4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
49 static void free_swap_count_continuations(struct swap_info_struct
*);
50 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
52 DEFINE_SPINLOCK(swap_lock
);
53 static unsigned int nr_swapfiles
;
54 atomic_long_t nr_swap_pages
;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages
);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages
;
63 static int least_priority
= -1;
65 static const char Bad_file
[] = "Bad swap file entry ";
66 static const char Unused_file
[] = "Unused swap file entry ";
67 static const char Bad_offset
[] = "Bad swap offset entry ";
68 static const char Unused_offset
[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head
);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 struct plist_head
*swap_avail_heads
;
89 static DEFINE_SPINLOCK(swap_avail_lock
);
91 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
93 static DEFINE_MUTEX(swapon_mutex
);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap
= ATOMIC_INIT(0);
101 static inline unsigned char swap_count(unsigned char ent
)
103 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
106 /* returns 1 if swap entry is freed */
108 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
110 swp_entry_t entry
= swp_entry(si
->type
, offset
);
114 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
124 if (trylock_page(page
)) {
125 ret
= try_to_free_swap(page
);
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
136 static int discard_swap(struct swap_info_struct
*si
)
138 struct swap_extent
*se
;
139 sector_t start_block
;
143 /* Do not discard the swap header page! */
144 se
= &si
->first_swap_extent
;
145 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
146 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
148 err
= blkdev_issue_discard(si
->bdev
, start_block
,
149 nr_blocks
, GFP_KERNEL
, 0);
155 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
156 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
157 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
159 err
= blkdev_issue_discard(si
->bdev
, start_block
,
160 nr_blocks
, GFP_KERNEL
, 0);
166 return err
; /* That will often be -EOPNOTSUPP */
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
173 static void discard_swap_cluster(struct swap_info_struct
*si
,
174 pgoff_t start_page
, pgoff_t nr_pages
)
176 struct swap_extent
*se
= si
->curr_swap_extent
;
177 int found_extent
= 0;
180 if (se
->start_page
<= start_page
&&
181 start_page
< se
->start_page
+ se
->nr_pages
) {
182 pgoff_t offset
= start_page
- se
->start_page
;
183 sector_t start_block
= se
->start_block
+ offset
;
184 sector_t nr_blocks
= se
->nr_pages
- offset
;
186 if (nr_blocks
> nr_pages
)
187 nr_blocks
= nr_pages
;
188 start_page
+= nr_blocks
;
189 nr_pages
-= nr_blocks
;
192 si
->curr_swap_extent
= se
;
194 start_block
<<= PAGE_SHIFT
- 9;
195 nr_blocks
<<= PAGE_SHIFT
- 9;
196 if (blkdev_issue_discard(si
->bdev
, start_block
,
197 nr_blocks
, GFP_NOIO
, 0))
201 se
= list_next_entry(se
, list
);
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
208 #define SWAPFILE_CLUSTER 256
210 #define LATENCY_LIMIT 256
212 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
218 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
223 static inline void cluster_set_count(struct swap_cluster_info
*info
,
229 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
230 unsigned int c
, unsigned int f
)
236 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
241 static inline void cluster_set_next(struct swap_cluster_info
*info
,
247 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
248 unsigned int n
, unsigned int f
)
254 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
256 return info
->flags
& CLUSTER_FLAG_FREE
;
259 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
261 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
264 static inline void cluster_set_null(struct swap_cluster_info
*info
)
266 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
270 static inline bool cluster_is_huge(struct swap_cluster_info
*info
)
272 return info
->flags
& CLUSTER_FLAG_HUGE
;
275 static inline void cluster_clear_huge(struct swap_cluster_info
*info
)
277 info
->flags
&= ~CLUSTER_FLAG_HUGE
;
280 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
281 unsigned long offset
)
283 struct swap_cluster_info
*ci
;
285 ci
= si
->cluster_info
;
287 ci
+= offset
/ SWAPFILE_CLUSTER
;
288 spin_lock(&ci
->lock
);
293 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
296 spin_unlock(&ci
->lock
);
299 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
300 struct swap_info_struct
*si
,
301 unsigned long offset
)
303 struct swap_cluster_info
*ci
;
305 ci
= lock_cluster(si
, offset
);
307 spin_lock(&si
->lock
);
312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
313 struct swap_cluster_info
*ci
)
318 spin_unlock(&si
->lock
);
321 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
323 return cluster_is_null(&list
->head
);
326 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
328 return cluster_next(&list
->head
);
331 static void cluster_list_init(struct swap_cluster_list
*list
)
333 cluster_set_null(&list
->head
);
334 cluster_set_null(&list
->tail
);
337 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
338 struct swap_cluster_info
*ci
,
341 if (cluster_list_empty(list
)) {
342 cluster_set_next_flag(&list
->head
, idx
, 0);
343 cluster_set_next_flag(&list
->tail
, idx
, 0);
345 struct swap_cluster_info
*ci_tail
;
346 unsigned int tail
= cluster_next(&list
->tail
);
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
353 spin_lock_nested(&ci_tail
->lock
, SINGLE_DEPTH_NESTING
);
354 cluster_set_next(ci_tail
, idx
);
355 spin_unlock(&ci_tail
->lock
);
356 cluster_set_next_flag(&list
->tail
, idx
, 0);
360 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
361 struct swap_cluster_info
*ci
)
365 idx
= cluster_next(&list
->head
);
366 if (cluster_next(&list
->tail
) == idx
) {
367 cluster_set_null(&list
->head
);
368 cluster_set_null(&list
->tail
);
370 cluster_set_next_flag(&list
->head
,
371 cluster_next(&ci
[idx
]), 0);
376 /* Add a cluster to discard list and schedule it to do discard */
377 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
386 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
387 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
389 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
391 schedule_work(&si
->discard_work
);
394 static void __free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
396 struct swap_cluster_info
*ci
= si
->cluster_info
;
398 cluster_set_flag(ci
+ idx
, CLUSTER_FLAG_FREE
);
399 cluster_list_add_tail(&si
->free_clusters
, ci
, idx
);
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
406 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
408 struct swap_cluster_info
*info
, *ci
;
411 info
= si
->cluster_info
;
413 while (!cluster_list_empty(&si
->discard_clusters
)) {
414 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
415 spin_unlock(&si
->lock
);
417 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
420 spin_lock(&si
->lock
);
421 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
422 __free_cluster(si
, idx
);
423 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
424 0, SWAPFILE_CLUSTER
);
429 static void swap_discard_work(struct work_struct
*work
)
431 struct swap_info_struct
*si
;
433 si
= container_of(work
, struct swap_info_struct
, discard_work
);
435 spin_lock(&si
->lock
);
436 swap_do_scheduled_discard(si
);
437 spin_unlock(&si
->lock
);
440 static void alloc_cluster(struct swap_info_struct
*si
, unsigned long idx
)
442 struct swap_cluster_info
*ci
= si
->cluster_info
;
444 VM_BUG_ON(cluster_list_first(&si
->free_clusters
) != idx
);
445 cluster_list_del_first(&si
->free_clusters
, ci
);
446 cluster_set_count_flag(ci
+ idx
, 0, 0);
449 static void free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
451 struct swap_cluster_info
*ci
= si
->cluster_info
+ idx
;
453 VM_BUG_ON(cluster_count(ci
) != 0);
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
459 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
460 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
461 swap_cluster_schedule_discard(si
, idx
);
465 __free_cluster(si
, idx
);
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
472 static void inc_cluster_info_page(struct swap_info_struct
*p
,
473 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
475 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
479 if (cluster_is_free(&cluster_info
[idx
]))
480 alloc_cluster(p
, idx
);
482 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
483 cluster_set_count(&cluster_info
[idx
],
484 cluster_count(&cluster_info
[idx
]) + 1);
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
492 static void dec_cluster_info_page(struct swap_info_struct
*p
,
493 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
495 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
500 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
501 cluster_set_count(&cluster_info
[idx
],
502 cluster_count(&cluster_info
[idx
]) - 1);
504 if (cluster_count(&cluster_info
[idx
]) == 0)
505 free_cluster(p
, idx
);
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
514 unsigned long offset
)
516 struct percpu_cluster
*percpu_cluster
;
519 offset
/= SWAPFILE_CLUSTER
;
520 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
521 offset
!= cluster_list_first(&si
->free_clusters
) &&
522 cluster_is_free(&si
->cluster_info
[offset
]);
527 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
528 cluster_set_null(&percpu_cluster
->index
);
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
537 unsigned long *offset
, unsigned long *scan_base
)
539 struct percpu_cluster
*cluster
;
540 struct swap_cluster_info
*ci
;
542 unsigned long tmp
, max
;
545 cluster
= this_cpu_ptr(si
->percpu_cluster
);
546 if (cluster_is_null(&cluster
->index
)) {
547 if (!cluster_list_empty(&si
->free_clusters
)) {
548 cluster
->index
= si
->free_clusters
.head
;
549 cluster
->next
= cluster_next(&cluster
->index
) *
551 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
556 swap_do_scheduled_discard(si
);
557 *scan_base
= *offset
= si
->cluster_next
;
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
570 max
= min_t(unsigned long, si
->max
,
571 (cluster_next(&cluster
->index
) + 1) * SWAPFILE_CLUSTER
);
573 cluster_set_null(&cluster
->index
);
576 ci
= lock_cluster(si
, tmp
);
578 if (!si
->swap_map
[tmp
]) {
586 cluster_set_null(&cluster
->index
);
589 cluster
->next
= tmp
+ 1;
595 static void __del_from_avail_list(struct swap_info_struct
*p
)
600 plist_del(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
603 static void del_from_avail_list(struct swap_info_struct
*p
)
605 spin_lock(&swap_avail_lock
);
606 __del_from_avail_list(p
);
607 spin_unlock(&swap_avail_lock
);
610 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
611 unsigned int nr_entries
)
613 unsigned int end
= offset
+ nr_entries
- 1;
615 if (offset
== si
->lowest_bit
)
616 si
->lowest_bit
+= nr_entries
;
617 if (end
== si
->highest_bit
)
618 si
->highest_bit
-= nr_entries
;
619 si
->inuse_pages
+= nr_entries
;
620 if (si
->inuse_pages
== si
->pages
) {
621 si
->lowest_bit
= si
->max
;
623 del_from_avail_list(si
);
627 static void add_to_avail_list(struct swap_info_struct
*p
)
631 spin_lock(&swap_avail_lock
);
633 WARN_ON(!plist_node_empty(&p
->avail_lists
[nid
]));
634 plist_add(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
636 spin_unlock(&swap_avail_lock
);
639 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
640 unsigned int nr_entries
)
642 unsigned long end
= offset
+ nr_entries
- 1;
643 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
645 if (offset
< si
->lowest_bit
)
646 si
->lowest_bit
= offset
;
647 if (end
> si
->highest_bit
) {
648 bool was_full
= !si
->highest_bit
;
650 si
->highest_bit
= end
;
651 if (was_full
&& (si
->flags
& SWP_WRITEOK
))
652 add_to_avail_list(si
);
654 atomic_long_add(nr_entries
, &nr_swap_pages
);
655 si
->inuse_pages
-= nr_entries
;
656 if (si
->flags
& SWP_BLKDEV
)
657 swap_slot_free_notify
=
658 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
660 swap_slot_free_notify
= NULL
;
661 while (offset
<= end
) {
662 frontswap_invalidate_page(si
->type
, offset
);
663 if (swap_slot_free_notify
)
664 swap_slot_free_notify(si
->bdev
, offset
);
669 static int scan_swap_map_slots(struct swap_info_struct
*si
,
670 unsigned char usage
, int nr
,
673 struct swap_cluster_info
*ci
;
674 unsigned long offset
;
675 unsigned long scan_base
;
676 unsigned long last_in_cluster
= 0;
677 int latency_ration
= LATENCY_LIMIT
;
684 * We try to cluster swap pages by allocating them sequentially
685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
686 * way, however, we resort to first-free allocation, starting
687 * a new cluster. This prevents us from scattering swap pages
688 * all over the entire swap partition, so that we reduce
689 * overall disk seek times between swap pages. -- sct
690 * But we do now try to find an empty cluster. -Andrea
691 * And we let swap pages go all over an SSD partition. Hugh
694 si
->flags
+= SWP_SCANNING
;
695 scan_base
= offset
= si
->cluster_next
;
698 if (si
->cluster_info
) {
699 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
705 if (unlikely(!si
->cluster_nr
--)) {
706 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
707 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
711 spin_unlock(&si
->lock
);
714 * If seek is expensive, start searching for new cluster from
715 * start of partition, to minimize the span of allocated swap.
