmalloc_large(size
, flags
);
3751 s
= kmalloc_slab(size
, flags
);
3753 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3756 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3758 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3760 kasan_kmalloc(s
, ret
, size
, flags
);
3764 EXPORT_SYMBOL(__kmalloc
);
3767 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3772 flags
|= __GFP_COMP
;
3773 page
= alloc_pages_node(node
, flags
, get_order(size
));
3775 ptr
= page_address(page
);
3777 kmalloc_large_node_hook(ptr
, size
, flags
);
3781 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3783 struct kmem_cache
*s
;
3786 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3787 ret
= kmalloc_large_node(size
, flags
, node
);
3789 trace_kmalloc_node(_RET_IP_
, ret
,
3790 size
, PAGE_SIZE
<< get_order(size
),
3796 s
= kmalloc_slab(size
, flags
);
3798 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3801 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3803 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3805 kasan_kmalloc(s
, ret
, size
, flags
);
3809 EXPORT_SYMBOL(__kmalloc_node
);
3812 #ifdef CONFIG_HARDENED_USERCOPY
3814 * Rejects objects that are incorrectly sized.
3816 * Returns NULL if check passes, otherwise const char * to name of cache
3817 * to indicate an error.
3819 const char *__check_heap_object(const void *ptr
, unsigned long n
,
3822 struct kmem_cache
*s
;
3823 unsigned long offset
;
3826 /* Find object and usable object size. */
3827 s
= page
->slab_cache
;
3828 object_size
= slab_ksize(s
);
3830 /* Reject impossible pointers. */
3831 if (ptr
< page_address(page
))
3834 /* Find offset within object. */
3835 offset
= (ptr
- page_address(page
)) % s
->size
;
3837 /* Adjust for redzone and reject if within the redzone. */
3838 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3839 if (offset
< s
->red_left_pad
)
3841 offset
-= s
->red_left_pad
;
3844 /* Allow address range falling entirely within object size. */
3845 if (offset
<= object_size
&& n
<= object_size
- offset
)
3850 #endif /* CONFIG_HARDENED_USERCOPY */
3852 static size_t __ksize(const void *object
)
3856 if (unlikely(object
== ZERO_SIZE_PTR
))
3859 page
= virt_to_head_page(object
);
3861 if (unlikely(!PageSlab(page
))) {
3862 WARN_ON(!PageCompound(page
));
3863 return PAGE_SIZE
<< compound_order(page
);
3866 return slab_ksize(page
->slab_cache
);
3869 size_t ksize(const void *object
)
3871 size_t size
= __ksize(object
);
3872 /* We assume that ksize callers could use whole allocated area,
3873 * so we need to unpoison this area.
3875 kasan_unpoison_shadow(object
, size
);
3878 EXPORT_SYMBOL(ksize
);
3880 void kfree(const void *x
)
3883 void *object
= (void *)x
;
3885 trace_kfree(_RET_IP_
, x
);
3887 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3890 page
= virt_to_head_page(x
);
3891 if (unlikely(!PageSlab(page
))) {
3892 BUG_ON(!PageCompound(page
));
3894 __free_pages(page
, compound_order(page
));
3897 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3899 EXPORT_SYMBOL(kfree
);
3901 #define SHRINK_PROMOTE_MAX 32
3904 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3905 * up most to the head of the partial lists. New allocations will then
3906 * fill those up and thus they can be removed from the partial lists.
3908 * The slabs with the least items are placed last. This results in them
3909 * being allocated from last increasing the chance that the last objects
3910 * are freed in them.
3912 int __kmem_cache_shrink(struct kmem_cache
*s
)
3916 struct kmem_cache_node
*n
;
3919 struct list_head discard
;
3920 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3921 unsigned long flags
;
3925 for_each_kmem_cache_node(s
, node
, n
) {
3926 INIT_LIST_HEAD(&discard
);
3927 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3928 INIT_LIST_HEAD(promote
+ i
);
3930 spin_lock_irqsave(&n
->list_lock
, flags
);
3933 * Build lists of slabs to discard or promote.
3935 * Note that concurrent frees may occur while we hold the
3936 * list_lock. page->inuse here is the upper limit.
3938 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3939 int free
= page
->objects
- page
->inuse
;
3941 /* Do not reread page->inuse */
3944 /* We do not keep full slabs on the list */
3947 if (free
== page
->objects
) {
3948 list_move(&page
->lru
, &discard
);
3950 } else if (free
<= SHRINK_PROMOTE_MAX
)
3951 list_move(&page
->lru
, promote
+ free
- 1);
3955 * Promote the slabs filled up most to the head of the
3958 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3959 list_splice(promote
+ i
, &n
->partial
);
3961 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3963 /* Release empty slabs */
3964 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3965 discard_slab(s
, page
);
3967 if (slabs_node(s
, node
))
3975 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
3978 * Called with all the locks held after a sched RCU grace period.
3979 * Even if @s becomes empty after shrinking, we can't know that @s
3980 * doesn't have allocations already in-flight and thus can't
3981 * destroy @s until the associated memcg is released.
3983 * However, let's remove the sysfs files for empty caches here.
3984 * Each cache has a lot of interface files which aren't
3985 * particularly useful for empty draining caches; otherwise, we can
3986 * easily end up with millions of unnecessary sysfs files on
3987 * systems which have a lot of memory and transient cgroups.
