2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
26 /* Bluetooth HCI core. */
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
45 static void hci_rx_work(struct work_struct
*work
);
46 static void hci_cmd_work(struct work_struct
*work
);
47 static void hci_tx_work(struct work_struct
*work
);
50 LIST_HEAD(hci_dev_list
);
51 DEFINE_RWLOCK(hci_dev_list_lock
);
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list
);
55 DEFINE_MUTEX(hci_cb_list_lock
);
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida
);
60 /* ---- HCI debugfs entries ---- */
62 static ssize_t
dut_mode_read(struct file
*file
, char __user
*user_buf
,
63 size_t count
, loff_t
*ppos
)
65 struct hci_dev
*hdev
= file
->private_data
;
68 buf
[0] = hci_dev_test_flag(hdev
, HCI_DUT_MODE
) ? 'Y' : 'N';
71 return simple_read_from_buffer(user_buf
, count
, ppos
, buf
, 2);
74 static ssize_t
dut_mode_write(struct file
*file
, const char __user
*user_buf
,
75 size_t count
, loff_t
*ppos
)
77 struct hci_dev
*hdev
= file
->private_data
;
80 size_t buf_size
= min(count
, (sizeof(buf
)-1));
83 if (!test_bit(HCI_UP
, &hdev
->flags
))
86 if (copy_from_user(buf
, user_buf
, buf_size
))
90 if (strtobool(buf
, &enable
))
93 if (enable
== hci_dev_test_flag(hdev
, HCI_DUT_MODE
))
96 hci_req_sync_lock(hdev
);
98 skb
= __hci_cmd_sync(hdev
, HCI_OP_ENABLE_DUT_MODE
, 0, NULL
,
101 skb
= __hci_cmd_sync(hdev
, HCI_OP_RESET
, 0, NULL
,
103 hci_req_sync_unlock(hdev
);
110 hci_dev_change_flag(hdev
, HCI_DUT_MODE
);
115 static const struct file_operations dut_mode_fops
= {
117 .read
= dut_mode_read
,
118 .write
= dut_mode_write
,
119 .llseek
= default_llseek
,
122 static ssize_t
vendor_diag_read(struct file
*file
, char __user
*user_buf
,
123 size_t count
, loff_t
*ppos
)
125 struct hci_dev
*hdev
= file
->private_data
;
128 buf
[0] = hci_dev_test_flag(hdev
, HCI_VENDOR_DIAG
) ? 'Y' : 'N';
131 return simple_read_from_buffer(user_buf
, count
, ppos
, buf
, 2);
134 static ssize_t
vendor_diag_write(struct file
*file
, const char __user
*user_buf
,
135 size_t count
, loff_t
*ppos
)
137 struct hci_dev
*hdev
= file
->private_data
;
139 size_t buf_size
= min(count
, (sizeof(buf
)-1));
143 if (copy_from_user(buf
, user_buf
, buf_size
))
146 buf
[buf_size
] = '\0';
147 if (strtobool(buf
, &enable
))
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active or in user channel operation, then there is no need
152 * for the vendor callback. Instead just store the desired value and
153 * the setting will be programmed when the controller gets powered on.
155 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG
, &hdev
->quirks
) &&
156 (!test_bit(HCI_RUNNING
, &hdev
->flags
) ||
157 hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)))
160 hci_req_sync_lock(hdev
);
161 err
= hdev
->set_diag(hdev
, enable
);
162 hci_req_sync_unlock(hdev
);
169 hci_dev_set_flag(hdev
, HCI_VENDOR_DIAG
);
171 hci_dev_clear_flag(hdev
, HCI_VENDOR_DIAG
);
176 static const struct file_operations vendor_diag_fops
= {
178 .read
= vendor_diag_read
,
179 .write
= vendor_diag_write
,
180 .llseek
= default_llseek
,
183 static void hci_debugfs_create_basic(struct hci_dev
*hdev
)
185 debugfs_create_file("dut_mode", 0644, hdev
->debugfs
, hdev
,
189 debugfs_create_file("vendor_diag", 0644, hdev
->debugfs
, hdev
,
193 static int hci_reset_req(struct hci_request
*req
, unsigned long opt
)
195 BT_DBG("%s %ld", req
->hdev
->name
, opt
);
198 set_bit(HCI_RESET
, &req
->hdev
->flags
);
199 hci_req_add(req
, HCI_OP_RESET
, 0, NULL
);
203 static void bredr_init(struct hci_request
*req
)
205 req
->hdev
->flow_ctl_mode
= HCI_FLOW_CTL_MODE_PACKET_BASED
;
207 /* Read Local Supported Features */
208 hci_req_add(req
, HCI_OP_READ_LOCAL_FEATURES
, 0, NULL
);
210 /* Read Local Version */
211 hci_req_add(req
, HCI_OP_READ_LOCAL_VERSION
, 0, NULL
);
213 /* Read BD Address */
214 hci_req_add(req
, HCI_OP_READ_BD_ADDR
, 0, NULL
);
217 static void amp_init1(struct hci_request
*req
)
219 req
->hdev
->flow_ctl_mode
= HCI_FLOW_CTL_MODE_BLOCK_BASED
;
221 /* Read Local Version */
222 hci_req_add(req
, HCI_OP_READ_LOCAL_VERSION
, 0, NULL
);
224 /* Read Local Supported Commands */
225 hci_req_add(req
, HCI_OP_READ_LOCAL_COMMANDS
, 0, NULL
);
227 /* Read Local AMP Info */
228 hci_req_add(req
, HCI_OP_READ_LOCAL_AMP_INFO
, 0, NULL
);
230 /* Read Data Blk size */
231 hci_req_add(req
, HCI_OP_READ_DATA_BLOCK_SIZE
, 0, NULL
);
233 /* Read Flow Control Mode */
234 hci_req_add(req
, HCI_OP_READ_FLOW_CONTROL_MODE
, 0, NULL
);
236 /* Read Location Data */
237 hci_req_add(req
, HCI_OP_READ_LOCATION_DATA
, 0, NULL
);
240 static int amp_init2(struct hci_request
*req
)
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
246 if (req
->hdev
->commands
[14] & 0x20)
247 hci_req_add(req
, HCI_OP_READ_LOCAL_FEATURES
, 0, NULL
);
252 static int hci_init1_req(struct hci_request
*req
, unsigned long opt
)
254 struct hci_dev
*hdev
= req
->hdev
;
256 BT_DBG("%s %ld", hdev
->name
, opt
);
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE
, &hdev
->quirks
))
260 hci_reset_req(req
, 0);
262 switch (hdev
->dev_type
) {
270 BT_ERR("Unknown device type %d", hdev
->dev_type
);
277 static void bredr_setup(struct hci_request
*req
)
282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 hci_req_add(req
, HCI_OP_READ_BUFFER_SIZE
, 0, NULL
);
285 /* Read Class of Device */
286 hci_req_add(req
, HCI_OP_READ_CLASS_OF_DEV
, 0, NULL
);
288 /* Read Local Name */
289 hci_req_add(req
, HCI_OP_READ_LOCAL_NAME
, 0, NULL
);
291 /* Read Voice Setting */
292 hci_req_add(req
, HCI_OP_READ_VOICE_SETTING
, 0, NULL
);
294 /* Read Number of Supported IAC */
295 hci_req_add(req
, HCI_OP_READ_NUM_SUPPORTED_IAC
, 0, NULL
);
297 /* Read Current IAC LAP */
298 hci_req_add(req
, HCI_OP_READ_CURRENT_IAC_LAP
, 0, NULL
);
300 /* Clear Event Filters */
301 flt_type
= HCI_FLT_CLEAR_ALL
;
302 hci_req_add(req
, HCI_OP_SET_EVENT_FLT
, 1, &flt_type
);
304 /* Connection accept timeout ~20 secs */
305 param
= cpu_to_le16(0x7d00);
306 hci_req_add(req
, HCI_OP_WRITE_CA_TIMEOUT
, 2, ¶m
);
309 static void le_setup(struct hci_request
*req
)
311 struct hci_dev
*hdev
= req
->hdev
;
313 /* Read LE Buffer Size */
314 hci_req_add(req
, HCI_OP_LE_READ_BUFFER_SIZE
, 0, NULL
);
316 /* Read LE Local Supported Features */
317 hci_req_add(req
, HCI_OP_LE_READ_LOCAL_FEATURES
, 0, NULL
);
319 /* Read LE Supported States */
320 hci_req_add(req
, HCI_OP_LE_READ_SUPPORTED_STATES
, 0, NULL
);
322 /* LE-only controllers have LE implicitly enabled */
323 if (!lmp_bredr_capable(hdev
))
324 hci_dev_set_flag(hdev
, HCI_LE_ENABLED
);
327 static void hci_setup_event_mask(struct hci_request
*req
)
329 struct hci_dev
*hdev
= req
->hdev
;
331 /* The second byte is 0xff instead of 0x9f (two reserved bits
332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
335 u8 events
[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 * any event mask for pre 1.2 devices.
340 if (hdev
->hci_ver
< BLUETOOTH_VER_1_2
)
343 if (lmp_bredr_capable(hdev
)) {
344 events
[4] |= 0x01; /* Flow Specification Complete */
346 /* Use a different default for LE-only devices */
347 memset(events
, 0, sizeof(events
));
348 events
[1] |= 0x20; /* Command Complete */
349 events
[1] |= 0x40; /* Command Status */
350 events
[1] |= 0x80; /* Hardware Error */
352 /* If the controller supports the Disconnect command, enable
353 * the corresponding event. In addition enable packet flow
354 * control related events.
356 if (hdev
->commands
[0] & 0x20) {
357 events
[0] |= 0x10; /* Disconnection Complete */
358 events
[2] |= 0x04; /* Number of Completed Packets */
359 events
[3] |= 0x02; /* Data Buffer Overflow */
362 /* If the controller supports the Read Remote Version
363 * Information command, enable the corresponding event.
365 if (hdev
->commands
[2] & 0x80)
366 events
[1] |= 0x08; /* Read Remote Version Information
370 if (hdev
->le_features
[0] & HCI_LE_ENCRYPTION
) {
371 events
[0] |= 0x80; /* Encryption Change */
372 events
[5] |= 0x80; /* Encryption Key Refresh Complete */
376 if (lmp_inq_rssi_capable(hdev
) ||
377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE
, &hdev
->quirks
))
378 events
[4] |= 0x02; /* Inquiry Result with RSSI */
380 if (lmp_ext_feat_capable(hdev
))
381 events
[4] |= 0x04; /* Read Remote Extended Features Complete */
383 if (lmp_esco_capable(hdev
)) {
384 events
[5] |= 0x08; /* Synchronous Connection Complete */
385 events
[5] |= 0x10; /* Synchronous Connection Changed */
388 if (lmp_sniffsubr_capable(hdev
))
389 events
[5] |= 0x20; /* Sniff Subrating */
391 if (lmp_pause_enc_capable(hdev
))
392 events
[5] |= 0x80; /* Encryption Key Refresh Complete */
394 if (lmp_ext_inq_capable(hdev
))
395 events
[5] |= 0x40; /* Extended Inquiry Result */
397 if (lmp_no_flush_capable(hdev
))
398 events
[7] |= 0x01; /* Enhanced Flush Complete */
400 if (lmp_lsto_capable(hdev
))
401 events
[6] |= 0x80; /* Link Supervision Timeout Changed */
403 if (lmp_ssp_capable(hdev
)) {
404 events
[6] |= 0x01; /* IO Capability Request */
405 events
[6] |= 0x02; /* IO Capability Response */
406 events
[6] |= 0x04; /* User Confirmation Request */
407 events
[6] |= 0x08; /* User Passkey Request */
408 events
[6] |= 0x10; /* Remote OOB Data Request */
409 events
[6] |= 0x20; /* Simple Pairing Complete */
410 events
[7] |= 0x04; /* User Passkey Notification */
411 events
[7] |= 0x08; /* Keypress Notification */
412 events
[7] |= 0x10; /* Remote Host Supported
413 * Features Notification
417 if (lmp_le_capable(hdev
))
418 events
[7] |= 0x20; /* LE Meta-Event */
420 hci_req_add(req
, HCI_OP_SET_EVENT_MASK
, sizeof(events
), events
);
423 static int hci_init2_req(struct hci_request
*req
, unsigned long opt
)
425 struct hci_dev
*hdev
= req
->hdev
;
427 if (hdev
->dev_type
== HCI_AMP
)
428 return amp_init2(req
);
430 if (lmp_bredr_capable(hdev
))
433 hci_dev_clear_flag(hdev
, HCI_BREDR_ENABLED
);
435 if (lmp_le_capable(hdev
))
438 /* All Bluetooth 1.2 and later controllers should support the
439 * HCI command for reading the local supported commands.
441 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 * but do not have support for this command. If that is the case,
443 * the driver can quirk the behavior and skip reading the local
444 * supported commands.
446 if (hdev
->hci_ver
> BLUETOOTH_VER_1_1
&&
447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS
, &hdev
->quirks
))
448 hci_req_add(req
, HCI_OP_READ_LOCAL_COMMANDS
, 0, NULL
);
450 if (lmp_ssp_capable(hdev
)) {
451 /* When SSP is available, then the host features page
452 * should also be available as well. However some
453 * controllers list the max_page as 0 as long as SSP
454 * has not been enabled. To achieve proper debugging
455 * output, force the minimum max_page to 1 at least.
457 hdev
->max_page
= 0x01;
459 if (hci_dev_test_flag(hdev
, HCI_SSP_ENABLED
)) {
462 hci_req_add(req
, HCI_OP_WRITE_SSP_MODE
,
463 sizeof(mode
), &mode
);
465 struct hci_cp_write_eir cp
;
467 memset(hdev
->eir
, 0, sizeof(hdev
->eir
));
468 memset(&cp
, 0, sizeof(cp
));
470 hci_req_add(req
, HCI_OP_WRITE_EIR
, sizeof(cp
), &cp
);
474 if (lmp_inq_rssi_capable(hdev
) ||
475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE
, &hdev
->quirks
)) {
478 /* If Extended Inquiry Result events are supported, then
479 * they are clearly preferred over Inquiry Result with RSSI
482 mode
= lmp_ext_inq_capable(hdev
) ? 0x02 : 0x01;
484 hci_req_add(req
, HCI_OP_WRITE_INQUIRY_MODE
, 1, &mode
);
487 if (lmp_inq_tx_pwr_capable(hdev
))
488 hci_req_add(req
, HCI_OP_READ_INQ_RSP_TX_POWER
, 0, NULL
);
490 if (lmp_ext_feat_capable(hdev
)) {
491 struct hci_cp_read_local_ext_features cp
;
494 hci_req_add(req
, HCI_OP_READ_LOCAL_EXT_FEATURES
,
498 if (hci_dev_test_flag(hdev
, HCI_LINK_SECURITY
)) {
500 hci_req_add(req
, HCI_OP_WRITE_AUTH_ENABLE
, sizeof(enable
),
507 static void hci_setup_link_policy(struct hci_request
*req
)
509 struct hci_dev
*hdev
= req
->hdev
;
510 struct hci_cp_write_def_link_policy cp
;
513 if (lmp_rswitch_capable(hdev
))
514 link_policy
|= HCI_LP_RSWITCH
;
515 if (lmp_hold_capable(hdev
))
516 link_policy
|= HCI_LP_HOLD
;
517 if (lmp_sniff_capable(hdev
))
518 link_policy
|= HCI_LP_SNIFF
;
519 if (lmp_park_capable(hdev
))
520 link_policy
|= HCI_LP_PARK
;
522 cp
.policy
= cpu_to_le16(link_policy
);
523 hci_req_add(req
, HCI_OP_WRITE_DEF_LINK_POLICY
, sizeof(cp
), &cp
);
526 static void hci_set_le_support(struct hci_request
*req
)
528 struct hci_dev
*hdev
= req
->hdev
;
529 struct hci_cp_write_le_host_supported cp
;
531 /* LE-only devices do not support explicit enablement */
532 if (!lmp_bredr_capable(hdev
))
535 memset(&cp
, 0, sizeof(cp
));
537 if (hci_dev_test_flag(hdev
, HCI_LE_ENABLED
)) {
542 if (cp
.le
!= lmp_host_le_capable(hdev
))
543 hci_req_add(req
, HCI_OP_WRITE_LE_HOST_SUPPORTED
, sizeof(cp
),
547 static void hci_set_event_mask_page_2(struct hci_request
*req
)
549 struct hci_dev
*hdev
= req
->hdev
;
550 u8 events
[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551 bool changed
= false;
553 /* If Connectionless Slave Broadcast master role is supported
554 * enable all necessary events for it.