716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 * case, just handled by scan_swap_map_try_ssd_cluster() above.
719 scan_base
= offset
= si
->lowest_bit
;
720 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
722 /* Locate the first empty (unaligned) cluster */
723 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
724 if (si
->swap_map
[offset
])
725 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
726 else if (offset
== last_in_cluster
) {
727 spin_lock(&si
->lock
);
728 offset
-= SWAPFILE_CLUSTER
- 1;
729 si
->cluster_next
= offset
;
730 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
733 if (unlikely(--latency_ration
< 0)) {
735 latency_ration
= LATENCY_LIMIT
;
740 spin_lock(&si
->lock
);
741 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
745 if (si
->cluster_info
) {
746 while (scan_swap_map_ssd_cluster_conflict(si
, offset
)) {
747 /* take a break if we already got some slots */
750 if (!scan_swap_map_try_ssd_cluster(si
, &offset
,
755 if (!(si
->flags
& SWP_WRITEOK
))
757 if (!si
->highest_bit
)
759 if (offset
> si
->highest_bit
)
760 scan_base
= offset
= si
->lowest_bit
;
762 ci
= lock_cluster(si
, offset
);
763 /* reuse swap entry of cache-only swap if not busy. */
764 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
767 spin_unlock(&si
->lock
);
768 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
769 spin_lock(&si
->lock
);
770 /* entry was freed successfully, try to use this again */
773 goto scan
; /* check next one */
776 if (si
->swap_map
[offset
]) {
783 si
->swap_map
[offset
] = usage
;
784 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
787 swap_range_alloc(si
, offset
, 1);
788 si
->cluster_next
= offset
+ 1;
789 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
791 /* got enough slots or reach max slots? */
792 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
795 /* search for next available slot */
797 /* time to take a break? */
798 if (unlikely(--latency_ration
< 0)) {
801 spin_unlock(&si
->lock
);
803 spin_lock(&si
->lock
);
804 latency_ration
= LATENCY_LIMIT
;
807 /* try to get more slots in cluster */
808 if (si
->cluster_info
) {
809 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
817 /* non-ssd case, still more slots in cluster? */
818 if (si
->cluster_nr
&& !si
->swap_map
[offset
]) {
824 si
->flags
-= SWP_SCANNING
;
828 spin_unlock(&si
->lock
);
829 while (++offset
<= si
->highest_bit
) {
830 if (!si
->swap_map
[offset
]) {
831 spin_lock(&si
->lock
);
834 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
835 spin_lock(&si
->lock
);
838 if (unlikely(--latency_ration
< 0)) {
840 latency_ration
= LATENCY_LIMIT
;
843 offset
= si
->lowest_bit
;
844 while (offset
< scan_base
) {
845 if (!si
->swap_map
[offset
]) {
846 spin_lock(&si
->lock
);
849 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
850 spin_lock(&si
->lock
);
853 if (unlikely(--latency_ration
< 0)) {
855 latency_ration
= LATENCY_LIMIT
;
859 spin_lock(&si
->lock
);
862 si
->flags
-= SWP_SCANNING
;
866 #ifdef CONFIG_THP_SWAP
867 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
870 struct swap_cluster_info
*ci
;
871 unsigned long offset
, i
;
874 if (cluster_list_empty(&si
->free_clusters
))
877 idx
= cluster_list_first(&si
->free_clusters
);
878 offset
= idx
* SWAPFILE_CLUSTER
;
879 ci
= lock_cluster(si
, offset
);
880 alloc_cluster(si
, idx
);
881 cluster_set_count_flag(ci
, SWAPFILE_CLUSTER
, CLUSTER_FLAG_HUGE
);
883 map
= si
->swap_map
+ offset
;
884 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++)
885 map
[i
] = SWAP_HAS_CACHE
;
887 swap_range_alloc(si
, offset
, SWAPFILE_CLUSTER
);
888 *slot
= swp_entry(si
->type
, offset
);
893 static void swap_free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
895 unsigned long offset
= idx
* SWAPFILE_CLUSTER
;
896 struct swap_cluster_info
*ci
;
898 ci
= lock_cluster(si
, offset
);
899 cluster_set_count_flag(ci
, 0, 0);
900 free_cluster(si
, idx
);
902 swap_range_free(si
, offset
, SWAPFILE_CLUSTER
);
905 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
910 #endif /* CONFIG_THP_SWAP */
912 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
918 n_ret
= scan_swap_map_slots(si
, usage
, 1, &entry
);
921 return swp_offset(entry
);
927 int get_swap_pages(int n_goal
, bool cluster
, swp_entry_t swp_entries
[])
929 unsigned long nr_pages
= cluster
? SWAPFILE_CLUSTER
: 1;
930 struct swap_info_struct
*si
, *next
;
935 /* Only single cluster request supported */
936 WARN_ON_ONCE(n_goal
> 1 && cluster
);
938 avail_pgs
= atomic_long_read(&nr_swap_pages
) / nr_pages
;
942 if (n_goal
> SWAP_BATCH
)
945 if (n_goal
> avail_pgs
)
948 atomic_long_sub(n_goal
* nr_pages
, &nr_swap_pages
);
950 spin_lock(&swap_avail_lock
);
953 node
= numa_node_id();
954 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
], avail_lists
[node
]) {
955 /* requeue si to after same-priority siblings */
956 plist_requeue(&si
->avail_lists
[node
], &swap_avail_heads
[node
]);
957 spin_unlock(&swap_avail_lock
);
958 spin_lock(&si
->lock
);
959 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
960 spin_lock(&swap_avail_lock
);
961 if (plist_node_empty(&si
->avail_lists
[node
])) {
962 spin_unlock(&si
->lock
);
965 WARN(!si
->highest_bit
,
966 "swap_info %d in list but !highest_bit\n",
968 WARN(!(si
->flags
& SWP_WRITEOK
),
969 "swap_info %d in list but !SWP_WRITEOK\n",
971 __del_from_avail_list(si
);
972 spin_unlock(&si
->lock
);
976 if (!(si
->flags
& SWP_FILE
))
977 n_ret
= swap_alloc_cluster(si
, swp_entries
);
979 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
980 n_goal
, swp_entries
);
981 spin_unlock(&si
->lock
);
982 if (n_ret
|| cluster
)
984 pr_debug("scan_swap_map of si %d failed to find offset\n",
987 spin_lock(&swap_avail_lock
);
990 * if we got here, it's likely that si was almost full before,
991 * and since scan_swap_map() can drop the si->lock, multiple
992 * callers probably all tried to get a page from the same si
993 * and it filled up before we could get one; or, the si filled
994 * up between us dropping swap_avail_lock and taking si->lock.
995 * Since we dropped the swap_avail_lock, the swap_avail_head
996 * list may have been modified; so if next is still in the
997 * swap_avail_head list then try it, otherwise start over
998 * if we have not gotten any slots.
1000 if (plist_node_empty(&next
->avail_lists
[node
]))
1004 spin_unlock(&swap_avail_lock
);
1008 atomic_long_add((long)(n_goal
- n_ret
) * nr_pages
,
1014 /* The only caller of this function is now suspend routine */
1015 swp_entry_t
get_swap_page_of_type(int type
)
1017 struct swap_info_struct
*si
;
1020 si
= swap_info
[type
];
1021 spin_lock(&si
->lock
);
1022 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
1023 atomic_long_dec(&nr_swap_pages
);
1024 /* This is called for allocating swap entry, not cache */
1025 offset
= scan_swap_map(si
, 1);
1027 spin_unlock(&si
->lock
);
1028 return swp_entry(type
, offset
);
1030 atomic_long_inc(&nr_swap_pages
);
1032 spin_unlock(&si
->lock
);
1033 return (swp_entry_t
) {0};
1036 static struct swap_info_struct
*__swap_info_get(swp_entry_t entry
)
1038 struct swap_info_struct
*p
;
1039 unsigned long offset
, type
;
1043 type
= swp_type(entry
);
1044 if (type
>= nr_swapfiles
)
1046 p
= swap_info
[type
];
1047 if (!(p
->flags
& SWP_USED
))
1049 offset
= swp_offset(entry
);
1050 if (offset
>= p
->max
)
1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset
, entry
.val
);
1058 pr_err("swap_info_get: %s%08lx\n", Unused_file
, entry
.val
);
1061 pr_err("swap_info_get: %s%08lx\n", Bad_file
, entry
.val
);
1066 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1068 struct swap_info_struct
*p
;
1070 p
= __swap_info_get(entry
);
1073 if (!p
->swap_map
[swp_offset(entry
)])
1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset
, entry
.val
);
1084 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
1086 struct swap_info_struct
*p
;
1088 p
= _swap_info_get(entry
);
1090 spin_lock(&p
->lock
);
1094 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
1095 struct swap_info_struct
*q
)
1097 struct swap_info_struct
*p
;
1099 p
= _swap_info_get(entry
);
1103 spin_unlock(&q
->lock
);
1105 spin_lock(&p
->lock
);
1110 static unsigned char __swap_entry_free(struct swap_info_struct
*p
,
1111 swp_entry_t entry
, unsigned char usage
)
1113 struct swap_cluster_info
*ci
;
1114 unsigned long offset
= swp_offset(entry
);
1115 unsigned char count
;
1116 unsigned char has_cache
;
1118 ci
= lock_cluster_or_swap_info(p
, offset
);
1120 count
= p
->swap_map
[offset
];
1122 has_cache
= count
& SWAP_HAS_CACHE
;
1123 count
&= ~SWAP_HAS_CACHE
;
1125 if (usage
== SWAP_HAS_CACHE
) {
1126 VM_BUG_ON(!has_cache
);
1128 } else if (count
== SWAP_MAP_SHMEM
) {
1130 * Or we could insist on shmem.c using a special
1131 * swap_shmem_free() and free_shmem_swap_and_cache()...