3989 if (!__kmem_cache_shrink(s
))
3990 sysfs_slab_remove(s
);
3993 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
3996 * Disable empty slabs caching. Used to avoid pinning offline
3997 * memory cgroups by kmem pages that can be freed.
3999 slub_set_cpu_partial(s
, 0);
4003 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4004 * we have to make sure the change is visible before shrinking.
4006 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4010 static int slab_mem_going_offline_callback(void *arg
)
4012 struct kmem_cache
*s
;
4014 mutex_lock(&slab_mutex
);
4015 list_for_each_entry(s
, &slab_caches
, list
)
4016 __kmem_cache_shrink(s
);
4017 mutex_unlock(&slab_mutex
);
4022 static void slab_mem_offline_callback(void *arg
)
4024 struct kmem_cache_node
*n
;
4025 struct kmem_cache
*s
;
4026 struct memory_notify
*marg
= arg
;
4029 offline_node
= marg
->status_change_nid_normal
;
4032 * If the node still has available memory. we need kmem_cache_node
4035 if (offline_node
< 0)
4038 mutex_lock(&slab_mutex
);
4039 list_for_each_entry(s
, &slab_caches
, list
) {
4040 n
= get_node(s
, offline_node
);
4043 * if n->nr_slabs > 0, slabs still exist on the node
4044 * that is going down. We were unable to free them,
4045 * and offline_pages() function shouldn't call this
4046 * callback. So, we must fail.
4048 BUG_ON(slabs_node(s
, offline_node
));
4050 s
->node
[offline_node
] = NULL
;
4051 kmem_cache_free(kmem_cache_node
, n
);
4054 mutex_unlock(&slab_mutex
);
4057 static int slab_mem_going_online_callback(void *arg
)
4059 struct kmem_cache_node
*n
;
4060 struct kmem_cache
*s
;
4061 struct memory_notify
*marg
= arg
;
4062 int nid
= marg
->status_change_nid_normal
;
4066 * If the node's memory is already available, then kmem_cache_node is
4067 * already created. Nothing to do.
4073 * We are bringing a node online. No memory is available yet. We must
4074 * allocate a kmem_cache_node structure in order to bring the node
4077 mutex_lock(&slab_mutex
);
4078 list_for_each_entry(s
, &slab_caches
, list
) {
4080 * XXX: kmem_cache_alloc_node will fallback to other nodes
4081 * since memory is not yet available from the node that
4084 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4089 init_kmem_cache_node(n
);
4093 mutex_unlock(&slab_mutex
);
4097 static int slab_memory_callback(struct notifier_block
*self
,
4098 unsigned long action
, void *arg
)
4103 case MEM_GOING_ONLINE
:
4104 ret
= slab_mem_going_online_callback(arg
);
4106 case MEM_GOING_OFFLINE
:
4107 ret
= slab_mem_going_offline_callback(arg
);
4110 case MEM_CANCEL_ONLINE
:
4111 slab_mem_offline_callback(arg
);
4114 case MEM_CANCEL_OFFLINE
:
4118 ret
= notifier_from_errno(ret
);
4124 static struct notifier_block slab_memory_callback_nb
= {
4125 .notifier_call
= slab_memory_callback
,
4126 .priority
= SLAB_CALLBACK_PRI
,
4129 /********************************************************************
4130 * Basic setup of slabs
4131 *******************************************************************/
4134 * Used for early kmem_cache structures that were allocated using
4135 * the page allocator. Allocate them properly then fix up the pointers
4136 * that may be pointing to the wrong kmem_cache structure.
4139 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4142 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4143 struct kmem_cache_node
*n
;
4145 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4148 * This runs very early, and only the boot processor is supposed to be
4149 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4152 __flush_cpu_slab(s
, smp_processor_id());
4153 for_each_kmem_cache_node(s
, node
, n
) {
4156 list_for_each_entry(p
, &n
->partial
, lru
)
4159 #ifdef CONFIG_SLUB_DEBUG
4160 list_for_each_entry(p
, &n
->full
, lru
)
4164 slab_init_memcg_params(s
);
4165 list_add(&s
->list
, &slab_caches
);
4166 memcg_link_cache(s
);
4170 void __init
kmem_cache_init(void)
4172 static __initdata
struct kmem_cache boot_kmem_cache
,
4173 boot_kmem_cache_node
;
4175 if (debug_guardpage_minorder())
4178 kmem_cache_node
= &boot_kmem_cache_node
;
4179 kmem_cache
= &boot_kmem_cache
;
4181 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4182 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
4184 register_hotmemory_notifier(&slab_memory_callback_nb
);
4186 /* Able to allocate the per node structures */
4187 slab_state
= PARTIAL
;
4189 create_boot_cache(kmem_cache
, "kmem_cache",
4190 offsetof(struct kmem_cache
, node
) +
4191 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4192 SLAB_HWCACHE_ALIGN
);
4194 kmem_cache
= bootstrap(&boot_kmem_cache
);
4197 * Allocate kmem_cache_node properly from the kmem_cache slab.
4198 * kmem_cache_node is separately allocated so no need to
4199 * update any list pointers.