556 if (lmp_csb_master_capable(hdev
)) {
557 events
[1] |= 0x40; /* Triggered Clock Capture */
558 events
[1] |= 0x80; /* Synchronization Train Complete */
559 events
[2] |= 0x10; /* Slave Page Response Timeout */
560 events
[2] |= 0x20; /* CSB Channel Map Change */
564 /* If Connectionless Slave Broadcast slave role is supported
565 * enable all necessary events for it.
567 if (lmp_csb_slave_capable(hdev
)) {
568 events
[2] |= 0x01; /* Synchronization Train Received */
569 events
[2] |= 0x02; /* CSB Receive */
570 events
[2] |= 0x04; /* CSB Timeout */
571 events
[2] |= 0x08; /* Truncated Page Complete */
575 /* Enable Authenticated Payload Timeout Expired event if supported */
576 if (lmp_ping_capable(hdev
) || hdev
->le_features
[0] & HCI_LE_PING
) {
581 /* Some Broadcom based controllers indicate support for Set Event
582 * Mask Page 2 command, but then actually do not support it. Since
583 * the default value is all bits set to zero, the command is only
584 * required if the event mask has to be changed. In case no change
585 * to the event mask is needed, skip this command.
588 hci_req_add(req
, HCI_OP_SET_EVENT_MASK_PAGE_2
,
589 sizeof(events
), events
);
592 static int hci_init3_req(struct hci_request
*req
, unsigned long opt
)
594 struct hci_dev
*hdev
= req
->hdev
;
597 hci_setup_event_mask(req
);
599 if (hdev
->commands
[6] & 0x20 &&
600 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY
, &hdev
->quirks
)) {
601 struct hci_cp_read_stored_link_key cp
;
603 bacpy(&cp
.bdaddr
, BDADDR_ANY
);
605 hci_req_add(req
, HCI_OP_READ_STORED_LINK_KEY
, sizeof(cp
), &cp
);
608 if (hdev
->commands
[5] & 0x10)
609 hci_setup_link_policy(req
);
611 if (hdev
->commands
[8] & 0x01)
612 hci_req_add(req
, HCI_OP_READ_PAGE_SCAN_ACTIVITY
, 0, NULL
);
614 /* Some older Broadcom based Bluetooth 1.2 controllers do not
615 * support the Read Page Scan Type command. Check support for
616 * this command in the bit mask of supported commands.
618 if (hdev
->commands
[13] & 0x01)
619 hci_req_add(req
, HCI_OP_READ_PAGE_SCAN_TYPE
, 0, NULL
);
621 if (lmp_le_capable(hdev
)) {
624 memset(events
, 0, sizeof(events
));
626 if (hdev
->le_features
[0] & HCI_LE_ENCRYPTION
)
627 events
[0] |= 0x10; /* LE Long Term Key Request */
629 /* If controller supports the Connection Parameters Request
630 * Link Layer Procedure, enable the corresponding event.
632 if (hdev
->le_features
[0] & HCI_LE_CONN_PARAM_REQ_PROC
)
633 events
[0] |= 0x20; /* LE Remote Connection
637 /* If the controller supports the Data Length Extension
638 * feature, enable the corresponding event.
640 if (hdev
->le_features
[0] & HCI_LE_DATA_LEN_EXT
)
641 events
[0] |= 0x40; /* LE Data Length Change */
643 /* If the controller supports Extended Scanner Filter
644 * Policies, enable the correspondig event.
646 if (hdev
->le_features
[0] & HCI_LE_EXT_SCAN_POLICY
)
647 events
[1] |= 0x04; /* LE Direct Advertising
651 /* If the controller supports Channel Selection Algorithm #2
652 * feature, enable the corresponding event.
654 if (hdev
->le_features
[1] & HCI_LE_CHAN_SEL_ALG2
)
655 events
[2] |= 0x08; /* LE Channel Selection
659 /* If the controller supports the LE Set Scan Enable command,
660 * enable the corresponding advertising report event.
662 if (hdev
->commands
[26] & 0x08)
663 events
[0] |= 0x02; /* LE Advertising Report */
665 /* If the controller supports the LE Create Connection
666 * command, enable the corresponding event.
668 if (hdev
->commands
[26] & 0x10)
669 events
[0] |= 0x01; /* LE Connection Complete */
671 /* If the controller supports the LE Connection Update
672 * command, enable the corresponding event.
674 if (hdev
->commands
[27] & 0x04)
675 events
[0] |= 0x04; /* LE Connection Update
679 /* If the controller supports the LE Read Remote Used Features
680 * command, enable the corresponding event.
682 if (hdev
->commands
[27] & 0x20)
683 events
[0] |= 0x08; /* LE Read Remote Used
687 /* If the controller supports the LE Read Local P-256
688 * Public Key command, enable the corresponding event.
690 if (hdev
->commands
[34] & 0x02)
691 events
[0] |= 0x80; /* LE Read Local P-256
692 * Public Key Complete
695 /* If the controller supports the LE Generate DHKey
696 * command, enable the corresponding event.
698 if (hdev
->commands
[34] & 0x04)
699 events
[1] |= 0x01; /* LE Generate DHKey Complete */
701 /* If the controller supports the LE Set Default PHY or
702 * LE Set PHY commands, enable the corresponding event.
704 if (hdev
->commands
[35] & (0x20 | 0x40))
705 events
[1] |= 0x08; /* LE PHY Update Complete */
707 hci_req_add(req
, HCI_OP_LE_SET_EVENT_MASK
, sizeof(events
),
710 if (hdev
->commands
[25] & 0x40) {
711 /* Read LE Advertising Channel TX Power */
712 hci_req_add(req
, HCI_OP_LE_READ_ADV_TX_POWER
, 0, NULL
);
715 if (hdev
->commands
[26] & 0x40) {
716 /* Read LE White List Size */
717 hci_req_add(req
, HCI_OP_LE_READ_WHITE_LIST_SIZE
,
721 if (hdev
->commands
[26] & 0x80) {
722 /* Clear LE White List */
723 hci_req_add(req
, HCI_OP_LE_CLEAR_WHITE_LIST
, 0, NULL
);
726 if (hdev
->le_features
[0] & HCI_LE_DATA_LEN_EXT
) {
727 /* Read LE Maximum Data Length */
728 hci_req_add(req
, HCI_OP_LE_READ_MAX_DATA_LEN
, 0, NULL
);
730 /* Read LE Suggested Default Data Length */
731 hci_req_add(req
, HCI_OP_LE_READ_DEF_DATA_LEN
, 0, NULL
);
734 hci_set_le_support(req
);
737 /* Read features beyond page 1 if available */
738 for (p
= 2; p
< HCI_MAX_PAGES
&& p
<= hdev
->max_page
; p
++) {
739 struct hci_cp_read_local_ext_features cp
;
742 hci_req_add(req
, HCI_OP_READ_LOCAL_EXT_FEATURES
,
749 static int hci_init4_req(struct hci_request
*req
, unsigned long opt
)
751 struct hci_dev
*hdev
= req
->hdev
;
753 /* Some Broadcom based Bluetooth controllers do not support the
754 * Delete Stored Link Key command. They are clearly indicating its
755 * absence in the bit mask of supported commands.
757 * Check the supported commands and only if the the command is marked
758 * as supported send it. If not supported assume that the controller
759 * does not have actual support for stored link keys which makes this
760 * command redundant anyway.
762 * Some controllers indicate that they support handling deleting
763 * stored link keys, but they don't. The quirk lets a driver
764 * just disable this command.
766 if (hdev
->commands
[6] & 0x80 &&
767 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY
, &hdev
->quirks
)) {
768 struct hci_cp_delete_stored_link_key cp
;
770 bacpy(&cp
.bdaddr
, BDADDR_ANY
);
771 cp
.delete_all
= 0x01;
772 hci_req_add(req
, HCI_OP_DELETE_STORED_LINK_KEY
,
776 /* Set event mask page 2 if the HCI command for it is supported */
777 if (hdev
->commands
[22] & 0x04)
778 hci_set_event_mask_page_2(req
);
780 /* Read local codec list if the HCI command is supported */
781 if (hdev
->commands
[29] & 0x20)
782 hci_req_add(req
, HCI_OP_READ_LOCAL_CODECS
, 0, NULL
);
784 /* Get MWS transport configuration if the HCI command is supported */
785 if (hdev
->commands
[30] & 0x08)
786 hci_req_add(req
, HCI_OP_GET_MWS_TRANSPORT_CONFIG
, 0, NULL
);
788 /* Check for Synchronization Train support */
789 if (lmp_sync_train_capable(hdev
))
790 hci_req_add(req
, HCI_OP_READ_SYNC_TRAIN_PARAMS
, 0, NULL
);
792 /* Enable Secure Connections if supported and configured */
793 if (hci_dev_test_flag(hdev
, HCI_SSP_ENABLED
) &&
794 bredr_sc_enabled(hdev
)) {
797 hci_req_add(req
, HCI_OP_WRITE_SC_SUPPORT
,
798 sizeof(support
), &support
);
801 /* Set Suggested Default Data Length to maximum if supported */
802 if (hdev
->le_features
[0] & HCI_LE_DATA_LEN_EXT
) {
803 struct hci_cp_le_write_def_data_len cp
;
805 cp
.tx_len
= hdev
->le_max_tx_len
;
806 cp
.tx_time
= hdev
->le_max_tx_time
;
807 hci_req_add(req
, HCI_OP_LE_WRITE_DEF_DATA_LEN
, sizeof(cp
), &cp
);
810 /* Set Default PHY parameters if command is supported */
811 if (hdev
->commands
[35] & 0x20) {
812 struct hci_cp_le_set_default_phy cp
;
814 /* No transmitter PHY or receiver PHY preferences */
819 hci_req_add(req
, HCI_OP_LE_SET_DEFAULT_PHY
, sizeof(cp
), &cp
);
825 static int __hci_init(struct hci_dev
*hdev
)
829 err
= __hci_req_sync(hdev
, hci_init1_req
, 0, HCI_INIT_TIMEOUT
, NULL
);
833 if (hci_dev_test_flag(hdev
, HCI_SETUP
))
834 hci_debugfs_create_basic(hdev
);
836 err
= __hci_req_sync(hdev
, hci_init2_req
, 0, HCI_INIT_TIMEOUT
, NULL
);
840 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
841 * BR/EDR/LE type controllers. AMP controllers only need the
842 * first two stages of init.
844 if (hdev
->dev_type
!= HCI_PRIMARY
)
847 err
= __hci_req_sync(hdev
, hci_init3_req
, 0, HCI_INIT_TIMEOUT
, NULL
);
851 err
= __hci_req_sync(hdev
, hci_init4_req
, 0, HCI_INIT_TIMEOUT
, NULL
);
855 /* This function is only called when the controller is actually in
856 * configured state. When the controller is marked as unconfigured,
857 * this initialization procedure is not run.
859 * It means that it is possible that a controller runs through its
860 * setup phase and then discovers missing settings. If that is the
861 * case, then this function will not be called. It then will only
862 * be called during the config phase.
864 * So only when in setup phase or config phase, create the debugfs
865 * entries and register the SMP channels.
867 if (!hci_dev_test_flag(hdev
, HCI_SETUP
) &&
868 !hci_dev_test_flag(hdev
, HCI_CONFIG
))
871 hci_debugfs_create_common(hdev
);
873 if (lmp_bredr_capable(hdev
))
874 hci_debugfs_create_bredr(hdev
);
876 if (lmp_le_capable(hdev
))
877 hci_debugfs_create_le(hdev
);
882 static int hci_init0_req(struct hci_request
*req
, unsigned long opt
)
884 struct hci_dev
*hdev
= req
->hdev
;
886 BT_DBG("%s %ld", hdev
->name
, opt
);
889 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE
, &hdev
->quirks
))
890 hci_reset_req(req
, 0);
892 /* Read Local Version */
893 hci_req_add(req
, HCI_OP_READ_LOCAL_VERSION
, 0, NULL
);
895 /* Read BD Address */
896 if (hdev
->set_bdaddr
)
897 hci_req_add(req
, HCI_OP_READ_BD_ADDR
, 0, NULL
);
902 static int __hci_unconf_init(struct hci_dev
*hdev
)
906 if (test_bit(HCI_QUIRK_RAW_DEVICE
, &hdev
->quirks
))
909 err
= __hci_req_sync(hdev
, hci_init0_req
, 0, HCI_INIT_TIMEOUT
, NULL
);
913 if (hci_dev_test_flag(hdev
, HCI_SETUP
))
914 hci_debugfs_create_basic(hdev
);
919 static int hci_scan_req(struct hci_request
*req
, unsigned long opt
)
923 BT_DBG("%s %x", req
->hdev
->name
, scan
);
925 /* Inquiry and Page scans */
926 hci_req_add(req
, HCI_OP_WRITE_SCAN_ENABLE
, 1, &scan
);
930 static int hci_auth_req(struct hci_request
*req
, unsigned long opt
)
934 BT_DBG("%s %x", req
->hdev
->name
, auth
);
937 hci_req_add(req
, HCI_OP_WRITE_AUTH_ENABLE
, 1, &auth
);
941 static int hci_encrypt_req(struct hci_request
*req
, unsigned long opt
)
945 BT_DBG("%s %x", req
->hdev
->name
, encrypt
);
948 hci_req_add(req
, HCI_OP_WRITE_ENCRYPT_MODE
, 1, &encrypt
);
952 static int hci_linkpol_req(struct hci_request
*req
, unsigned long opt
)
954 __le16 policy
= cpu_to_le16(opt
);
956 BT_DBG("%s %x", req
->hdev
->name
, policy
);
958 /* Default link policy */
959 hci_req_add(req
, HCI_OP_WRITE_DEF_LINK_POLICY
, 2, &policy
);
963 /* Get HCI device by index.
