1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
80 int sysctl_tcp_fack __read_mostly
;
81 int sysctl_tcp_max_reordering __read_mostly
= 300;
82 int sysctl_tcp_dsack __read_mostly
= 1;
83 int sysctl_tcp_app_win __read_mostly
= 31;
84 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
85 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
87 /* rfc5961 challenge ack rate limiting */
88 int sysctl_tcp_challenge_ack_limit
= 1000;
90 int sysctl_tcp_stdurg __read_mostly
;
91 int sysctl_tcp_rfc1337 __read_mostly
;
92 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
93 int sysctl_tcp_frto __read_mostly
= 2;
94 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
95 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
96 int sysctl_tcp_early_retrans __read_mostly
= 3;
97 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
99 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
100 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
101 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
102 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
103 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
104 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
105 #define FLAG_ECE 0x40 /* ECE in this ACK */
106 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
107 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
108 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
109 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
110 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
111 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
112 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
113 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
114 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 #define REXMIT_NONE 0 /* no loss recovery to do */
125 #define REXMIT_LOST 1 /* retransmit packets marked lost */
126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
131 static bool __once __read_mostly
;
134 struct net_device
*dev
;
139 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
140 if (!dev
|| len
>= dev
->mtu
)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev
? dev
->name
: "Unknown driver");
147 /* Adapt the MSS value used to make delayed ack decision to the
150 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
152 struct inet_connection_sock
*icsk
= inet_csk(sk
);
153 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
156 icsk
->icsk_ack
.last_seg_size
= 0;
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
161 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
162 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
163 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
165 /* Account for possibly-removed options */
166 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
167 MAX_TCP_OPTION_SPACE
))
168 tcp_gro_dev_warn(sk
, skb
, len
);
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
173 * "len" is invariant segment length, including TCP header.
175 len
+= skb
->data
- skb_transport_header(skb
);
176 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
182 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
183 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
188 len
-= tcp_sk(sk
)->tcp_header_len
;
189 icsk
->icsk_ack
.last_seg_size
= len
;
191 icsk
->icsk_ack
.rcv_mss
= len
;
195 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
196 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
197 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
201 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
203 struct inet_connection_sock
*icsk
= inet_csk(sk
);
204 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
208 quickacks
= min(quickacks
, max_quickacks
);
209 if (quickacks
> icsk
->icsk_ack
.quick
)
210 icsk
->icsk_ack
.quick
= quickacks
;
213 void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
215 struct inet_connection_sock
*icsk
= inet_csk(sk
);
217 tcp_incr_quickack(sk
, max_quickacks
);
218 icsk
->icsk_ack
.pingpong
= 0;
219 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
221 EXPORT_SYMBOL(tcp_enter_quickack_mode
);
223 /* Send ACKs quickly, if "quick" count is not exhausted
224 * and the session is not interactive.
227 static bool tcp_in_quickack_mode(struct sock
*sk
)
229 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
230 const struct dst_entry
*dst
= __sk_dst_get(sk
);
232 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
233 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
236 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
238 if (tp
->ecn_flags
& TCP_ECN_OK
)
239 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
242 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
244 if (tcp_hdr(skb
)->cwr
)
245 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
248 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
250 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
253 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
255 struct tcp_sock
*tp
= tcp_sk(sk
);
257 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
258 case INET_ECN_NOT_ECT
:
259 /* Funny extension: if ECT is not set on a segment,
260 * and we already seen ECT on a previous segment,
261 * it is probably a retransmit.
263 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
264 tcp_enter_quickack_mode(sk
, 2);
267 if (tcp_ca_needs_ecn(sk
))
268 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
270 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
271 /* Better not delay acks, sender can have a very low cwnd */
272 tcp_enter_quickack_mode(sk
, 2);
273 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
275 tp
->ecn_flags
|= TCP_ECN_SEEN
;
278 if (tcp_ca_needs_ecn(sk
))
279 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
280 tp
->ecn_flags
|= TCP_ECN_SEEN
;
285 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
287 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
288 __tcp_ecn_check_ce(sk
, skb
);
291 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
293 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
294 tp
->ecn_flags
&= ~TCP_ECN_OK
;
297 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
299 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
300 tp
->ecn_flags
&= ~TCP_ECN_OK
;
303 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
305 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
310 /* Buffer size and advertised window tuning.
312 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
315 static void tcp_sndbuf_expand(struct sock
*sk
)
317 const struct tcp_sock
*tp
= tcp_sk(sk
);
318 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
322 /* Worst case is non GSO/TSO : each frame consumes one skb
323 * and skb->head is kmalloced using power of two area of memory
325 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
327 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
329 per_mss
= roundup_pow_of_two(per_mss
) +
330 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
332 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
333 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
335 /* Fast Recovery (RFC 5681 3.2) :
336 * Cubic needs 1.7 factor, rounded to 2 to include
337 * extra cushion (application might react slowly to POLLOUT)
339 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
340 sndmem
*= nr_segs
* per_mss
;
342 if (sk
->sk_sndbuf
< sndmem
)
343 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
346 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
348 * All tcp_full_space() is split to two parts: "network" buffer, allocated
349 * forward and advertised in receiver window (tp->rcv_wnd) and
350 * "application buffer", required to isolate scheduling/application
351 * latencies from network.
352 * window_clamp is maximal advertised window. It can be less than
353 * tcp_full_space(), in this case tcp_full_space() - window_clamp
354 * is reserved for "application" buffer. The less window_clamp is
355 * the smoother our behaviour from viewpoint of network, but the lower
356 * throughput and the higher sensitivity of the connection to losses. 8)
358 * rcv_ssthresh is more strict window_clamp used at "slow start"
359 * phase to predict further behaviour of this connection.
360 * It is used for two goals:
361 * - to enforce header prediction at sender, even when application
362 * requires some significant "application buffer". It is check #1.
363 * - to prevent pruning of receive queue because of misprediction
364 * of receiver window. Check #2.
366 * The scheme does not work when sender sends good segments opening
367 * window and then starts to feed us spaghetti. But it should work
368 * in common situations. Otherwise, we have to rely on queue collapsing.
371 /* Slow part of check#2. */
372 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
374 struct tcp_sock
*tp
= tcp_sk(sk
);
376 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
377 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
379 while (tp
->rcv_ssthresh
<= window
) {
380 if (truesize
<= skb
->len
)
381 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
389 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
391 struct tcp_sock
*tp
= tcp_sk(sk
);
394 room
= min_t(int, tp
->window_clamp
, tcp_space(sk
)) - tp
->rcv_ssthresh
;
397 if (room
> 0 && !tcp_under_memory_pressure(sk
)) {
400 /* Check #2. Increase window, if skb with such overhead
401 * will fit to rcvbuf in future.
403 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
404 incr
= 2 * tp
->advmss
;
406 incr
= __tcp_grow_window(sk
, skb
);
409 incr
= max_t(int, incr
, 2 * skb
->len
);
410 tp
->rcv_ssthresh
+= min(room
, incr
);
411 inet_csk(sk
)->icsk_ack
.quick
|= 1;
416 /* 3. Tuning rcvbuf, when connection enters established state. */
417 static void tcp_fixup_rcvbuf(struct sock
*sk
)
419 u32 mss
= tcp_sk(sk
)->advmss
;
422 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
423 tcp_default_init_rwnd(mss
);
425 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
426 * Allow enough cushion so that sender is not limited by our window
428 if (sysctl_tcp_moderate_rcvbuf
)
431 if (sk
->sk_rcvbuf
< rcvmem
)
432 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
435 /* 4. Try to fixup all. It is made immediately after connection enters
438 void tcp_init_buffer_space(struct sock
*sk
)
440 struct tcp_sock
*tp
= tcp_sk(sk
);
443 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
444 tcp_fixup_rcvbuf(sk
);
445 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
446 tcp_sndbuf_expand(sk
);
448 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
449 tcp_mstamp_refresh(tp
);
450 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
451 tp
->rcvq_space
.seq
= tp
->copied_seq
;
453 maxwin
= tcp_full_space(sk
);
455 if (tp
->window_clamp
>= maxwin
) {
456 tp
->window_clamp
= maxwin
;
458 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
459 tp
->window_clamp
= max(maxwin
-
460 (maxwin
>> sysctl_tcp_app_win
),
464 /* Force reservation of one segment. */
465 if (sysctl_tcp_app_win
&&
466 tp
->window_clamp
> 2 * tp
->advmss
&&
467 tp
->window_clamp
+ tp
->advmss
> maxwin
)
468 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
470 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
471 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
474 /* 5. Recalculate window clamp after socket hit its memory bounds. */
475 static void tcp_clamp_window(struct sock
*sk
)
477 struct tcp_sock
*tp
= tcp_sk(sk
);
478 struct inet_connection_sock
*icsk
= inet_csk(sk
);
480 icsk
->icsk_ack
.quick
= 0;
482 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
483 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
484 !tcp_under_memory_pressure(sk
) &&
485 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
486 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
489 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
490 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
493 /* Initialize RCV_MSS value.
494 * RCV_MSS is an our guess about MSS used by the peer.
495 * We haven't any direct information about the MSS.
496 * It's better to underestimate the RCV_MSS rather than overestimate.
497 * Overestimations make us ACKing less frequently than needed.
498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
500 void tcp_initialize_rcv_mss(struct sock
*sk
)
502 const struct tcp_sock
*tp
= tcp_sk(sk
);
503 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
505 hint
= min(hint
, tp
->rcv_wnd
/ 2);
506 hint
= min(hint
, TCP_MSS_DEFAULT
);
507 hint
= max(hint
, TCP_MIN_MSS
);
509 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
513 /* Receiver "autotuning" code.
515 * The algorithm for RTT estimation w/o timestamps is based on
516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517 * <http://public.lanl.gov/radiant/pubs.html#DRS>
519 * More detail on this code can be found at
520 * <http://staff.psc.edu/jheffner/>,
521 * though this reference is out of date. A new paper
524 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
526 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
529 if (new_sample
!= 0) {
530 /* If we sample in larger samples in the non-timestamp
531 * case, we could grossly overestimate the RTT especially
532 * with chatty applications or bulk transfer apps which
533 * are stalled on filesystem I/O.
535 * Also, since we are only going for a minimum in the
536 * non-timestamp case, we do not smooth things out
537 * else with timestamps disabled convergence takes too
541 m
-= (new_sample
>> 3);
549 /* No previous measure. */
553 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
560 if (tp
->rcv_rtt_est
.time
== 0)
562 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
564 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
567 tcp_rcv_rtt_update(tp
, delta_us
, 1);
570 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
571 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
574 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
575 const struct sk_buff
*skb
)
577 struct tcp_sock
*tp
= tcp_sk(sk
);
579 if (tp
->rx_opt
.rcv_tsecr
&&
580 (TCP_SKB_CB(skb
)->end_seq
-
581 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
)) {
582 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
587 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
588 tcp_rcv_rtt_update(tp
, delta_us
, 0);
593 * This function should be called every time data is copied to user space.
594 * It calculates the appropriate TCP receive buffer space.
596 void tcp_rcv_space_adjust(struct sock
*sk
)
598 struct tcp_sock
*tp
= tcp_sk(sk
);
602 tcp_mstamp_refresh(tp
);
603 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
604 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
607 /* Number of bytes copied to user in last RTT */
608 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
609 if (copied
<= tp
->rcvq_space
.space
)
613 * copied = bytes received in previous RTT, our base window
614 * To cope with packet losses, we need a 2x factor
615 * To cope with slow start, and sender growing its cwin by 100 %
616 * every RTT, we need a 4x factor, because the ACK we are sending
617 * now is for the next RTT, not the current one :
618 * <prev RTT . ><current RTT .. ><next RTT .... >
621 if (sysctl_tcp_moderate_rcvbuf
&&
622 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
626 /* minimal window to cope with packet losses, assuming
627 * steady state. Add some cushion because of small variations.