4201 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4203 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4204 setup_kmalloc_cache_index_table();
4205 create_kmalloc_caches(0);
4207 /* Setup random freelists for each cache */
4208 init_freelist_randomization();
4210 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4213 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4215 slub_min_order
, slub_max_order
, slub_min_objects
,
4216 nr_cpu_ids
, nr_node_ids
);
4219 void __init
kmem_cache_init_late(void)
4224 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4225 unsigned long flags
, void (*ctor
)(void *))
4227 struct kmem_cache
*s
, *c
;
4229 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4234 * Adjust the object sizes so that we clear
4235 * the complete object on kzalloc.
4237 s
->object_size
= max(s
->object_size
, (int)size
);
4238 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4240 for_each_memcg_cache(c
, s
) {
4241 c
->object_size
= s
->object_size
;
4242 c
->inuse
= max_t(int, c
->inuse
,
4243 ALIGN(size
, sizeof(void *)));
4246 if (sysfs_slab_alias(s
, name
)) {
4255 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4259 err
= kmem_cache_open(s
, flags
);
4263 /* Mutex is not taken during early boot */
4264 if (slab_state
<= UP
)
4267 memcg_propagate_slab_attrs(s
);
4268 err
= sysfs_slab_add(s
);
4270 __kmem_cache_release(s
);
4275 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4277 struct kmem_cache
*s
;
4280 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4281 return kmalloc_large(size
, gfpflags
);
4283 s
= kmalloc_slab(size
, gfpflags
);
4285 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4288 ret
= slab_alloc(s
, gfpflags
, caller
);
4290 /* Honor the call site pointer we received. */
4291 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4297 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4298 int node
, unsigned long caller
)
4300 struct kmem_cache
*s
;
4303 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4304 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4306 trace_kmalloc_node(caller
, ret
,
4307 size
, PAGE_SIZE
<< get_order(size
),
4313 s
= kmalloc_slab(size
, gfpflags
);
4315 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4318 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4320 /* Honor the call site pointer we received. */
4321 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4328 static int count_inuse(struct page
*page
)
4333 static int count_total(struct page
*page
)
4335 return page
->objects
;
4339 #ifdef CONFIG_SLUB_DEBUG
4340 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4344 void *addr
= page_address(page
);
4346 if (!check_slab(s
, page
) ||
4347 !on_freelist(s
, page
, NULL
))
4350 /* Now we know that a valid freelist exists */
4351 bitmap_zero(map
, page
->objects
);
4353 get_map(s
, page
, map
);
4354 for_each_object(p
, s
, addr
, page
->objects
) {
4355 if (test_bit(slab_index(p
, s
, addr
), map
))
4356 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4360 for_each_object(p
, s
, addr
, page
->objects
)
4361 if (!test_bit(slab_index(p
, s
, addr
), map
))
4362 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4367 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4371 validate_slab(s
, page
, map
);
4375 static int validate_slab_node(struct kmem_cache
*s
,
4376 struct kmem_cache_node
*n
, unsigned long *map
)
4378 unsigned long count
= 0;
4380 unsigned long flags
;
4382 spin_lock_irqsave(&n
->list_lock
, flags
);
4384 list_for_each_entry(page
, &n
->partial
, lru
) {
4385 validate_slab_slab(s
, page
, map
);
4388 if (count
!= n
->nr_partial
)
4389 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4390 s
->name
, count
, n
->nr_partial
);
4392 if (!(s
->flags
& SLAB_STORE_USER
))
4395 list_for_each_entry(page
, &n
->full
, lru
) {
4396 validate_slab_slab(s
, page
, map
);
4399 if (count
!= atomic_long_read(&n
->nr_slabs
))
4400 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4401 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4404 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4408 static long validate_slab_cache(struct kmem_cache
*s
)
4411 unsigned long count
= 0;
4412 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4413 sizeof(unsigned long), GFP_KERNEL
);
4414 struct kmem_cache_node
*n
;
4420 for_each_kmem_cache_node(s
, node
, n
)
4421 count
+= validate_slab_node(s
, n
, map
);
4426 * Generate lists of code addresses where slabcache objects are allocated
4431 unsigned long count
;
4438 DECLARE_BITMAP(cpus
, NR_CPUS
);
4444 unsigned long count
;
4445 struct location
*loc
;
4448 static void free_loc_track(struct loc_track
*t
)
4451 free_pages((unsigned long)t
->loc
,
4452 get_order(sizeof(struct location
) * t
->max
));
4455 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4460 order
= get_order(sizeof(struct location
) * max
);
4462 l
= (void *)__get_free_pages(flags
, order
);
4467 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4475 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4476 const struct track
*track
)
4478 long start
, end
, pos
;
4480 unsigned long caddr
;
4481 unsigned long age
= jiffies
- track
->when
;
4487 pos
= start
+ (end
- start
+ 1) / 2;
4490 * There is nothing at "end". If we end up there
4491 * we need to add something to before end.
4496 caddr
= t
->loc
[pos
].addr
;
4497 if (track
->addr
== caddr
) {
4503 if (age
< l
->min_time
)
4505 if (age
> l
->max_time
)
4508 if (track
->pid
< l
->min_pid
)
4509 l
->min_pid
= track
->pid
;
4510 if (track
->pid
> l
->max_pid
)
4511 l
->max_pid
= track
->pid
;
4513 cpumask_set_cpu(track
->cpu
,
4514 to_cpumask(l
->cpus
));
4516 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4520 if (track
->addr
< caddr
)
4527 * Not found. Insert new tracking element.