1134 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1135 if (count
== COUNT_CONTINUED
) {
1136 if (swap_count_continued(p
, offset
, count
))
1137 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1139 count
= SWAP_MAP_MAX
;
1144 usage
= count
| has_cache
;
1145 p
->swap_map
[offset
] = usage
? : SWAP_HAS_CACHE
;
1147 unlock_cluster_or_swap_info(p
, ci
);
1152 static void swap_entry_free(struct swap_info_struct
*p
, swp_entry_t entry
)
1154 struct swap_cluster_info
*ci
;
1155 unsigned long offset
= swp_offset(entry
);
1156 unsigned char count
;
1158 ci
= lock_cluster(p
, offset
);
1159 count
= p
->swap_map
[offset
];
1160 VM_BUG_ON(count
!= SWAP_HAS_CACHE
);
1161 p
->swap_map
[offset
] = 0;
1162 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
1165 mem_cgroup_uncharge_swap(entry
, 1);
1166 swap_range_free(p
, offset
, 1);
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1173 void swap_free(swp_entry_t entry
)
1175 struct swap_info_struct
*p
;
1177 p
= _swap_info_get(entry
);
1179 if (!__swap_entry_free(p
, entry
, 1))
1180 free_swap_slot(entry
);
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1187 static void swapcache_free(swp_entry_t entry
)
1189 struct swap_info_struct
*p
;
1191 p
= _swap_info_get(entry
);
1193 if (!__swap_entry_free(p
, entry
, SWAP_HAS_CACHE
))
1194 free_swap_slot(entry
);
1198 #ifdef CONFIG_THP_SWAP
1199 static void swapcache_free_cluster(swp_entry_t entry
)
1201 unsigned long offset
= swp_offset(entry
);
1202 unsigned long idx
= offset
/ SWAPFILE_CLUSTER
;
1203 struct swap_cluster_info
*ci
;
1204 struct swap_info_struct
*si
;
1206 unsigned int i
, free_entries
= 0;
1209 si
= _swap_info_get(entry
);
1213 ci
= lock_cluster(si
, offset
);
1214 VM_BUG_ON(!cluster_is_huge(ci
));
1215 map
= si
->swap_map
+ offset
;
1216 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1218 VM_BUG_ON(!(val
& SWAP_HAS_CACHE
));
1219 if (val
== SWAP_HAS_CACHE
)
1222 if (!free_entries
) {
1223 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++)
1224 map
[i
] &= ~SWAP_HAS_CACHE
;
1226 cluster_clear_huge(ci
);
1228 if (free_entries
== SWAPFILE_CLUSTER
) {
1229 spin_lock(&si
->lock
);
1230 ci
= lock_cluster(si
, offset
);
1231 memset(map
, 0, SWAPFILE_CLUSTER
);
1233 mem_cgroup_uncharge_swap(entry
, SWAPFILE_CLUSTER
);
1234 swap_free_cluster(si
, idx
);
1235 spin_unlock(&si
->lock
);
1236 } else if (free_entries
) {
1237 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++, entry
.val
++) {
1238 if (!__swap_entry_free(si
, entry
, SWAP_HAS_CACHE
))
1239 free_swap_slot(entry
);
1244 int split_swap_cluster(swp_entry_t entry
)
1246 struct swap_info_struct
*si
;
1247 struct swap_cluster_info
*ci
;
1248 unsigned long offset
= swp_offset(entry
);
1250 si
= _swap_info_get(entry
);
1253 ci
= lock_cluster(si
, offset
);
1254 cluster_clear_huge(ci
);
1259 static inline void swapcache_free_cluster(swp_entry_t entry
)
1262 #endif /* CONFIG_THP_SWAP */
1264 void put_swap_page(struct page
*page
, swp_entry_t entry
)
1266 if (!PageTransHuge(page
))
1267 swapcache_free(entry
);
1269 swapcache_free_cluster(entry
);
1272 static int swp_entry_cmp(const void *ent1
, const void *ent2
)
1274 const swp_entry_t
*e1
= ent1
, *e2
= ent2
;
1276 return (int)swp_type(*e1
) - (int)swp_type(*e2
);
1279 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1281 struct swap_info_struct
*p
, *prev
;
1291 * Sort swap entries by swap device, so each lock is only taken once.
1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 * so low that it isn't necessary to optimize further.
1295 if (nr_swapfiles
> 1)
1296 sort(entries
, n
, sizeof(entries
[0]), swp_entry_cmp
, NULL
);
1297 for (i
= 0; i
< n
; ++i
) {
1298 p
= swap_info_get_cont(entries
[i
], prev
);
1300 swap_entry_free(p
, entries
[i
]);
1304 spin_unlock(&p
->lock
);
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1312 int page_swapcount(struct page
*page
)
1315 struct swap_info_struct
*p
;
1316 struct swap_cluster_info
*ci
;
1318 unsigned long offset
;
1320 entry
.val
= page_private(page
);
1321 p
= _swap_info_get(entry
);
1323 offset
= swp_offset(entry
);
1324 ci
= lock_cluster_or_swap_info(p
, offset
);
1325 count
= swap_count(p
->swap_map
[offset
]);
1326 unlock_cluster_or_swap_info(p
, ci
);
1331 static int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1334 pgoff_t offset
= swp_offset(entry
);
1335 struct swap_cluster_info
*ci
;
1337 ci
= lock_cluster_or_swap_info(si
, offset
);
1338 count
= swap_count(si
->swap_map
[offset
]);
1339 unlock_cluster_or_swap_info(si
, ci
);
1344 * How many references to @entry are currently swapped out?
1345 * This does not give an exact answer when swap count is continued,
1346 * but does include the high COUNT_CONTINUED flag to allow for that.
1348 int __swp_swapcount(swp_entry_t entry
)
1351 struct swap_info_struct
*si
;
1353 si
= __swap_info_get(entry
);
1355 count
= swap_swapcount(si
, entry
);
1360 * How many references to @entry are currently swapped out?
1361 * This considers COUNT_CONTINUED so it returns exact answer.
1363 int swp_swapcount(swp_entry_t entry
)
1365 int count
, tmp_count
, n
;
1366 struct swap_info_struct
*p
;
1367 struct swap_cluster_info
*ci
;
1372 p
= _swap_info_get(entry
);
1376 offset
= swp_offset(entry
);
1378 ci
= lock_cluster_or_swap_info(p
, offset
);
1380 count
= swap_count(p
->swap_map
[offset
]);
1381 if (!(count
& COUNT_CONTINUED
))
1384 count
&= ~COUNT_CONTINUED
;
1385 n
= SWAP_MAP_MAX
+ 1;
1387 page
= vmalloc_to_page(p
->swap_map
+ offset
);
1388 offset
&= ~PAGE_MASK
;
1389 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1392 page
= list_next_entry(page
, lru
);
1393 map
= kmap_atomic(page
);
1394 tmp_count
= map
[offset
];
1397 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1398 n
*= (SWAP_CONT_MAX
+ 1);
1399 } while (tmp_count
& COUNT_CONTINUED
);
1401 unlock_cluster_or_swap_info(p
, ci
);
1405 #ifdef CONFIG_THP_SWAP
1406 static bool swap_page_trans_huge_swapped(struct swap_info_struct
*si
,
1409 struct swap_cluster_info
*ci
;
1410 unsigned char *map
= si
->swap_map
;
1411 unsigned long roffset
= swp_offset(entry
);
1412 unsigned long offset
= round_down(roffset
, SWAPFILE_CLUSTER
);
1416 ci
= lock_cluster_or_swap_info(si
, offset
);
1417 if (!ci
|| !cluster_is_huge(ci
)) {
1418 if (map
[roffset
] != SWAP_HAS_CACHE
)
1422 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1423 if (map
[offset
+ i
] != SWAP_HAS_CACHE
) {
1429 unlock_cluster_or_swap_info(si
, ci
);
1433 static bool page_swapped(struct page
*page
)
1436 struct swap_info_struct
*si
;
1438 if (likely(!PageTransCompound(page
)))
1439 return page_swapcount(page
) != 0;
1441 page
= compound_head(page
);
1442 entry
.val
= page_private(page
);
1443 si
= _swap_info_get(entry
);
1445 return swap_page_trans_huge_swapped(si
, entry
);
1449 static int page_trans_huge_map_swapcount(struct page
*page
, int *total_mapcount
,
1450 int *total_swapcount
)
1452 int i
, map_swapcount
, _total_mapcount
, _total_swapcount
;
1453 unsigned long offset
= 0;
1454 struct swap_info_struct
*si
;
1455 struct swap_cluster_info
*ci
= NULL
;
1456 unsigned char *map
= NULL
;
1457 int mapcount
, swapcount
= 0;
1459 /* hugetlbfs shouldn't call it */
1460 VM_BUG_ON_PAGE(PageHuge(page
), page
);
1462 if (likely(!PageTransCompound(page
))) {
1463 mapcount
= atomic_read(&page
->_mapcount
) + 1;
1465 *total_mapcount
= mapcount
;
1466 if (PageSwapCache(page
))
1467 swapcount
= page_swapcount(page
);
1468 if (total_swapcount
)
1469 *total_swapcount
= swapcount
;
1470 return mapcount
+ swapcount
;
1473 page
= compound_head(page
);
1475 _total_mapcount
= _total_swapcount
= map_swapcount
= 0;
1476 if (PageSwapCache(page
)) {
1479 entry
.val
= page_private(page
);
1480 si
= _swap_info_get(entry
);
1483 offset
= swp_offset(entry
);
1487 ci
= lock_cluster(si
, offset
);
1488 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1489 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
1490 _total_mapcount
+= mapcount
;
1492 swapcount
= swap_count(map
[offset
+ i
]);
1493 _total_swapcount
+= swapcount
;
1495 map_swapcount
= max(map_swapcount
, mapcount
+ swapcount
);
1498 if (PageDoubleMap(page
)) {
1500 _total_mapcount
-= HPAGE_PMD_NR
;
1502 mapcount
= compound_mapcount(page
);
1503 map_swapcount
+= mapcount
;
1504 _total_mapcount
+= mapcount
;
1506 *total_mapcount
= _total_mapcount
;
1507 if (total_swapcount
)
1508 *total_swapcount
= _total_swapcount
;
1510 return map_swapcount
;
1513 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1514 #define page_swapped(page) (page_swapcount(page) != 0)
1516 static int page_trans_huge_map_swapcount(struct page
*page
, int *total_mapcount
,
1517 int *total_swapcount
)
1519 int mapcount
, swapcount
= 0;
1521 /* hugetlbfs shouldn't call it */
1522 VM_BUG_ON_PAGE(PageHuge(page
), page
);
1524 mapcount
= page_trans_huge_mapcount(page
, total_mapcount
);
1525 if (PageSwapCache(page
))
1526 swapcount
= page_swapcount(page
);
1527 if (total_swapcount
)
1528 *total_swapcount
= swapcount
;
1529 return mapcount
+ swapcount
;
1534 * We can write to an anon page without COW if there are no other references
1535 * to it. And as a side-effect, free up its swap: because the old content
1536 * on disk will never be read, and seeking back there to write new content
1537 * later would only waste time away from clustering.