629 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
631 /* If rate increased by 25%,
632 * assume slow start, rcvwin = 3 * copied
633 * If rate increased by 50%,
634 * assume sender can use 2x growth, rcvwin = 4 * copied
637 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
639 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
642 rcvwin
+= (rcvwin
>> 1);
645 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
646 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
649 do_div(rcvwin
, tp
->advmss
);
650 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
, sysctl_tcp_rmem
[2]);
651 if (rcvbuf
> sk
->sk_rcvbuf
) {
652 sk
->sk_rcvbuf
= rcvbuf
;
654 /* Make the window clamp follow along. */
655 tp
->window_clamp
= tcp_win_from_space(rcvbuf
);
658 tp
->rcvq_space
.space
= copied
;
661 tp
->rcvq_space
.seq
= tp
->copied_seq
;
662 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
665 /* There is something which you must keep in mind when you analyze the
666 * behavior of the tp->ato delayed ack timeout interval. When a
667 * connection starts up, we want to ack as quickly as possible. The
668 * problem is that "good" TCP's do slow start at the beginning of data
669 * transmission. The means that until we send the first few ACK's the
670 * sender will sit on his end and only queue most of his data, because
671 * he can only send snd_cwnd unacked packets at any given time. For
672 * each ACK we send, he increments snd_cwnd and transmits more of his
675 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
677 struct tcp_sock
*tp
= tcp_sk(sk
);
678 struct inet_connection_sock
*icsk
= inet_csk(sk
);
681 inet_csk_schedule_ack(sk
);
683 tcp_measure_rcv_mss(sk
, skb
);
685 tcp_rcv_rtt_measure(tp
);
689 if (!icsk
->icsk_ack
.ato
) {
690 /* The _first_ data packet received, initialize
691 * delayed ACK engine.
693 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
694 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
696 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
698 if (m
<= TCP_ATO_MIN
/ 2) {
699 /* The fastest case is the first. */
700 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
701 } else if (m
< icsk
->icsk_ack
.ato
) {
702 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
703 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
704 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
705 } else if (m
> icsk
->icsk_rto
) {
706 /* Too long gap. Apparently sender failed to
707 * restart window, so that we send ACKs quickly.
709 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
713 icsk
->icsk_ack
.lrcvtime
= now
;
715 tcp_ecn_check_ce(sk
, skb
);
718 tcp_grow_window(sk
, skb
);
721 /* Called to compute a smoothed rtt estimate. The data fed to this
722 * routine either comes from timestamps, or from segments that were
723 * known _not_ to have been retransmitted [see Karn/Partridge
724 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
725 * piece by Van Jacobson.
726 * NOTE: the next three routines used to be one big routine.
727 * To save cycles in the RFC 1323 implementation it was better to break
728 * it up into three procedures. -- erics
730 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
732 struct tcp_sock
*tp
= tcp_sk(sk
);
733 long m
= mrtt_us
; /* RTT */
734 u32 srtt
= tp
->srtt_us
;
736 /* The following amusing code comes from Jacobson's
737 * article in SIGCOMM '88. Note that rtt and mdev
738 * are scaled versions of rtt and mean deviation.
739 * This is designed to be as fast as possible
740 * m stands for "measurement".
742 * On a 1990 paper the rto value is changed to:
743 * RTO = rtt + 4 * mdev
745 * Funny. This algorithm seems to be very broken.
746 * These formulae increase RTO, when it should be decreased, increase
747 * too slowly, when it should be increased quickly, decrease too quickly
748 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
749 * does not matter how to _calculate_ it. Seems, it was trap
750 * that VJ failed to avoid. 8)
753 m
-= (srtt
>> 3); /* m is now error in rtt est */
754 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
756 m
= -m
; /* m is now abs(error) */
757 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
758 /* This is similar to one of Eifel findings.
759 * Eifel blocks mdev updates when rtt decreases.
760 * This solution is a bit different: we use finer gain
761 * for mdev in this case (alpha*beta).
762 * Like Eifel it also prevents growth of rto,
763 * but also it limits too fast rto decreases,
764 * happening in pure Eifel.
769 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
771 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
772 if (tp
->mdev_us
> tp
->mdev_max_us
) {
773 tp
->mdev_max_us
= tp
->mdev_us
;
774 if (tp
->mdev_max_us
> tp
->rttvar_us
)
775 tp
->rttvar_us
= tp
->mdev_max_us
;
777 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
778 if (tp
->mdev_max_us
< tp
->rttvar_us
)
779 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
780 tp
->rtt_seq
= tp
->snd_nxt
;
781 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
784 /* no previous measure. */
785 srtt
= m
<< 3; /* take the measured time to be rtt */
786 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
787 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
788 tp
->mdev_max_us
= tp
->rttvar_us
;
789 tp
->rtt_seq
= tp
->snd_nxt
;
791 tp
->srtt_us
= max(1U, srtt
);
794 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
795 * Note: TCP stack does not yet implement pacing.
796 * FQ packet scheduler can be used to implement cheap but effective
797 * TCP pacing, to smooth the burst on large writes when packets
798 * in flight is significantly lower than cwnd (or rwin)
800 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
801 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
803 static void tcp_update_pacing_rate(struct sock
*sk
)
805 const struct tcp_sock
*tp
= tcp_sk(sk
);
808 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
809 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
811 /* current rate is (cwnd * mss) / srtt
812 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
813 * In Congestion Avoidance phase, set it to 120 % the current rate.
815 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
816 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
817 * end of slow start and should slow down.
819 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
820 rate
*= sysctl_tcp_pacing_ss_ratio
;
822 rate
*= sysctl_tcp_pacing_ca_ratio
;
824 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
826 if (likely(tp
->srtt_us
))
827 do_div(rate
, tp
->srtt_us
);
829 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
830 * without any lock. We want to make sure compiler wont store
831 * intermediate values in this location.
833 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
834 sk
->sk_max_pacing_rate
);
837 /* Calculate rto without backoff. This is the second half of Van Jacobson's
838 * routine referred to above.
840 static void tcp_set_rto(struct sock
*sk
)
842 const struct tcp_sock
*tp
= tcp_sk(sk
);
843 /* Old crap is replaced with new one. 8)
846 * 1. If rtt variance happened to be less 50msec, it is hallucination.
847 * It cannot be less due to utterly erratic ACK generation made
848 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
849 * to do with delayed acks, because at cwnd>2 true delack timeout
850 * is invisible. Actually, Linux-2.4 also generates erratic
851 * ACKs in some circumstances.
853 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
855 /* 2. Fixups made earlier cannot be right.
856 * If we do not estimate RTO correctly without them,
857 * all the algo is pure shit and should be replaced
858 * with correct one. It is exactly, which we pretend to do.
861 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
862 * guarantees that rto is higher.
867 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
869 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
872 cwnd
= TCP_INIT_CWND
;
873 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
877 * Packet counting of FACK is based on in-order assumptions, therefore TCP
878 * disables it when reordering is detected
880 void tcp_disable_fack(struct tcp_sock
*tp
)
882 /* RFC3517 uses different metric in lost marker => reset on change */
884 tp
->lost_skb_hint
= NULL
;
885 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
888 /* Take a notice that peer is sending D-SACKs */
889 static void tcp_dsack_seen(struct tcp_sock
*tp
)
891 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
894 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
897 struct tcp_sock
*tp
= tcp_sk(sk
);
900 if (WARN_ON_ONCE(metric
< 0))
903 if (metric
> tp
->reordering
) {
904 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
906 #if FASTRETRANS_DEBUG > 1
907 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
908 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
912 tp
->undo_marker
? tp
->undo_retrans
: 0);
914 tcp_disable_fack(tp
);
919 /* This exciting event is worth to be remembered. 8) */
921 mib_idx
= LINUX_MIB_TCPTSREORDER
;
922 else if (tcp_is_reno(tp
))
923 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
924 else if (tcp_is_fack(tp
))
925 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
927 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
929 NET_INC_STATS(sock_net(sk
), mib_idx
);
932 /* This must be called before lost_out is incremented */
933 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
935 if (!tp
->retransmit_skb_hint
||
936 before(TCP_SKB_CB(skb
)->seq
,
937 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
938 tp
->retransmit_skb_hint
= skb
;
941 /* Sum the number of packets on the wire we have marked as lost.
942 * There are two cases we care about here:
943 * a) Packet hasn't been marked lost (nor retransmitted),
944 * and this is the first loss.
945 * b) Packet has been marked both lost and retransmitted,
946 * and this means we think it was lost again.
948 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
950 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
952 if (!(sacked
& TCPCB_LOST
) ||
953 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
954 tp
->lost
+= tcp_skb_pcount(skb
);
957 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
959 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
960 tcp_verify_retransmit_hint(tp
, skb
);
962 tp
->lost_out
+= tcp_skb_pcount(skb
);
963 tcp_sum_lost(tp
, skb
);
964 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
968 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
970 tcp_verify_retransmit_hint(tp
, skb
);
972 tcp_sum_lost(tp
, skb
);
973 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
974 tp
->lost_out
+= tcp_skb_pcount(skb
);
975 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
979 /* This procedure tags the retransmission queue when SACKs arrive.
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of two flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modification, head until snd.fack is lost.
1004 * B. SACK arrives sacking SND.NXT at the moment, when the
1005 * segment was retransmitted.
1006 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1008 * It is pleasant to note, that state diagram turns out to be commutative,
1009 * so that we are allowed not to be bothered by order of our actions,
1010 * when multiple events arrive simultaneously. (see the function below).
1012 * Reordering detection.
1013 * --------------------
1014 * Reordering metric is maximal distance, which a packet can be displaced
1015 * in packet stream. With SACKs we can estimate it:
1017 * 1. SACK fills old hole and the corresponding segment was not
1018 * ever retransmitted -> reordering. Alas, we cannot use it
1019 * when segment was retransmitted.
1020 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021 * for retransmitted and already SACKed segment -> reordering..
1022 * Both of these heuristics are not used in Loss state, when we cannot
1023 * account for retransmits accurately.
1025 * SACK block validation.
1026 * ----------------------
1028 * SACK block range validation checks that the received SACK block fits to
1029 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030 * Note that SND.UNA is not included to the range though being valid because
1031 * it means that the receiver is rather inconsistent with itself reporting
1032 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033 * perfectly valid, however, in light of RFC2018 which explicitly states
1034 * that "SACK block MUST reflect the newest segment. Even if the newest
1035 * segment is going to be discarded ...", not that it looks very clever
1036 * in case of head skb. Due to potentional receiver driven attacks, we
1037 * choose to avoid immediate execution of a walk in write queue due to
1038 * reneging and defer head skb's loss recovery to standard loss recovery
1039 * procedure that will eventually trigger (nothing forbids us doing this).
1041 * Implements also blockage to start_seq wrap-around. Problem lies in the
1042 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043 * there's no guarantee that it will be before snd_nxt (n). The problem
1044 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * <- outs wnd -> <- wrapzone ->
1048 * u e n u_w e_w s n_w
1050 * |<------------+------+----- TCP seqno space --------------+---------->|
1051 * ...-- <2^31 ->| |<--------...
1052 * ...---- >2^31 ------>| |<--------...
1054 * Current code wouldn't be vulnerable but it's better still to discard such
1055 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058 * equal to the ideal case (infinite seqno space without wrap caused issues).
1060 * With D-SACK the lower bound is extended to cover sequence space below
1061 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062 * again, D-SACK block must not to go across snd_una (for the same reason as
1063 * for the normal SACK blocks, explained above). But there all simplicity
1064 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065 * fully below undo_marker they do not affect behavior in anyway and can
1066 * therefore be safely ignored. In rare cases (which are more or less
1067 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068 * fragmentation and packet reordering past skb's retransmission. To consider
1069 * them correctly, the acceptable range must be extended even more though
1070 * the exact amount is rather hard to quantify. However, tp->max_window can
1071 * be used as an exaggerated estimate.