4529 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4535 (t
->count
- pos
) * sizeof(struct location
));
4538 l
->addr
= track
->addr
;
4542 l
->min_pid
= track
->pid
;
4543 l
->max_pid
= track
->pid
;
4544 cpumask_clear(to_cpumask(l
->cpus
));
4545 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4546 nodes_clear(l
->nodes
);
4547 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4551 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4552 struct page
*page
, enum track_item alloc
,
4555 void *addr
= page_address(page
);
4558 bitmap_zero(map
, page
->objects
);
4559 get_map(s
, page
, map
);
4561 for_each_object(p
, s
, addr
, page
->objects
)
4562 if (!test_bit(slab_index(p
, s
, addr
), map
))
4563 add_location(t
, s
, get_track(s
, p
, alloc
));
4566 static int list_locations(struct kmem_cache
*s
, char *buf
,
4567 enum track_item alloc
)
4571 struct loc_track t
= { 0, 0, NULL
};
4573 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4574 sizeof(unsigned long), GFP_KERNEL
);
4575 struct kmem_cache_node
*n
;
4577 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4580 return sprintf(buf
, "Out of memory\n");
4582 /* Push back cpu slabs */
4585 for_each_kmem_cache_node(s
, node
, n
) {
4586 unsigned long flags
;
4589 if (!atomic_long_read(&n
->nr_slabs
))
4592 spin_lock_irqsave(&n
->list_lock
, flags
);
4593 list_for_each_entry(page
, &n
->partial
, lru
)
4594 process_slab(&t
, s
, page
, alloc
, map
);
4595 list_for_each_entry(page
, &n
->full
, lru
)
4596 process_slab(&t
, s
, page
, alloc
, map
);
4597 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4600 for (i
= 0; i
< t
.count
; i
++) {
4601 struct location
*l
= &t
.loc
[i
];
4603 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4605 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4608 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4610 len
+= sprintf(buf
+ len
, "<not-available>");
4612 if (l
->sum_time
!= l
->min_time
) {
4613 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4615 (long)div_u64(l
->sum_time
, l
->count
),
4618 len
+= sprintf(buf
+ len
, " age=%ld",
4621 if (l
->min_pid
!= l
->max_pid
)
4622 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4623 l
->min_pid
, l
->max_pid
);
4625 len
+= sprintf(buf
+ len
, " pid=%ld",
4628 if (num_online_cpus() > 1 &&
4629 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4630 len
< PAGE_SIZE
- 60)
4631 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4633 cpumask_pr_args(to_cpumask(l
->cpus
)));
4635 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4636 len
< PAGE_SIZE
- 60)
4637 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4639 nodemask_pr_args(&l
->nodes
));
4641 len
+= sprintf(buf
+ len
, "\n");
4647 len
+= sprintf(buf
, "No data\n");
4652 #ifdef SLUB_RESILIENCY_TEST
4653 static void __init
resiliency_test(void)
4657 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4659 pr_err("SLUB resiliency testing\n");
4660 pr_err("-----------------------\n");
4661 pr_err("A. Corruption after allocation\n");
4663 p
= kzalloc(16, GFP_KERNEL
);
4665 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4668 validate_slab_cache(kmalloc_caches
[4]);
4670 /* Hmmm... The next two are dangerous */
4671 p
= kzalloc(32, GFP_KERNEL
);
4672 p
[32 + sizeof(void *)] = 0x34;
4673 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4675 pr_err("If allocated object is overwritten then not detectable\n\n");
4677 validate_slab_cache(kmalloc_caches
[5]);
4678 p
= kzalloc(64, GFP_KERNEL
);
4679 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4681 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4683 pr_err("If allocated object is overwritten then not detectable\n\n");
4684 validate_slab_cache(kmalloc_caches
[6]);
4686 pr_err("\nB. Corruption after free\n");
4687 p
= kzalloc(128, GFP_KERNEL
);
4690 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4691 validate_slab_cache(kmalloc_caches
[7]);
4693 p
= kzalloc(256, GFP_KERNEL
);
4696 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4697 validate_slab_cache(kmalloc_caches
[8]);
4699 p
= kzalloc(512, GFP_KERNEL
);
4702 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4703 validate_slab_cache(kmalloc_caches
[9]);
4707 static void resiliency_test(void) {};
4712 enum slab_stat_type
{
4713 SL_ALL
, /* All slabs */
4714 SL_PARTIAL
, /* Only partially allocated slabs */
4715 SL_CPU
, /* Only slabs used for cpu caches */
4716 SL_OBJECTS
, /* Determine allocated objects not slabs */
4717 SL_TOTAL
/* Determine object capacity not slabs */
4720 #define SO_ALL (1 << SL_ALL)
4721 #define SO_PARTIAL (1 << SL_PARTIAL)
4722 #define SO_CPU (1 << SL_CPU)
4723 #define SO_OBJECTS (1 << SL_OBJECTS)
4724 #define SO_TOTAL (1 << SL_TOTAL)
4727 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4729 static int __init
setup_slub_memcg_sysfs(char *str
)
4733 if (get_option(&str
, &v
) > 0)
4734 memcg_sysfs_enabled
= v
;
4739 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4742 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4743 char *buf
, unsigned long flags
)
4745 unsigned long total
= 0;
4748 unsigned long *nodes
;
4750 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4754 if (flags
& SO_CPU
) {
4757 for_each_possible_cpu(cpu
) {
4758 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4763 page
= READ_ONCE(c
->page
);
4767 node
= page_to_nid(page
);
4768 if (flags
& SO_TOTAL
)
4770 else if (flags
& SO_OBJECTS
)
4778 page
= slub_percpu_partial_read_once(c
);
4780 node
= page_to_nid(page
);
4781 if (flags
& SO_TOTAL
)
4783 else if (flags
& SO_OBJECTS
)
4794 #ifdef CONFIG_SLUB_DEBUG
4795 if (flags
& SO_ALL
) {
4796 struct kmem_cache_node
*n
;
4798 for_each_kmem_cache_node(s
, node
, n
) {
4800 if (flags
& SO_TOTAL
)
4801 x
= atomic_long_read(&n
->total_objects
);
4802 else if (flags
& SO_OBJECTS
)
4803 x
= atomic_long_read(&n
->total_objects
) -
4804 count_partial(n
, count_free
);
4806 x
= atomic_long_read(&n
->nr_slabs
);
4813 if (flags
& SO_PARTIAL
) {
4814 struct kmem_cache_node
*n
;
4816 for_each_kmem_cache_node(s
, node
, n
) {
4817 if (flags
& SO_TOTAL
)
4818 x
= count_partial(n