1539 * NOTE: total_map_swapcount should not be relied upon by the caller if
1540 * reuse_swap_page() returns false, but it may be always overwritten
1541 * (see the other implementation for CONFIG_SWAP=n).
1543 bool reuse_swap_page(struct page
*page
, int *total_map_swapcount
)
1545 int count
, total_mapcount
, total_swapcount
;
1547 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1548 if (unlikely(PageKsm(page
)))
1550 count
= page_trans_huge_map_swapcount(page
, &total_mapcount
,
1552 if (total_map_swapcount
)
1553 *total_map_swapcount
= total_mapcount
+ total_swapcount
;
1554 if (count
== 1 && PageSwapCache(page
) &&
1555 (likely(!PageTransCompound(page
)) ||
1556 /* The remaining swap count will be freed soon */
1557 total_swapcount
== page_swapcount(page
))) {
1558 if (!PageWriteback(page
)) {
1559 page
= compound_head(page
);
1560 delete_from_swap_cache(page
);
1564 struct swap_info_struct
*p
;
1566 entry
.val
= page_private(page
);
1567 p
= swap_info_get(entry
);
1568 if (p
->flags
& SWP_STABLE_WRITES
) {
1569 spin_unlock(&p
->lock
);
1572 spin_unlock(&p
->lock
);
1580 * If swap is getting full, or if there are no more mappings of this page,
1581 * then try_to_free_swap is called to free its swap space.
1583 int try_to_free_swap(struct page
*page
)
1585 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1587 if (!PageSwapCache(page
))
1589 if (PageWriteback(page
))
1591 if (page_swapped(page
))
1595 * Once hibernation has begun to create its image of memory,
1596 * there's a danger that one of the calls to try_to_free_swap()
1597 * - most probably a call from __try_to_reclaim_swap() while
1598 * hibernation is allocating its own swap pages for the image,
1599 * but conceivably even a call from memory reclaim - will free
1600 * the swap from a page which has already been recorded in the
1601 * image as a clean swapcache page, and then reuse its swap for
1602 * another page of the image. On waking from hibernation, the
1603 * original page might be freed under memory pressure, then
1604 * later read back in from swap, now with the wrong data.
1606 * Hibernation suspends storage while it is writing the image
1607 * to disk so check that here.
1609 if (pm_suspended_storage())
1612 page
= compound_head(page
);
1613 delete_from_swap_cache(page
);
1619 * Free the swap entry like above, but also try to
1620 * free the page cache entry if it is the last user.
1622 int free_swap_and_cache(swp_entry_t entry
)
1624 struct swap_info_struct
*p
;
1625 struct page
*page
= NULL
;
1626 unsigned char count
;
1628 if (non_swap_entry(entry
))
1631 p
= _swap_info_get(entry
);
1633 count
= __swap_entry_free(p
, entry
, 1);
1634 if (count
== SWAP_HAS_CACHE
&&
1635 !swap_page_trans_huge_swapped(p
, entry
)) {
1636 page
= find_get_page(swap_address_space(entry
),
1638 if (page
&& !trylock_page(page
)) {
1643 free_swap_slot(entry
);
1647 * Not mapped elsewhere, or swap space full? Free it!
1648 * Also recheck PageSwapCache now page is locked (above).
1650 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1651 (!page_mapped(page
) || mem_cgroup_swap_full(page
)) &&
1652 !swap_page_trans_huge_swapped(p
, entry
)) {
1653 page
= compound_head(page
);
1654 delete_from_swap_cache(page
);
1663 #ifdef CONFIG_HIBERNATION
1665 * Find the swap type that corresponds to given device (if any).
1667 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1668 * from 0, in which the swap header is expected to be located.
1670 * This is needed for the suspend to disk (aka swsusp).
1672 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1674 struct block_device
*bdev
= NULL
;
1678 bdev
= bdget(device
);
1680 spin_lock(&swap_lock
);
1681 for (type
= 0; type
< nr_swapfiles
; type
++) {
1682 struct swap_info_struct
*sis
= swap_info
[type
];
1684 if (!(sis
->flags
& SWP_WRITEOK
))
1689 *bdev_p
= bdgrab(sis
->bdev
);
1691 spin_unlock(&swap_lock
);
1694 if (bdev
== sis
->bdev
) {
1695 struct swap_extent
*se
= &sis
->first_swap_extent
;
1697 if (se
->start_block
== offset
) {
1699 *bdev_p
= bdgrab(sis
->bdev
);
1701 spin_unlock(&swap_lock
);
1707 spin_unlock(&swap_lock
);
1715 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1716 * corresponding to given index in swap_info (swap type).
1718 sector_t
swapdev_block(int type
, pgoff_t offset
)
1720 struct block_device
*bdev
;
1722 if ((unsigned int)type
>= nr_swapfiles
)
1724 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1726 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1730 * Return either the total number of swap pages of given type, or the number
1731 * of free pages of that type (depending on @free)
1733 * This is needed for software suspend
1735 unsigned int count_swap_pages(int type
, int free
)
1739 spin_lock(&swap_lock
);
1740 if ((unsigned int)type
< nr_swapfiles
) {
1741 struct swap_info_struct
*sis
= swap_info
[type
];
1743 spin_lock(&sis
->lock
);
1744 if (sis
->flags
& SWP_WRITEOK
) {
1747 n
-= sis
->inuse_pages
;
1749 spin_unlock(&sis
->lock
);
1751 spin_unlock(&swap_lock
);
1754 #endif /* CONFIG_HIBERNATION */
1756 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1758 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1762 * No need to decide whether this PTE shares the swap entry with others,
1763 * just let do_wp_page work it out if a write is requested later - to
1764 * force COW, vm_page_prot omits write permission from any private vma.
1766 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1767 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1769 struct page
*swapcache
;
1770 struct mem_cgroup
*memcg
;
1776 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1777 if (unlikely(!page
))
1780 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1786 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1787 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1788 mem_cgroup_cancel_charge(page
, memcg
, false);
1793 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1794 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1796 set_pte_at(vma
->vm_mm
, addr
, pte
,
1797 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1798 if (page
== swapcache
) {
1799 page_add_anon_rmap(page
, vma
, addr
, false);
1800 mem_cgroup_commit_charge(page
, memcg
, true, false);
1801 } else { /* ksm created a completely new copy */
1802 page_add_new_anon_rmap(page
, vma
, addr
, false);
1803 mem_cgroup_commit_charge(page
, memcg
, false, false);
1804 lru_cache_add_active_or_unevictable(page
, vma
);
1808 * Move the page to the active list so it is not
1809 * immediately swapped out again after swapon.
1811 activate_page(page
);
1813 pte_unmap_unlock(pte
, ptl
);
1815 if (page
!= swapcache
) {
1822 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1823 unsigned long addr
, unsigned long end
,
1824 swp_entry_t entry
, struct page
*page
)
1826 pte_t swp_pte
= swp_entry_to_pte(entry
);
1831 * We don't actually need pte lock while scanning for swp_pte: since
1832 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1833 * page table while we're scanning; though it could get zapped, and on
1834 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1835 * of unmatched parts which look like swp_pte, so unuse_pte must
1836 * recheck under pte lock. Scanning without pte lock lets it be
1837 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1839 pte
= pte_offset_map(pmd
, addr
);
1842 * swapoff spends a _lot_ of time in this loop!
1843 * Test inline before going to call unuse_pte.
1845 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1847 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1850 pte
= pte_offset_map(pmd
, addr
);
1852 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1858 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1859 unsigned long addr
, unsigned long end
,
1860 swp_entry_t entry
, struct page
*page
)
1866 pmd
= pmd_offset(pud
, addr
);
1869 next
= pmd_addr_end(addr
, end
);
1870 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1872 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1875 } while (pmd
++, addr
= next
, addr
!= end
);
1879 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
1880 unsigned long addr
, unsigned long end
,
1881 swp_entry_t entry
, struct page
*page
)
1887 pud
= pud_offset(p4d
, addr
);
1889 next
= pud_addr_end(addr
, end
);
1890 if (pud_none_or_clear_bad(pud
))
1892 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1895 } while (pud
++, addr
= next
, addr
!= end
);
1899 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1900 unsigned long addr
, unsigned long end
,
1901 swp_entry_t entry
, struct page
*page
)
1907 p4d
= p4d_offset(pgd
, addr
);
1909 next
= p4d_addr_end(addr
, end
);
1910 if (p4d_none_or_clear_bad(p4d
))
1912 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, entry
, page
);
1915 } while (p4d
++, addr
= next
, addr
!= end
);
1919 static int unuse_vma(struct vm_area_struct
*vma
,
1920 swp_entry_t entry
, struct page
*page
)
1923 unsigned long addr
, end
, next
;
1926 if (page_anon_vma(page
)) {
1927 addr
= page_address_in_vma(page
, vma
);
1928 if (addr
== -EFAULT
)
1931 end
= addr
+ PAGE_SIZE
;
1933 addr
= vma
->vm_start
;
1937 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1939 next
= pgd_addr_end(addr
, end
);
1940 if (pgd_none_or_clear_bad(pgd
))
1942 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, entry
, page
);
1945 } while (pgd
++, addr
= next
, addr
!= end
);
1949 static int unuse_mm(struct mm_struct
*mm
,
1950 swp_entry_t entry
, struct page
*page
)
1952 struct vm_area_struct
*vma
;
1955 if (!down_read_trylock(&mm
->mmap_sem
)) {
1957 * Activate page so shrink_inactive_list is unlikely to unmap
1958 * its ptes while lock is dropped, so swapoff can make progress.