964 * Device is held on return. */
965 struct hci_dev
*hci_dev_get(int index
)
967 struct hci_dev
*hdev
= NULL
, *d
;
974 read_lock(&hci_dev_list_lock
);
975 list_for_each_entry(d
, &hci_dev_list
, list
) {
976 if (d
->id
== index
) {
977 hdev
= hci_dev_hold(d
);
981 read_unlock(&hci_dev_list_lock
);
985 /* ---- Inquiry support ---- */
987 bool hci_discovery_active(struct hci_dev
*hdev
)
989 struct discovery_state
*discov
= &hdev
->discovery
;
991 switch (discov
->state
) {
992 case DISCOVERY_FINDING
:
993 case DISCOVERY_RESOLVING
:
1001 void hci_discovery_set_state(struct hci_dev
*hdev
, int state
)
1003 int old_state
= hdev
->discovery
.state
;
1005 BT_DBG("%s state %u -> %u", hdev
->name
, hdev
->discovery
.state
, state
);
1007 if (old_state
== state
)
1010 hdev
->discovery
.state
= state
;
1013 case DISCOVERY_STOPPED
:
1014 hci_update_background_scan(hdev
);
1016 if (old_state
!= DISCOVERY_STARTING
)
1017 mgmt_discovering(hdev
, 0);
1019 case DISCOVERY_STARTING
:
1021 case DISCOVERY_FINDING
:
1022 mgmt_discovering(hdev
, 1);
1024 case DISCOVERY_RESOLVING
:
1026 case DISCOVERY_STOPPING
:
1031 void hci_inquiry_cache_flush(struct hci_dev
*hdev
)
1033 struct discovery_state
*cache
= &hdev
->discovery
;
1034 struct inquiry_entry
*p
, *n
;
1036 list_for_each_entry_safe(p
, n
, &cache
->all
, all
) {
1041 INIT_LIST_HEAD(&cache
->unknown
);
1042 INIT_LIST_HEAD(&cache
->resolve
);
1045 struct inquiry_entry
*hci_inquiry_cache_lookup(struct hci_dev
*hdev
,
1048 struct discovery_state
*cache
= &hdev
->discovery
;
1049 struct inquiry_entry
*e
;
1051 BT_DBG("cache %p, %pMR", cache
, bdaddr
);
1053 list_for_each_entry(e
, &cache
->all
, all
) {
1054 if (!bacmp(&e
->data
.bdaddr
, bdaddr
))
1061 struct inquiry_entry
*hci_inquiry_cache_lookup_unknown(struct hci_dev
*hdev
,
1064 struct discovery_state
*cache
= &hdev
->discovery
;
1065 struct inquiry_entry
*e
;
1067 BT_DBG("cache %p, %pMR", cache
, bdaddr
);
1069 list_for_each_entry(e
, &cache
->unknown
, list
) {
1070 if (!bacmp(&e
->data
.bdaddr
, bdaddr
))
1077 struct inquiry_entry
*hci_inquiry_cache_lookup_resolve(struct hci_dev
*hdev
,
1081 struct discovery_state
*cache
= &hdev
->discovery
;
1082 struct inquiry_entry
*e
;
1084 BT_DBG("cache %p bdaddr %pMR state %d", cache
, bdaddr
, state
);
1086 list_for_each_entry(e
, &cache
->resolve
, list
) {
1087 if (!bacmp(bdaddr
, BDADDR_ANY
) && e
->name_state
== state
)
1089 if (!bacmp(&e
->data
.bdaddr
, bdaddr
))
1096 void hci_inquiry_cache_update_resolve(struct hci_dev
*hdev
,
1097 struct inquiry_entry
*ie
)
1099 struct discovery_state
*cache
= &hdev
->discovery
;
1100 struct list_head
*pos
= &cache
->resolve
;
1101 struct inquiry_entry
*p
;
1103 list_del(&ie
->list
);
1105 list_for_each_entry(p
, &cache
->resolve
, list
) {
1106 if (p
->name_state
!= NAME_PENDING
&&
1107 abs(p
->data
.rssi
) >= abs(ie
->data
.rssi
))
1112 list_add(&ie
->list
, pos
);
1115 u32
hci_inquiry_cache_update(struct hci_dev
*hdev
, struct inquiry_data
*data
,
1118 struct discovery_state
*cache
= &hdev
->discovery
;
1119 struct inquiry_entry
*ie
;
1122 BT_DBG("cache %p, %pMR", cache
, &data
->bdaddr
);
1124 hci_remove_remote_oob_data(hdev
, &data
->bdaddr
, BDADDR_BREDR
);
1126 if (!data
->ssp_mode
)
1127 flags
|= MGMT_DEV_FOUND_LEGACY_PAIRING
;
1129 ie
= hci_inquiry_cache_lookup(hdev
, &data
->bdaddr
);
1131 if (!ie
->data
.ssp_mode
)
1132 flags
|= MGMT_DEV_FOUND_LEGACY_PAIRING
;
1134 if (ie
->name_state
== NAME_NEEDED
&&
1135 data
->rssi
!= ie
->data
.rssi
) {
1136 ie
->data
.rssi
= data
->rssi
;
1137 hci_inquiry_cache_update_resolve(hdev
, ie
);
1143 /* Entry not in the cache. Add new one. */
1144 ie
= kzalloc(sizeof(*ie
), GFP_KERNEL
);
1146 flags
|= MGMT_DEV_FOUND_CONFIRM_NAME
;
1150 list_add(&ie
->all
, &cache
->all
);
1153 ie
->name_state
= NAME_KNOWN
;
1155 ie
->name_state
= NAME_NOT_KNOWN
;
1156 list_add(&ie
->list
, &cache
->unknown
);
1160 if (name_known
&& ie
->name_state
!= NAME_KNOWN
&&
1161 ie
->name_state
!= NAME_PENDING
) {
1162 ie
->name_state
= NAME_KNOWN
;
1163 list_del(&ie
->list
);
1166 memcpy(&ie
->data
, data
, sizeof(*data
));
1167 ie
->timestamp
= jiffies
;
1168 cache
->timestamp
= jiffies
;
1170 if (ie
->name_state
== NAME_NOT_KNOWN
)
1171 flags
|= MGMT_DEV_FOUND_CONFIRM_NAME
;
1177 static int inquiry_cache_dump(struct hci_dev
*hdev
, int num
, __u8
*buf
)
1179 struct discovery_state
*cache
= &hdev
->discovery
;
1180 struct inquiry_info
*info
= (struct inquiry_info
*) buf
;
1181 struct inquiry_entry
*e
;
1184 list_for_each_entry(e
, &cache
->all
, all
) {
1185 struct inquiry_data
*data
= &e
->data
;
1190 bacpy(&info
->bdaddr
, &data
->bdaddr
);
1191 info
->pscan_rep_mode
= data
->pscan_rep_mode
;
1192 info
->pscan_period_mode
= data
->pscan_period_mode
;
1193 info
->pscan_mode
= data
->pscan_mode
;
1194 memcpy(info
->dev_class
, data
->dev_class
, 3);
1195 info
->clock_offset
= data
->clock_offset
;
1201 BT_DBG("cache %p, copied %d", cache
, copied
);
1205 static int hci_inq_req(struct hci_request
*req
, unsigned long opt
)
1207 struct hci_inquiry_req
*ir
= (struct hci_inquiry_req
*) opt
;
1208 struct hci_dev
*hdev
= req
->hdev
;
1209 struct hci_cp_inquiry cp
;
1211 BT_DBG("%s", hdev
->name
);
1213 if (test_bit(HCI_INQUIRY
, &hdev
->flags
))
1217 memcpy(&cp
.lap
, &ir
->lap
, 3);
1218 cp
.length
= ir
->length
;
1219 cp
.num_rsp
= ir
->num_rsp
;
1220 hci_req_add(req
, HCI_OP_INQUIRY
, sizeof(cp
), &cp
);
1225 int hci_inquiry(void __user
*arg
)
1227 __u8 __user
*ptr
= arg
;
1228 struct hci_inquiry_req ir
;
1229 struct hci_dev
*hdev
;
1230 int err
= 0, do_inquiry
= 0, max_rsp
;
1234 if (copy_from_user(&ir
, ptr
, sizeof(ir
)))
1237 hdev
= hci_dev_get(ir
.dev_id
);
1241 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1246 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
1251 if (hdev
->dev_type
!= HCI_PRIMARY
) {
1256 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
)) {
1262 if (inquiry_cache_age(hdev
) > INQUIRY_CACHE_AGE_MAX
||
1263 inquiry_cache_empty(hdev
) || ir
.flags
& IREQ_CACHE_FLUSH
) {
1264 hci_inquiry_cache_flush(hdev
);
1267 hci_dev_unlock(hdev
);
1269 timeo
= ir
.length
* msecs_to_jiffies(2000);
1272 err
= hci_req_sync(hdev
, hci_inq_req
, (unsigned long) &ir
,
1277 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278 * cleared). If it is interrupted by a signal, return -EINTR.
1280 if (wait_on_bit(&hdev
->flags
, HCI_INQUIRY
,
1281 TASK_INTERRUPTIBLE
))
1285 /* for unlimited number of responses we will use buffer with
1288 max_rsp
= (ir
.num_rsp
== 0) ? 255 : ir
.num_rsp
;
1290 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291 * copy it to the user space.
1293 buf
= kmalloc(sizeof(struct inquiry_info
) * max_rsp
, GFP_KERNEL
);
1300 ir
.num_rsp
= inquiry_cache_dump(hdev
, max_rsp
, buf
);
1301 hci_dev_unlock(hdev
);
1303 BT_DBG("num_rsp %d", ir
.num_rsp
);
1305 if (!copy_to_user(ptr
, &ir
, sizeof(ir
))) {
1307 if (copy_to_user(ptr
, buf
, sizeof(struct inquiry_info
) *
1320 static int hci_dev_do_open(struct hci_dev
*hdev
)
1324 BT_DBG("%s %p", hdev
->name
, hdev
);
1326 hci_req_sync_lock(hdev
);
1328 if (hci_dev_test_flag(hdev
, HCI_UNREGISTER
)) {
1333 if (!hci_dev_test_flag(hdev
, HCI_SETUP
) &&
1334 !hci_dev_test_flag(hdev
, HCI_CONFIG
)) {
1335 /* Check for rfkill but allow the HCI setup stage to
1336 * proceed (which in itself doesn't cause any RF activity).
1338 if (hci_dev_test_flag(hdev
, HCI_RFKILLED
)) {
1343 /* Check for valid public address or a configured static
1344 * random adddress, but let the HCI setup proceed to
1345 * be able to determine if there is a public address
1348 * In case of user channel usage, it is not important
1349 * if a public address or static random address is
1352 * This check is only valid for BR/EDR controllers
1353 * since AMP controllers do not have an address.
1355 if (!hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
) &&
1356 hdev
->dev_type
== HCI_PRIMARY
&&
1357 !bacmp(&hdev
->bdaddr
, BDADDR_ANY
) &&
1358 !bacmp(&hdev
->static_addr
, BDADDR_ANY
)) {
1359 ret
= -EADDRNOTAVAIL
;
1364 if (test_bit(HCI_UP
, &hdev
->flags
)) {
1369 if (hdev
->open(hdev
)) {
1374 set_bit(HCI_RUNNING
, &hdev
->flags
);
1375 hci_sock_dev_event(hdev
, HCI_DEV_OPEN
);
1377 atomic_set(&hdev
->cmd_cnt
, 1);
1378 set_bit(HCI_INIT
, &hdev
->flags
);
1380 if (hci_dev_test_flag(hdev
, HCI_SETUP
)) {
1381 hci_sock_dev_event(hdev
, HCI_DEV_SETUP
);
1384 ret
= hdev
->setup(hdev
);
1386 /* The transport driver can set these quirks before
1387 * creating the HCI device or in its setup callback.
1389 * In case any of them is set, the controller has to
1390 * start up as unconfigured.
1392 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG
, &hdev
->quirks
) ||
1393 test_bit(HCI_QUIRK_INVALID_BDADDR
, &hdev
->quirks
))
1394 hci_dev_set_flag(hdev
, HCI_UNCONFIGURED
);
1396 /* For an unconfigured controller it is required to
1397 * read at least the version information provided by
1398 * the Read Local Version Information command.
1400 * If the set_bdaddr driver callback is provided, then
1401 * also the original Bluetooth public device address
1402 * will be read using the Read BD Address command.
1404 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
))
1405 ret
= __hci_unconf_init(hdev
);
1408 if (hci_dev_test_flag(hdev
, HCI_CONFIG
)) {
1409 /* If public address change is configured, ensure that
1410 * the address gets programmed. If the driver does not
1411 * support changing the public address, fail the power
1414 if (bacmp(&hdev
->public_addr
, BDADDR_ANY
) &&
1416 ret
= hdev
->set_bdaddr(hdev
, &hdev
->public_addr
);
1418 ret
= -EADDRNOTAVAIL
;
1422 if (!hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
) &&
1423 !hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1424 ret
= __hci_init(hdev
);
1425 if (!ret
&& hdev
->post_init
)
1426 ret
= hdev
->post_init(hdev
);
1430 /* If the HCI Reset command is clearing all diagnostic settings,
1431 * then they need to be reprogrammed after the init procedure
1434 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG
, &hdev
->quirks
) &&
1435 !hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
) &&
1436 hci_dev_test_flag(hdev
, HCI_VENDOR_DIAG
) && hdev
->set_diag
)
1437 ret
= hdev
->set_diag(hdev
, true);
1439 clear_bit(HCI_INIT
, &hdev
->flags
);
1443 hci_dev_set_flag(hdev
, HCI_RPA_EXPIRED
);
1444 set_bit(HCI_UP
, &hdev
->flags
);
1445 hci_sock_dev_event(hdev
, HCI_DEV_UP
);
1446 hci_leds_update_powered(hdev
, true);
1447 if (!hci_dev_test_flag(hdev
, HCI_SETUP
) &&
1448 !hci_dev_test_flag(hdev
, HCI_CONFIG
) &&
1449 !hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
) &&
1450 !hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
) &&
1451 hci_dev_test_flag(hdev
, HCI_MGMT
) &&
1452 hdev
->dev_type
== HCI_PRIMARY
) {
1453 ret
= __hci_req_hci_power_on(hdev
);
1454 mgmt_power_on(hdev
, ret
);
1457 /* Init failed, cleanup */
1458 flush_work(&hdev
->tx_work
);
1459 flush_work(&hdev
->cmd_work
);
1460 flush_work(&hdev
->rx_work
);
1462 skb_queue_purge(&hdev
->cmd_q
);
1463 skb_queue_purge(&hdev
->rx_q
);
1468 if (hdev
->sent_cmd
) {
1469 kfree_skb(hdev
->sent_cmd
);
1470 hdev
->sent_cmd
= NULL
;
1473 clear_bit(HCI_RUNNING
, &hdev
->flags
);
1474 hci_sock_dev_event(hdev
, HCI_DEV_CLOSE
);
1477 hdev
->flags
&= BIT(HCI_RAW
);
1481 hci_req_sync_unlock(hdev
);
1485 /* ---- HCI ioctl helpers ---- */
1487 int hci_dev_open(__u16 dev
)
1489 struct hci_dev
*hdev
;
1492 hdev
= hci_dev_get(dev
);
1496 /* Devices that are marked as unconfigured can only be powered
1497 * up as user channel. Trying to bring them up as normal devices
1498 * will result into a failure. Only user channel operation is
1501 * When this function is called for a user channel, the flag
1502 * HCI_USER_CHANNEL will be set first before attempting to
1505 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
) &&
1506 !hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1511 /* We need to ensure that no other power on/off work is pending
1512 * before proceeding to call hci_dev_do_open. This is
1513 * particularly important if the setup procedure has not yet
1516 if (hci_dev_test_and_clear_flag(hdev
, HCI_AUTO_OFF
))
1517 cancel_delayed_work(&hdev
->power_off
);
1519 /* After this call it is guaranteed that the setup procedure
1520 * has finished. This means that error conditions like RFKILL
1521 * or no valid public or static random address apply.
1523 flush_workqueue(hdev
->req_workqueue
);
1525 /* For controllers not using the management interface and that
1526 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527 * so that pairing works for them. Once the management interface
1528 * is in use this bit will be cleared again and userspace has
1529 * to explicitly enable it.
1531 if (!hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
) &&
1532 !hci_dev_test_flag(hdev
, HCI_MGMT
))
1533 hci_dev_set_flag(hdev
, HCI_BONDABLE
);
1535 err
= hci_dev_do_open(hdev
);
1542 /* This function requires the caller holds hdev->lock */
1543 static void hci_pend_le_actions_clear(struct hci_dev
*hdev
)
1545 struct hci_conn_params
*p
;
1547 list_for_each_entry(p
, &hdev
->le_conn_params
, list
) {
1549 hci_conn_drop(p
->conn
);
1550 hci_conn_put(p
->conn
);
1553 list_del_init(&p
->action
);
1556 BT_DBG("All LE pending actions cleared");
1559 int hci_dev_do_close(struct hci_dev
*hdev
)
1563 BT_DBG("%s %p", hdev
->name
, hdev
);
1565 if (!hci_dev_test_flag(hdev
, HCI_UNREGISTER
) &&
1566 !hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
) &&
1567 test_bit(HCI_UP
, &hdev
->flags
)) {
1568 /* Execute vendor specific shutdown routine */
1570 hdev
->shutdown(hdev
);
1573 cancel_delayed_work(&hdev
->power_off
);
1575 hci_request_cancel_all(hdev
);
1576 hci_req_sync_lock(hdev
);
1578 if (!test_and_clear_bit(HCI_UP
, &hdev
->flags
)) {
1579 cancel_delayed_work_sync(&hdev
->cmd_timer
);
1580 hci_req_sync_unlock(hdev
);
1584 hci_leds_update_powered(hdev
, false);
1586 /* Flush RX and TX works */
1587 flush_work(&hdev
->tx_work
);
1588 flush_work(&hdev
->rx_work
);
1590 if (hdev
->discov_timeout
> 0) {
1591 hdev
->discov_timeout
= 0;
1592 hci_dev_clear_flag(hdev
, HCI_DISCOVERABLE
);
1593 hci_dev_clear_flag(hdev
, HCI_LIMITED_DISCOVERABLE
);
1596 if (hci_dev_test_and_clear_flag(hdev
, HCI_SERVICE_CACHE
))
1597 cancel_delayed_work(&hdev
->service_cache
);
1599 if (hci_dev_test_flag(hdev
, HCI_MGMT
))
1600 cancel_delayed_work_sync(&hdev
->rpa_expired
);
1602 /* Avoid potential lockdep warnings from the *_flush() calls by
1603 * ensuring the workqueue is empty up front.