, count_total
);
4819 else if (flags
& SO_OBJECTS
)
4820 x
= count_partial(n
, count_inuse
);
4827 x
= sprintf(buf
, "%lu", total
);
4829 for (node
= 0; node
< nr_node_ids
; node
++)
4831 x
+= sprintf(buf
+ x
, " N%d=%lu",
4836 return x
+ sprintf(buf
+ x
, "\n");
4839 #ifdef CONFIG_SLUB_DEBUG
4840 static int any_slab_objects(struct kmem_cache
*s
)
4843 struct kmem_cache_node
*n
;
4845 for_each_kmem_cache_node(s
, node
, n
)
4846 if (atomic_long_read(&n
->total_objects
))
4853 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4854 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4856 struct slab_attribute
{
4857 struct attribute attr
;
4858 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4859 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4862 #define SLAB_ATTR_RO(_name) \
4863 static struct slab_attribute _name##_attr = \
4864 __ATTR(_name, 0400, _name##_show, NULL)
4866 #define SLAB_ATTR(_name) \
4867 static struct slab_attribute _name##_attr = \
4868 __ATTR(_name, 0600, _name##_show, _name##_store)
4870 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4872 return sprintf(buf
, "%d\n", s
->size
);
4874 SLAB_ATTR_RO(slab_size
);
4876 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4878 return sprintf(buf
, "%d\n", s
->align
);
4880 SLAB_ATTR_RO(align
);
4882 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4884 return sprintf(buf
, "%d\n", s
->object_size
);
4886 SLAB_ATTR_RO(object_size
);
4888 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4890 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4892 SLAB_ATTR_RO(objs_per_slab
);
4894 static ssize_t
order_store(struct kmem_cache
*s
,
4895 const char *buf
, size_t length
)
4897 unsigned long order
;
4900 err
= kstrtoul(buf
, 10, &order
);
4904 if (order
> slub_max_order
|| order
< slub_min_order
)
4907 calculate_sizes(s
, order
);
4911 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4913 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4917 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4919 return sprintf(buf
, "%lu\n", s
->min_partial
);
4922 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4928 err
= kstrtoul(buf
, 10, &min
);
4932 set_min_partial(s
, min
);
4935 SLAB_ATTR(min_partial
);
4937 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4939 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4942 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4945 unsigned int objects
;
4948 err
= kstrtouint(buf
, 10, &objects
);
4951 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4954 slub_set_cpu_partial(s
, objects
);
4958 SLAB_ATTR(cpu_partial
);
4960 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4964 return sprintf(buf
, "%pS\n", s
->ctor
);
4968 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4970 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4972 SLAB_ATTR_RO(aliases
);
4974 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4976 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4978 SLAB_ATTR_RO(partial
);
4980 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4982 return show_slab_objects(s
, buf
, SO_CPU
);
4984 SLAB_ATTR_RO(cpu_slabs
);
4986 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4988 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4990 SLAB_ATTR_RO(objects
);
4992 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4994 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4996 SLAB_ATTR_RO(objects_partial
);
4998 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5005 for_each_online_cpu(cpu
) {
5008 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5011 pages
+= page
->pages
;
5012 objects
+= page
->pobjects
;
5016 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5019 for_each_online_cpu(cpu
) {
5022 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5024 if (page
&& len
< PAGE_SIZE
- 20)
5025 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5026 page
->pobjects
, page
->pages
);
5029 return len
+ sprintf(buf
+ len
, "\n");
5031 SLAB_ATTR_RO(slabs_cpu_partial
);
5033 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5035 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5038 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5039 const char *buf
, size_t length
)
5041 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5043 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5046 SLAB_ATTR(reclaim_account
);
5048 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5050 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5052 SLAB_ATTR_RO(hwcache_align
);
5054 #ifdef CONFIG_ZONE_DMA
5055 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5057 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5059 SLAB_ATTR_RO(cache_dma
);
5062 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5064 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5066 SLAB_ATTR_RO(destroy_by_rcu
);
5068 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
5070 return sprintf(buf
, "%d\n", s
->reserved
);
5072 SLAB_ATTR_RO(reserved
);
5074 #ifdef CONFIG_SLUB_DEBUG
5075 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5077 return show_slab_objects(s
, buf
, SO_ALL
);
5079 SLAB_ATTR_RO(slabs
);
5081 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5083 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5085 SLAB_ATTR_RO(total_objects
);
5087 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5089 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5092 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5093 const char *buf
, size_t length
)
5095 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5096 if (buf
[0] == '1') {
5097 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5098 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5102 SLAB_ATTR(sanity_checks
);
5104 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5106 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5109 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5113 * Tracing a merged cache is going to give confusing results
5114 * as well as cause other issues like converting a mergeable
5115 * cache into an umergeable one.