1073 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1074 u32 start_seq
, u32 end_seq
)
1076 /* Too far in future, or reversed (interpretation is ambiguous) */
1077 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1080 /* Nasty start_seq wrap-around check (see comments above) */
1081 if (!before(start_seq
, tp
->snd_nxt
))
1084 /* In outstanding window? ...This is valid exit for D-SACKs too.
1085 * start_seq == snd_una is non-sensical (see comments above)
1087 if (after(start_seq
, tp
->snd_una
))
1090 if (!is_dsack
|| !tp
->undo_marker
)
1093 /* ...Then it's D-SACK, and must reside below snd_una completely */
1094 if (after(end_seq
, tp
->snd_una
))
1097 if (!before(start_seq
, tp
->undo_marker
))
1101 if (!after(end_seq
, tp
->undo_marker
))
1104 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105 * start_seq < undo_marker and end_seq >= undo_marker.
1107 return !before(start_seq
, end_seq
- tp
->max_window
);
1110 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1111 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1114 struct tcp_sock
*tp
= tcp_sk(sk
);
1115 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1116 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1117 bool dup_sack
= false;
1119 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1122 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1123 } else if (num_sacks
> 1) {
1124 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1125 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1127 if (!after(end_seq_0
, end_seq_1
) &&
1128 !before(start_seq_0
, start_seq_1
)) {
1131 NET_INC_STATS(sock_net(sk
),
1132 LINUX_MIB_TCPDSACKOFORECV
);
1136 /* D-SACK for already forgotten data... Do dumb counting. */
1137 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1138 !after(end_seq_0
, prior_snd_una
) &&
1139 after(end_seq_0
, tp
->undo_marker
))
1145 struct tcp_sacktag_state
{
1148 /* Timestamps for earliest and latest never-retransmitted segment
1149 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1150 * but congestion control should still get an accurate delay signal.
1154 struct rate_sample
*rate
;
1158 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1159 * the incoming SACK may not exactly match but we can find smaller MSS
1160 * aligned portion of it that matches. Therefore we might need to fragment
1161 * which may fail and creates some hassle (caller must handle error case
1164 * FIXME: this could be merged to shift decision code
1166 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1167 u32 start_seq
, u32 end_seq
)
1171 unsigned int pkt_len
;
1174 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1175 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1177 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1178 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1179 mss
= tcp_skb_mss(skb
);
1180 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1183 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1187 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1192 /* Round if necessary so that SACKs cover only full MSSes
1193 * and/or the remaining small portion (if present)
1195 if (pkt_len
> mss
) {
1196 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1197 if (!in_sack
&& new_len
< pkt_len
)
1202 if (pkt_len
>= skb
->len
&& !in_sack
)
1205 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1213 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1214 static u8
tcp_sacktag_one(struct sock
*sk
,
1215 struct tcp_sacktag_state
*state
, u8 sacked
,
1216 u32 start_seq
, u32 end_seq
,
1217 int dup_sack
, int pcount
,
1220 struct tcp_sock
*tp
= tcp_sk(sk
);
1221 int fack_count
= state
->fack_count
;
1223 /* Account D-SACK for retransmitted packet. */
1224 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1225 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1226 after(end_seq
, tp
->undo_marker
))
1228 if (sacked
& TCPCB_SACKED_ACKED
)
1229 state
->reord
= min(fack_count
, state
->reord
);
1232 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1233 if (!after(end_seq
, tp
->snd_una
))
1236 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1237 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1239 if (sacked
& TCPCB_SACKED_RETRANS
) {
1240 /* If the segment is not tagged as lost,
1241 * we do not clear RETRANS, believing
1242 * that retransmission is still in flight.
1244 if (sacked
& TCPCB_LOST
) {
1245 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1246 tp
->lost_out
-= pcount
;
1247 tp
->retrans_out
-= pcount
;
1250 if (!(sacked
& TCPCB_RETRANS
)) {
1251 /* New sack for not retransmitted frame,
1252 * which was in hole. It is reordering.
1254 if (before(start_seq
,
1255 tcp_highest_sack_seq(tp
)))
1256 state
->reord
= min(fack_count
,
1258 if (!after(end_seq
, tp
->high_seq
))
1259 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1260 if (state
->first_sackt
== 0)
1261 state
->first_sackt
= xmit_time
;
1262 state
->last_sackt
= xmit_time
;
1265 if (sacked
& TCPCB_LOST
) {
1266 sacked
&= ~TCPCB_LOST
;
1267 tp
->lost_out
-= pcount
;
1271 sacked
|= TCPCB_SACKED_ACKED
;
1272 state
->flag
|= FLAG_DATA_SACKED
;
1273 tp
->sacked_out
+= pcount
;
1274 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1276 fack_count
+= pcount
;
1278 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1279 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1280 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1281 tp
->lost_cnt_hint
+= pcount
;
1283 if (fack_count
> tp
->fackets_out
)
1284 tp
->fackets_out
= fack_count
;
1287 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1288 * frames and clear it. undo_retrans is decreased above, L|R frames
1289 * are accounted above as well.
1291 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1292 sacked
&= ~TCPCB_SACKED_RETRANS
;
1293 tp
->retrans_out
-= pcount
;
1299 /* Shift newly-SACKed bytes from this skb to the immediately previous
1300 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1302 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1303 struct tcp_sacktag_state
*state
,
1304 unsigned int pcount
, int shifted
, int mss
,
1307 struct tcp_sock
*tp
= tcp_sk(sk
);
1308 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1309 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1310 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1314 /* Adjust counters and hints for the newly sacked sequence
1315 * range but discard the return value since prev is already
1316 * marked. We must tag the range first because the seq
1317 * advancement below implicitly advances
1318 * tcp_highest_sack_seq() when skb is highest_sack.
1320 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1321 start_seq
, end_seq
, dup_sack
, pcount
,
1323 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1325 if (skb
== tp
->lost_skb_hint
)
1326 tp
->lost_cnt_hint
+= pcount
;
1328 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1329 TCP_SKB_CB(skb
)->seq
+= shifted
;
1331 tcp_skb_pcount_add(prev
, pcount
);
1332 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1333 tcp_skb_pcount_add(skb
, -pcount
);
1335 /* When we're adding to gso_segs == 1, gso_size will be zero,
1336 * in theory this shouldn't be necessary but as long as DSACK
1337 * code can come after this skb later on it's better to keep
1338 * setting gso_size to something.
1340 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1341 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1343 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1344 if (tcp_skb_pcount(skb
) <= 1)
1345 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1347 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1348 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1351 BUG_ON(!tcp_skb_pcount(skb
));
1352 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1356 /* Whole SKB was eaten :-) */
1358 if (skb
== tp
->retransmit_skb_hint
)
1359 tp
->retransmit_skb_hint
= prev
;
1360 if (skb
== tp
->lost_skb_hint
) {
1361 tp
->lost_skb_hint
= prev
;
1362 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1365 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1366 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1367 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1368 TCP_SKB_CB(prev
)->end_seq
++;
1370 if (skb
== tcp_highest_sack(sk
))
1371 tcp_advance_highest_sack(sk
, skb
);
1373 tcp_skb_collapse_tstamp(prev
, skb
);
1374 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1375 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1377 tcp_unlink_write_queue(skb
, sk
);
1378 sk_wmem_free_skb(sk
, skb
);
1380 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1385 /* I wish gso_size would have a bit more sane initialization than
1386 * something-or-zero which complicates things
1388 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1390 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1393 /* Shifting pages past head area doesn't work */
1394 static int skb_can_shift(const struct sk_buff
*skb
)
1396 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1399 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1402 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1403 struct tcp_sacktag_state
*state
,
1404 u32 start_seq
, u32 end_seq
,
1407 struct tcp_sock
*tp
= tcp_sk(sk
);
1408 struct sk_buff
*prev
;
1414 if (!sk_can_gso(sk
))
1417 /* Normally R but no L won't result in plain S */
1419 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1421 if (!skb_can_shift(skb
))
1423 /* This frame is about to be dropped (was ACKed). */
1424 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1427 /* Can only happen with delayed DSACK + discard craziness */
1428 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1430 prev
= tcp_write_queue_prev(sk
, skb
);
1432 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1435 if (!tcp_skb_can_collapse_to(prev
))
1438 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1439 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1443 pcount
= tcp_skb_pcount(skb
);
1444 mss
= tcp_skb_seglen(skb
);
1446 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1447 * drop this restriction as unnecessary
1449 if (mss
!= tcp_skb_seglen(prev
))
1452 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1454 /* CHECKME: This is non-MSS split case only?, this will
1455 * cause skipped skbs due to advancing loop btw, original
1456 * has that feature too
1458 if (tcp_skb_pcount(skb
) <= 1)
1461 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1463 /* TODO: head merge to next could be attempted here
1464 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1465 * though it might not be worth of the additional hassle
1467 * ...we can probably just fallback to what was done
1468 * previously. We could try merging non-SACKed ones
1469 * as well but it probably isn't going to buy off
1470 * because later SACKs might again split them, and
1471 * it would make skb timestamp tracking considerably
1477 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1479 BUG_ON(len
> skb
->len
);
1481 /* MSS boundaries should be honoured or else pcount will
1482 * severely break even though it makes things bit trickier.
1483 * Optimize common case to avoid most of the divides
1485 mss
= tcp_skb_mss(skb
);
1487 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1488 * drop this restriction as unnecessary
1490 if (mss
!= tcp_skb_seglen(prev
))
1495 } else if (len
< mss
) {
1503 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1504 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1507 if (!skb_shift(prev
, skb
, len
))
1509 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1512 /* Hole filled allows collapsing with the next as well, this is very
1513 * useful when hole on every nth skb pattern happens
1515 if (prev
== tcp_write_queue_tail(sk
))
1517 skb
= tcp_write_queue_next(sk
, prev
);
1519 if (!skb_can_shift(skb
) ||
1520 (skb
== tcp_send_head(sk
)) ||
1521 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1522 (mss
!= tcp_skb_seglen(skb
)))
1526 if (skb_shift(prev
, skb
, len
)) {
1527 pcount
+= tcp_skb_pcount(skb
);
1528 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1532 state
->fack_count
+= pcount
;
1539 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1543 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1544 struct tcp_sack_block
*next_dup
,
1545 struct tcp_sacktag_state
*state
,
1546 u32 start_seq
, u32 end_seq
,
1549 struct tcp_sock
*tp
= tcp_sk(sk
);
1550 struct sk_buff
*tmp
;
1552 tcp_for_write_queue_from(skb
, sk
) {
1554 bool dup_sack
= dup_sack_in
;
1556 if (skb
== tcp_send_head(sk
))
1559 /* queue is in-order => we can short-circuit the walk early */
1560 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1564 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1565 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1566 next_dup
->start_seq
,
1572 /* skb reference here is a bit tricky to get right, since
1573 * shifting can eat and free both this skb and the next,
1574 * so not even _safe variant of the loop is enough.
1577 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1578 start_seq
, end_seq
, dup_sack
);
1587 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1593 if (unlikely(in_sack
< 0))
1597 TCP_SKB_CB(skb
)->sacked
=
1600 TCP_SKB_CB(skb
)->sacked
,
1601 TCP_SKB_CB(skb
)->seq
,
1602 TCP_SKB_CB(skb
)->end_seq
,
1604 tcp_skb_pcount(skb
),
1606 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1608 if (!before(TCP_SKB_CB(skb
)->seq
,
1609 tcp_highest_sack_seq(tp
)))
1610 tcp_advance_highest_sack(sk
, skb
);
1613 state
->fack_count
+= tcp_skb_pcount(skb
);
1618 /* Avoid all extra work that is being done by sacktag while walking in
1621 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1622 struct tcp_sacktag_state
*state
,
1625 tcp_for_write_queue_from(skb
, sk
) {
1626 if (skb
== tcp_send_head(sk
))
1629 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1632 state
->fack_count
+= tcp_skb_pcount(skb
);
1637 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1639 struct tcp_sack_block
*next_dup
,
1640 struct tcp_sacktag_state
*state
,
1646 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1647 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1648 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1649 next_dup
->start_seq
, next_dup
->end_seq
,
1656 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1658 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1662 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1663 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1665 struct tcp_sock
*tp
= tcp_sk(sk
);
1666 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1667 TCP_SKB_CB(ack_skb
)->sacked
);
1668 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1669 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1670 struct tcp_sack_block
*cache
;
1671 struct sk_buff
*skb
;
1672 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1674 bool found_dup_sack
= false;
1676 int first_sack_index
;
1679 state
->reord
= tp
->packets_out
;
1681 if (!tp
->sacked_out
) {
1682 if (WARN_ON(tp
->fackets_out
))
1683 tp
->fackets_out
= 0;
1684 tcp_highest_sack_reset(sk
);
1687 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1688 num_sacks
, prior_snd_una
);
1689 if (found_dup_sack
) {
1690 state
->flag
|= FLAG_DSACKING_ACK
;
1691 tp
->delivered
++; /* A spurious retransmission is delivered */
1694 /* Eliminate too old ACKs, but take into
1695 * account more or less fresh ones, they can
1696 * contain valid SACK info.