1960 activate_page(page
);
1962 down_read(&mm
->mmap_sem
);
1965 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1966 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1970 up_read(&mm
->mmap_sem
);
1971 return (ret
< 0)? ret
: 0;
1975 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1976 * from current position to next entry still in use.
1977 * Recycle to start on reaching the end, returning 0 when empty.
1979 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1980 unsigned int prev
, bool frontswap
)
1982 unsigned int max
= si
->max
;
1983 unsigned int i
= prev
;
1984 unsigned char count
;
1987 * No need for swap_lock here: we're just looking
1988 * for whether an entry is in use, not modifying it; false
1989 * hits are okay, and sys_swapoff() has already prevented new
1990 * allocations from this area (while holding swap_lock).
1999 * No entries in use at top of swap_map,
2000 * loop back to start and recheck there.
2006 count
= READ_ONCE(si
->swap_map
[i
]);
2007 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
2008 if (!frontswap
|| frontswap_test(si
, i
))
2010 if ((i
% LATENCY_LIMIT
) == 0)
2017 * We completely avoid races by reading each swap page in advance,
2018 * and then search for the process using it. All the necessary
2019 * page table adjustments can then be made atomically.
2021 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2022 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2024 int try_to_unuse(unsigned int type
, bool frontswap
,
2025 unsigned long pages_to_unuse
)
2027 struct swap_info_struct
*si
= swap_info
[type
];
2028 struct mm_struct
*start_mm
;
2029 volatile unsigned char *swap_map
; /* swap_map is accessed without
2030 * locking. Mark it as volatile
2031 * to prevent compiler doing
2034 unsigned char swcount
;
2041 * When searching mms for an entry, a good strategy is to
2042 * start at the first mm we freed the previous entry from
2043 * (though actually we don't notice whether we or coincidence
2044 * freed the entry). Initialize this start_mm with a hold.
2046 * A simpler strategy would be to start at the last mm we
2047 * freed the previous entry from; but that would take less
2048 * advantage of mmlist ordering, which clusters forked mms
2049 * together, child after parent. If we race with dup_mmap(), we
2050 * prefer to resolve parent before child, lest we miss entries
2051 * duplicated after we scanned child: using last mm would invert
2054 start_mm
= &init_mm
;
2058 * Keep on scanning until all entries have gone. Usually,
2059 * one pass through swap_map is enough, but not necessarily:
2060 * there are races when an instance of an entry might be missed.
2062 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
2063 if (signal_pending(current
)) {
2069 * Get a page for the entry, using the existing swap
2070 * cache page if there is one. Otherwise, get a clean
2071 * page and read the swap into it.
2073 swap_map
= &si
->swap_map
[i
];
2074 entry
= swp_entry(type
, i
);
2075 page
= read_swap_cache_async(entry
,
2076 GFP_HIGHUSER_MOVABLE
, NULL
, 0, false);
2079 * Either swap_duplicate() failed because entry
2080 * has been freed independently, and will not be
2081 * reused since sys_swapoff() already disabled
2082 * allocation from here, or alloc_page() failed.
2084 swcount
= *swap_map
;
2086 * We don't hold lock here, so the swap entry could be
2087 * SWAP_MAP_BAD (when the cluster is discarding).
2088 * Instead of fail out, We can just skip the swap
2089 * entry because swapoff will wait for discarding
2092 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
2099 * Don't hold on to start_mm if it looks like exiting.
2101 if (atomic_read(&start_mm
->mm_users
) == 1) {
2103 start_mm
= &init_mm
;
2108 * Wait for and lock page. When do_swap_page races with
2109 * try_to_unuse, do_swap_page can handle the fault much
2110 * faster than try_to_unuse can locate the entry. This
2111 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2112 * defer to do_swap_page in such a case - in some tests,
2113 * do_swap_page and try_to_unuse repeatedly compete.
2115 wait_on_page_locked(page
);
2116 wait_on_page_writeback(page
);
2118 wait_on_page_writeback(page
);
2121 * Remove all references to entry.
2123 swcount
= *swap_map
;
2124 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
2125 retval
= shmem_unuse(entry
, page
);
2126 /* page has already been unlocked and released */
2131 if (swap_count(swcount
) && start_mm
!= &init_mm
)
2132 retval
= unuse_mm(start_mm
, entry
, page
);
2134 if (swap_count(*swap_map
)) {
2135 int set_start_mm
= (*swap_map
>= swcount
);
2136 struct list_head
*p
= &start_mm
->mmlist
;
2137 struct mm_struct
*new_start_mm
= start_mm
;
2138 struct mm_struct
*prev_mm
= start_mm
;
2139 struct mm_struct
*mm
;
2141 mmget(new_start_mm
);
2143 spin_lock(&mmlist_lock
);
2144 while (swap_count(*swap_map
) && !retval
&&
2145 (p
= p
->next
) != &start_mm
->mmlist
) {
2146 mm
= list_entry(p
, struct mm_struct
, mmlist
);
2147 if (!mmget_not_zero(mm
))
2149 spin_unlock(&mmlist_lock
);
2155 swcount
= *swap_map
;
2156 if (!swap_count(swcount
)) /* any usage ? */
2158 else if (mm
== &init_mm
)
2161 retval
= unuse_mm(mm
, entry
, page
);
2163 if (set_start_mm
&& *swap_map
< swcount
) {
2164 mmput(new_start_mm
);
2169 spin_lock(&mmlist_lock
);
2171 spin_unlock(&mmlist_lock
);
2174 start_mm
= new_start_mm
;
2183 * If a reference remains (rare), we would like to leave
2184 * the page in the swap cache; but try_to_unmap could
2185 * then re-duplicate the entry once we drop page lock,
2186 * so we might loop indefinitely; also, that page could
2187 * not be swapped out to other storage meanwhile. So:
2188 * delete from cache even if there's another reference,
2189 * after ensuring that the data has been saved to disk -
2190 * since if the reference remains (rarer), it will be
2191 * read from disk into another page. Splitting into two
2192 * pages would be incorrect if swap supported "shared
2193 * private" pages, but they are handled by tmpfs files.
2195 * Given how unuse_vma() targets one particular offset
2196 * in an anon_vma, once the anon_vma has been determined,
2197 * this splitting happens to be just what is needed to
2198 * handle where KSM pages have been swapped out: re-reading
2199 * is unnecessarily slow, but we can fix that later on.
2201 if (swap_count(*swap_map
) &&
2202 PageDirty(page
) && PageSwapCache(page
)) {
2203 struct writeback_control wbc
= {
2204 .sync_mode
= WB_SYNC_NONE
,
2207 swap_writepage(compound_head(page
), &wbc
);
2209 wait_on_page_writeback(page
);
2213 * It is conceivable that a racing task removed this page from
2214 * swap cache just before we acquired the page lock at the top,
2215 * or while we dropped it in unuse_mm(). The page might even
2216 * be back in swap cache on another swap area: that we must not
2217 * delete, since it may not have been written out to swap yet.
2219 if (PageSwapCache(page
) &&
2220 likely(page_private(page
) == entry
.val
) &&
2221 (!PageTransCompound(page
) ||
2222 !swap_page_trans_huge_swapped(si
, entry
)))
2223 delete_from_swap_cache(compound_head(page
));
2226 * So we could skip searching mms once swap count went
2227 * to 1, we did not mark any present ptes as dirty: must
2228 * mark page dirty so shrink_page_list will preserve it.
2235 * Make sure that we aren't completely killing
2236 * interactive performance.
2239 if (frontswap
&& pages_to_unuse
> 0) {
2240 if (!--pages_to_unuse
)
2250 * After a successful try_to_unuse, if no swap is now in use, we know
2251 * we can empty the mmlist. swap_lock must be held on entry and exit.
2252 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2253 * added to the mmlist just after page_duplicate - before would be racy.
2255 static void drain_mmlist(void)
2257 struct list_head
*p
, *next
;
2260 for (type
= 0; type
< nr_swapfiles
; type
++)
2261 if (swap_info
[type
]->inuse_pages
)
2263 spin_lock(&mmlist_lock
);
2264 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2266 spin_unlock(&mmlist_lock
);
2270 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2271 * corresponds to page offset for the specified swap entry.
2272 * Note that the type of this function is sector_t, but it returns page offset
2273 * into the bdev, not sector offset.
2275 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
2277 struct swap_info_struct
*sis
;
2278 struct swap_extent
*start_se
;
2279 struct swap_extent
*se
;
2282 sis
= swap_info
[swp_type(entry
)];
2285 offset
= swp_offset(entry
);
2286 start_se
= sis
->curr_swap_extent
;
2290 if (se
->start_page
<= offset
&&
2291 offset
< (se
->start_page
+ se
->nr_pages
)) {
2292 return se
->start_block
+ (offset
- se
->start_page
);
2294 se
= list_next_entry(se
, list
);
2295 sis
->curr_swap_extent
= se
;
2296 BUG_ON(se
== start_se
); /* It *must* be present */
2301 * Returns the page offset into bdev for the specified page's swap entry.
2303 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
2306 entry
.val
= page_private(page
);
2307 return map_swap_entry(entry
, bdev
);
2311 * Free all of a swapdev's extent information
2313 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2315 while (!list_empty(&sis
->first_swap_extent
.list
)) {
2316 struct swap_extent
*se
;
2318 se
= list_first_entry(&sis
->first_swap_extent
.list
,
2319 struct swap_extent
, list
);
2320 list_del(&se
->list
);
2324 if (sis
->flags
& SWP_FILE
) {
2325 struct file
*swap_file
= sis
->swap_file
;
2326 struct address_space
*mapping
= swap_file
->f_mapping
;
2328 sis
->flags
&= ~SWP_FILE
;
2329 mapping
->a_ops
->swap_deactivate(swap_file
);
2334 * Add a block range (and the corresponding page range) into this swapdev's
2335 * extent list. The extent list is kept sorted in page order.
2337 * This function rather assumes that it is called in ascending page order.