1605 drain_workqueue(hdev
->workqueue
);
1609 hci_discovery_set_state(hdev
, DISCOVERY_STOPPED
);
1611 auto_off
= hci_dev_test_and_clear_flag(hdev
, HCI_AUTO_OFF
);
1613 if (!auto_off
&& hdev
->dev_type
== HCI_PRIMARY
&&
1614 !hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
) &&
1615 hci_dev_test_flag(hdev
, HCI_MGMT
))
1616 __mgmt_power_off(hdev
);
1618 hci_inquiry_cache_flush(hdev
);
1619 hci_pend_le_actions_clear(hdev
);
1620 hci_conn_hash_flush(hdev
);
1621 hci_dev_unlock(hdev
);
1623 smp_unregister(hdev
);
1625 hci_sock_dev_event(hdev
, HCI_DEV_DOWN
);
1631 skb_queue_purge(&hdev
->cmd_q
);
1632 atomic_set(&hdev
->cmd_cnt
, 1);
1633 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE
, &hdev
->quirks
) &&
1634 !auto_off
&& !hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
1635 set_bit(HCI_INIT
, &hdev
->flags
);
1636 __hci_req_sync(hdev
, hci_reset_req
, 0, HCI_CMD_TIMEOUT
, NULL
);
1637 clear_bit(HCI_INIT
, &hdev
->flags
);
1640 /* flush cmd work */
1641 flush_work(&hdev
->cmd_work
);
1644 skb_queue_purge(&hdev
->rx_q
);
1645 skb_queue_purge(&hdev
->cmd_q
);
1646 skb_queue_purge(&hdev
->raw_q
);
1648 /* Drop last sent command */
1649 if (hdev
->sent_cmd
) {
1650 cancel_delayed_work_sync(&hdev
->cmd_timer
);
1651 kfree_skb(hdev
->sent_cmd
);
1652 hdev
->sent_cmd
= NULL
;
1655 clear_bit(HCI_RUNNING
, &hdev
->flags
);
1656 hci_sock_dev_event(hdev
, HCI_DEV_CLOSE
);
1658 /* After this point our queues are empty
1659 * and no tasks are scheduled. */
1663 hdev
->flags
&= BIT(HCI_RAW
);
1664 hci_dev_clear_volatile_flags(hdev
);
1666 /* Controller radio is available but is currently powered down */
1667 hdev
->amp_status
= AMP_STATUS_POWERED_DOWN
;
1669 memset(hdev
->eir
, 0, sizeof(hdev
->eir
));
1670 memset(hdev
->dev_class
, 0, sizeof(hdev
->dev_class
));
1671 bacpy(&hdev
->random_addr
, BDADDR_ANY
);
1673 hci_req_sync_unlock(hdev
);
1679 int hci_dev_close(__u16 dev
)
1681 struct hci_dev
*hdev
;
1684 hdev
= hci_dev_get(dev
);
1688 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1693 if (hci_dev_test_and_clear_flag(hdev
, HCI_AUTO_OFF
))
1694 cancel_delayed_work(&hdev
->power_off
);
1696 err
= hci_dev_do_close(hdev
);
1703 static int hci_dev_do_reset(struct hci_dev
*hdev
)
1707 BT_DBG("%s %p", hdev
->name
, hdev
);
1709 hci_req_sync_lock(hdev
);
1712 skb_queue_purge(&hdev
->rx_q
);
1713 skb_queue_purge(&hdev
->cmd_q
);
1715 /* Avoid potential lockdep warnings from the *_flush() calls by
1716 * ensuring the workqueue is empty up front.
1718 drain_workqueue(hdev
->workqueue
);
1721 hci_inquiry_cache_flush(hdev
);
1722 hci_conn_hash_flush(hdev
);
1723 hci_dev_unlock(hdev
);
1728 atomic_set(&hdev
->cmd_cnt
, 1);
1729 hdev
->acl_cnt
= 0; hdev
->sco_cnt
= 0; hdev
->le_cnt
= 0;
1731 ret
= __hci_req_sync(hdev
, hci_reset_req
, 0, HCI_INIT_TIMEOUT
, NULL
);
1733 hci_req_sync_unlock(hdev
);
1737 int hci_dev_reset(__u16 dev
)
1739 struct hci_dev
*hdev
;
1742 hdev
= hci_dev_get(dev
);
1746 if (!test_bit(HCI_UP
, &hdev
->flags
)) {
1751 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1756 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
1761 err
= hci_dev_do_reset(hdev
);
1768 int hci_dev_reset_stat(__u16 dev
)
1770 struct hci_dev
*hdev
;
1773 hdev
= hci_dev_get(dev
);
1777 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1782 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
1787 memset(&hdev
->stat
, 0, sizeof(struct hci_dev_stats
));
1794 static void hci_update_scan_state(struct hci_dev
*hdev
, u8 scan
)
1796 bool conn_changed
, discov_changed
;
1798 BT_DBG("%s scan 0x%02x", hdev
->name
, scan
);
1800 if ((scan
& SCAN_PAGE
))
1801 conn_changed
= !hci_dev_test_and_set_flag(hdev
,
1804 conn_changed
= hci_dev_test_and_clear_flag(hdev
,
1807 if ((scan
& SCAN_INQUIRY
)) {
1808 discov_changed
= !hci_dev_test_and_set_flag(hdev
,
1811 hci_dev_clear_flag(hdev
, HCI_LIMITED_DISCOVERABLE
);
1812 discov_changed
= hci_dev_test_and_clear_flag(hdev
,
1816 if (!hci_dev_test_flag(hdev
, HCI_MGMT
))
1819 if (conn_changed
|| discov_changed
) {
1820 /* In case this was disabled through mgmt */
1821 hci_dev_set_flag(hdev
, HCI_BREDR_ENABLED
);
1823 if (hci_dev_test_flag(hdev
, HCI_LE_ENABLED
))
1824 hci_req_update_adv_data(hdev
, hdev
->cur_adv_instance
);
1826 mgmt_new_settings(hdev
);
1830 int hci_dev_cmd(unsigned int cmd
, void __user
*arg
)
1832 struct hci_dev
*hdev
;
1833 struct hci_dev_req dr
;
1836 if (copy_from_user(&dr
, arg
, sizeof(dr
)))
1839 hdev
= hci_dev_get(dr
.dev_id
);
1843 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
1848 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
1853 if (hdev
->dev_type
!= HCI_PRIMARY
) {
1858 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
)) {
1865 err
= hci_req_sync(hdev
, hci_auth_req
, dr
.dev_opt
,
1866 HCI_INIT_TIMEOUT
, NULL
);
1870 if (!lmp_encrypt_capable(hdev
)) {
1875 if (!test_bit(HCI_AUTH
, &hdev
->flags
)) {
1876 /* Auth must be enabled first */
1877 err
= hci_req_sync(hdev
, hci_auth_req
, dr
.dev_opt
,
1878 HCI_INIT_TIMEOUT
, NULL
);
1883 err
= hci_req_sync(hdev
, hci_encrypt_req
, dr
.dev_opt
,
1884 HCI_INIT_TIMEOUT
, NULL
);
1888 err
= hci_req_sync(hdev
, hci_scan_req
, dr
.dev_opt
,
1889 HCI_INIT_TIMEOUT
, NULL
);
1891 /* Ensure that the connectable and discoverable states
1892 * get correctly modified as this was a non-mgmt change.
1895 hci_update_scan_state(hdev
, dr
.dev_opt
);
1899 err
= hci_req_sync(hdev
, hci_linkpol_req
, dr
.dev_opt
,
1900 HCI_INIT_TIMEOUT
, NULL
);
1903 case HCISETLINKMODE
:
1904 hdev
->link_mode
= ((__u16
) dr
.dev_opt
) &
1905 (HCI_LM_MASTER
| HCI_LM_ACCEPT
);
1909 hdev
->pkt_type
= (__u16
) dr
.dev_opt
;
1913 hdev
->acl_mtu
= *((__u16
*) &dr
.dev_opt
+ 1);
1914 hdev
->acl_pkts
= *((__u16
*) &dr
.dev_opt
+ 0);
1918 hdev
->sco_mtu
= *((__u16
*) &dr
.dev_opt
+ 1);
1919 hdev
->sco_pkts
= *((__u16
*) &dr
.dev_opt
+ 0);
1932 int hci_get_dev_list(void __user
*arg
)
1934 struct hci_dev
*hdev
;
1935 struct hci_dev_list_req
*dl
;
1936 struct hci_dev_req
*dr
;
1937 int n
= 0, size
, err
;
1940 if (get_user(dev_num
, (__u16 __user
*) arg
))
1943 if (!dev_num
|| dev_num
> (PAGE_SIZE
* 2) / sizeof(*dr
))
1946 size
= sizeof(*dl
) + dev_num
* sizeof(*dr
);
1948 dl
= kzalloc(size
, GFP_KERNEL
);
1954 read_lock(&hci_dev_list_lock
);
1955 list_for_each_entry(hdev
, &hci_dev_list
, list
) {
1956 unsigned long flags
= hdev
->flags
;
1958 /* When the auto-off is configured it means the transport
1959 * is running, but in that case still indicate that the
1960 * device is actually down.
1962 if (hci_dev_test_flag(hdev
, HCI_AUTO_OFF
))
1963 flags
&= ~BIT(HCI_UP
);
1965 (dr
+ n
)->dev_id
= hdev
->id
;
1966 (dr
+ n
)->dev_opt
= flags
;
1971 read_unlock(&hci_dev_list_lock
);
1974 size
= sizeof(*dl
) + n
* sizeof(*dr
);
1976 err
= copy_to_user(arg
, dl
, size
);
1979 return err
? -EFAULT
: 0;
1982 int hci_get_dev_info(void __user
*arg
)
1984 struct hci_dev
*hdev
;
1985 struct hci_dev_info di
;
1986 unsigned long flags
;
1989 if (copy_from_user(&di
, arg
, sizeof(di
)))
1992 hdev
= hci_dev_get(di
.dev_id
);
1996 /* When the auto-off is configured it means the transport
1997 * is running, but in that case still indicate that the
1998 * device is actually down.
2000 if (hci_dev_test_flag(hdev
, HCI_AUTO_OFF
))
2001 flags
= hdev
->flags
& ~BIT(HCI_UP
);
2003 flags
= hdev
->flags
;
2005 strcpy(di
.name
, hdev
->name
);
2006 di
.bdaddr
= hdev
->bdaddr
;
2007 di
.type
= (hdev
->bus
& 0x0f) | ((hdev
->dev_type
& 0x03) << 4);
2009 di
.pkt_type
= hdev
->pkt_type
;
2010 if (lmp_bredr_capable(hdev
)) {
2011 di
.acl_mtu
= hdev
->acl_mtu
;
2012 di
.acl_pkts
= hdev
->acl_pkts
;
2013 di
.sco_mtu
= hdev
->sco_mtu
;
2014 di
.sco_pkts
= hdev
->sco_pkts
;
2016 di
.acl_mtu
= hdev
->le_mtu
;
2017 di
.acl_pkts
= hdev
->le_pkts
;
2021 di
.link_policy
= hdev
->link_policy
;
2022 di
.link_mode
= hdev
->link_mode
;
2024 memcpy(&di
.stat
, &hdev
->stat
, sizeof(di
.stat
));
2025 memcpy(&di
.features
, &hdev
->features
, sizeof(di
.features
));
2027 if (copy_to_user(arg
, &di
, sizeof(di
)))
2035 /* ---- Interface to HCI drivers ---- */
2037 static int hci_rfkill_set_block(void *data
, bool blocked
)
2039 struct hci_dev
*hdev
= data
;
2041 BT_DBG("%p name %s blocked %d", hdev
, hdev
->name
, blocked
);
2043 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
))
2047 hci_dev_set_flag(hdev
, HCI_RFKILLED
);
2048 if (!hci_dev_test_flag(hdev
, HCI_SETUP
) &&
2049 !hci_dev_test_flag(hdev
, HCI_CONFIG
))
2050 hci_dev_do_close(hdev
);
2052 hci_dev_clear_flag(hdev
, HCI_RFKILLED
);
2058 static const struct rfkill_ops hci_rfkill_ops
= {
2059 .set_block
= hci_rfkill_set_block
,
2062 static void hci_power_on(struct work_struct
*work
)
2064 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
, power_on
);
2067 BT_DBG("%s", hdev
->name
);
2069 if (test_bit(HCI_UP
, &hdev
->flags
) &&
2070 hci_dev_test_flag(hdev
, HCI_MGMT
) &&
2071 hci_dev_test_and_clear_flag(hdev
, HCI_AUTO_OFF
)) {
2072 cancel_delayed_work(&hdev
->power_off
);
2073 hci_req_sync_lock(hdev
);
2074 err
= __hci_req_hci_power_on(hdev
);
2075 hci_req_sync_unlock(hdev
);
2076 mgmt_power_on(hdev
, err
);
2080 err
= hci_dev_do_open(hdev
);
2083 mgmt_set_powered_failed(hdev
, err
);
2084 hci_dev_unlock(hdev
);
2088 /* During the HCI setup phase, a few error conditions are
2089 * ignored and they need to be checked now. If they are still
2090 * valid, it is important to turn the device back off.
2092 if (hci_dev_test_flag(hdev
, HCI_RFKILLED
) ||
2093 hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
) ||
2094 (hdev
->dev_type
== HCI_PRIMARY
&&
2095 !bacmp(&hdev
->bdaddr
, BDADDR_ANY
) &&
2096 !bacmp(&hdev
->static_addr
, BDADDR_ANY
))) {
2097 hci_dev_clear_flag(hdev
, HCI_AUTO_OFF
);
2098 hci_dev_do_close(hdev
);
2099 } else if (hci_dev_test_flag(hdev
, HCI_AUTO_OFF
)) {
2100 queue_delayed_work(hdev
->req_workqueue
, &hdev
->power_off
,
2101 HCI_AUTO_OFF_TIMEOUT
);
2104 if (hci_dev_test_and_clear_flag(hdev
, HCI_SETUP
)) {
2105 /* For unconfigured devices, set the HCI_RAW flag
2106 * so that userspace can easily identify them.
2108 if (hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
))
2109 set_bit(HCI_RAW
, &hdev
->flags
);
2111 /* For fully configured devices, this will send
2112 * the Index Added event. For unconfigured devices,
2113 * it will send Unconfigued Index Added event.
2115 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116 * and no event will be send.
2118 mgmt_index_added(hdev
);
2119 } else if (hci_dev_test_and_clear_flag(hdev
, HCI_CONFIG
)) {
2120 /* When the controller is now configured, then it
2121 * is important to clear the HCI_RAW flag.
2123 if (!hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
))
2124 clear_bit(HCI_RAW
, &hdev
->flags
);
2126 /* Powering on the controller with HCI_CONFIG set only
2127 * happens with the transition from unconfigured to
2128 * configured. This will send the Index Added event.