1698 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1701 if (!tp
->packets_out
)
1705 first_sack_index
= 0;
1706 for (i
= 0; i
< num_sacks
; i
++) {
1707 bool dup_sack
= !i
&& found_dup_sack
;
1709 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1710 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1712 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1713 sp
[used_sacks
].start_seq
,
1714 sp
[used_sacks
].end_seq
)) {
1718 if (!tp
->undo_marker
)
1719 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1721 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1723 /* Don't count olds caused by ACK reordering */
1724 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1725 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1727 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1730 NET_INC_STATS(sock_net(sk
), mib_idx
);
1732 first_sack_index
= -1;
1736 /* Ignore very old stuff early */
1737 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1743 /* order SACK blocks to allow in order walk of the retrans queue */
1744 for (i
= used_sacks
- 1; i
> 0; i
--) {
1745 for (j
= 0; j
< i
; j
++) {
1746 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1747 swap(sp
[j
], sp
[j
+ 1]);
1749 /* Track where the first SACK block goes to */
1750 if (j
== first_sack_index
)
1751 first_sack_index
= j
+ 1;
1756 skb
= tcp_write_queue_head(sk
);
1757 state
->fack_count
= 0;
1760 if (!tp
->sacked_out
) {
1761 /* It's already past, so skip checking against it */
1762 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1764 cache
= tp
->recv_sack_cache
;
1765 /* Skip empty blocks in at head of the cache */
1766 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1771 while (i
< used_sacks
) {
1772 u32 start_seq
= sp
[i
].start_seq
;
1773 u32 end_seq
= sp
[i
].end_seq
;
1774 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1775 struct tcp_sack_block
*next_dup
= NULL
;
1777 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1778 next_dup
= &sp
[i
+ 1];
1780 /* Skip too early cached blocks */
1781 while (tcp_sack_cache_ok(tp
, cache
) &&
1782 !before(start_seq
, cache
->end_seq
))
1785 /* Can skip some work by looking recv_sack_cache? */
1786 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1787 after(end_seq
, cache
->start_seq
)) {
1790 if (before(start_seq
, cache
->start_seq
)) {
1791 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1793 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1800 /* Rest of the block already fully processed? */
1801 if (!after(end_seq
, cache
->end_seq
))
1804 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1808 /* ...tail remains todo... */
1809 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1810 /* ...but better entrypoint exists! */
1811 skb
= tcp_highest_sack(sk
);
1814 state
->fack_count
= tp
->fackets_out
;
1819 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1820 /* Check overlap against next cached too (past this one already) */
1825 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1826 skb
= tcp_highest_sack(sk
);
1829 state
->fack_count
= tp
->fackets_out
;
1831 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1834 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1835 start_seq
, end_seq
, dup_sack
);
1841 /* Clear the head of the cache sack blocks so we can skip it next time */
1842 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1843 tp
->recv_sack_cache
[i
].start_seq
= 0;
1844 tp
->recv_sack_cache
[i
].end_seq
= 0;
1846 for (j
= 0; j
< used_sacks
; j
++)
1847 tp
->recv_sack_cache
[i
++] = sp
[j
];
1849 if ((state
->reord
< tp
->fackets_out
) &&
1850 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1851 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1853 tcp_verify_left_out(tp
);
1856 #if FASTRETRANS_DEBUG > 0
1857 WARN_ON((int)tp
->sacked_out
< 0);
1858 WARN_ON((int)tp
->lost_out
< 0);
1859 WARN_ON((int)tp
->retrans_out
< 0);
1860 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1865 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1866 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1868 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1872 holes
= max(tp
->lost_out
, 1U);
1873 holes
= min(holes
, tp
->packets_out
);
1875 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1876 tp
->sacked_out
= tp
->packets_out
- holes
;
1882 /* If we receive more dupacks than we expected counting segments
1883 * in assumption of absent reordering, interpret this as reordering.
1884 * The only another reason could be bug in receiver TCP.
1886 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1888 struct tcp_sock
*tp
= tcp_sk(sk
);
1889 if (tcp_limit_reno_sacked(tp
))
1890 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1895 static void tcp_add_reno_sack(struct sock
*sk
)
1897 struct tcp_sock
*tp
= tcp_sk(sk
);
1898 u32 prior_sacked
= tp
->sacked_out
;
1901 tcp_check_reno_reordering(sk
, 0);
1902 if (tp
->sacked_out
> prior_sacked
)
1903 tp
->delivered
++; /* Some out-of-order packet is delivered */
1904 tcp_verify_left_out(tp
);
1907 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1909 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1911 struct tcp_sock
*tp
= tcp_sk(sk
);
1914 /* One ACK acked hole. The rest eat duplicate ACKs. */
1915 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1916 if (acked
- 1 >= tp
->sacked_out
)
1919 tp
->sacked_out
-= acked
- 1;
1921 tcp_check_reno_reordering(sk
, acked
);
1922 tcp_verify_left_out(tp
);
1925 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1930 void tcp_clear_retrans(struct tcp_sock
*tp
)
1932 tp
->retrans_out
= 0;
1934 tp
->undo_marker
= 0;
1935 tp
->undo_retrans
= -1;
1936 tp
->fackets_out
= 0;
1940 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1942 tp
->undo_marker
= tp
->snd_una
;
1943 /* Retransmission still in flight may cause DSACKs later. */
1944 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1947 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1948 * and reset tags completely, otherwise preserve SACKs. If receiver
1949 * dropped its ofo queue, we will know this due to reneging detection.
1951 void tcp_enter_loss(struct sock
*sk
)
1953 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1954 struct tcp_sock
*tp
= tcp_sk(sk
);
1955 struct net
*net
= sock_net(sk
);
1956 struct sk_buff
*skb
;
1957 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1958 bool is_reneg
; /* is receiver reneging on SACKs? */
1961 /* Reduce ssthresh if it has not yet been made inside this window. */
1962 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1963 !after(tp
->high_seq
, tp
->snd_una
) ||
1964 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1965 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1966 tp
->prior_cwnd
= tp
->snd_cwnd
;
1967 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1968 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1972 tp
->snd_cwnd_cnt
= 0;
1973 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1975 tp
->retrans_out
= 0;
1978 if (tcp_is_reno(tp
))
1979 tcp_reset_reno_sack(tp
);
1981 skb
= tcp_write_queue_head(sk
);
1982 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1984 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1986 tp
->fackets_out
= 0;
1987 /* Mark SACK reneging until we recover from this loss event. */
1988 tp
->is_sack_reneg
= 1;
1990 tcp_clear_all_retrans_hints(tp
);
1992 tcp_for_write_queue(skb
, sk
) {
1993 if (skb
== tcp_send_head(sk
))
1996 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1999 tcp_sum_lost(tp
, skb
);
2000 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2002 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2003 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2004 tp
->lost_out
+= tcp_skb_pcount(skb
);
2007 tcp_verify_left_out(tp
);
2009 /* Timeout in disordered state after receiving substantial DUPACKs
2010 * suggests that the degree of reordering is over-estimated.
2012 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
2013 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
2014 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2015 net
->ipv4
.sysctl_tcp_reordering
);
2016 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2017 tp
->high_seq
= tp
->snd_nxt
;
2018 tcp_ecn_queue_cwr(tp
);
2020 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2021 * loss recovery is underway except recurring timeout(s) on
2022 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2024 tp
->frto
= sysctl_tcp_frto
&&
2025 (new_recovery
|| icsk
->icsk_retransmits
) &&
2026 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2029 /* If ACK arrived pointing to a remembered SACK, it means that our
2030 * remembered SACKs do not reflect real state of receiver i.e.
2031 * receiver _host_ is heavily congested (or buggy).
2033 * To avoid big spurious retransmission bursts due to transient SACK
2034 * scoreboard oddities that look like reneging, we give the receiver a
2035 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2036 * restore sanity to the SACK scoreboard. If the apparent reneging
2037 * persists until this RTO then we'll clear the SACK scoreboard.
2039 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2041 if (flag
& FLAG_SACK_RENEGING
) {
2042 struct tcp_sock
*tp
= tcp_sk(sk
);
2043 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2044 msecs_to_jiffies(10));
2046 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2047 delay
, TCP_RTO_MAX
);
2053 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2055 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2058 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2059 * counter when SACK is enabled (without SACK, sacked_out is used for
2062 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2063 * segments up to the highest received SACK block so far and holes in
2066 * With reordering, holes may still be in flight, so RFC3517 recovery
2067 * uses pure sacked_out (total number of SACKed segments) even though
2068 * it violates the RFC that uses duplicate ACKs, often these are equal
2069 * but when e.g. out-of-window ACKs or packet duplication occurs,
2070 * they differ. Since neither occurs due to loss, TCP should really
2073 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2075 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2078 /* Linux NewReno/SACK/FACK/ECN state machine.
2079 * --------------------------------------
2081 * "Open" Normal state, no dubious events, fast path.
2082 * "Disorder" In all the respects it is "Open",
2083 * but requires a bit more attention. It is entered when
2084 * we see some SACKs or dupacks. It is split of "Open"
2085 * mainly to move some processing from fast path to slow one.
2086 * "CWR" CWND was reduced due to some Congestion Notification event.
2087 * It can be ECN, ICMP source quench, local device congestion.
2088 * "Recovery" CWND was reduced, we are fast-retransmitting.
2089 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2091 * tcp_fastretrans_alert() is entered:
2092 * - each incoming ACK, if state is not "Open"
2093 * - when arrived ACK is unusual, namely:
2098 * Counting packets in flight is pretty simple.
2100 * in_flight = packets_out - left_out + retrans_out
2102 * packets_out is SND.NXT-SND.UNA counted in packets.
2104 * retrans_out is number of retransmitted segments.
2106 * left_out is number of segments left network, but not ACKed yet.
2108 * left_out = sacked_out + lost_out
2110 * sacked_out: Packets, which arrived to receiver out of order
2111 * and hence not ACKed. With SACKs this number is simply
2112 * amount of SACKed data. Even without SACKs
2113 * it is easy to give pretty reliable estimate of this number,
2114 * counting duplicate ACKs.
2116 * lost_out: Packets lost by network. TCP has no explicit
2117 * "loss notification" feedback from network (for now).
2118 * It means that this number can be only _guessed_.
2119 * Actually, it is the heuristics to predict lossage that
2120 * distinguishes different algorithms.
2122 * F.e. after RTO, when all the queue is considered as lost,
2123 * lost_out = packets_out and in_flight = retrans_out.
2125 * Essentially, we have now a few algorithms detecting
2128 * If the receiver supports SACK:
2130 * RFC6675/3517: It is the conventional algorithm. A packet is
2131 * considered lost if the number of higher sequence packets
2132 * SACKed is greater than or equal the DUPACK thoreshold
2133 * (reordering). This is implemented in tcp_mark_head_lost and
2134 * tcp_update_scoreboard.
2136 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2137 * (2017-) that checks timing instead of counting DUPACKs.