2340 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2341 unsigned long nr_pages
, sector_t start_block
)
2343 struct swap_extent
*se
;
2344 struct swap_extent
*new_se
;
2345 struct list_head
*lh
;
2347 if (start_page
== 0) {
2348 se
= &sis
->first_swap_extent
;
2349 sis
->curr_swap_extent
= se
;
2351 se
->nr_pages
= nr_pages
;
2352 se
->start_block
= start_block
;
2355 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
2356 se
= list_entry(lh
, struct swap_extent
, list
);
2357 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2358 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2360 se
->nr_pages
+= nr_pages
;
2366 * No merge. Insert a new extent, preserving ordering.
2368 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2371 new_se
->start_page
= start_page
;
2372 new_se
->nr_pages
= nr_pages
;
2373 new_se
->start_block
= start_block
;
2375 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
2380 * A `swap extent' is a simple thing which maps a contiguous range of pages
2381 * onto a contiguous range of disk blocks. An ordered list of swap extents
2382 * is built at swapon time and is then used at swap_writepage/swap_readpage
2383 * time for locating where on disk a page belongs.
2385 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2387 * swap files identically.
2389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2391 * swapfiles are handled *identically* after swapon time.
2393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2396 * requirements, they are simply tossed out - we will never use those blocks
2399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2400 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2401 * which will scribble on the fs.
2403 * The amount of disk space which a single swap extent represents varies.
2404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2405 * extents in the list. To avoid much list walking, we cache the previous
2406 * search location in `curr_swap_extent', and start new searches from there.
2407 * This is extremely effective. The average number of iterations in
2408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2410 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2412 struct file
*swap_file
= sis
->swap_file
;
2413 struct address_space
*mapping
= swap_file
->f_mapping
;
2414 struct inode
*inode
= mapping
->host
;
2417 if (S_ISBLK(inode
->i_mode
)) {
2418 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2423 if (mapping
->a_ops
->swap_activate
) {
2424 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2426 sis
->flags
|= SWP_FILE
;
2427 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2433 return generic_swapfile_activate(sis
, swap_file
, span
);
2436 static int swap_node(struct swap_info_struct
*p
)
2438 struct block_device
*bdev
;
2443 bdev
= p
->swap_file
->f_inode
->i_sb
->s_bdev
;
2445 return bdev
? bdev
->bd_disk
->node_id
: NUMA_NO_NODE
;
2448 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
2449 unsigned char *swap_map
,
2450 struct swap_cluster_info
*cluster_info
)
2457 p
->prio
= --least_priority
;
2459 * the plist prio is negated because plist ordering is
2460 * low-to-high, while swap ordering is high-to-low
2462 p
->list
.prio
= -p
->prio
;
2465 p
->avail_lists
[i
].prio
= -p
->prio
;
2467 if (swap_node(p
) == i
)
2468 p
->avail_lists
[i
].prio
= 1;
2470 p
->avail_lists
[i
].prio
= -p
->prio
;
2473 p
->swap_map
= swap_map
;
2474 p
->cluster_info
= cluster_info
;
2475 p
->flags
|= SWP_WRITEOK
;
2476 atomic_long_add(p
->pages
, &nr_swap_pages
);
2477 total_swap_pages
+= p
->pages
;
2479 assert_spin_locked(&swap_lock
);
2481 * both lists are plists, and thus priority ordered.
2482 * swap_active_head needs to be priority ordered for swapoff(),
2483 * which on removal of any swap_info_struct with an auto-assigned
2484 * (i.e. negative) priority increments the auto-assigned priority
2485 * of any lower-priority swap_info_structs.
2486 * swap_avail_head needs to be priority ordered for get_swap_page(),
2487 * which allocates swap pages from the highest available priority
2490 plist_add(&p
->list
, &swap_active_head
);
2491 add_to_avail_list(p
);
2494 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
2495 unsigned char *swap_map
,
2496 struct swap_cluster_info
*cluster_info
,
2497 unsigned long *frontswap_map
)
2499 frontswap_init(p
->type
, frontswap_map
);
2500 spin_lock(&swap_lock
);
2501 spin_lock(&p
->lock
);
2502 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
2503 spin_unlock(&p
->lock
);
2504 spin_unlock(&swap_lock
);
2507 static void reinsert_swap_info(struct swap_info_struct
*p
)
2509 spin_lock(&swap_lock
);
2510 spin_lock(&p
->lock
);
2511 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
2512 spin_unlock(&p
->lock
);
2513 spin_unlock(&swap_lock
);
2516 bool has_usable_swap(void)
2520 spin_lock(&swap_lock
);
2521 if (plist_head_empty(&swap_active_head
))
2523 spin_unlock(&swap_lock
);
2527 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2529 struct swap_info_struct
*p
= NULL
;
2530 unsigned char *swap_map
;
2531 struct swap_cluster_info
*cluster_info
;
2532 unsigned long *frontswap_map
;
2533 struct file
*swap_file
, *victim
;
2534 struct address_space
*mapping
;
2535 struct inode
*inode
;
2536 struct filename
*pathname
;
2538 unsigned int old_block_size
;
2540 if (!capable(CAP_SYS_ADMIN
))
2543 BUG_ON(!current
->mm
);
2545 pathname
= getname(specialfile
);
2546 if (IS_ERR(pathname
))
2547 return PTR_ERR(pathname
);
2549 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2550 err
= PTR_ERR(victim
);
2554 mapping
= victim
->f_mapping
;
2555 spin_lock(&swap_lock
);
2556 plist_for_each_entry(p
, &swap_active_head
, list
) {
2557 if (p
->flags
& SWP_WRITEOK
) {
2558 if (p
->swap_file
->f_mapping
== mapping
) {
2566 spin_unlock(&swap_lock
);
2569 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2570 vm_unacct_memory(p
->pages
);
2573 spin_unlock(&swap_lock
);
2576 del_from_avail_list(p
);
2577 spin_lock(&p
->lock
);
2579 struct swap_info_struct
*si
= p
;
2582 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2585 for_each_node(nid
) {
2586 if (si
->avail_lists
[nid
].prio
!= 1)
2587 si
->avail_lists
[nid
].prio
--;
2592 plist_del(&p
->list
, &swap_active_head
);
2593 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2594 total_swap_pages
-= p
->pages
;
2595 p
->flags
&= ~SWP_WRITEOK
;
2596 spin_unlock(&p
->lock
);
2597 spin_unlock(&swap_lock
);
2599 disable_swap_slots_cache_lock();
2601 set_current_oom_origin();
2602 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
2603 clear_current_oom_origin();
2606 /* re-insert swap space back into swap_list */
2607 reinsert_swap_info(p
);
2608 reenable_swap_slots_cache_unlock();
2612 reenable_swap_slots_cache_unlock();
2614 flush_work(&p
->discard_work
);
2616 destroy_swap_extents(p
);
2617 if (p
->flags
& SWP_CONTINUED
)
2618 free_swap_count_continuations(p
);
2620 if (!p
->bdev
|| !blk_queue_nonrot(bdev_get_queue(p
->bdev
)))
2621 atomic_dec(&nr_rotate_swap
);
2623 mutex_lock(&swapon_mutex
);
2624 spin_lock(&swap_lock
);
2625 spin_lock(&p
->lock
);
2628 /* wait for anyone still in scan_swap_map */
2629 p
->highest_bit
= 0; /* cuts scans short */
2630 while (p
->flags
>= SWP_SCANNING
) {
2631 spin_unlock(&p
->lock
);
2632 spin_unlock(&swap_lock
);
2633 schedule_timeout_uninterruptible(1);
2634 spin_lock(&swap_lock
);
2635 spin_lock(&p
->lock
);
2638 swap_file
= p
->swap_file
;
2639 old_block_size
= p
->old_block_size
;
2640 p
->swap_file
= NULL
;
2642 swap_map
= p
->swap_map
;
2644 cluster_info
= p
->cluster_info
;
2645 p
->cluster_info
= NULL
;
2646 frontswap_map
= frontswap_map_get(p
);
2647 spin_unlock(&p
->lock
);
2648 spin_unlock(&swap_lock
);
2649 frontswap_invalidate_area(p
->type
);
2650 frontswap_map_set(p
, NULL
);
2651 mutex_unlock(&swapon_mutex
);
2652 free_percpu(p
->percpu_cluster
);
2653 p
->percpu_cluster
= NULL
;
2655 kvfree(cluster_info
);
2656 kvfree(frontswap_map
);
2657 /* Destroy swap account information */
2658 swap_cgroup_swapoff(p
->type
);
2659 exit_swap_address_space(p
->type
);
2661 inode
= mapping
->host
;
2662 if (S_ISBLK(inode
->i_mode
)) {
2663 struct block_device
*bdev
= I_BDEV(inode
);
2664 set_blocksize(bdev
, old_block_size
);
2665 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2668 inode
->i_flags
&= ~S_SWAPFILE
;
2669 inode_unlock(inode
);
2671 filp_close(swap_file
, NULL
);
2674 * Clear the SWP_USED flag after all resources are freed so that swapon
2675 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2676 * not hold p->lock after we cleared its SWP_WRITEOK.
2678 spin_lock(&swap_lock
);
2680 spin_unlock(&swap_lock
);
2683 atomic_inc(&proc_poll_event
);
2684 wake_up_interruptible(&proc_poll_wait
);
2687 filp_close(victim
, NULL
);
2693 #ifdef CONFIG_PROC_FS
2694 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
2696 struct seq_file
*seq
= file
->private_data
;
2698 poll_wait(file
, &proc_poll_wait
, wait
);
2700 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2701 seq
->poll_event
= atomic_read(&proc_poll_event
);
2702 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2705 return POLLIN
| POLLRDNORM
;
2709 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2711 struct swap_info_struct
*si
;
2715 mutex_lock(&swapon_mutex
);
2718 return SEQ_START_TOKEN
;
2720 for (type
= 0; type
< nr_swapfiles
; type
++) {
2721 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2722 si
= swap_info
[type
];
2723 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2732 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2734 struct swap_info_struct
*si
= v
;
2737 if (v
== SEQ_START_TOKEN
)
2740 type
= si
->type
+ 1;
2742 for (; type
< nr_swapfiles
; type
++) {
2743 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2744 si
= swap_info
[type
];
2745 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2754 static void swap_stop(struct seq_file
*swap
, void *v
)
2756 mutex_unlock(&swapon_mutex
);
2759 static int swap_show(struct seq_file
*swap
, void *v
)
2761 struct swap_info_struct
*si
= v
;
2765 if (si
== SEQ_START_TOKEN
) {
2766 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2770 file
= si
->swap_file
;
2771 len
= seq_file_path(swap
, file
, " \t\n\\");
2772 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2773 len
< 40 ? 40 - len
: 1, " ",
2774 S_ISBLK(file_inode(file
)->i_mode
) ?