5117 if (s
->refcount
> 1)
5120 s
->flags
&= ~SLAB_TRACE
;
5121 if (buf
[0] == '1') {
5122 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5123 s
->flags
|= SLAB_TRACE
;
5129 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5131 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5134 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5135 const char *buf
, size_t length
)
5137 if (any_slab_objects(s
))
5140 s
->flags
&= ~SLAB_RED_ZONE
;
5141 if (buf
[0] == '1') {
5142 s
->flags
|= SLAB_RED_ZONE
;
5144 calculate_sizes(s
, -1);
5147 SLAB_ATTR(red_zone
);
5149 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5151 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5154 static ssize_t
poison_store(struct kmem_cache
*s
,
5155 const char *buf
, size_t length
)
5157 if (any_slab_objects(s
))
5160 s
->flags
&= ~SLAB_POISON
;
5161 if (buf
[0] == '1') {
5162 s
->flags
|= SLAB_POISON
;
5164 calculate_sizes(s
, -1);
5169 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5171 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5174 static ssize_t
store_user_store(struct kmem_cache
*s
,
5175 const char *buf
, size_t length
)
5177 if (any_slab_objects(s
))
5180 s
->flags
&= ~SLAB_STORE_USER
;
5181 if (buf
[0] == '1') {
5182 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5183 s
->flags
|= SLAB_STORE_USER
;
5185 calculate_sizes(s
, -1);
5188 SLAB_ATTR(store_user
);
5190 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5195 static ssize_t
validate_store(struct kmem_cache
*s
,
5196 const char *buf
, size_t length
)
5200 if (buf
[0] == '1') {
5201 ret
= validate_slab_cache(s
);
5207 SLAB_ATTR(validate
);
5209 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5211 if (!(s
->flags
& SLAB_STORE_USER
))
5213 return list_locations(s
, buf
, TRACK_ALLOC
);
5215 SLAB_ATTR_RO(alloc_calls
);
5217 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5219 if (!(s
->flags
& SLAB_STORE_USER
))
5221 return list_locations(s
, buf
, TRACK_FREE
);
5223 SLAB_ATTR_RO(free_calls
);
5224 #endif /* CONFIG_SLUB_DEBUG */
5226 #ifdef CONFIG_FAILSLAB
5227 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5229 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5232 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5235 if (s
->refcount
> 1)
5238 s
->flags
&= ~SLAB_FAILSLAB
;
5240 s
->flags
|= SLAB_FAILSLAB
;
5243 SLAB_ATTR(failslab
);
5246 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5251 static ssize_t
shrink_store(struct kmem_cache
*s
,
5252 const char *buf
, size_t length
)
5255 kmem_cache_shrink(s
);
5263 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5265 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5268 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5269 const char *buf
, size_t length
)
5271 unsigned long ratio
;
5274 err
= kstrtoul(buf
, 10, &ratio
);
5279 s
->remote_node_defrag_ratio
= ratio
* 10;
5283 SLAB_ATTR(remote_node_defrag_ratio
);
5286 #ifdef CONFIG_SLUB_STATS
5287 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5289 unsigned long sum
= 0;
5292 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5297 for_each_online_cpu(cpu
) {
5298 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5304 len
= sprintf(buf
, "%lu", sum
);
5307 for_each_online_cpu(cpu
) {
5308 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5309 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5313 return len
+ sprintf(buf
+ len
, "\n");
5316 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5320 for_each_online_cpu(cpu
)
5321 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5324 #define STAT_ATTR(si, text) \
5325 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5327 return show_stat(s, buf, si); \
5329 static ssize_t text##_store(struct kmem_cache *s, \
5330 const char *buf, size_t length) \
5332 if (buf[0] != '0') \
5334 clear_stat(s, si); \
5339 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5340 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5341 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5342 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5343 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5344 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5345 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5346 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5347 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5348 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5349 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5350 STAT_ATTR(FREE_SLAB
, free_slab
);