2138 * Essentially a packet is considered lost if it's not S/ACKed
2139 * after RTT + reordering_window, where both metrics are
2140 * dynamically measured and adjusted. This is implemented in
2141 * tcp_rack_mark_lost.
2143 * FACK (Disabled by default. Subsumbed by RACK):
2144 * It is the simplest heuristics. As soon as we decided
2145 * that something is lost, we decide that _all_ not SACKed
2146 * packets until the most forward SACK are lost. I.e.
2147 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2148 * It is absolutely correct estimate, if network does not reorder
2149 * packets. And it loses any connection to reality when reordering
2150 * takes place. We use FACK by default until reordering
2151 * is suspected on the path to this destination.
2153 * If the receiver does not support SACK:
2155 * NewReno (RFC6582): in Recovery we assume that one segment
2156 * is lost (classic Reno). While we are in Recovery and
2157 * a partial ACK arrives, we assume that one more packet
2158 * is lost (NewReno). This heuristics are the same in NewReno
2161 * Really tricky (and requiring careful tuning) part of algorithm
2162 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2163 * The first determines the moment _when_ we should reduce CWND and,
2164 * hence, slow down forward transmission. In fact, it determines the moment
2165 * when we decide that hole is caused by loss, rather than by a reorder.
2167 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2168 * holes, caused by lost packets.
2170 * And the most logically complicated part of algorithm is undo
2171 * heuristics. We detect false retransmits due to both too early
2172 * fast retransmit (reordering) and underestimated RTO, analyzing
2173 * timestamps and D-SACKs. When we detect that some segments were
2174 * retransmitted by mistake and CWND reduction was wrong, we undo
2175 * window reduction and abort recovery phase. This logic is hidden
2176 * inside several functions named tcp_try_undo_<something>.
2179 /* This function decides, when we should leave Disordered state
2180 * and enter Recovery phase, reducing congestion window.
2182 * Main question: may we further continue forward transmission
2183 * with the same cwnd?
2185 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2187 struct tcp_sock
*tp
= tcp_sk(sk
);
2189 /* Trick#1: The loss is proven. */
2193 /* Not-A-Trick#2 : Classic rule... */
2194 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2200 /* Detect loss in event "A" above by marking head of queue up as lost.
2201 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2202 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2203 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2204 * the maximum SACKed segments to pass before reaching this limit.
2206 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2208 struct tcp_sock
*tp
= tcp_sk(sk
);
2209 struct sk_buff
*skb
;
2210 int cnt
, oldcnt
, lost
;
2212 /* Use SACK to deduce losses of new sequences sent during recovery */
2213 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2215 WARN_ON(packets
> tp
->packets_out
);
2216 if (tp
->lost_skb_hint
) {
2217 skb
= tp
->lost_skb_hint
;
2218 cnt
= tp
->lost_cnt_hint
;
2219 /* Head already handled? */
2220 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2223 skb
= tcp_write_queue_head(sk
);
2227 tcp_for_write_queue_from(skb
, sk
) {
2228 if (skb
== tcp_send_head(sk
))
2230 /* TODO: do this better */
2231 /* this is not the most efficient way to do this... */
2232 tp
->lost_skb_hint
= skb
;
2233 tp
->lost_cnt_hint
= cnt
;
2235 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2239 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2240 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2241 cnt
+= tcp_skb_pcount(skb
);
2243 if (cnt
> packets
) {
2244 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2245 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2246 (oldcnt
>= packets
))
2249 mss
= tcp_skb_mss(skb
);
2250 /* If needed, chop off the prefix to mark as lost. */
2251 lost
= (packets
- oldcnt
) * mss
;
2252 if (lost
< skb
->len
&&
2253 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2258 tcp_skb_mark_lost(tp
, skb
);
2263 tcp_verify_left_out(tp
);
2266 /* Account newly detected lost packet(s) */
2268 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2270 struct tcp_sock
*tp
= tcp_sk(sk
);
2272 if (tcp_is_reno(tp
)) {
2273 tcp_mark_head_lost(sk
, 1, 1);
2274 } else if (tcp_is_fack(tp
)) {
2275 int lost
= tp
->fackets_out
- tp
->reordering
;
2278 tcp_mark_head_lost(sk
, lost
, 0);
2280 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2281 if (sacked_upto
>= 0)
2282 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2283 else if (fast_rexmit
)
2284 tcp_mark_head_lost(sk
, 1, 1);
2288 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2290 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2291 before(tp
->rx_opt
.rcv_tsecr
, when
);
2294 /* skb is spurious retransmitted if the returned timestamp echo
2295 * reply is prior to the skb transmission time
2297 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2298 const struct sk_buff
*skb
)
2300 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2301 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2304 /* Nothing was retransmitted or returned timestamp is less
2305 * than timestamp of the first retransmission.
2307 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2309 return !tp
->retrans_stamp
||
2310 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2313 /* Undo procedures. */
2315 /* We can clear retrans_stamp when there are no retransmissions in the
2316 * window. It would seem that it is trivially available for us in
2317 * tp->retrans_out, however, that kind of assumptions doesn't consider
2318 * what will happen if errors occur when sending retransmission for the
2319 * second time. ...It could the that such segment has only
2320 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2321 * the head skb is enough except for some reneging corner cases that
2322 * are not worth the effort.
2324 * Main reason for all this complexity is the fact that connection dying
2325 * time now depends on the validity of the retrans_stamp, in particular,
2326 * that successive retransmissions of a segment must not advance
2327 * retrans_stamp under any conditions.
2329 static bool tcp_any_retrans_done(const struct sock
*sk
)
2331 const struct tcp_sock
*tp
= tcp_sk(sk
);
2332 struct sk_buff
*skb
;
2334 if (tp
->retrans_out
)
2337 skb
= tcp_write_queue_head(sk
);
2338 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2344 #if FASTRETRANS_DEBUG > 1
2345 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2347 struct tcp_sock
*tp
= tcp_sk(sk
);
2348 struct inet_sock
*inet
= inet_sk(sk
);
2350 if (sk
->sk_family
== AF_INET
) {
2351 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2353 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2354 tp
->snd_cwnd
, tcp_left_out(tp
),
2355 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2358 #if IS_ENABLED(CONFIG_IPV6)
2359 else if (sk
->sk_family
== AF_INET6
) {
2360 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2362 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2363 tp
->snd_cwnd
, tcp_left_out(tp
),
2364 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2370 #define DBGUNDO(x...) do { } while (0)
2373 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2375 struct tcp_sock
*tp
= tcp_sk(sk
);
2378 struct sk_buff
*skb
;
2380 tcp_for_write_queue(skb
, sk
) {
2381 if (skb
== tcp_send_head(sk
))
2383 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2386 tcp_clear_all_retrans_hints(tp
);
2389 if (tp
->prior_ssthresh
) {
2390 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2392 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2394 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2395 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2396 tcp_ecn_withdraw_cwr(tp
);
2399 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2400 tp
->undo_marker
= 0;
2403 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2405 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2408 /* People celebrate: "We love our President!" */
2409 static bool tcp_try_undo_recovery(struct sock
*sk
)
2411 struct tcp_sock
*tp
= tcp_sk(sk
);
2413 if (tcp_may_undo(tp
)) {
2416 /* Happy end! We did not retransmit anything
2417 * or our original transmission succeeded.
2419 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2420 tcp_undo_cwnd_reduction(sk
, false);
2421 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2422 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2424 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2426 NET_INC_STATS(sock_net(sk
), mib_idx
);
2428 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2429 /* Hold old state until something *above* high_seq
2430 * is ACKed. For Reno it is MUST to prevent false
2431 * fast retransmits (RFC2582). SACK TCP is safe. */
2432 if (!tcp_any_retrans_done(sk
))
2433 tp
->retrans_stamp
= 0;
2436 tcp_set_ca_state(sk
, TCP_CA_Open
);
2437 tp
->is_sack_reneg
= 0;
2441 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2442 static bool tcp_try_undo_dsack(struct sock
*sk
)
2444 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2447 DBGUNDO(sk
, "D-SACK");
2448 tcp_undo_cwnd_reduction(sk
, false);
2449 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2455 /* Undo during loss recovery after partial ACK or using F-RTO. */
2456 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2458 struct tcp_sock
*tp
= tcp_sk(sk
);
2460 if (frto_undo
|| tcp_may_undo(tp
)) {
2461 tcp_undo_cwnd_reduction(sk
, true);
2463 DBGUNDO(sk
, "partial loss");
2464 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2466 NET_INC_STATS(sock_net(sk
),
2467 LINUX_MIB_TCPSPURIOUSRTOS
);
2468 inet_csk(sk
)->icsk_retransmits
= 0;
2469 if (frto_undo
|| tcp_is_sack(tp
)) {
2470 tcp_set_ca_state(sk
, TCP_CA_Open
);
2471 tp
->is_sack_reneg
= 0;
2478 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2479 * It computes the number of packets to send (sndcnt) based on packets newly
2481 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2482 * cwnd reductions across a full RTT.
2483 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2484 * But when the retransmits are acked without further losses, PRR
2485 * slow starts cwnd up to ssthresh to speed up the recovery.
2487 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2489 struct tcp_sock
*tp
= tcp_sk(sk
);
2491 tp
->high_seq
= tp
->snd_nxt
;
2492 tp
->tlp_high_seq
= 0;
2493 tp
->snd_cwnd_cnt
= 0;
2494 tp
->prior_cwnd
= tp
->snd_cwnd
;
2495 tp
->prr_delivered
= 0;
2497 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2498 tcp_ecn_queue_cwr(tp
);
2501 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2503 struct tcp_sock
*tp
= tcp_sk(sk
);
2505 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2507 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2510 tp
->prr_delivered
+= newly_acked_sacked
;
2512 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2514 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2515 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2516 !(flag
& FLAG_LOST_RETRANS
)) {
2517 sndcnt
= min_t(int, delta
,
2518 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2519 newly_acked_sacked
) + 1);
2521 sndcnt
= min(delta
, newly_acked_sacked
);
2523 /* Force a fast retransmit upon entering fast recovery */
2524 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2525 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2528 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2530 struct tcp_sock
*tp
= tcp_sk(sk
);
2532 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2535 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2536 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2537 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2538 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2539 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2541 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2544 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2545 void tcp_enter_cwr(struct sock
*sk
)
2547 struct tcp_sock
*tp
= tcp_sk(sk
);
2549 tp
->prior_ssthresh
= 0;
2550 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2551 tp
->undo_marker
= 0;
2552 tcp_init_cwnd_reduction(sk
);
2553 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2556 EXPORT_SYMBOL(tcp_enter_cwr
);
2558 static void tcp_try_keep_open(struct sock
*sk
)
2560 struct tcp_sock
*tp
= tcp_sk(sk
);
2561 int state
= TCP_CA_Open
;
2563 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2564 state
= TCP_CA_Disorder
;
2566 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2567 tcp_set_ca_state(sk
, state
);
2568 tp
->high_seq
= tp
->snd_nxt
;
2572 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2574 struct tcp_sock
*tp
= tcp_sk(sk
);
2576 tcp_verify_left_out(tp
);
2578 if (!tcp_any_retrans_done(sk
))
2579 tp
->retrans_stamp
= 0;
2581 if (flag
& FLAG_ECE
)
2584 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2585 tcp_try_keep_open(sk
);
2589 static void tcp_mtup_probe_failed(struct sock
*sk
)
2591 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2593 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2594 icsk
->icsk_mtup
.probe_size
= 0;
2595 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2598 static void tcp_mtup_probe_success(struct sock
*sk
)
2600 struct tcp_sock
*tp
= tcp_sk(sk
);
2601 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2603 /* FIXME: breaks with very large cwnd */
2604 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2605 tp
->snd_cwnd
= tp
->snd_cwnd
*
2606 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2607 icsk
->icsk_mtup
.probe_size
;
2608 tp
->snd_cwnd_cnt
= 0;
2609 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2610 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2612 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2613 icsk
->icsk_mtup
.probe_size
= 0;
2614 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2615 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2618 /* Do a simple retransmit without using the backoff mechanisms in
2619 * tcp_timer. This is used for path mtu discovery.