2775 "partition" : "file\t",
2776 si
->pages
<< (PAGE_SHIFT
- 10),
2777 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2782 static const struct seq_operations swaps_op
= {
2783 .start
= swap_start
,
2789 static int swaps_open(struct inode
*inode
, struct file
*file
)
2791 struct seq_file
*seq
;
2794 ret
= seq_open(file
, &swaps_op
);
2798 seq
= file
->private_data
;
2799 seq
->poll_event
= atomic_read(&proc_poll_event
);
2803 static const struct file_operations proc_swaps_operations
= {
2806 .llseek
= seq_lseek
,
2807 .release
= seq_release
,
2811 static int __init
procswaps_init(void)
2813 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2816 __initcall(procswaps_init
);
2817 #endif /* CONFIG_PROC_FS */
2819 #ifdef MAX_SWAPFILES_CHECK
2820 static int __init
max_swapfiles_check(void)
2822 MAX_SWAPFILES_CHECK();
2825 late_initcall(max_swapfiles_check
);
2828 static struct swap_info_struct
*alloc_swap_info(void)
2830 struct swap_info_struct
*p
;
2833 int size
= sizeof(*p
) + nr_node_ids
* sizeof(struct plist_node
);
2835 p
= kvzalloc(size
, GFP_KERNEL
);
2837 return ERR_PTR(-ENOMEM
);
2839 spin_lock(&swap_lock
);
2840 for (type
= 0; type
< nr_swapfiles
; type
++) {
2841 if (!(swap_info
[type
]->flags
& SWP_USED
))
2844 if (type
>= MAX_SWAPFILES
) {
2845 spin_unlock(&swap_lock
);
2847 return ERR_PTR(-EPERM
);
2849 if (type
>= nr_swapfiles
) {
2851 swap_info
[type
] = p
;
2853 * Write swap_info[type] before nr_swapfiles, in case a
2854 * racing procfs swap_start() or swap_next() is reading them.
2855 * (We never shrink nr_swapfiles, we never free this entry.)
2861 p
= swap_info
[type
];
2863 * Do not memset this entry: a racing procfs swap_next()
2864 * would be relying on p->type to remain valid.
2867 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2868 plist_node_init(&p
->list
, 0);
2870 plist_node_init(&p
->avail_lists
[i
], 0);
2871 p
->flags
= SWP_USED
;
2872 spin_unlock(&swap_lock
);
2873 spin_lock_init(&p
->lock
);
2874 spin_lock_init(&p
->cont_lock
);
2879 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2883 if (S_ISBLK(inode
->i_mode
)) {
2884 p
->bdev
= bdgrab(I_BDEV(inode
));
2885 error
= blkdev_get(p
->bdev
,
2886 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2891 p
->old_block_size
= block_size(p
->bdev
);
2892 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2895 p
->flags
|= SWP_BLKDEV
;
2896 } else if (S_ISREG(inode
->i_mode
)) {
2897 p
->bdev
= inode
->i_sb
->s_bdev
;
2899 if (IS_SWAPFILE(inode
))
2909 * Find out how many pages are allowed for a single swap device. There
2910 * are two limiting factors:
2911 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2912 * 2) the number of bits in the swap pte, as defined by the different
2915 * In order to find the largest possible bit mask, a swap entry with
2916 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2917 * decoded to a swp_entry_t again, and finally the swap offset is
2920 * This will mask all the bits from the initial ~0UL mask that can't
2921 * be encoded in either the swp_entry_t or the architecture definition
2924 unsigned long generic_max_swapfile_size(void)
2926 return swp_offset(pte_to_swp_entry(
2927 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2930 /* Can be overridden by an architecture for additional checks. */
2931 __weak
unsigned long max_swapfile_size(void)
2933 return generic_max_swapfile_size();
2936 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2937 union swap_header
*swap_header
,
2938 struct inode
*inode
)
2941 unsigned long maxpages
;
2942 unsigned long swapfilepages
;
2943 unsigned long last_page
;
2945 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2946 pr_err("Unable to find swap-space signature\n");
2950 /* swap partition endianess hack... */
2951 if (swab32(swap_header
->info
.version
) == 1) {
2952 swab32s(&swap_header
->info
.version
);
2953 swab32s(&swap_header
->info
.last_page
);
2954 swab32s(&swap_header
->info
.nr_badpages
);
2955 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2957 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2958 swab32s(&swap_header
->info
.badpages
[i
]);
2960 /* Check the swap header's sub-version */
2961 if (swap_header
->info
.version
!= 1) {
2962 pr_warn("Unable to handle swap header version %d\n",
2963 swap_header
->info
.version
);
2968 p
->cluster_next
= 1;
2971 maxpages
= max_swapfile_size();
2972 last_page
= swap_header
->info
.last_page
;
2974 pr_warn("Empty swap-file\n");
2977 if (last_page
> maxpages
) {
2978 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2979 maxpages
<< (PAGE_SHIFT
- 10),
2980 last_page
<< (PAGE_SHIFT
- 10));
2982 if (maxpages
> last_page
) {
2983 maxpages
= last_page
+ 1;
2984 /* p->max is an unsigned int: don't overflow it */
2985 if ((unsigned int)maxpages
== 0)
2986 maxpages
= UINT_MAX
;
2988 p
->highest_bit
= maxpages
- 1;
2992 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2993 if (swapfilepages
&& maxpages
> swapfilepages
) {
2994 pr_warn("Swap area shorter than signature indicates\n");
2997 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2999 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
3005 #define SWAP_CLUSTER_INFO_COLS \
3006 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3007 #define SWAP_CLUSTER_SPACE_COLS \
3008 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3009 #define SWAP_CLUSTER_COLS \
3010 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3012 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
3013 union swap_header
*swap_header
,
3014 unsigned char *swap_map
,
3015 struct swap_cluster_info
*cluster_info
,
3016 unsigned long maxpages
,
3020 unsigned int nr_good_pages
;
3022 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3023 unsigned long col
= p
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
3024 unsigned long i
, idx
;
3026 nr_good_pages
= maxpages
- 1; /* omit header page */
3028 cluster_list_init(&p
->free_clusters
);
3029 cluster_list_init(&p
->discard_clusters
);
3031 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
3032 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
3033 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
3035 if (page_nr
< maxpages
) {
3036 swap_map
[page_nr
] = SWAP_MAP_BAD
;
3039 * Haven't marked the cluster free yet, no list
3040 * operation involved
3042 inc_cluster_info_page(p
, cluster_info
, page_nr
);
3046 /* Haven't marked the cluster free yet, no list operation involved */
3047 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
3048 inc_cluster_info_page(p
, cluster_info
, i
);
3050 if (nr_good_pages
) {
3051 swap_map
[0] = SWAP_MAP_BAD
;
3053 * Not mark the cluster free yet, no list
3054 * operation involved
3056 inc_cluster_info_page(p
, cluster_info
, 0);
3058 p
->pages
= nr_good_pages
;
3059 nr_extents
= setup_swap_extents(p
, span
);
3062 nr_good_pages
= p
->pages
;
3064 if (!nr_good_pages
) {
3065 pr_warn("Empty swap-file\n");
3074 * Reduce false cache line sharing between cluster_info and
3075 * sharing same address space.
3077 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
3078 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
3079 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
3080 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
3081 if (idx
>= nr_clusters
)
3083 if (cluster_count(&cluster_info
[idx
]))
3085 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
3086 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
3094 * Helper to sys_swapon determining if a given swap
3095 * backing device queue supports DISCARD operations.
3097 static bool swap_discardable(struct swap_info_struct
*si
)
3099 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
3101 if (!q
|| !blk_queue_discard(q
))
3107 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
3109 struct swap_info_struct
*p
;
3110 struct filename
*name
;
3111 struct file
*swap_file
= NULL
;
3112 struct address_space
*mapping
;
3115 union swap_header
*swap_header
;
3118 unsigned long maxpages
;
3119 unsigned char *swap_map
= NULL
;
3120 struct swap_cluster_info
*cluster_info
= NULL
;
3121 unsigned long *frontswap_map
= NULL
;
3122 struct page
*page
= NULL
;
3123 struct inode
*inode
= NULL
;
3125 if (swap_flags
& ~SWAP_FLAGS_VALID
)
3128 if (!capable(CAP_SYS_ADMIN
))
3131 if (!swap_avail_heads
)
3134 p
= alloc_swap_info();
3138 INIT_WORK(&p
->discard_work
, swap_discard_work
);
3140 name
= getname(specialfile
);
3142 error
= PTR_ERR(name
);
3146 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
3147 if (IS_ERR(swap_file
)) {
3148 error
= PTR_ERR(swap_file
);
3153 p
->swap_file
= swap_file
;
3154 mapping
= swap_file
->f_mapping
;
3155 inode
= mapping
->host
;
3157 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3158 error
= claim_swapfile(p
, inode
);
3159 if (unlikely(error
))
3163 * Read the swap header.
3165 if (!mapping
->a_ops
->readpage
) {
3169 page
= read_mapping_page(mapping
, 0, swap_file
);
3171 error
= PTR_ERR(page
);
3174 swap_header
= kmap(page
);
3176 maxpages
= read_swap_header(p
, swap_header
, inode
);
3177 if (unlikely(!maxpages
)) {
3182 /* OK, set up the swap map and apply the bad block list */
3183 swap_map
= vzalloc(maxpages
);
3189 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
3190 p
->flags
|= SWP_STABLE_WRITES
;
3192 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
3194 unsigned long ci
, nr_cluster
;
3196 p
->flags
|= SWP_SOLIDSTATE
;
3198 * select a random position to start with to help wear leveling
3201 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
3202 nr_cluster
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3204 cluster_info
= kvzalloc(nr_cluster
* sizeof(*cluster_info
),
3206 if (!cluster_info
) {
3211 for (ci
= 0; ci
< nr_cluster
; ci
++)
3212 spin_lock_init(&((cluster_info
+ ci
)->lock
));
3214 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
3215 if (!p
->percpu_cluster
) {
3219 for_each_possible_cpu(cpu
) {
3220 struct percpu_cluster
*cluster
;
3221 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
3222 cluster_set_null(&cluster
->index
);
3225 atomic_inc(&nr_rotate_swap
);
3227 error
= swap_cgroup_swapon(p
->type
, maxpages
);
3231 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
3232 cluster_info
, maxpages
, &span
);
3233 if (unlikely(nr_extents
< 0)) {
3237 /* frontswap enabled? set up bit-per-page map for frontswap */
3238 if (IS_ENABLED(CONFIG_FRONTSWAP
))
3239 frontswap_map
= kvzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long),
3242 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
3244 * When discard is enabled for swap with no particular
3245 * policy flagged, we set all swap discard flags here in
3246 * order to sustain backward compatibility with older
3247 * swapon(8) releases.