2130 mgmt_index_added(hdev
);
2134 static void hci_power_off(struct work_struct
*work
)
2136 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
2139 BT_DBG("%s", hdev
->name
);
2141 hci_dev_do_close(hdev
);
2144 static void hci_error_reset(struct work_struct
*work
)
2146 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
, error_reset
);
2148 BT_DBG("%s", hdev
->name
);
2151 hdev
->hw_error(hdev
, hdev
->hw_error_code
);
2153 BT_ERR("%s hardware error 0x%2.2x", hdev
->name
,
2154 hdev
->hw_error_code
);
2156 if (hci_dev_do_close(hdev
))
2159 hci_dev_do_open(hdev
);
2162 void hci_uuids_clear(struct hci_dev
*hdev
)
2164 struct bt_uuid
*uuid
, *tmp
;
2166 list_for_each_entry_safe(uuid
, tmp
, &hdev
->uuids
, list
) {
2167 list_del(&uuid
->list
);
2172 void hci_link_keys_clear(struct hci_dev
*hdev
)
2174 struct link_key
*key
;
2176 list_for_each_entry_rcu(key
, &hdev
->link_keys
, list
) {
2177 list_del_rcu(&key
->list
);
2178 kfree_rcu(key
, rcu
);
2182 void hci_smp_ltks_clear(struct hci_dev
*hdev
)
2186 list_for_each_entry_rcu(k
, &hdev
->long_term_keys
, list
) {
2187 list_del_rcu(&k
->list
);
2192 void hci_smp_irks_clear(struct hci_dev
*hdev
)
2196 list_for_each_entry_rcu(k
, &hdev
->identity_resolving_keys
, list
) {
2197 list_del_rcu(&k
->list
);
2202 struct link_key
*hci_find_link_key(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
)
2207 list_for_each_entry_rcu(k
, &hdev
->link_keys
, list
) {
2208 if (bacmp(bdaddr
, &k
->bdaddr
) == 0) {
2218 static bool hci_persistent_key(struct hci_dev
*hdev
, struct hci_conn
*conn
,
2219 u8 key_type
, u8 old_key_type
)
2222 if (key_type
< 0x03)
2225 /* Debug keys are insecure so don't store them persistently */
2226 if (key_type
== HCI_LK_DEBUG_COMBINATION
)
2229 /* Changed combination key and there's no previous one */
2230 if (key_type
== HCI_LK_CHANGED_COMBINATION
&& old_key_type
== 0xff)
2233 /* Security mode 3 case */
2237 /* BR/EDR key derived using SC from an LE link */
2238 if (conn
->type
== LE_LINK
)
2241 /* Neither local nor remote side had no-bonding as requirement */
2242 if (conn
->auth_type
> 0x01 && conn
->remote_auth
> 0x01)
2245 /* Local side had dedicated bonding as requirement */
2246 if (conn
->auth_type
== 0x02 || conn
->auth_type
== 0x03)
2249 /* Remote side had dedicated bonding as requirement */
2250 if (conn
->remote_auth
== 0x02 || conn
->remote_auth
== 0x03)
2253 /* If none of the above criteria match, then don't store the key
2258 static u8
ltk_role(u8 type
)
2260 if (type
== SMP_LTK
)
2261 return HCI_ROLE_MASTER
;
2263 return HCI_ROLE_SLAVE
;
2266 struct smp_ltk
*hci_find_ltk(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2267 u8 addr_type
, u8 role
)
2272 list_for_each_entry_rcu(k
, &hdev
->long_term_keys
, list
) {
2273 if (addr_type
!= k
->bdaddr_type
|| bacmp(bdaddr
, &k
->bdaddr
))
2276 if (smp_ltk_is_sc(k
) || ltk_role(k
->type
) == role
) {
2286 struct smp_irk
*hci_find_irk_by_rpa(struct hci_dev
*hdev
, bdaddr_t
*rpa
)
2288 struct smp_irk
*irk
;
2291 list_for_each_entry_rcu(irk
, &hdev
->identity_resolving_keys
, list
) {
2292 if (!bacmp(&irk
->rpa
, rpa
)) {
2298 list_for_each_entry_rcu(irk
, &hdev
->identity_resolving_keys
, list
) {
2299 if (smp_irk_matches(hdev
, irk
->val
, rpa
)) {
2300 bacpy(&irk
->rpa
, rpa
);
2310 struct smp_irk
*hci_find_irk_by_addr(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2313 struct smp_irk
*irk
;
2315 /* Identity Address must be public or static random */
2316 if (addr_type
== ADDR_LE_DEV_RANDOM
&& (bdaddr
->b
[5] & 0xc0) != 0xc0)
2320 list_for_each_entry_rcu(irk
, &hdev
->identity_resolving_keys
, list
) {
2321 if (addr_type
== irk
->addr_type
&&
2322 bacmp(bdaddr
, &irk
->bdaddr
) == 0) {
2332 struct link_key
*hci_add_link_key(struct hci_dev
*hdev
, struct hci_conn
*conn
,
2333 bdaddr_t
*bdaddr
, u8
*val
, u8 type
,
2334 u8 pin_len
, bool *persistent
)
2336 struct link_key
*key
, *old_key
;
2339 old_key
= hci_find_link_key(hdev
, bdaddr
);
2341 old_key_type
= old_key
->type
;
2344 old_key_type
= conn
? conn
->key_type
: 0xff;
2345 key
= kzalloc(sizeof(*key
), GFP_KERNEL
);
2348 list_add_rcu(&key
->list
, &hdev
->link_keys
);
2351 BT_DBG("%s key for %pMR type %u", hdev
->name
, bdaddr
, type
);
2353 /* Some buggy controller combinations generate a changed
2354 * combination key for legacy pairing even when there's no
2356 if (type
== HCI_LK_CHANGED_COMBINATION
&&
2357 (!conn
|| conn
->remote_auth
== 0xff) && old_key_type
== 0xff) {
2358 type
= HCI_LK_COMBINATION
;
2360 conn
->key_type
= type
;
2363 bacpy(&key
->bdaddr
, bdaddr
);
2364 memcpy(key
->val
, val
, HCI_LINK_KEY_SIZE
);
2365 key
->pin_len
= pin_len
;
2367 if (type
== HCI_LK_CHANGED_COMBINATION
)
2368 key
->type
= old_key_type
;
2373 *persistent
= hci_persistent_key(hdev
, conn
, type
,
2379 struct smp_ltk
*hci_add_ltk(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2380 u8 addr_type
, u8 type
, u8 authenticated
,
2381 u8 tk
[16], u8 enc_size
, __le16 ediv
, __le64 rand
)
2383 struct smp_ltk
*key
, *old_key
;
2384 u8 role
= ltk_role(type
);
2386 old_key
= hci_find_ltk(hdev
, bdaddr
, addr_type
, role
);
2390 key
= kzalloc(sizeof(*key
), GFP_KERNEL
);
2393 list_add_rcu(&key
->list
, &hdev
->long_term_keys
);
2396 bacpy(&key
->bdaddr
, bdaddr
);
2397 key
->bdaddr_type
= addr_type
;
2398 memcpy(key
->val
, tk
, sizeof(key
->val
));
2399 key
->authenticated
= authenticated
;
2402 key
->enc_size
= enc_size
;
2408 struct smp_irk
*hci_add_irk(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2409 u8 addr_type
, u8 val
[16], bdaddr_t
*rpa
)
2411 struct smp_irk
*irk
;
2413 irk
= hci_find_irk_by_addr(hdev
, bdaddr
, addr_type
);
2415 irk
= kzalloc(sizeof(*irk
), GFP_KERNEL
);
2419 bacpy(&irk
->bdaddr
, bdaddr
);
2420 irk
->addr_type
= addr_type
;
2422 list_add_rcu(&irk
->list
, &hdev
->identity_resolving_keys
);
2425 memcpy(irk
->val
, val
, 16);
2426 bacpy(&irk
->rpa
, rpa
);
2431 int hci_remove_link_key(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
)
2433 struct link_key
*key
;
2435 key
= hci_find_link_key(hdev
, bdaddr
);
2439 BT_DBG("%s removing %pMR", hdev
->name
, bdaddr
);
2441 list_del_rcu(&key
->list
);
2442 kfree_rcu(key
, rcu
);
2447 int hci_remove_ltk(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
, u8 bdaddr_type
)
2452 list_for_each_entry_rcu(k
, &hdev
->long_term_keys
, list
) {
2453 if (bacmp(bdaddr
, &k
->bdaddr
) || k
->bdaddr_type
!= bdaddr_type
)
2456 BT_DBG("%s removing %pMR", hdev
->name
, bdaddr
);
2458 list_del_rcu(&k
->list
);
2463 return removed
? 0 : -ENOENT
;
2466 void hci_remove_irk(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
, u8 addr_type
)
2470 list_for_each_entry_rcu(k
, &hdev
->identity_resolving_keys
, list
) {
2471 if (bacmp(bdaddr
, &k
->bdaddr
) || k
->addr_type
!= addr_type
)
2474 BT_DBG("%s removing %pMR", hdev
->name
, bdaddr
);
2476 list_del_rcu(&k
->list
);
2481 bool hci_bdaddr_is_paired(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
, u8 type
)
2484 struct smp_irk
*irk
;
2487 if (type
== BDADDR_BREDR
) {
2488 if (hci_find_link_key(hdev
, bdaddr
))
2493 /* Convert to HCI addr type which struct smp_ltk uses */
2494 if (type
== BDADDR_LE_PUBLIC
)
2495 addr_type
= ADDR_LE_DEV_PUBLIC
;
2497 addr_type
= ADDR_LE_DEV_RANDOM
;
2499 irk
= hci_get_irk(hdev
, bdaddr
, addr_type
);
2501 bdaddr
= &irk
->bdaddr
;
2502 addr_type
= irk
->addr_type
;
2506 list_for_each_entry_rcu(k
, &hdev
->long_term_keys
, list
) {
2507 if (k
->bdaddr_type
== addr_type
&& !bacmp(bdaddr
, &k
->bdaddr
)) {
2517 /* HCI command timer function */
2518 static void hci_cmd_timeout(struct work_struct
*work
)
2520 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
2523 if (hdev
->sent_cmd
) {
2524 struct hci_command_hdr
*sent
= (void *) hdev
->sent_cmd
->data
;
2525 u16 opcode
= __le16_to_cpu(sent
->opcode
);
2527 BT_ERR("%s command 0x%4.4x tx timeout", hdev
->name
, opcode
);
2529 BT_ERR("%s command tx timeout", hdev
->name
);
2532 atomic_set(&hdev
->cmd_cnt
, 1);
2533 queue_work(hdev
->workqueue
, &hdev
->cmd_work
);
2536 struct oob_data
*hci_find_remote_oob_data(struct hci_dev
*hdev
,
2537 bdaddr_t
*bdaddr
, u8 bdaddr_type
)
2539 struct oob_data
*data
;
2541 list_for_each_entry(data
, &hdev
->remote_oob_data
, list
) {
2542 if (bacmp(bdaddr
, &data
->bdaddr
) != 0)
2544 if (data
->bdaddr_type
!= bdaddr_type
)
2552 int hci_remove_remote_oob_data(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2555 struct oob_data
*data
;
2557 data
= hci_find_remote_oob_data(hdev
, bdaddr
, bdaddr_type
);
2561 BT_DBG("%s removing %pMR (%u)", hdev
->name
, bdaddr
, bdaddr_type
);
2563 list_del(&data
->list
);
2569 void hci_remote_oob_data_clear(struct hci_dev
*hdev
)
2571 struct oob_data
*data
, *n
;
2573 list_for_each_entry_safe(data
, n
, &hdev
->remote_oob_data
, list
) {
2574 list_del(&data
->list
);
2579 int hci_add_remote_oob_data(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2580 u8 bdaddr_type
, u8
*hash192
, u8
*rand192
,
2581 u8
*hash256
, u8
*rand256
)
2583 struct oob_data
*data
;
2585 data
= hci_find_remote_oob_data(hdev
, bdaddr
, bdaddr_type
);
2587 data
= kmalloc(sizeof(*data
), GFP_KERNEL
);
2591 bacpy(&data
->bdaddr
, bdaddr
);
2592 data
->bdaddr_type
= bdaddr_type
;
2593 list_add(&data
->list
, &hdev
->remote_oob_data
);
2596 if (hash192
&& rand192
) {
2597 memcpy(data
->hash192
, hash192
, sizeof(data
->hash192
));
2598 memcpy(data
->rand192
, rand192
, sizeof(data
->rand192
));
2599 if (hash256
&& rand256
)
2600 data
->present
= 0x03;
2602 memset(data
->hash192
, 0, sizeof(data
->hash192
));
2603 memset(data
->rand192
, 0, sizeof(data
->rand192
));
2604 if (hash256
&& rand256
)
2605 data
->present
= 0x02;
2607 data
->present
= 0x00;
2610 if (hash256
&& rand256
) {
2611 memcpy(data
->hash256
, hash256
, sizeof(data
->hash256
));
2612 memcpy(data
->rand256
, rand256
, sizeof(data
->rand256
));
2614 memset(data
->hash256
, 0, sizeof(data
->hash256
));
2615 memset(data
->rand256
, 0, sizeof(data
->rand256
));
2616 if (hash192
&& rand192
)
2617 data
->present
= 0x01;
2620 BT_DBG("%s for %pMR", hdev
->name
, bdaddr
);
2625 /* This function requires the caller holds hdev->lock */
2626 struct adv_info
*hci_find_adv_instance(struct hci_dev
*hdev
, u8 instance
)
2628 struct adv_info
*adv_instance
;
2630 list_for_each_entry(adv_instance
, &hdev
->adv_instances
, list
) {
2631 if (adv_instance
->instance
== instance
)
2632 return adv_instance
;
2638 /* This function requires the caller holds hdev->lock */
2639 struct adv_info
*hci_get_next_instance(struct hci_dev
*hdev
, u8 instance
)
2641 struct adv_info
*cur_instance
;
2643 cur_instance
= hci_find_adv_instance(hdev
, instance
);
2647 if (cur_instance
== list_last_entry(&hdev
->adv_instances
,
2648 struct adv_info
, list
))
2649 return list_first_entry(&hdev
->adv_instances
,
2650 struct adv_info
, list
);
2652 return list_next_entry(cur_instance
, list
);
2655 /* This function requires the caller holds hdev->lock */
2656 int hci_remove_adv_instance(struct hci_dev
*hdev
, u8 instance
)
2658 struct adv_info
*adv_instance
;
2660 adv_instance
= hci_find_adv_instance(hdev
, instance
);
2664 BT_DBG("%s removing %dMR", hdev
->name
, instance
);
2666 if (hdev
->cur_adv_instance
== instance
) {
2667 if (hdev
->adv_instance_timeout
) {
2668 cancel_delayed_work(&hdev
->adv_instance_expire
);
2669 hdev
->adv_instance_timeout
= 0;
2671 hdev
->cur_adv_instance
= 0x00;
2674 list_del(&adv_instance
->list
);
2675 kfree(adv_instance
);
2677 hdev
->adv_instance_cnt
--;
2682 /* This function requires the caller holds hdev->lock */
2683 void hci_adv_instances_clear(struct hci_dev
*hdev
)
2685 struct adv_info
*adv_instance
, *n
;
2687 if (hdev
->adv_instance_timeout
) {
2688 cancel_delayed_work(&hdev
->adv_instance_expire
);
2689 hdev
->adv_instance_timeout
= 0;
2692 list_for_each_entry_safe(adv_instance
, n
, &hdev
->adv_instances