2620 * The socket is already locked here.
2622 void tcp_simple_retransmit(struct sock
*sk
)
2624 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2625 struct tcp_sock
*tp
= tcp_sk(sk
);
2626 struct sk_buff
*skb
;
2627 unsigned int mss
= tcp_current_mss(sk
);
2629 tcp_for_write_queue(skb
, sk
) {
2630 if (skb
== tcp_send_head(sk
))
2632 if (tcp_skb_seglen(skb
) > mss
&&
2633 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2634 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2635 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2636 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2638 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2642 tcp_clear_retrans_hints_partial(tp
);
2647 if (tcp_is_reno(tp
))
2648 tcp_limit_reno_sacked(tp
);
2650 tcp_verify_left_out(tp
);
2652 /* Don't muck with the congestion window here.
2653 * Reason is that we do not increase amount of _data_
2654 * in network, but units changed and effective
2655 * cwnd/ssthresh really reduced now.
2657 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2658 tp
->high_seq
= tp
->snd_nxt
;
2659 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2660 tp
->prior_ssthresh
= 0;
2661 tp
->undo_marker
= 0;
2662 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2664 tcp_xmit_retransmit_queue(sk
);
2666 EXPORT_SYMBOL(tcp_simple_retransmit
);
2668 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2670 struct tcp_sock
*tp
= tcp_sk(sk
);
2673 if (tcp_is_reno(tp
))
2674 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2676 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2678 NET_INC_STATS(sock_net(sk
), mib_idx
);
2680 tp
->prior_ssthresh
= 0;
2683 if (!tcp_in_cwnd_reduction(sk
)) {
2685 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2686 tcp_init_cwnd_reduction(sk
);
2688 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2691 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2692 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2694 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2697 struct tcp_sock
*tp
= tcp_sk(sk
);
2698 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2700 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2701 tcp_try_undo_loss(sk
, false))
2704 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2705 /* Step 3.b. A timeout is spurious if not all data are
2706 * lost, i.e., never-retransmitted data are (s)acked.
2708 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2709 tcp_try_undo_loss(sk
, true))
2712 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2713 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2714 tp
->frto
= 0; /* Step 3.a. loss was real */
2715 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2716 tp
->high_seq
= tp
->snd_nxt
;
2717 /* Step 2.b. Try send new data (but deferred until cwnd
2718 * is updated in tcp_ack()). Otherwise fall back to
2719 * the conventional recovery.
2721 if (tcp_send_head(sk
) &&
2722 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2723 *rexmit
= REXMIT_NEW
;
2731 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2732 tcp_try_undo_recovery(sk
);
2735 if (tcp_is_reno(tp
)) {
2736 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2737 * delivered. Lower inflight to clock out (re)tranmissions.
2739 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2740 tcp_add_reno_sack(sk
);
2741 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2742 tcp_reset_reno_sack(tp
);
2744 *rexmit
= REXMIT_LOST
;
2747 /* Undo during fast recovery after partial ACK. */
2748 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2750 struct tcp_sock
*tp
= tcp_sk(sk
);
2752 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2753 /* Plain luck! Hole if filled with delayed
2754 * packet, rather than with a retransmit.
2756 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2758 /* We are getting evidence that the reordering degree is higher
2759 * than we realized. If there are no retransmits out then we
2760 * can undo. Otherwise we clock out new packets but do not
2761 * mark more packets lost or retransmit more.
2763 if (tp
->retrans_out
)
2766 if (!tcp_any_retrans_done(sk
))
2767 tp
->retrans_stamp
= 0;
2769 DBGUNDO(sk
, "partial recovery");
2770 tcp_undo_cwnd_reduction(sk
, true);
2771 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2772 tcp_try_keep_open(sk
);
2778 static void tcp_rack_identify_loss(struct sock
*sk
, int *ack_flag
)
2780 struct tcp_sock
*tp
= tcp_sk(sk
);
2782 /* Use RACK to detect loss */
2783 if (sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
) {
2784 u32 prior_retrans
= tp
->retrans_out
;
2786 tcp_rack_mark_lost(sk
);
2787 if (prior_retrans
> tp
->retrans_out
)
2788 *ack_flag
|= FLAG_LOST_RETRANS
;
2792 /* Process an event, which can update packets-in-flight not trivially.
2793 * Main goal of this function is to calculate new estimate for left_out,
2794 * taking into account both packets sitting in receiver's buffer and
2795 * packets lost by network.
2797 * Besides that it updates the congestion state when packet loss or ECN
2798 * is detected. But it does not reduce the cwnd, it is done by the
2799 * congestion control later.
2801 * It does _not_ decide what to send, it is made in function
2802 * tcp_xmit_retransmit_queue().
2804 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2805 bool is_dupack
, int *ack_flag
, int *rexmit
)
2807 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2808 struct tcp_sock
*tp
= tcp_sk(sk
);
2809 int fast_rexmit
= 0, flag
= *ack_flag
;
2810 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2811 (tcp_fackets_out(tp
) > tp
->reordering
));
2813 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2815 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2816 tp
->fackets_out
= 0;
2818 /* Now state machine starts.
2819 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2820 if (flag
& FLAG_ECE
)
2821 tp
->prior_ssthresh
= 0;
2823 /* B. In all the states check for reneging SACKs. */
2824 if (tcp_check_sack_reneging(sk
, flag
))
2827 /* C. Check consistency of the current state. */
2828 tcp_verify_left_out(tp
);
2830 /* D. Check state exit conditions. State can be terminated
2831 * when high_seq is ACKed. */
2832 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2833 WARN_ON(tp
->retrans_out
!= 0);
2834 tp
->retrans_stamp
= 0;
2835 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2836 switch (icsk
->icsk_ca_state
) {
2838 /* CWR is to be held something *above* high_seq
2839 * is ACKed for CWR bit to reach receiver. */
2840 if (tp
->snd_una
!= tp
->high_seq
) {
2841 tcp_end_cwnd_reduction(sk
);
2842 tcp_set_ca_state(sk
, TCP_CA_Open
);
2846 case TCP_CA_Recovery
:
2847 if (tcp_is_reno(tp
))
2848 tcp_reset_reno_sack(tp
);
2849 if (tcp_try_undo_recovery(sk
))
2851 tcp_end_cwnd_reduction(sk
);
2856 /* E. Process state. */
2857 switch (icsk
->icsk_ca_state
) {
2858 case TCP_CA_Recovery
:
2859 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2860 if (tcp_is_reno(tp
) && is_dupack
)
2861 tcp_add_reno_sack(sk
);
2863 if (tcp_try_undo_partial(sk
, acked
))
2865 /* Partial ACK arrived. Force fast retransmit. */
2866 do_lost
= tcp_is_reno(tp
) ||
2867 tcp_fackets_out(tp
) > tp
->reordering
;
2869 if (tcp_try_undo_dsack(sk
)) {
2870 tcp_try_keep_open(sk
);
2873 tcp_rack_identify_loss(sk
, ack_flag
);
2876 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2877 tcp_rack_identify_loss(sk
, ack_flag
);
2878 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2879 (*ack_flag
& FLAG_LOST_RETRANS
)))
2881 /* Change state if cwnd is undone or retransmits are lost */
2883 if (tcp_is_reno(tp
)) {
2884 if (flag
& FLAG_SND_UNA_ADVANCED
)
2885 tcp_reset_reno_sack(tp
);
2887 tcp_add_reno_sack(sk
);
2890 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2891 tcp_try_undo_dsack(sk
);
2893 tcp_rack_identify_loss(sk
, ack_flag
);
2894 if (!tcp_time_to_recover(sk
, flag
)) {
2895 tcp_try_to_open(sk
, flag
);
2899 /* MTU probe failure: don't reduce cwnd */
2900 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2901 icsk
->icsk_mtup
.probe_size
&&
2902 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2903 tcp_mtup_probe_failed(sk
);
2904 /* Restores the reduction we did in tcp_mtup_probe() */
2906 tcp_simple_retransmit(sk
);
2910 /* Otherwise enter Recovery state */
2911 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2916 tcp_update_scoreboard(sk
, fast_rexmit
);
2917 *rexmit
= REXMIT_LOST
;
2920 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2922 struct tcp_sock
*tp
= tcp_sk(sk
);
2923 u32 wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2925 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
2926 rtt_us
? : jiffies_to_usecs(1));
2929 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2930 long seq_rtt_us
, long sack_rtt_us
,
2931 long ca_rtt_us
, struct rate_sample
*rs
)
2933 const struct tcp_sock
*tp
= tcp_sk(sk
);
2935 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2936 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2937 * Karn's algorithm forbids taking RTT if some retransmitted data
2938 * is acked (RFC6298).
2941 seq_rtt_us
= sack_rtt_us
;
2943 /* RTTM Rule: A TSecr value received in a segment is used to
2944 * update the averaged RTT measurement only if the segment
2945 * acknowledges some new data, i.e., only if it advances the
2946 * left edge of the send window.
2947 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2949 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2950 flag
& FLAG_ACKED
) {
2951 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
2952 u32 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
2954 seq_rtt_us
= ca_rtt_us
= delta_us
;
2956 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
2960 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2961 * always taken together with ACK, SACK, or TS-opts. Any negative
2962 * values will be skipped with the seq_rtt_us < 0 check above.
2964 tcp_update_rtt_min(sk
, ca_rtt_us
);
2965 tcp_rtt_estimator(sk
, seq_rtt_us
);
2968 /* RFC6298: only reset backoff on valid RTT measurement. */
2969 inet_csk(sk
)->icsk_backoff
= 0;
2973 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2974 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2976 struct rate_sample rs
;
2979 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
2980 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
2982 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
2986 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2988 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2990 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2991 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
2994 /* Restart timer after forward progress on connection.
2995 * RFC2988 recommends to restart timer to now+rto.
2997 void tcp_rearm_rto(struct sock
*sk
)
2999 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3000 struct tcp_sock
*tp
= tcp_sk(sk
);
3002 /* If the retrans timer is currently being used by Fast Open
3003 * for SYN-ACK retrans purpose, stay put.
3005 if (tp
->fastopen_rsk
)
3008 if (!tp
->packets_out
) {
3009 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3011 u32 rto
= inet_csk(sk
)->icsk_rto
;
3012 /* Offset the time elapsed after installing regular RTO */
3013 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
3014 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3015 s64 delta_us
= tcp_rto_delta_us(sk
);
3016 /* delta_us may not be positive if the socket is locked
3017 * when the retrans timer fires and is rescheduled.
3019 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
3021 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3026 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3027 static void tcp_set_xmit_timer(struct sock
*sk
)
3029 if (!tcp_schedule_loss_probe(sk
, true))
3033 /* If we get here, the whole TSO packet has not been acked. */
3034 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3036 struct tcp_sock
*tp
= tcp_sk(sk
);
3039 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3041 packets_acked
= tcp_skb_pcount(skb
);
3042 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3044 packets_acked
-= tcp_skb_pcount(skb
);
3046 if (packets_acked
) {
3047 BUG_ON(tcp_skb_pcount(skb
) == 0);
3048 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3051 return packets_acked
;
3054 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3057 const struct skb_shared_info
*shinfo
;
3059 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3060 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3063 shinfo
= skb_shinfo(skb
);
3064 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3065 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3066 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3069 /* Remove acknowledged frames from the retransmission queue. If our packet
3070 * is before the ack sequence we can discard it as it's confirmed to have
3071 * arrived at the other end.