5351 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5352 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5353 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5354 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5355 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5356 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5357 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5358 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5359 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5360 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5361 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5362 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5363 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5364 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5367 static struct attribute
*slab_attrs
[] = {
5368 &slab_size_attr
.attr
,
5369 &object_size_attr
.attr
,
5370 &objs_per_slab_attr
.attr
,
5372 &min_partial_attr
.attr
,
5373 &cpu_partial_attr
.attr
,
5375 &objects_partial_attr
.attr
,
5377 &cpu_slabs_attr
.attr
,
5381 &hwcache_align_attr
.attr
,
5382 &reclaim_account_attr
.attr
,
5383 &destroy_by_rcu_attr
.attr
,
5385 &reserved_attr
.attr
,
5386 &slabs_cpu_partial_attr
.attr
,
5387 #ifdef CONFIG_SLUB_DEBUG
5388 &total_objects_attr
.attr
,
5390 &sanity_checks_attr
.attr
,
5392 &red_zone_attr
.attr
,
5394 &store_user_attr
.attr
,
5395 &validate_attr
.attr
,
5396 &alloc_calls_attr
.attr
,
5397 &free_calls_attr
.attr
,
5399 #ifdef CONFIG_ZONE_DMA
5400 &cache_dma_attr
.attr
,
5403 &remote_node_defrag_ratio_attr
.attr
,
5405 #ifdef CONFIG_SLUB_STATS
5406 &alloc_fastpath_attr
.attr
,
5407 &alloc_slowpath_attr
.attr
,
5408 &free_fastpath_attr
.attr
,
5409 &free_slowpath_attr
.attr
,
5410 &free_frozen_attr
.attr
,
5411 &free_add_partial_attr
.attr
,
5412 &free_remove_partial_attr
.attr
,
5413 &alloc_from_partial_attr
.attr
,
5414 &alloc_slab_attr
.attr
,
5415 &alloc_refill_attr
.attr
,
5416 &alloc_node_mismatch_attr
.attr
,
5417 &free_slab_attr
.attr
,
5418 &cpuslab_flush_attr
.attr
,
5419 &deactivate_full_attr
.attr
,
5420 &deactivate_empty_attr
.attr
,
5421 &deactivate_to_head_attr
.attr
,
5422 &deactivate_to_tail_attr
.attr
,
5423 &deactivate_remote_frees_attr
.attr
,
5424 &deactivate_bypass_attr
.attr
,
5425 &order_fallback_attr
.attr
,
5426 &cmpxchg_double_fail_attr
.attr
,
5427 &cmpxchg_double_cpu_fail_attr
.attr
,
5428 &cpu_partial_alloc_attr
.attr
,
5429 &cpu_partial_free_attr
.attr
,
5430 &cpu_partial_node_attr
.attr
,
5431 &cpu_partial_drain_attr
.attr
,
5433 #ifdef CONFIG_FAILSLAB
5434 &failslab_attr
.attr
,
5440 static const struct attribute_group slab_attr_group
= {
5441 .attrs
= slab_attrs
,
5444 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5445 struct attribute
*attr
,
5448 struct slab_attribute
*attribute
;
5449 struct kmem_cache
*s
;
5452 attribute
= to_slab_attr(attr
);
5455 if (!attribute
->show
)
5458 err
= attribute
->show(s
, buf
);
5463 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5464 struct attribute
*attr
,
5465 const char *buf
, size_t len
)
5467 struct slab_attribute
*attribute
;
5468 struct kmem_cache
*s
;
5471 attribute
= to_slab_attr(attr
);
5474 if (!attribute
->store
)
5477 err
= attribute
->store(s
, buf
, len
);
5479 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5480 struct kmem_cache
*c
;
5482 mutex_lock(&slab_mutex
);
5483 if (s
->max_attr_size
< len
)
5484 s
->max_attr_size
= len
;
5487 * This is a best effort propagation, so this function's return
5488 * value will be determined by the parent cache only. This is
5489 * basically because not all attributes will have a well
5490 * defined semantics for rollbacks - most of the actions will
5491 * have permanent effects.
5493 * Returning the error value of any of the children that fail
5494 * is not 100 % defined, in the sense that users seeing the
5495 * error code won't be able to know anything about the state of
5498 * Only returning the error code for the parent cache at least
5499 * has well defined semantics. The cache being written to
5500 * directly either failed or succeeded, in which case we loop
5501 * through the descendants with best-effort propagation.
5503 for_each_memcg_cache(c
, s
)
5504 attribute
->store(c
, buf
, len
);
5505 mutex_unlock(&slab_mutex
);
5511 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5515 char *buffer
= NULL
;
5516 struct kmem_cache
*root_cache
;
5518 if (is_root_cache(s
))
5521 root_cache
= s
->memcg_params
.root_cache
;
5524 * This mean this cache had no attribute written. Therefore, no point
5525 * in copying default values around
5527 if (!root_cache
->max_attr_size
)
5530 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5533 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5536 if (!attr
|| !attr
->store
|| !attr
->show
)
5540 * It is really bad that we have to allocate here, so we will
5541 * do it only as a fallback. If we actually allocate, though,
5542 * we can just use the allocated buffer until the end.
5544 * Most of the slub attributes will tend to be very small in
5545 * size, but sysfs allows buffers up to a page, so they can
5546 * theoretically happen.