, list
) {
2693 list_del(&adv_instance
->list
);
2694 kfree(adv_instance
);
2697 hdev
->adv_instance_cnt
= 0;
2698 hdev
->cur_adv_instance
= 0x00;
2701 /* This function requires the caller holds hdev->lock */
2702 int hci_add_adv_instance(struct hci_dev
*hdev
, u8 instance
, u32 flags
,
2703 u16 adv_data_len
, u8
*adv_data
,
2704 u16 scan_rsp_len
, u8
*scan_rsp_data
,
2705 u16 timeout
, u16 duration
)
2707 struct adv_info
*adv_instance
;
2709 adv_instance
= hci_find_adv_instance(hdev
, instance
);
2711 memset(adv_instance
->adv_data
, 0,
2712 sizeof(adv_instance
->adv_data
));
2713 memset(adv_instance
->scan_rsp_data
, 0,
2714 sizeof(adv_instance
->scan_rsp_data
));
2716 if (hdev
->adv_instance_cnt
>= HCI_MAX_ADV_INSTANCES
||
2717 instance
< 1 || instance
> HCI_MAX_ADV_INSTANCES
)
2720 adv_instance
= kzalloc(sizeof(*adv_instance
), GFP_KERNEL
);
2724 adv_instance
->pending
= true;
2725 adv_instance
->instance
= instance
;
2726 list_add(&adv_instance
->list
, &hdev
->adv_instances
);
2727 hdev
->adv_instance_cnt
++;
2730 adv_instance
->flags
= flags
;
2731 adv_instance
->adv_data_len
= adv_data_len
;
2732 adv_instance
->scan_rsp_len
= scan_rsp_len
;
2735 memcpy(adv_instance
->adv_data
, adv_data
, adv_data_len
);
2738 memcpy(adv_instance
->scan_rsp_data
,
2739 scan_rsp_data
, scan_rsp_len
);
2741 adv_instance
->timeout
= timeout
;
2742 adv_instance
->remaining_time
= timeout
;
2745 adv_instance
->duration
= HCI_DEFAULT_ADV_DURATION
;
2747 adv_instance
->duration
= duration
;
2749 BT_DBG("%s for %dMR", hdev
->name
, instance
);
2754 struct bdaddr_list
*hci_bdaddr_list_lookup(struct list_head
*bdaddr_list
,
2755 bdaddr_t
*bdaddr
, u8 type
)
2757 struct bdaddr_list
*b
;
2759 list_for_each_entry(b
, bdaddr_list
, list
) {
2760 if (!bacmp(&b
->bdaddr
, bdaddr
) && b
->bdaddr_type
== type
)
2767 void hci_bdaddr_list_clear(struct list_head
*bdaddr_list
)
2769 struct bdaddr_list
*b
, *n
;
2771 list_for_each_entry_safe(b
, n
, bdaddr_list
, list
) {
2777 int hci_bdaddr_list_add(struct list_head
*list
, bdaddr_t
*bdaddr
, u8 type
)
2779 struct bdaddr_list
*entry
;
2781 if (!bacmp(bdaddr
, BDADDR_ANY
))
2784 if (hci_bdaddr_list_lookup(list
, bdaddr
, type
))
2787 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
2791 bacpy(&entry
->bdaddr
, bdaddr
);
2792 entry
->bdaddr_type
= type
;
2794 list_add(&entry
->list
, list
);
2799 int hci_bdaddr_list_del(struct list_head
*list
, bdaddr_t
*bdaddr
, u8 type
)
2801 struct bdaddr_list
*entry
;
2803 if (!bacmp(bdaddr
, BDADDR_ANY
)) {
2804 hci_bdaddr_list_clear(list
);
2808 entry
= hci_bdaddr_list_lookup(list
, bdaddr
, type
);
2812 list_del(&entry
->list
);
2818 /* This function requires the caller holds hdev->lock */
2819 struct hci_conn_params
*hci_conn_params_lookup(struct hci_dev
*hdev
,
2820 bdaddr_t
*addr
, u8 addr_type
)
2822 struct hci_conn_params
*params
;
2824 list_for_each_entry(params
, &hdev
->le_conn_params
, list
) {
2825 if (bacmp(¶ms
->addr
, addr
) == 0 &&
2826 params
->addr_type
== addr_type
) {
2834 /* This function requires the caller holds hdev->lock */
2835 struct hci_conn_params
*hci_pend_le_action_lookup(struct list_head
*list
,
2836 bdaddr_t
*addr
, u8 addr_type
)
2838 struct hci_conn_params
*param
;
2840 list_for_each_entry(param
, list
, action
) {
2841 if (bacmp(¶m
->addr
, addr
) == 0 &&
2842 param
->addr_type
== addr_type
)
2849 /* This function requires the caller holds hdev->lock */
2850 struct hci_conn_params
*hci_conn_params_add(struct hci_dev
*hdev
,
2851 bdaddr_t
*addr
, u8 addr_type
)
2853 struct hci_conn_params
*params
;
2855 params
= hci_conn_params_lookup(hdev
, addr
, addr_type
);
2859 params
= kzalloc(sizeof(*params
), GFP_KERNEL
);
2861 BT_ERR("Out of memory");
2865 bacpy(¶ms
->addr
, addr
);
2866 params
->addr_type
= addr_type
;
2868 list_add(¶ms
->list
, &hdev
->le_conn_params
);
2869 INIT_LIST_HEAD(¶ms
->action
);
2871 params
->conn_min_interval
= hdev
->le_conn_min_interval
;
2872 params
->conn_max_interval
= hdev
->le_conn_max_interval
;
2873 params
->conn_latency
= hdev
->le_conn_latency
;
2874 params
->supervision_timeout
= hdev
->le_supv_timeout
;
2875 params
->auto_connect
= HCI_AUTO_CONN_DISABLED
;
2877 BT_DBG("addr %pMR (type %u)", addr
, addr_type
);
2882 static void hci_conn_params_free(struct hci_conn_params
*params
)
2885 hci_conn_drop(params
->conn
);
2886 hci_conn_put(params
->conn
);
2889 list_del(¶ms
->action
);
2890 list_del(¶ms
->list
);
2894 /* This function requires the caller holds hdev->lock */
2895 void hci_conn_params_del(struct hci_dev
*hdev
, bdaddr_t
*addr
, u8 addr_type
)
2897 struct hci_conn_params
*params
;
2899 params
= hci_conn_params_lookup(hdev
, addr
, addr_type
);
2903 hci_conn_params_free(params
);
2905 hci_update_background_scan(hdev
);
2907 BT_DBG("addr %pMR (type %u)", addr
, addr_type
);
2910 /* This function requires the caller holds hdev->lock */
2911 void hci_conn_params_clear_disabled(struct hci_dev
*hdev
)
2913 struct hci_conn_params
*params
, *tmp
;
2915 list_for_each_entry_safe(params
, tmp
, &hdev
->le_conn_params
, list
) {
2916 if (params
->auto_connect
!= HCI_AUTO_CONN_DISABLED
)
2919 /* If trying to estabilish one time connection to disabled
2920 * device, leave the params, but mark them as just once.
2922 if (params
->explicit_connect
) {
2923 params
->auto_connect
= HCI_AUTO_CONN_EXPLICIT
;
2927 list_del(¶ms
->list
);
2931 BT_DBG("All LE disabled connection parameters were removed");
2934 /* This function requires the caller holds hdev->lock */
2935 static void hci_conn_params_clear_all(struct hci_dev
*hdev
)
2937 struct hci_conn_params
*params
, *tmp
;
2939 list_for_each_entry_safe(params
, tmp
, &hdev
->le_conn_params
, list
)
2940 hci_conn_params_free(params
);
2942 BT_DBG("All LE connection parameters were removed");
2945 /* Copy the Identity Address of the controller.
2947 * If the controller has a public BD_ADDR, then by default use that one.
2948 * If this is a LE only controller without a public address, default to
2949 * the static random address.
2951 * For debugging purposes it is possible to force controllers with a
2952 * public address to use the static random address instead.
2954 * In case BR/EDR has been disabled on a dual-mode controller and
2955 * userspace has configured a static address, then that address
2956 * becomes the identity address instead of the public BR/EDR address.
2958 void hci_copy_identity_address(struct hci_dev
*hdev
, bdaddr_t
*bdaddr
,
2961 if (hci_dev_test_flag(hdev
, HCI_FORCE_STATIC_ADDR
) ||
2962 !bacmp(&hdev
->bdaddr
, BDADDR_ANY
) ||
2963 (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
) &&
2964 bacmp(&hdev
->static_addr
, BDADDR_ANY
))) {
2965 bacpy(bdaddr
, &hdev
->static_addr
);
2966 *bdaddr_type
= ADDR_LE_DEV_RANDOM
;
2968 bacpy(bdaddr
, &hdev
->bdaddr
);
2969 *bdaddr_type
= ADDR_LE_DEV_PUBLIC
;
2973 /* Alloc HCI device */
2974 struct hci_dev
*hci_alloc_dev(void)
2976 struct hci_dev
*hdev
;
2978 hdev
= kzalloc(sizeof(*hdev
), GFP_KERNEL
);
2982 hdev
->pkt_type
= (HCI_DM1
| HCI_DH1
| HCI_HV1
);
2983 hdev
->esco_type
= (ESCO_HV1
);
2984 hdev
->link_mode
= (HCI_LM_ACCEPT
);
2985 hdev
->num_iac
= 0x01; /* One IAC support is mandatory */
2986 hdev
->io_capability
= 0x03; /* No Input No Output */
2987 hdev
->manufacturer
= 0xffff; /* Default to internal use */
2988 hdev
->inq_tx_power
= HCI_TX_POWER_INVALID
;
2989 hdev
->adv_tx_power
= HCI_TX_POWER_INVALID
;
2990 hdev
->adv_instance_cnt
= 0;
2991 hdev
->cur_adv_instance
= 0x00;
2992 hdev
->adv_instance_timeout
= 0;
2994 hdev
->sniff_max_interval
= 800;
2995 hdev
->sniff_min_interval
= 80;
2997 hdev
->le_adv_channel_map
= 0x07;
2998 hdev
->le_adv_min_interval
= 0x0800;
2999 hdev
->le_adv_max_interval
= 0x0800;
3000 hdev
->le_scan_interval
= 0x0060;
3001 hdev
->le_scan_window
= 0x0030;
3002 hdev
->le_conn_min_interval
= 0x0018;
3003 hdev
->le_conn_max_interval
= 0x0028;
3004 hdev
->le_conn_latency
= 0x0000;
3005 hdev
->le_supv_timeout
= 0x002a;
3006 hdev
->le_def_tx_len
= 0x001b;
3007 hdev
->le_def_tx_time
= 0x0148;
3008 hdev
->le_max_tx_len
= 0x001b;
3009 hdev
->le_max_tx_time
= 0x0148;
3010 hdev
->le_max_rx_len
= 0x001b;
3011 hdev
->le_max_rx_time
= 0x0148;
3013 hdev
->rpa_timeout
= HCI_DEFAULT_RPA_TIMEOUT
;
3014 hdev
->discov_interleaved_timeout
= DISCOV_INTERLEAVED_TIMEOUT
;
3015 hdev
->conn_info_min_age
= DEFAULT_CONN_INFO_MIN_AGE
;
3016 hdev
->conn_info_max_age
= DEFAULT_CONN_INFO_MAX_AGE
;
3018 mutex_init(&hdev
->lock
);
3019 mutex_init(&hdev
->req_lock
);
3021 INIT_LIST_HEAD(&hdev
->mgmt_pending
);
3022 INIT_LIST_HEAD(&hdev
->blacklist
);
3023 INIT_LIST_HEAD(&hdev
->whitelist
);
3024 INIT_LIST_HEAD(&hdev
->uuids
);
3025 INIT_LIST_HEAD(&hdev
->link_keys
);
3026 INIT_LIST_HEAD(&hdev
->long_term_keys
);
3027 INIT_LIST_HEAD(&hdev
->identity_resolving_keys
);
3028 INIT_LIST_HEAD(&hdev
->remote_oob_data
);
3029 INIT_LIST_HEAD(&hdev
->le_white_list
);
3030 INIT_LIST_HEAD(&hdev
->le_conn_params
);
3031 INIT_LIST_HEAD(&hdev
->pend_le_conns
);
3032 INIT_LIST_HEAD(&hdev
->pend_le_reports
);
3033 INIT_LIST_HEAD(&hdev
->conn_hash
.list
);
3034 INIT_LIST_HEAD(&hdev
->adv_instances
);
3036 INIT_WORK(&hdev
->rx_work
, hci_rx_work
);
3037 INIT_WORK(&hdev
->cmd_work
, hci_cmd_work
);
3038 INIT_WORK(&hdev
->tx_work
, hci_tx_work
);
3039 INIT_WORK(&hdev
->power_on
, hci_power_on
);
3040 INIT_WORK(&hdev
->error_reset
, hci_error_reset
);
3042 INIT_DELAYED_WORK(&hdev
->power_off
, hci_power_off
);
3044 skb_queue_head_init(&hdev
->rx_q
);
3045 skb_queue_head_init(&hdev
->cmd_q
);
3046 skb_queue_head_init(&hdev
->raw_q
);
3048 init_waitqueue_head(&hdev
->req_wait_q
);
3050 INIT_DELAYED_WORK(&hdev
->cmd_timer
, hci_cmd_timeout
);
3052 hci_request_setup(hdev
);
3054 hci_init_sysfs(hdev
);
3055 discovery_init(hdev
);
3059 EXPORT_SYMBOL(hci_alloc_dev
);
3061 /* Free HCI device */
3062 void hci_free_dev(struct hci_dev
*hdev
)
3064 /* will free via device release */
3065 put_device(&hdev
->dev
);
3067 EXPORT_SYMBOL(hci_free_dev
);
3069 /* Register HCI device */
3070 int hci_register_dev(struct hci_dev
*hdev
)
3074 if (!hdev
->open
|| !hdev
->close
|| !hdev
->send
)
3077 /* Do not allow HCI_AMP devices to register at index 0,
3078 * so the index can be used as the AMP controller ID.
3080 switch (hdev
->dev_type
) {
3082 id
= ida_simple_get(&hci_index_ida
, 0, 0, GFP_KERNEL
);
3085 id
= ida_simple_get(&hci_index_ida
, 1, 0, GFP_KERNEL
);
3094 sprintf(hdev
->name
, "hci%d", id
);
3097 BT_DBG("%p name %s bus %d", hdev
, hdev
->name
, hdev
->bus
);
3099 hdev
->workqueue
= alloc_ordered_workqueue("%s", WQ_HIGHPRI
, hdev
->name
);
3100 if (!hdev
->workqueue
) {
3105 hdev
->req_workqueue
= alloc_ordered_workqueue("%s", WQ_HIGHPRI
,
3107 if (!hdev
->req_workqueue
) {
3108 destroy_workqueue(hdev
->workqueue
);
3113 if (!IS_ERR_OR_NULL(bt_debugfs
))
3114 hdev
->debugfs
= debugfs_create_dir(hdev
->name
, bt_debugfs
);
3116 dev_set_name(&hdev
->dev
, "%s", hdev
->name
);
3118 error
= device_add(&hdev
->dev
);
3122 hci_leds_init(hdev
);
3124 hdev
->rfkill
= rfkill_alloc(hdev
->name
, &hdev
->dev
,
3125 RFKILL_TYPE_BLUETOOTH
, &hci_rfkill_ops
,
3128 if (rfkill_register(hdev
->rfkill
) < 0) {
3129 rfkill_destroy(hdev
->rfkill
);
3130 hdev
->rfkill
= NULL
;
3134 if (hdev
->rfkill
&& rfkill_blocked(hdev
->rfkill
))
3135 hci_dev_set_flag(hdev
, HCI_RFKILLED
);
3137 hci_dev_set_flag(hdev
, HCI_SETUP
);
3138 hci_dev_set_flag(hdev
, HCI_AUTO_OFF
);
3140 if (hdev
->dev_type
== HCI_PRIMARY
) {
3141 /* Assume BR/EDR support until proven otherwise (such as
3142 * through reading supported features during init.
3144 hci_dev_set_flag(hdev
, HCI_BREDR_ENABLED
);
3147 write_lock(&hci_dev_list_lock
);
3148 list_add(&hdev
->list
, &hci_dev_list
);
3149 write_unlock(&hci_dev_list_lock
);
3151 /* Devices that are marked for raw-only usage are unconfigured
3152 * and should not be included in normal operation.