3073 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3074 u32 prior_snd_una
, int *acked
,
3075 struct tcp_sacktag_state
*sack
)
3077 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3078 u64 first_ackt
, last_ackt
;
3079 struct tcp_sock
*tp
= tcp_sk(sk
);
3080 u32 prior_sacked
= tp
->sacked_out
;
3081 u32 reord
= tp
->packets_out
;
3082 bool fully_acked
= true;
3083 long sack_rtt_us
= -1L;
3084 long seq_rtt_us
= -1L;
3085 long ca_rtt_us
= -1L;
3086 struct sk_buff
*skb
;
3088 u32 last_in_flight
= 0;
3094 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3095 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3096 u8 sacked
= scb
->sacked
;
3099 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3101 /* Determine how many packets and what bytes were acked, tso and else */
3102 if (after(scb
->end_seq
, tp
->snd_una
)) {
3103 if (tcp_skb_pcount(skb
) == 1 ||
3104 !after(tp
->snd_una
, scb
->seq
))
3107 acked_pcount
= tcp_tso_acked(sk
, skb
);
3110 fully_acked
= false;
3112 /* Speedup tcp_unlink_write_queue() and next loop */
3113 prefetchw(skb
->next
);
3114 acked_pcount
= tcp_skb_pcount(skb
);
3117 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3118 if (sacked
& TCPCB_SACKED_RETRANS
)
3119 tp
->retrans_out
-= acked_pcount
;
3120 flag
|= FLAG_RETRANS_DATA_ACKED
;
3121 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3122 last_ackt
= skb
->skb_mstamp
;
3123 WARN_ON_ONCE(last_ackt
== 0);
3125 first_ackt
= last_ackt
;
3127 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3128 reord
= min(pkts_acked
, reord
);
3129 if (!after(scb
->end_seq
, tp
->high_seq
))
3130 flag
|= FLAG_ORIG_SACK_ACKED
;
3133 if (sacked
& TCPCB_SACKED_ACKED
) {
3134 tp
->sacked_out
-= acked_pcount
;
3135 } else if (tcp_is_sack(tp
)) {
3136 tp
->delivered
+= acked_pcount
;
3137 if (!tcp_skb_spurious_retrans(tp
, skb
))
3138 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3141 if (sacked
& TCPCB_LOST
)
3142 tp
->lost_out
-= acked_pcount
;
3144 tp
->packets_out
-= acked_pcount
;
3145 pkts_acked
+= acked_pcount
;
3146 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3148 /* Initial outgoing SYN's get put onto the write_queue
3149 * just like anything else we transmit. It is not
3150 * true data, and if we misinform our callers that
3151 * this ACK acks real data, we will erroneously exit
3152 * connection startup slow start one packet too
3153 * quickly. This is severely frowned upon behavior.
3155 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3156 flag
|= FLAG_DATA_ACKED
;
3158 flag
|= FLAG_SYN_ACKED
;
3159 tp
->retrans_stamp
= 0;
3165 tcp_unlink_write_queue(skb
, sk
);
3166 sk_wmem_free_skb(sk
, skb
);
3167 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3168 tp
->retransmit_skb_hint
= NULL
;
3169 if (unlikely(skb
== tp
->lost_skb_hint
))
3170 tp
->lost_skb_hint
= NULL
;
3174 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3176 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3177 tp
->snd_up
= tp
->snd_una
;
3179 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3180 flag
|= FLAG_SACK_RENEGING
;
3182 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3183 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3184 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3186 if (sack
->first_sackt
) {
3187 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3188 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3190 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3191 ca_rtt_us
, sack
->rate
);
3193 if (flag
& FLAG_ACKED
) {
3194 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3195 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3196 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3197 tcp_mtup_probe_success(sk
);
3200 if (tcp_is_reno(tp
)) {
3201 tcp_remove_reno_sacks(sk
, pkts_acked
);
3203 /* If any of the cumulatively ACKed segments was
3204 * retransmitted, non-SACK case cannot confirm that
3205 * progress was due to original transmission due to
3206 * lack of TCPCB_SACKED_ACKED bits even if some of
3207 * the packets may have been never retransmitted.
3209 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3210 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3214 /* Non-retransmitted hole got filled? That's reordering */
3215 if (reord
< prior_fackets
&& reord
<= tp
->fackets_out
)
3216 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3218 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3219 prior_sacked
- tp
->sacked_out
;
3220 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3223 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3225 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3226 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
, skb
->skb_mstamp
)) {
3227 /* Do not re-arm RTO if the sack RTT is measured from data sent
3228 * after when the head was last (re)transmitted. Otherwise the
3229 * timeout may continue to extend in loss recovery.
3231 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3234 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3235 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3236 .rtt_us
= sack
->rate
->rtt_us
,
3237 .in_flight
= last_in_flight
};
3239 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3242 #if FASTRETRANS_DEBUG > 0
3243 WARN_ON((int)tp
->sacked_out
< 0);
3244 WARN_ON((int)tp
->lost_out
< 0);
3245 WARN_ON((int)tp
->retrans_out
< 0);
3246 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3247 icsk
= inet_csk(sk
);
3249 pr_debug("Leak l=%u %d\n",
3250 tp
->lost_out
, icsk
->icsk_ca_state
);
3253 if (tp
->sacked_out
) {
3254 pr_debug("Leak s=%u %d\n",
3255 tp
->sacked_out
, icsk
->icsk_ca_state
);
3258 if (tp
->retrans_out
) {
3259 pr_debug("Leak r=%u %d\n",
3260 tp
->retrans_out
, icsk
->icsk_ca_state
);
3261 tp
->retrans_out
= 0;
3265 *acked
= pkts_acked
;
3269 static void tcp_ack_probe(struct sock
*sk
)
3271 const struct tcp_sock
*tp
= tcp_sk(sk
);
3272 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3274 /* Was it a usable window open? */
3276 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3277 icsk
->icsk_backoff
= 0;
3278 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3279 /* Socket must be waked up by subsequent tcp_data_snd_check().
3280 * This function is not for random using!
3283 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3285 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3290 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3292 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3293 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3296 /* Decide wheather to run the increase function of congestion control. */
3297 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3299 /* If reordering is high then always grow cwnd whenever data is
3300 * delivered regardless of its ordering. Otherwise stay conservative
3301 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3302 * new SACK or ECE mark may first advance cwnd here and later reduce
3303 * cwnd in tcp_fastretrans_alert() based on more states.
3305 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3306 return flag
& FLAG_FORWARD_PROGRESS
;
3308 return flag
& FLAG_DATA_ACKED
;
3311 /* The "ultimate" congestion control function that aims to replace the rigid
3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3313 * It's called toward the end of processing an ACK with precise rate
3314 * information. All transmission or retransmission are delayed afterwards.
3316 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3317 int flag
, const struct rate_sample
*rs
)
3319 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3321 if (icsk
->icsk_ca_ops
->cong_control
) {
3322 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3326 if (tcp_in_cwnd_reduction(sk
)) {
3327 /* Reduce cwnd if state mandates */
3328 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3329 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3330 /* Advance cwnd if state allows */
3331 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3333 tcp_update_pacing_rate(sk
);
3336 /* Check that window update is acceptable.
3337 * The function assumes that snd_una<=ack<=snd_next.
3339 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3340 const u32 ack
, const u32 ack_seq
,
3343 return after(ack
, tp
->snd_una
) ||
3344 after(ack_seq
, tp
->snd_wl1
) ||
3345 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3348 /* If we update tp->snd_una, also update tp->bytes_acked */
3349 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3351 u32 delta
= ack
- tp
->snd_una
;
3353 sock_owned_by_me((struct sock
*)tp
);
3354 tp
->bytes_acked
+= delta
;
3358 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3359 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3361 u32 delta
= seq
- tp
->rcv_nxt
;
3363 sock_owned_by_me((struct sock
*)tp
);
3364 tp
->bytes_received
+= delta
;
3368 /* Update our send window.
3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3373 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3376 struct tcp_sock
*tp
= tcp_sk(sk
);
3378 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3380 if (likely(!tcp_hdr(skb
)->syn
))
3381 nwin
<<= tp
->rx_opt
.snd_wscale
;
3383 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3384 flag
|= FLAG_WIN_UPDATE
;
3385 tcp_update_wl(tp
, ack_seq
);
3387 if (tp
->snd_wnd
!= nwin
) {
3390 /* Note, it is the only place, where
3391 * fast path is recovered for sending TCP.
3394 tcp_fast_path_check(sk
);
3396 if (tcp_send_head(sk
))
3397 tcp_slow_start_after_idle_check(sk
);
3399 if (nwin
> tp
->max_window
) {
3400 tp
->max_window
= nwin
;
3401 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3406 tcp_snd_una_update(tp
, ack
);
3411 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3412 u32
*last_oow_ack_time
)
3414 if (*last_oow_ack_time
) {
3415 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3417 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3418 NET_INC_STATS(net
, mib_idx
);
3419 return true; /* rate-limited: don't send yet! */
3423 *last_oow_ack_time
= tcp_jiffies32
;
3425 return false; /* not rate-limited: go ahead, send dupack now! */
3428 /* Return true if we're currently rate-limiting out-of-window ACKs and
3429 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3430 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3431 * attacks that send repeated SYNs or ACKs for the same connection. To
3432 * do this, we do not send a duplicate SYNACK or ACK if the remote
3433 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3435 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3436 int mib_idx
, u32
*last_oow_ack_time
)
3438 /* Data packets without SYNs are not likely part of an ACK loop. */
3439 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3443 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3446 /* RFC 5961 7 [ACK Throttling] */
3447 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3449 /* unprotected vars, we dont care of overwrites */
3450 static u32 challenge_timestamp
;
3451 static unsigned int challenge_count
;
3452 struct tcp_sock
*tp
= tcp_sk(sk
);
3455 /* First check our per-socket dupack rate limit. */
3456 if (__tcp_oow_rate_limited(sock_net(sk
),
3457 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3458 &tp
->last_oow_ack_time
))
3461 /* Then check host-wide RFC 5961 rate limit. */
3463 if (now
!= challenge_timestamp
) {
3464 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3466 challenge_timestamp
= now
;
3467 WRITE_ONCE(challenge_count
, half
+
3468 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3470 count
= READ_ONCE(challenge_count
);
3472 WRITE_ONCE(challenge_count
, count
- 1);
3473 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3478 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3480 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3481 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3484 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3486 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3487 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3488 * extra check below makes sure this can only happen
3489 * for pure ACK frames. -DaveM
3491 * Not only, also it occurs for expired timestamps.
3494 if (tcp_paws_check(&tp
->rx_opt
, 0))
3495 tcp_store_ts_recent(tp
);
3499 /* This routine deals with acks during a TLP episode.
3500 * We mark the end of a TLP episode on receiving TLP dupack or when
3501 * ack is after tlp_high_seq.
3502 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3504 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3506 struct tcp_sock
*tp
= tcp_sk(sk
);
3508 if (before(ack
, tp
->tlp_high_seq
))
3511 if (flag
& FLAG_DSACKING_ACK
) {
3512 /* This DSACK means original and TLP probe arrived; no loss */
3513 tp
->tlp_high_seq
= 0;
3514 } else if (after(ack
, tp
->tlp_high_seq
)) {
3515 /* ACK advances: there was a loss, so reduce cwnd. Reset
3516 * tlp_high_seq in tcp_init_cwnd_reduction()
3518 tcp_init_cwnd_reduction(sk
);
3519 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3520 tcp_end_cwnd_reduction(sk
);
3521 tcp_try_keep_open(sk
);
3522 NET_INC_STATS(sock_net(sk
),
3523 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3524 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3525 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3526 /* Pure dupack: original and TLP probe arrived; no loss */
3527 tp
->tlp_high_seq
= 0;
3531 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3533 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3535 if (icsk
->icsk_ca_ops
->in_ack_event
)
3536 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3539 /* Congestion control has updated the cwnd already. So if we're in
3540 * loss recovery then now we do any new sends (for FRTO) or
3541 * retransmits (for CA_Loss or CA_recovery) that make sense.