3249 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
3253 * By flagging sys_swapon, a sysadmin can tell us to
3254 * either do single-time area discards only, or to just
3255 * perform discards for released swap page-clusters.
3256 * Now it's time to adjust the p->flags accordingly.
3258 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3259 p
->flags
&= ~SWP_PAGE_DISCARD
;
3260 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3261 p
->flags
&= ~SWP_AREA_DISCARD
;
3263 /* issue a swapon-time discard if it's still required */
3264 if (p
->flags
& SWP_AREA_DISCARD
) {
3265 int err
= discard_swap(p
);
3267 pr_err("swapon: discard_swap(%p): %d\n",
3272 error
= init_swap_address_space(p
->type
, maxpages
);
3276 mutex_lock(&swapon_mutex
);
3278 if (swap_flags
& SWAP_FLAG_PREFER
)
3280 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3281 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
3283 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3284 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
3285 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
3286 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3287 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3288 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3289 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
3290 (frontswap_map
) ? "FS" : "");
3292 mutex_unlock(&swapon_mutex
);
3293 atomic_inc(&proc_poll_event
);
3294 wake_up_interruptible(&proc_poll_wait
);
3296 if (S_ISREG(inode
->i_mode
))
3297 inode
->i_flags
|= S_SWAPFILE
;
3301 free_percpu(p
->percpu_cluster
);
3302 p
->percpu_cluster
= NULL
;
3303 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
3304 set_blocksize(p
->bdev
, p
->old_block_size
);
3305 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
3307 destroy_swap_extents(p
);
3308 swap_cgroup_swapoff(p
->type
);
3309 spin_lock(&swap_lock
);
3310 p
->swap_file
= NULL
;
3312 spin_unlock(&swap_lock
);
3314 kvfree(cluster_info
);
3315 kvfree(frontswap_map
);
3317 if (inode
&& S_ISREG(inode
->i_mode
)) {
3318 inode_unlock(inode
);
3321 filp_close(swap_file
, NULL
);
3324 if (page
&& !IS_ERR(page
)) {
3330 if (inode
&& S_ISREG(inode
->i_mode
))
3331 inode_unlock(inode
);
3333 enable_swap_slots_cache();
3337 void si_swapinfo(struct sysinfo
*val
)
3340 unsigned long nr_to_be_unused
= 0;
3342 spin_lock(&swap_lock
);
3343 for (type
= 0; type
< nr_swapfiles
; type
++) {
3344 struct swap_info_struct
*si
= swap_info
[type
];
3346 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3347 nr_to_be_unused
+= si
->inuse_pages
;
3349 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3350 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3351 spin_unlock(&swap_lock
);
3355 * Verify that a swap entry is valid and increment its swap map count.
3357 * Returns error code in following case.
3359 * - swp_entry is invalid -> EINVAL
3360 * - swp_entry is migration entry -> EINVAL
3361 * - swap-cache reference is requested but there is already one. -> EEXIST
3362 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3363 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3365 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
3367 struct swap_info_struct
*p
;
3368 struct swap_cluster_info
*ci
;
3369 unsigned long offset
, type
;
3370 unsigned char count
;
3371 unsigned char has_cache
;
3374 if (non_swap_entry(entry
))
3377 type
= swp_type(entry
);
3378 if (type
>= nr_swapfiles
)
3380 p
= swap_info
[type
];
3381 offset
= swp_offset(entry
);
3382 if (unlikely(offset
>= p
->max
))
3385 ci
= lock_cluster_or_swap_info(p
, offset
);
3387 count
= p
->swap_map
[offset
];
3390 * swapin_readahead() doesn't check if a swap entry is valid, so the
3391 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3393 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3398 has_cache
= count
& SWAP_HAS_CACHE
;
3399 count
&= ~SWAP_HAS_CACHE
;
3402 if (usage
== SWAP_HAS_CACHE
) {
3404 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3405 if (!has_cache
&& count
)
3406 has_cache
= SWAP_HAS_CACHE
;
3407 else if (has_cache
) /* someone else added cache */
3409 else /* no users remaining */
3412 } else if (count
|| has_cache
) {
3414 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3416 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
3418 else if (swap_count_continued(p
, offset
, count
))
3419 count
= COUNT_CONTINUED
;
3423 err
= -ENOENT
; /* unused swap entry */
3425 p
->swap_map
[offset
] = count
| has_cache
;
3428 unlock_cluster_or_swap_info(p
, ci
);
3433 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
3438 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3439 * (in which case its reference count is never incremented).
3441 void swap_shmem_alloc(swp_entry_t entry
)
3443 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
3447 * Increase reference count of swap entry by 1.
3448 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3449 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3450 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3451 * might occur if a page table entry has got corrupted.
3453 int swap_duplicate(swp_entry_t entry
)
3457 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
3458 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3463 * @entry: swap entry for which we allocate swap cache.
3465 * Called when allocating swap cache for existing swap entry,
3466 * This can return error codes. Returns 0 at success.
3467 * -EBUSY means there is a swap cache.
3468 * Note: return code is different from swap_duplicate().
3470 int swapcache_prepare(swp_entry_t entry
)
3472 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
3475 struct swap_info_struct
*page_swap_info(struct page
*page
)
3477 swp_entry_t swap
= { .val
= page_private(page
) };
3478 return swap_info
[swp_type(swap
)];
3482 * out-of-line __page_file_ methods to avoid include hell.
3484 struct address_space
*__page_file_mapping(struct page
*page
)
3486 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
3487 return page_swap_info(page
)->swap_file
->f_mapping
;
3489 EXPORT_SYMBOL_GPL(__page_file_mapping
);
3491 pgoff_t
__page_file_index(struct page
*page
)
3493 swp_entry_t swap
= { .val
= page_private(page
) };
3494 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
3495 return swp_offset(swap
);
3497 EXPORT_SYMBOL_GPL(__page_file_index
);
3500 * add_swap_count_continuation - called when a swap count is duplicated
3501 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502 * page of the original vmalloc'ed swap_map, to hold the continuation count
3503 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3504 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3506 * These continuation pages are seldom referenced: the common paths all work
3507 * on the original swap_map, only referring to a continuation page when the
3508 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3510 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512 * can be called after dropping locks.
3514 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3516 struct swap_info_struct
*si
;
3517 struct swap_cluster_info
*ci
;
3520 struct page
*list_page
;
3522 unsigned char count
;
3525 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3528 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3530 si
= swap_info_get(entry
);
3533 * An acceptable race has occurred since the failing
3534 * __swap_duplicate(): the swap entry has been freed,
3535 * perhaps even the whole swap_map cleared for swapoff.
3540 offset
= swp_offset(entry
);
3542 ci
= lock_cluster(si
, offset
);
3544 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
3546 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3548 * The higher the swap count, the more likely it is that tasks
3549 * will race to add swap count continuation: we need to avoid
3550 * over-provisioning.
3557 spin_unlock(&si
->lock
);
3562 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3563 * no architecture is using highmem pages for kernel page tables: so it
3564 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3566 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3567 offset
&= ~PAGE_MASK
;
3569 spin_lock(&si
->cont_lock
);
3571 * Page allocation does not initialize the page's lru field,
3572 * but it does always reset its private field.
3574 if (!page_private(head
)) {
3575 BUG_ON(count
& COUNT_CONTINUED
);
3576 INIT_LIST_HEAD(&head
->lru
);
3577 set_page_private(head
, SWP_CONTINUED
);
3578 si
->flags
|= SWP_CONTINUED
;
3581 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3585 * If the previous map said no continuation, but we've found
3586 * a continuation page, free our allocation and use this one.
3588 if (!(count
& COUNT_CONTINUED
))
3589 goto out_unlock_cont
;
3591 map
= kmap_atomic(list_page
) + offset
;
3596 * If this continuation count now has some space in it,
3597 * free our allocation and use this one.
3599 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3600 goto out_unlock_cont
;
3603 list_add_tail(&page
->lru
, &head
->lru
);
3604 page
= NULL
; /* now it's attached, don't free it */
3606 spin_unlock(&si
->cont_lock
);
3609 spin_unlock(&si
->lock
);
3617 * swap_count_continued - when the original swap_map count is incremented
3618 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619 * into, carry if so, or else fail until a new continuation page is allocated;
3620 * when the original swap_map count is decremented from 0 with continuation,
3621 * borrow from the continuation and report whether it still holds more.
3622 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3625 static bool swap_count_continued(struct swap_info_struct
*si
,
3626 pgoff_t offset
, unsigned char count
)
3633 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3634 if (page_private(head
) != SWP_CONTINUED
) {
3635 BUG_ON(count
& COUNT_CONTINUED
);
3636 return false; /* need to add count continuation */
3639 spin_lock(&si
->cont_lock
);
3640 offset
&= ~PAGE_MASK
;
3641 page
= list_entry(head
->lru
.next
, struct page
, lru
);
3642 map
= kmap_atomic(page
) + offset
;
3644 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3645 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3647 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3649 * Think of how you add 1 to 999
3651 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3653 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3654 BUG_ON(page
== head
);
3655 map
= kmap_atomic(page
) + offset
;
3657 if (*map
== SWAP_CONT_MAX
) {
3659 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3661 ret
= false; /* add count continuation */
3664 map
= kmap_atomic(page
) + offset
;
3665 init_map
: *map
= 0; /* we didn't zero the page */
3669 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3670 while (page
!= head
) {
3671 map
= kmap_atomic(page
) + offset
;
3672 *map
= COUNT_CONTINUED
;
3674 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3676 ret
= true; /* incremented */
3678 } else { /* decrementing */
3680 * Think of how you subtract 1 from 1000
3682 BUG_ON(count
!= COUNT_CONTINUED
);
3683 while (*map
== COUNT_CONTINUED
) {
3685 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3686 BUG_ON(page
== head
);
3687 map
= kmap_atomic(page
) + offset
;
3694 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3695 while (page
!= head
) {
3696 map
= kmap_atomic(page
) + offset
;
3697 *map
= SWAP_CONT_MAX
| count
;
3698 count
= COUNT_CONTINUED
;
3700 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3702 ret
= count
== COUNT_CONTINUED
;
3705 spin_unlock(&si
->cont_lock
);
3710 * free_swap_count_continuations - swapoff free all the continuation pages
3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3713 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3717 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3719 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3720 if (page_private(head
)) {
3721 struct page
*page
, *next
;
3723 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3724 list_del(&page
->lru
);
3731 static int __init
swapfile_init(void)
3735 swap_avail_heads
= kmalloc_array(nr_node_ids
, sizeof(struct plist_head
),
3737 if (!swap_avail_heads
) {
3738 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3743 plist_head_init(&swap_avail_heads
[nid
]);
3747 subsys_initcall(swapfile_init
);