3154 if (test_bit(HCI_QUIRK_RAW_DEVICE
, &hdev
->quirks
))
3155 hci_dev_set_flag(hdev
, HCI_UNCONFIGURED
);
3157 hci_sock_dev_event(hdev
, HCI_DEV_REG
);
3160 queue_work(hdev
->req_workqueue
, &hdev
->power_on
);
3165 destroy_workqueue(hdev
->workqueue
);
3166 destroy_workqueue(hdev
->req_workqueue
);
3168 ida_simple_remove(&hci_index_ida
, hdev
->id
);
3172 EXPORT_SYMBOL(hci_register_dev
);
3174 /* Unregister HCI device */
3175 void hci_unregister_dev(struct hci_dev
*hdev
)
3179 BT_DBG("%p name %s bus %d", hdev
, hdev
->name
, hdev
->bus
);
3181 hci_dev_set_flag(hdev
, HCI_UNREGISTER
);
3185 write_lock(&hci_dev_list_lock
);
3186 list_del(&hdev
->list
);
3187 write_unlock(&hci_dev_list_lock
);
3189 cancel_work_sync(&hdev
->power_on
);
3191 hci_dev_do_close(hdev
);
3193 if (!test_bit(HCI_INIT
, &hdev
->flags
) &&
3194 !hci_dev_test_flag(hdev
, HCI_SETUP
) &&
3195 !hci_dev_test_flag(hdev
, HCI_CONFIG
)) {
3197 mgmt_index_removed(hdev
);
3198 hci_dev_unlock(hdev
);
3201 /* mgmt_index_removed should take care of emptying the
3203 BUG_ON(!list_empty(&hdev
->mgmt_pending
));
3205 hci_sock_dev_event(hdev
, HCI_DEV_UNREG
);
3208 rfkill_unregister(hdev
->rfkill
);
3209 rfkill_destroy(hdev
->rfkill
);
3212 device_del(&hdev
->dev
);
3214 debugfs_remove_recursive(hdev
->debugfs
);
3215 kfree_const(hdev
->hw_info
);
3216 kfree_const(hdev
->fw_info
);
3218 destroy_workqueue(hdev
->workqueue
);
3219 destroy_workqueue(hdev
->req_workqueue
);
3222 hci_bdaddr_list_clear(&hdev
->blacklist
);
3223 hci_bdaddr_list_clear(&hdev
->whitelist
);
3224 hci_uuids_clear(hdev
);
3225 hci_link_keys_clear(hdev
);
3226 hci_smp_ltks_clear(hdev
);
3227 hci_smp_irks_clear(hdev
);
3228 hci_remote_oob_data_clear(hdev
);
3229 hci_adv_instances_clear(hdev
);
3230 hci_bdaddr_list_clear(&hdev
->le_white_list
);
3231 hci_conn_params_clear_all(hdev
);
3232 hci_discovery_filter_clear(hdev
);
3233 hci_dev_unlock(hdev
);
3237 ida_simple_remove(&hci_index_ida
, id
);
3239 EXPORT_SYMBOL(hci_unregister_dev
);
3241 /* Suspend HCI device */
3242 int hci_suspend_dev(struct hci_dev
*hdev
)
3244 hci_sock_dev_event(hdev
, HCI_DEV_SUSPEND
);
3247 EXPORT_SYMBOL(hci_suspend_dev
);
3249 /* Resume HCI device */
3250 int hci_resume_dev(struct hci_dev
*hdev
)
3252 hci_sock_dev_event(hdev
, HCI_DEV_RESUME
);
3255 EXPORT_SYMBOL(hci_resume_dev
);
3257 /* Reset HCI device */
3258 int hci_reset_dev(struct hci_dev
*hdev
)
3260 const u8 hw_err
[] = { HCI_EV_HARDWARE_ERROR
, 0x01, 0x00 };
3261 struct sk_buff
*skb
;
3263 skb
= bt_skb_alloc(3, GFP_ATOMIC
);
3267 hci_skb_pkt_type(skb
) = HCI_EVENT_PKT
;
3268 skb_put_data(skb
, hw_err
, 3);
3270 /* Send Hardware Error to upper stack */
3271 return hci_recv_frame(hdev
, skb
);
3273 EXPORT_SYMBOL(hci_reset_dev
);
3275 /* Receive frame from HCI drivers */
3276 int hci_recv_frame(struct hci_dev
*hdev
, struct sk_buff
*skb
)
3278 if (!hdev
|| (!test_bit(HCI_UP
, &hdev
->flags
)
3279 && !test_bit(HCI_INIT
, &hdev
->flags
))) {
3284 if (hci_skb_pkt_type(skb
) != HCI_EVENT_PKT
&&
3285 hci_skb_pkt_type(skb
) != HCI_ACLDATA_PKT
&&
3286 hci_skb_pkt_type(skb
) != HCI_SCODATA_PKT
) {
3292 bt_cb(skb
)->incoming
= 1;
3295 __net_timestamp(skb
);
3297 skb_queue_tail(&hdev
->rx_q
, skb
);
3298 queue_work(hdev
->workqueue
, &hdev
->rx_work
);
3302 EXPORT_SYMBOL(hci_recv_frame
);
3304 /* Receive diagnostic message from HCI drivers */
3305 int hci_recv_diag(struct hci_dev
*hdev
, struct sk_buff
*skb
)
3307 /* Mark as diagnostic packet */
3308 hci_skb_pkt_type(skb
) = HCI_DIAG_PKT
;
3311 __net_timestamp(skb
);
3313 skb_queue_tail(&hdev
->rx_q
, skb
);
3314 queue_work(hdev
->workqueue
, &hdev
->rx_work
);
3318 EXPORT_SYMBOL(hci_recv_diag
);
3320 void hci_set_hw_info(struct hci_dev
*hdev
, const char *fmt
, ...)
3324 va_start(vargs
, fmt
);
3325 kfree_const(hdev
->hw_info
);
3326 hdev
->hw_info
= kvasprintf_const(GFP_KERNEL
, fmt
, vargs
);
3329 EXPORT_SYMBOL(hci_set_hw_info
);
3331 void hci_set_fw_info(struct hci_dev
*hdev
, const char *fmt
, ...)
3335 va_start(vargs
, fmt
);
3336 kfree_const(hdev
->fw_info
);
3337 hdev
->fw_info
= kvasprintf_const(GFP_KERNEL
, fmt
, vargs
);
3340 EXPORT_SYMBOL(hci_set_fw_info
);
3342 /* ---- Interface to upper protocols ---- */
3344 int hci_register_cb(struct hci_cb
*cb
)
3346 BT_DBG("%p name %s", cb
, cb
->name
);
3348 mutex_lock(&hci_cb_list_lock
);
3349 list_add_tail(&cb
->list
, &hci_cb_list
);
3350 mutex_unlock(&hci_cb_list_lock
);
3354 EXPORT_SYMBOL(hci_register_cb
);
3356 int hci_unregister_cb(struct hci_cb
*cb
)
3358 BT_DBG("%p name %s", cb
, cb
->name
);
3360 mutex_lock(&hci_cb_list_lock
);
3361 list_del(&cb
->list
);
3362 mutex_unlock(&hci_cb_list_lock
);
3366 EXPORT_SYMBOL(hci_unregister_cb
);
3368 static void hci_send_frame(struct hci_dev
*hdev
, struct sk_buff
*skb
)
3372 BT_DBG("%s type %d len %d", hdev
->name
, hci_skb_pkt_type(skb
),
3376 __net_timestamp(skb
);
3378 /* Send copy to monitor */
3379 hci_send_to_monitor(hdev
, skb
);
3381 if (atomic_read(&hdev
->promisc
)) {
3382 /* Send copy to the sockets */
3383 hci_send_to_sock(hdev
, skb
);
3386 /* Get rid of skb owner, prior to sending to the driver. */
3389 if (!test_bit(HCI_RUNNING
, &hdev
->flags
)) {
3394 err
= hdev
->send(hdev
, skb
);
3396 BT_ERR("%s sending frame failed (%d)", hdev
->name
, err
);
3401 /* Send HCI command */
3402 int hci_send_cmd(struct hci_dev
*hdev
, __u16 opcode
, __u32 plen
,
3405 struct sk_buff
*skb
;
3407 BT_DBG("%s opcode 0x%4.4x plen %d", hdev
->name
, opcode
, plen
);
3409 skb
= hci_prepare_cmd(hdev
, opcode
, plen
, param
);
3411 BT_ERR("%s no memory for command", hdev
->name
);
3415 /* Stand-alone HCI commands must be flagged as
3416 * single-command requests.
3418 bt_cb(skb
)->hci
.req_flags
|= HCI_REQ_START
;
3420 skb_queue_tail(&hdev
->cmd_q
, skb
);
3421 queue_work(hdev
->workqueue
, &hdev
->cmd_work
);
3426 /* Get data from the previously sent command */
3427 void *hci_sent_cmd_data(struct hci_dev
*hdev
, __u16 opcode
)
3429 struct hci_command_hdr
*hdr
;
3431 if (!hdev
->sent_cmd
)
3434 hdr
= (void *) hdev
->sent_cmd
->data
;
3436 if (hdr
->opcode
!= cpu_to_le16(opcode
))
3439 BT_DBG("%s opcode 0x%4.4x", hdev
->name
, opcode
);
3441 return hdev
->sent_cmd
->data
+ HCI_COMMAND_HDR_SIZE
;
3444 /* Send HCI command and wait for command commplete event */
3445 struct sk_buff
*hci_cmd_sync(struct hci_dev
*hdev
, u16 opcode
, u32 plen
,
3446 const void *param
, u32 timeout
)
3448 struct sk_buff
*skb
;
3450 if (!test_bit(HCI_UP
, &hdev
->flags
))
3451 return ERR_PTR(-ENETDOWN
);
3453 bt_dev_dbg(hdev
, "opcode 0x%4.4x plen %d", opcode
, plen
);
3455 hci_req_sync_lock(hdev
);
3456 skb
= __hci_cmd_sync(hdev
, opcode
, plen
, param
, timeout
);
3457 hci_req_sync_unlock(hdev
);
3461 EXPORT_SYMBOL(hci_cmd_sync
);
3464 static void hci_add_acl_hdr(struct sk_buff
*skb
, __u16 handle
, __u16 flags
)
3466 struct hci_acl_hdr
*hdr
;
3469 skb_push(skb
, HCI_ACL_HDR_SIZE
);
3470 skb_reset_transport_header(skb
);
3471 hdr
= (struct hci_acl_hdr
*)skb_transport_header(skb
);
3472 hdr
->handle
= cpu_to_le16(hci_handle_pack(handle
, flags
));
3473 hdr
->dlen
= cpu_to_le16(len
);
3476 static void hci_queue_acl(struct hci_chan
*chan
, struct sk_buff_head
*queue
,
3477 struct sk_buff
*skb
, __u16 flags
)
3479 struct hci_conn
*conn
= chan
->conn
;
3480 struct hci_dev
*hdev
= conn
->hdev
;
3481 struct sk_buff
*list
;
3483 skb
->len
= skb_headlen(skb
);
3486 hci_skb_pkt_type(skb
) = HCI_ACLDATA_PKT
;
3488 switch (hdev
->dev_type
) {
3490 hci_add_acl_hdr(skb
, conn
->handle
, flags
);
3493 hci_add_acl_hdr(skb
, chan
->handle
, flags
);
3496 BT_ERR("%s unknown dev_type %d", hdev
->name
, hdev
->dev_type
);
3500 list
= skb_shinfo(skb
)->frag_list
;
3502 /* Non fragmented */
3503 BT_DBG("%s nonfrag skb %p len %d", hdev
->name
, skb
, skb
->len
);
3505 skb_queue_tail(queue
, skb
);
3508 BT_DBG("%s frag %p len %d", hdev
->name
, skb
, skb
->len
);
3510 skb_shinfo(skb
)->frag_list
= NULL
;
3512 /* Queue all fragments atomically. We need to use spin_lock_bh
3513 * here because of 6LoWPAN links, as there this function is
3514 * called from softirq and using normal spin lock could cause
3517 spin_lock_bh(&queue
->lock
);
3519 __skb_queue_tail(queue
, skb
);
3521 flags
&= ~ACL_START
;
3524 skb
= list
; list
= list
->next
;
3526 hci_skb_pkt_type(skb
) = HCI_ACLDATA_PKT
;
3527 hci_add_acl_hdr(skb
, conn
->handle
, flags
);
3529 BT_DBG("%s frag %p len %d", hdev
->name
, skb
, skb
->len
);
3531 __skb_queue_tail(queue
, skb
);
3534 spin_unlock_bh(&queue
->lock
);
3538 void hci_send_acl(struct hci_chan
*chan
, struct sk_buff
*skb
, __u16 flags
)
3540 struct hci_dev
*hdev
= chan
->conn
->hdev
;
3542 BT_DBG("%s chan %p flags 0x%4.4x", hdev
->name
, chan
, flags
);
3544 hci_queue_acl(chan
, &chan
->data_q
, skb
, flags
);
3546 queue_work(hdev
->workqueue
, &hdev
->tx_work
);
3550 void hci_send_sco(struct hci_conn
*conn
, struct sk_buff
*skb
)
3552 struct hci_dev
*hdev
= conn
->hdev
;
3553 struct hci_sco_hdr hdr
;
3555 BT_DBG("%s len %d", hdev
->name
, skb
->len
);
3557 hdr
.handle
= cpu_to_le16(conn
->handle
);
3558 hdr
.dlen
= skb
->len
;
3560 skb_push(skb
, HCI_SCO_HDR_SIZE
);
3561 skb_reset_transport_header(skb
);
3562 memcpy(skb_transport_header(skb
), &hdr
, HCI_SCO_HDR_SIZE
);
3564 hci_skb_pkt_type(skb
) = HCI_SCODATA_PKT
;
3566 skb_queue_tail(&conn
->data_q
, skb
);
3567 queue_work(hdev
->workqueue
, &hdev
->tx_work
);
3570 /* ---- HCI TX task (outgoing data) ---- */
3572 /* HCI Connection scheduler */
3573 static struct hci_conn
*hci_low_sent(struct hci_dev
*hdev
, __u8 type
,
3576 struct hci_conn_hash
*h
= &hdev
->conn_hash
;
3577 struct hci_conn
*conn
= NULL
, *c
;
3578 unsigned int num
= 0, min
= ~0;
3580 /* We don't have to lock device here. Connections are always
3581 * added and removed with TX task disabled. */
3585 list_for_each_entry_rcu(c
, &h
->list
, list
) {
3586 if (c
->type
!= type
|| skb_queue_empty(&c
->data_q
))
3589 if (c
->state
!= BT_CONNECTED
&& c
->state
!= BT_CONFIG
)
3594 if (c
->sent
< min
) {
3599 if (hci_conn_num(hdev
, type
) == num
)
3608 switch (conn
->type
) {
3610 cnt
= hdev
->acl_cnt
;
3614 cnt
= hdev
->sco_cnt
;
3617 cnt
= hdev
->le_mtu
? hdev
->le_cnt
: hdev
->acl_cnt
;
3621 BT_ERR("Unknown link type");
3629 BT_DBG("conn %p quote %d", conn
, *quote
);
3633 static void hci_link_tx_to(struct hci_dev
*hdev
, __u8 type
)
3635 struct hci_conn_hash
*h
= &hdev
->conn_hash
;
3638 BT_ERR("%s link tx timeout", hdev
->name
);
3642 /* Kill stalled connections */
3643 list_for_each_entry_rcu(c
, &h
->list
, list
) {
3644 if (c
->type
== type
&& c
->sent
) {
3645 BT_ERR("%s killing stalled connection %pMR",
3646 hdev
->name
, &c
->dst
);
3647 hci_disconnect(c
, HCI_ERROR_REMOTE_USER_TERM
);
3654 static struct hci_chan
*hci_chan_sent(struct hci_dev
*hdev
, __u8 type
,
3657 struct hci_conn_hash
*h
= &hdev
->conn_hash
;
3658 struct hci_chan
*chan
= NULL
;
3659 unsigned int num
= 0, min
= ~0, cur_prio
= 0;
3660 struct hci_conn
*conn
;
3661 int cnt
, q
, conn_num
= 0;
3663 BT_DBG("%s", hdev
->name
);
3667 list_for_each_entry_rcu(conn
, &h
->list
, list
) {
3668 struct hci_chan
*tmp
;
3670 if (conn
->type
!= type
)
3673 if (conn
->state
!= BT_CONNECTED
&& conn
->state
!= BT_CONFIG
)
3678 list_for_each_entry_rcu(tmp
, &conn
->chan_list
, list
) {
3679 struct sk_buff
*skb
;
3681 if (skb_queue_empty(&tmp
->data_q
))
3684 skb
= skb_peek(&tmp
->data_q
);
3685 if (skb
->priority
< cur_prio
)
3688 if (skb
->priority
> cur_prio
) {
3691 cur_prio
= skb
->priority
;
3696 if (conn
->sent
< min
) {
3702 if (hci_conn_num(hdev
, type
) == conn_num
)
3711 switch (chan
->conn
->type
) {
3713 cnt
= hdev
->acl_cnt
;
3716 cnt
= hdev
->block_cnt
;
3720 cnt
= hdev
->sco_cnt
;
3723 cnt
= hdev
->le_mtu
? hdev
->le_cnt
: hdev
->acl_cnt
;
3727 BT_ERR("Unknown link type");
3732 BT_DBG("chan %p quote %d", chan
, *quote
);
3736 static void hci_prio_recalculate(struct hci_dev
*hdev
, __u8 type
)
3738 struct hci_conn_hash
*h
= &hdev
->conn_hash
;
3739 struct hci_conn
*conn
;
3742 BT_DBG("%s", hdev
->name
);