5550 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5553 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5554 if (WARN_ON(!buffer
))
5559 len
= attr
->show(root_cache
, buf
);
5561 attr
->store(s
, buf
, len
);
5565 free_page((unsigned long)buffer
);
5569 static void kmem_cache_release(struct kobject
*k
)
5571 slab_kmem_cache_release(to_slab(k
));
5574 static const struct sysfs_ops slab_sysfs_ops
= {
5575 .show
= slab_attr_show
,
5576 .store
= slab_attr_store
,
5579 static struct kobj_type slab_ktype
= {
5580 .sysfs_ops
= &slab_sysfs_ops
,
5581 .release
= kmem_cache_release
,
5584 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5586 struct kobj_type
*ktype
= get_ktype(kobj
);
5588 if (ktype
== &slab_ktype
)
5593 static const struct kset_uevent_ops slab_uevent_ops
= {
5594 .filter
= uevent_filter
,
5597 static struct kset
*slab_kset
;
5599 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5602 if (!is_root_cache(s
))
5603 return s
->memcg_params
.root_cache
->memcg_kset
;
5608 #define ID_STR_LENGTH 64
5610 /* Create a unique string id for a slab cache:
5612 * Format :[flags-]size
5614 static char *create_unique_id(struct kmem_cache
*s
)
5616 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5623 * First flags affecting slabcache operations. We will only
5624 * get here for aliasable slabs so we do not need to support
5625 * too many flags. The flags here must cover all flags that
5626 * are matched during merging to guarantee that the id is
5629 if (s
->flags
& SLAB_CACHE_DMA
)
5631 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5633 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5635 if (s
->flags
& SLAB_ACCOUNT
)
5639 p
+= sprintf(p
, "%07d", s
->size
);
5641 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5645 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5647 struct kmem_cache
*s
=
5648 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5650 if (!s
->kobj
.state_in_sysfs
)
5652 * For a memcg cache, this may be called during
5653 * deactivation and again on shutdown. Remove only once.
5654 * A cache is never shut down before deactivation is
5655 * complete, so no need to worry about synchronization.
5660 kset_unregister(s
->memcg_kset
);
5662 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5664 kobject_put(&s
->kobj
);
5667 static int sysfs_slab_add(struct kmem_cache
*s
)
5671 struct kset
*kset
= cache_kset(s
);
5672 int unmergeable
= slab_unmergeable(s
);
5674 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5677 kobject_init(&s
->kobj
, &slab_ktype
);
5681 if (!unmergeable
&& disable_higher_order_debug
&&
5682 (slub_debug
& DEBUG_METADATA_FLAGS
))
5687 * Slabcache can never be merged so we can use the name proper.
5688 * This is typically the case for debug situations. In that
5689 * case we can catch duplicate names easily.
5691 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5695 * Create a unique name for the slab as a target
5698 name
= create_unique_id(s
);
5701 s
->kobj
.kset
= kset
;
5702 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5706 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5711 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5712 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5713 if (!s
->memcg_kset
) {
5720 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5722 /* Setup first alias */
5723 sysfs_slab_alias(s
, s
->name
);
5730 kobject_del(&s
->kobj
);
5734 static void sysfs_slab_remove(struct kmem_cache
*s
)
5736 if (slab_state
< FULL
)
5738 * Sysfs has not been setup yet so no need to remove the
5743 kobject_get(&s
->kobj
);
5744 schedule_work(&s
->kobj_remove_work
);
5747 void sysfs_slab_unlink(struct kmem_cache
*s
)
5749 if (slab_state
>= FULL
)
5750 kobject_del(&s
->kobj
);
5753 void sysfs_slab_release(struct kmem_cache
*s
)
5755 if (slab_state
>= FULL
)
5756 kobject_put(&s
->kobj
);
5760 * Need to buffer aliases during bootup until sysfs becomes
5761 * available lest we lose that information.
5763 struct saved_alias
{
5764 struct kmem_cache
*s
;
5766 struct saved_alias
*next
;
5769 static struct saved_alias
*alias_list
;
5771 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5773 struct saved_alias
*al
;
5775 if (slab_state
== FULL
) {
5777 * If we have a leftover link then remove it.
5779 sysfs_remove_link(&slab_kset
->kobj
, name
);
5780 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5783 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5789 al
->next
= alias_list
;
5794 static int __init
slab_sysfs_init(void)
5796 struct kmem_cache
*s
;
5799 mutex_lock(&slab_mutex
);
5801 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5803 mutex_unlock(&slab_mutex
);
5804 pr_err("Cannot register slab subsystem.\n");
5810 list_for_each_entry(s
, &slab_caches
, list
) {
5811 err
= sysfs_slab_add(s
);
5813 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5817 while (alias_list
) {
5818 struct saved_alias
*al
= alias_list
;
5820 alias_list
= alias_list
->next
;
5821 err
= sysfs_slab_alias(al
->s
, al
->name
);
5823 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5828 mutex_unlock(&slab_mutex
);
5833 __initcall(slab_sysfs_init
);
5834 #endif /* CONFIG_SYSFS */
5837 * The /proc/slabinfo ABI
5839 #ifdef CONFIG_SLABINFO
5840 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5842 unsigned long nr_slabs
= 0;
5843 unsigned long nr_objs
= 0;
5844 unsigned long nr_free
= 0;
5846 struct kmem_cache_node
*n
;
5848 for_each_kmem_cache_node(s
, node
, n
) {
5849 nr_slabs
+= node_nr_slabs(n
);
5850 nr_objs
+= node_nr_objs(n
);
5851 nr_free
+= count_partial(n
, count_free
);
5854 sinfo
->active_objs
= nr_objs
- nr_free
;
5855 sinfo
->num_objs
= nr_objs
;
5856 sinfo
->active_slabs
= nr_slabs
;
5857 sinfo
->num_slabs
= nr_slabs
;
5858 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5859 sinfo
->cache_order
= oo_order(s
->oo
);
5862 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5866 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5867 size_t count
, loff_t
*ppos
)
5871 #endif /* CONFIG_SLABINFO */