3746 list_for_each_entry_rcu(conn
, &h
->list
, list
) {
3747 struct hci_chan
*chan
;
3749 if (conn
->type
!= type
)
3752 if (conn
->state
!= BT_CONNECTED
&& conn
->state
!= BT_CONFIG
)
3757 list_for_each_entry_rcu(chan
, &conn
->chan_list
, list
) {
3758 struct sk_buff
*skb
;
3765 if (skb_queue_empty(&chan
->data_q
))
3768 skb
= skb_peek(&chan
->data_q
);
3769 if (skb
->priority
>= HCI_PRIO_MAX
- 1)
3772 skb
->priority
= HCI_PRIO_MAX
- 1;
3774 BT_DBG("chan %p skb %p promoted to %d", chan
, skb
,
3778 if (hci_conn_num(hdev
, type
) == num
)
3786 static inline int __get_blocks(struct hci_dev
*hdev
, struct sk_buff
*skb
)
3788 /* Calculate count of blocks used by this packet */
3789 return DIV_ROUND_UP(skb
->len
- HCI_ACL_HDR_SIZE
, hdev
->block_len
);
3792 static void __check_timeout(struct hci_dev
*hdev
, unsigned int cnt
)
3794 if (!hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
3795 /* ACL tx timeout must be longer than maximum
3796 * link supervision timeout (40.9 seconds) */
3797 if (!cnt
&& time_after(jiffies
, hdev
->acl_last_tx
+
3798 HCI_ACL_TX_TIMEOUT
))
3799 hci_link_tx_to(hdev
, ACL_LINK
);
3803 static void hci_sched_acl_pkt(struct hci_dev
*hdev
)
3805 unsigned int cnt
= hdev
->acl_cnt
;
3806 struct hci_chan
*chan
;
3807 struct sk_buff
*skb
;
3810 __check_timeout(hdev
, cnt
);
3812 while (hdev
->acl_cnt
&&
3813 (chan
= hci_chan_sent(hdev
, ACL_LINK
, "e
))) {
3814 u32 priority
= (skb_peek(&chan
->data_q
))->priority
;
3815 while (quote
-- && (skb
= skb_peek(&chan
->data_q
))) {
3816 BT_DBG("chan %p skb %p len %d priority %u", chan
, skb
,
3817 skb
->len
, skb
->priority
);
3819 /* Stop if priority has changed */
3820 if (skb
->priority
< priority
)
3823 skb
= skb_dequeue(&chan
->data_q
);
3825 hci_conn_enter_active_mode(chan
->conn
,
3826 bt_cb(skb
)->force_active
);
3828 hci_send_frame(hdev
, skb
);
3829 hdev
->acl_last_tx
= jiffies
;
3837 if (cnt
!= hdev
->acl_cnt
)
3838 hci_prio_recalculate(hdev
, ACL_LINK
);
3841 static void hci_sched_acl_blk(struct hci_dev
*hdev
)
3843 unsigned int cnt
= hdev
->block_cnt
;
3844 struct hci_chan
*chan
;
3845 struct sk_buff
*skb
;
3849 __check_timeout(hdev
, cnt
);
3851 BT_DBG("%s", hdev
->name
);
3853 if (hdev
->dev_type
== HCI_AMP
)
3858 while (hdev
->block_cnt
> 0 &&
3859 (chan
= hci_chan_sent(hdev
, type
, "e
))) {
3860 u32 priority
= (skb_peek(&chan
->data_q
))->priority
;
3861 while (quote
> 0 && (skb
= skb_peek(&chan
->data_q
))) {
3864 BT_DBG("chan %p skb %p len %d priority %u", chan
, skb
,
3865 skb
->len
, skb
->priority
);
3867 /* Stop if priority has changed */
3868 if (skb
->priority
< priority
)
3871 skb
= skb_dequeue(&chan
->data_q
);
3873 blocks
= __get_blocks(hdev
, skb
);
3874 if (blocks
> hdev
->block_cnt
)
3877 hci_conn_enter_active_mode(chan
->conn
,
3878 bt_cb(skb
)->force_active
);
3880 hci_send_frame(hdev
, skb
);
3881 hdev
->acl_last_tx
= jiffies
;
3883 hdev
->block_cnt
-= blocks
;
3886 chan
->sent
+= blocks
;
3887 chan
->conn
->sent
+= blocks
;
3891 if (cnt
!= hdev
->block_cnt
)
3892 hci_prio_recalculate(hdev
, type
);
3895 static void hci_sched_acl(struct hci_dev
*hdev
)
3897 BT_DBG("%s", hdev
->name
);
3899 /* No ACL link over BR/EDR controller */
3900 if (!hci_conn_num(hdev
, ACL_LINK
) && hdev
->dev_type
== HCI_PRIMARY
)
3903 /* No AMP link over AMP controller */
3904 if (!hci_conn_num(hdev
, AMP_LINK
) && hdev
->dev_type
== HCI_AMP
)
3907 switch (hdev
->flow_ctl_mode
) {
3908 case HCI_FLOW_CTL_MODE_PACKET_BASED
:
3909 hci_sched_acl_pkt(hdev
);
3912 case HCI_FLOW_CTL_MODE_BLOCK_BASED
:
3913 hci_sched_acl_blk(hdev
);
3919 static void hci_sched_sco(struct hci_dev
*hdev
)
3921 struct hci_conn
*conn
;
3922 struct sk_buff
*skb
;
3925 BT_DBG("%s", hdev
->name
);
3927 if (!hci_conn_num(hdev
, SCO_LINK
))
3930 while (hdev
->sco_cnt
&& (conn
= hci_low_sent(hdev
, SCO_LINK
, "e
))) {
3931 while (quote
-- && (skb
= skb_dequeue(&conn
->data_q
))) {
3932 BT_DBG("skb %p len %d", skb
, skb
->len
);
3933 hci_send_frame(hdev
, skb
);
3936 if (conn
->sent
== ~0)
3942 static void hci_sched_esco(struct hci_dev
*hdev
)
3944 struct hci_conn
*conn
;
3945 struct sk_buff
*skb
;
3948 BT_DBG("%s", hdev
->name
);
3950 if (!hci_conn_num(hdev
, ESCO_LINK
))
3953 while (hdev
->sco_cnt
&& (conn
= hci_low_sent(hdev
, ESCO_LINK
,
3955 while (quote
-- && (skb
= skb_dequeue(&conn
->data_q
))) {
3956 BT_DBG("skb %p len %d", skb
, skb
->len
);
3957 hci_send_frame(hdev
, skb
);
3960 if (conn
->sent
== ~0)
3966 static void hci_sched_le(struct hci_dev
*hdev
)
3968 struct hci_chan
*chan
;
3969 struct sk_buff
*skb
;
3970 int quote
, cnt
, tmp
;
3972 BT_DBG("%s", hdev
->name
);
3974 if (!hci_conn_num(hdev
, LE_LINK
))
3977 if (!hci_dev_test_flag(hdev
, HCI_UNCONFIGURED
)) {
3978 /* LE tx timeout must be longer than maximum
3979 * link supervision timeout (40.9 seconds) */
3980 if (!hdev
->le_cnt
&& hdev
->le_pkts
&&
3981 time_after(jiffies
, hdev
->le_last_tx
+ HZ
* 45))
3982 hci_link_tx_to(hdev
, LE_LINK
);
3985 cnt
= hdev
->le_pkts
? hdev
->le_cnt
: hdev
->acl_cnt
;
3987 while (cnt
&& (chan
= hci_chan_sent(hdev
, LE_LINK
, "e
))) {
3988 u32 priority
= (skb_peek(&chan
->data_q
))->priority
;
3989 while (quote
-- && (skb
= skb_peek(&chan
->data_q
))) {
3990 BT_DBG("chan %p skb %p len %d priority %u", chan
, skb
,
3991 skb
->len
, skb
->priority
);
3993 /* Stop if priority has changed */
3994 if (skb
->priority
< priority
)
3997 skb
= skb_dequeue(&chan
->data_q
);
3999 hci_send_frame(hdev
, skb
);
4000 hdev
->le_last_tx
= jiffies
;
4011 hdev
->acl_cnt
= cnt
;
4014 hci_prio_recalculate(hdev
, LE_LINK
);
4017 static void hci_tx_work(struct work_struct
*work
)
4019 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
, tx_work
);
4020 struct sk_buff
*skb
;
4022 BT_DBG("%s acl %d sco %d le %d", hdev
->name
, hdev
->acl_cnt
,
4023 hdev
->sco_cnt
, hdev
->le_cnt
);
4025 if (!hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
4026 /* Schedule queues and send stuff to HCI driver */
4027 hci_sched_acl(hdev
);
4028 hci_sched_sco(hdev
);
4029 hci_sched_esco(hdev
);
4033 /* Send next queued raw (unknown type) packet */
4034 while ((skb
= skb_dequeue(&hdev
->raw_q
)))
4035 hci_send_frame(hdev
, skb
);
4038 /* ----- HCI RX task (incoming data processing) ----- */
4040 /* ACL data packet */
4041 static void hci_acldata_packet(struct hci_dev
*hdev
, struct sk_buff
*skb
)
4043 struct hci_acl_hdr
*hdr
= (void *) skb
->data
;
4044 struct hci_conn
*conn
;
4045 __u16 handle
, flags
;
4047 skb_pull(skb
, HCI_ACL_HDR_SIZE
);
4049 handle
= __le16_to_cpu(hdr
->handle
);
4050 flags
= hci_flags(handle
);
4051 handle
= hci_handle(handle
);
4053 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev
->name
, skb
->len
,
4056 hdev
->stat
.acl_rx
++;
4059 conn
= hci_conn_hash_lookup_handle(hdev
, handle
);
4060 hci_dev_unlock(hdev
);
4063 hci_conn_enter_active_mode(conn
, BT_POWER_FORCE_ACTIVE_OFF
);
4065 /* Send to upper protocol */
4066 l2cap_recv_acldata(conn
, skb
, flags
);
4069 BT_ERR("%s ACL packet for unknown connection handle %d",
4070 hdev
->name
, handle
);
4076 /* SCO data packet */
4077 static void hci_scodata_packet(struct hci_dev
*hdev
, struct sk_buff
*skb
)
4079 struct hci_sco_hdr
*hdr
= (void *) skb
->data
;
4080 struct hci_conn
*conn
;
4083 skb_pull(skb
, HCI_SCO_HDR_SIZE
);
4085 handle
= __le16_to_cpu(hdr
->handle
);
4087 BT_DBG("%s len %d handle 0x%4.4x", hdev
->name
, skb
->len
, handle
);
4089 hdev
->stat
.sco_rx
++;
4092 conn
= hci_conn_hash_lookup_handle(hdev
, handle
);
4093 hci_dev_unlock(hdev
);
4096 /* Send to upper protocol */
4097 sco_recv_scodata(conn
, skb
);
4100 BT_ERR("%s SCO packet for unknown connection handle %d",
4101 hdev
->name
, handle
);
4107 static bool hci_req_is_complete(struct hci_dev
*hdev
)
4109 struct sk_buff
*skb
;
4111 skb
= skb_peek(&hdev
->cmd_q
);
4115 return (bt_cb(skb
)->hci
.req_flags
& HCI_REQ_START
);
4118 static void hci_resend_last(struct hci_dev
*hdev
)
4120 struct hci_command_hdr
*sent
;
4121 struct sk_buff
*skb
;
4124 if (!hdev
->sent_cmd
)
4127 sent
= (void *) hdev
->sent_cmd
->data
;
4128 opcode
= __le16_to_cpu(sent
->opcode
);
4129 if (opcode
== HCI_OP_RESET
)
4132 skb
= skb_clone(hdev
->sent_cmd
, GFP_KERNEL
);
4136 skb_queue_head(&hdev
->cmd_q
, skb
);
4137 queue_work(hdev
->workqueue
, &hdev
->cmd_work
);
4140 void hci_req_cmd_complete(struct hci_dev
*hdev
, u16 opcode
, u8 status
,
4141 hci_req_complete_t
*req_complete
,
4142 hci_req_complete_skb_t
*req_complete_skb
)
4144 struct sk_buff
*skb
;
4145 unsigned long flags
;
4147 BT_DBG("opcode 0x%04x status 0x%02x", opcode
, status
);
4149 /* If the completed command doesn't match the last one that was
4150 * sent we need to do special handling of it.
4152 if (!hci_sent_cmd_data(hdev
, opcode
)) {
4153 /* Some CSR based controllers generate a spontaneous
4154 * reset complete event during init and any pending
4155 * command will never be completed. In such a case we
4156 * need to resend whatever was the last sent
4159 if (test_bit(HCI_INIT
, &hdev
->flags
) && opcode
== HCI_OP_RESET
)
4160 hci_resend_last(hdev
);
4165 /* If the command succeeded and there's still more commands in
4166 * this request the request is not yet complete.
4168 if (!status
&& !hci_req_is_complete(hdev
))
4171 /* If this was the last command in a request the complete
4172 * callback would be found in hdev->sent_cmd instead of the
4173 * command queue (hdev->cmd_q).
4175 if (bt_cb(hdev
->sent_cmd
)->hci
.req_flags
& HCI_REQ_SKB
) {
4176 *req_complete_skb
= bt_cb(hdev
->sent_cmd
)->hci
.req_complete_skb
;
4180 if (bt_cb(hdev
->sent_cmd
)->hci
.req_complete
) {
4181 *req_complete
= bt_cb(hdev
->sent_cmd
)->hci
.req_complete
;
4185 /* Remove all pending commands belonging to this request */
4186 spin_lock_irqsave(&hdev
->cmd_q
.lock
, flags
);
4187 while ((skb
= __skb_dequeue(&hdev
->cmd_q
))) {
4188 if (bt_cb(skb
)->hci
.req_flags
& HCI_REQ_START
) {
4189 __skb_queue_head(&hdev
->cmd_q
, skb
);
4193 if (bt_cb(skb
)->hci
.req_flags
& HCI_REQ_SKB
)
4194 *req_complete_skb
= bt_cb(skb
)->hci
.req_complete_skb
;
4196 *req_complete
= bt_cb(skb
)->hci
.req_complete
;
4199 spin_unlock_irqrestore(&hdev
->cmd_q
.lock
, flags
);
4202 static void hci_rx_work(struct work_struct
*work
)
4204 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
, rx_work
);
4205 struct sk_buff
*skb
;
4207 BT_DBG("%s", hdev
->name
);
4209 while ((skb
= skb_dequeue(&hdev
->rx_q
))) {
4210 /* Send copy to monitor */
4211 hci_send_to_monitor(hdev
, skb
);
4213 if (atomic_read(&hdev
->promisc
)) {
4214 /* Send copy to the sockets */
4215 hci_send_to_sock(hdev
, skb
);
4218 if (hci_dev_test_flag(hdev
, HCI_USER_CHANNEL
)) {
4223 if (test_bit(HCI_INIT
, &hdev
->flags
)) {
4224 /* Don't process data packets in this states. */
4225 switch (hci_skb_pkt_type(skb
)) {
4226 case HCI_ACLDATA_PKT
:
4227 case HCI_SCODATA_PKT
:
4234 switch (hci_skb_pkt_type(skb
)) {
4236 BT_DBG("%s Event packet", hdev
->name
);
4237 hci_event_packet(hdev
, skb
);
4240 case HCI_ACLDATA_PKT
:
4241 BT_DBG("%s ACL data packet", hdev
->name
);
4242 hci_acldata_packet(hdev
, skb
);
4245 case HCI_SCODATA_PKT
:
4246 BT_DBG("%s SCO data packet", hdev
->name
);
4247 hci_scodata_packet(hdev
, skb
);
4257 static void hci_cmd_work(struct work_struct
*work
)
4259 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
, cmd_work
);
4260 struct sk_buff
*skb
;
4262 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev
->name
,
4263 atomic_read(&hdev
->cmd_cnt
), skb_queue_len(&hdev
->cmd_q
));
4265 /* Send queued commands */
4266 if (atomic_read(&hdev
->cmd_cnt
)) {
4267 skb
= skb_dequeue(&hdev
->cmd_q
);
4271 kfree_skb(hdev
->sent_cmd
);
4273 hdev
->sent_cmd
= skb_clone(skb
, GFP_KERNEL
);
4274 if (hdev
->sent_cmd
) {
4275 atomic_dec(&hdev
->cmd_cnt
);
4276 hci_send_frame(hdev
, skb
);
4277 if (test_bit(HCI_RESET
, &hdev
->flags
))
4278 cancel_delayed_work(&hdev
->cmd_timer
);
4280 schedule_delayed_work(&hdev
->cmd_timer
,
4283 skb_queue_head(&hdev
->cmd_q
, skb
);
4284 queue_work(hdev
->workqueue
, &hdev
->cmd_work
);