3543 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3545 struct tcp_sock
*tp
= tcp_sk(sk
);
3547 if (rexmit
== REXMIT_NONE
)
3550 if (unlikely(rexmit
== 2)) {
3551 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3553 if (after(tp
->snd_nxt
, tp
->high_seq
))
3557 tcp_xmit_retransmit_queue(sk
);
3560 /* This routine deals with incoming acks, but not outgoing ones. */
3561 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3563 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3564 struct tcp_sock
*tp
= tcp_sk(sk
);
3565 struct tcp_sacktag_state sack_state
;
3566 struct rate_sample rs
= { .prior_delivered
= 0 };
3567 u32 prior_snd_una
= tp
->snd_una
;
3568 bool is_sack_reneg
= tp
->is_sack_reneg
;
3569 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3570 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3571 bool is_dupack
= false;
3573 int prior_packets
= tp
->packets_out
;
3574 u32 delivered
= tp
->delivered
;
3575 u32 lost
= tp
->lost
;
3576 int acked
= 0; /* Number of packets newly acked */
3577 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3579 sack_state
.first_sackt
= 0;
3580 sack_state
.rate
= &rs
;
3582 /* We very likely will need to access write queue head. */
3583 prefetchw(sk
->sk_write_queue
.next
);
3585 /* If the ack is older than previous acks
3586 * then we can probably ignore it.
3588 if (before(ack
, prior_snd_una
)) {
3589 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3590 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3591 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3592 tcp_send_challenge_ack(sk
, skb
);
3598 /* If the ack includes data we haven't sent yet, discard
3599 * this segment (RFC793 Section 3.9).
3601 if (after(ack
, tp
->snd_nxt
))
3604 if (after(ack
, prior_snd_una
)) {
3605 flag
|= FLAG_SND_UNA_ADVANCED
;
3606 icsk
->icsk_retransmits
= 0;
3609 prior_fackets
= tp
->fackets_out
;
3610 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3612 /* ts_recent update must be made after we are sure that the packet
3615 if (flag
& FLAG_UPDATE_TS_RECENT
)
3616 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3618 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3619 /* Window is constant, pure forward advance.
3620 * No more checks are required.
3621 * Note, we use the fact that SND.UNA>=SND.WL2.
3623 tcp_update_wl(tp
, ack_seq
);
3624 tcp_snd_una_update(tp
, ack
);
3625 flag
|= FLAG_WIN_UPDATE
;
3627 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3629 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3631 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3633 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3636 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3638 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3640 if (TCP_SKB_CB(skb
)->sacked
)
3641 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3644 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3646 ack_ev_flags
|= CA_ACK_ECE
;
3649 if (flag
& FLAG_WIN_UPDATE
)
3650 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3652 tcp_in_ack_event(sk
, ack_ev_flags
);
3655 /* We passed data and got it acked, remove any soft error
3656 * log. Something worked...
3658 sk
->sk_err_soft
= 0;
3659 icsk
->icsk_probes_out
= 0;
3660 tp
->rcv_tstamp
= tcp_jiffies32
;
3664 /* See if we can take anything off of the retransmit queue. */
3665 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3668 if (tp
->tlp_high_seq
)
3669 tcp_process_tlp_ack(sk
, ack
, flag
);
3670 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3671 if (flag
& FLAG_SET_XMIT_TIMER
)
3672 tcp_set_xmit_timer(sk
);
3674 if (tcp_ack_is_dubious(sk
, flag
)) {
3675 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3676 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3679 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3682 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3683 lost
= tp
->lost
- lost
; /* freshly marked lost */
3684 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3685 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3686 tcp_xmit_recovery(sk
, rexmit
);
3690 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3691 if (flag
& FLAG_DSACKING_ACK
)
3692 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3693 /* If this ack opens up a zero window, clear backoff. It was
3694 * being used to time the probes, and is probably far higher than
3695 * it needs to be for normal retransmission.
3697 if (tcp_send_head(sk
))
3700 if (tp
->tlp_high_seq
)
3701 tcp_process_tlp_ack(sk
, ack
, flag
);
3705 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3709 /* If data was SACKed, tag it and see if we should send more data.
3710 * If data was DSACKed, see if we can undo a cwnd reduction.
3712 if (TCP_SKB_CB(skb
)->sacked
) {
3713 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3715 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3716 tcp_xmit_recovery(sk
, rexmit
);
3719 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3723 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3724 bool syn
, struct tcp_fastopen_cookie
*foc
,
3727 /* Valid only in SYN or SYN-ACK with an even length. */
3728 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3731 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3732 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3733 memcpy(foc
->val
, cookie
, len
);
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3744 void tcp_parse_options(const struct net
*net
,
3745 const struct sk_buff
*skb
,
3746 struct tcp_options_received
*opt_rx
, int estab
,
3747 struct tcp_fastopen_cookie
*foc
)
3749 const unsigned char *ptr
;
3750 const struct tcphdr
*th
= tcp_hdr(skb
);
3751 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3753 ptr
= (const unsigned char *)(th
+ 1);
3754 opt_rx
->saw_tstamp
= 0;
3756 while (length
> 0) {
3757 int opcode
= *ptr
++;
3763 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3768 if (opsize
< 2) /* "silly options" */
3770 if (opsize
> length
)
3771 return; /* don't parse partial options */
3774 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3775 u16 in_mss
= get_unaligned_be16(ptr
);
3777 if (opt_rx
->user_mss
&&
3778 opt_rx
->user_mss
< in_mss
)
3779 in_mss
= opt_rx
->user_mss
;
3780 opt_rx
->mss_clamp
= in_mss
;
3785 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3786 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
3787 __u8 snd_wscale
= *(__u8
*)ptr
;
3788 opt_rx
->wscale_ok
= 1;
3789 if (snd_wscale
> TCP_MAX_WSCALE
) {
3790 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3794 snd_wscale
= TCP_MAX_WSCALE
;
3796 opt_rx
->snd_wscale
= snd_wscale
;
3799 case TCPOPT_TIMESTAMP
:
3800 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3801 ((estab
&& opt_rx
->tstamp_ok
) ||
3802 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
3803 opt_rx
->saw_tstamp
= 1;
3804 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3805 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3808 case TCPOPT_SACK_PERM
:
3809 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3810 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
3811 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3812 tcp_sack_reset(opt_rx
);
3817 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3818 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3820 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3823 #ifdef CONFIG_TCP_MD5SIG
3826 * The MD5 Hash has already been
3827 * checked (see tcp_v{4,6}_do_rcv()).
3831 case TCPOPT_FASTOPEN
:
3832 tcp_parse_fastopen_option(
3833 opsize
- TCPOLEN_FASTOPEN_BASE
,
3834 ptr
, th
->syn
, foc
, false);
3838 /* Fast Open option shares code 254 using a
3839 * 16 bits magic number.
3841 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3842 get_unaligned_be16(ptr
) ==
3843 TCPOPT_FASTOPEN_MAGIC
)
3844 tcp_parse_fastopen_option(opsize
-
3845 TCPOLEN_EXP_FASTOPEN_BASE
,
3846 ptr
+ 2, th
->syn
, foc
, true);
3855 EXPORT_SYMBOL(tcp_parse_options
);
3857 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3859 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3861 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3862 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3863 tp
->rx_opt
.saw_tstamp
= 1;
3865 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3868 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3870 tp
->rx_opt
.rcv_tsecr
= 0;
3876 /* Fast parse options. This hopes to only see timestamps.
3877 * If it is wrong it falls back on tcp_parse_options().
3879 static bool tcp_fast_parse_options(const struct net
*net
,
3880 const struct sk_buff
*skb
,
3881 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3883 /* In the spirit of fast parsing, compare doff directly to constant
3884 * values. Because equality is used, short doff can be ignored here.
3886 if (th
->doff
== (sizeof(*th
) / 4)) {
3887 tp
->rx_opt
.saw_tstamp
= 0;
3889 } else if (tp
->rx_opt
.tstamp_ok
&&
3890 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3891 if (tcp_parse_aligned_timestamp(tp
, th
))
3895 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
3896 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3897 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3902 #ifdef CONFIG_TCP_MD5SIG
3904 * Parse MD5 Signature option
3906 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3908 int length
= (th
->doff
<< 2) - sizeof(*th
);
3909 const u8
*ptr
= (const u8
*)(th
+ 1);
3911 /* If not enough data remaining, we can short cut */
3912 while (length
>= TCPOLEN_MD5SIG
) {
3913 int opcode
= *ptr
++;
3924 if (opsize
< 2 || opsize
> length
)
3926 if (opcode
== TCPOPT_MD5SIG
)
3927 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3934 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3937 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3940 * it can pass through stack. So, the following predicate verifies that
3941 * this segment is not used for anything but congestion avoidance or
3942 * fast retransmit. Moreover, we even are able to eliminate most of such
3943 * second order effects, if we apply some small "replay" window (~RTO)
3944 * to timestamp space.
3946 * All these measures still do not guarantee that we reject wrapped ACKs
3947 * on networks with high bandwidth, when sequence space is recycled fastly,
3948 * but it guarantees that such events will be very rare and do not affect
3949 * connection seriously. This doesn't look nice, but alas, PAWS is really
3952 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3953 * states that events when retransmit arrives after original data are rare.
3954 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3955 * the biggest problem on large power networks even with minor reordering.
3956 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3957 * up to bandwidth of 18Gigabit/sec. 8) ]
3960 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3962 const struct tcp_sock
*tp
= tcp_sk(sk
);
3963 const struct tcphdr
*th
= tcp_hdr(skb
);
3964 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3965 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3967 return (/* 1. Pure ACK with correct sequence number. */
3968 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3970 /* 2. ... and duplicate ACK. */
3971 ack
== tp
->snd_una
&&
3973 /* 3. ... and does not update window. */
3974 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3976 /* 4. ... and sits in replay window. */
3977 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3980 static inline bool tcp_paws_discard(const struct sock
*sk
,
3981 const struct sk_buff
*skb
)
3983 const struct tcp_sock
*tp
= tcp_sk(sk
);
3985 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3986 !tcp_disordered_ack(sk
, skb
);
3989 /* Check segment sequence number for validity.
3991 * Segment controls are considered valid, if the segment
3992 * fits to the window after truncation to the window. Acceptability
3993 * of data (and SYN, FIN, of course) is checked separately.
3994 * See tcp_data_queue(), for example.
3996 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3997 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3998 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3999 * (borrowed from freebsd)
4002 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4004 return !before(end_seq
, tp
->rcv_wup
) &&
4005 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4008 /* When we get a reset we do this. */
4009 void tcp_reset(struct sock
*sk
)
4011 /* We want the right error as BSD sees it (and indeed as we do). */
4012 switch (sk
->sk_state
) {
4014 sk
->sk_err
= ECONNREFUSED
;
4016 case TCP_CLOSE_WAIT
:
4022 sk
->sk_err
= ECONNRESET
;
4024 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4027 tcp_write_queue_purge(sk
);
4030 if (!sock_flag(sk
, SOCK_DEAD
))
4031 sk
->sk_error_report(sk
);
4035 * Process the FIN bit. This now behaves as it is supposed to work
4036 * and the FIN takes effect when it is validly part of sequence
4037 * space. Not before when we get holes.
4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 * close and we go into CLOSING (and later onto TIME-WAIT)
4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4048 void tcp_fin(struct sock
*sk
)
4050 struct tcp_sock
*tp
= tcp_sk(sk
);
4052 inet_csk_schedule_ack(sk
);
4054 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4055 sock_set_flag(sk
, SOCK_DONE
);
4057 switch (sk
->sk_state
) {
4059 case TCP_ESTABLISHED
:
4060 /* Move to CLOSE_WAIT */
4061 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4062 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4065 case TCP_CLOSE_WAIT
:
4067 /* Received a retransmission of the FIN, do
4072 /* RFC793: Remain in the LAST-ACK state. */
4076 /* This case occurs when a simultaneous close
4077 * happens, we must ack the received FIN and
4078 * enter the CLOSING state.
4081 tcp_set_state(sk
, TCP_CLOSING
);
4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4086 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090 * cases we should never reach this piece of code.
4092 pr_err("%s: Impossible, sk->sk_state=%d\n",
4093 __func__
, sk
->sk_state
);
4097 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098 * Probably, we should reset in this case. For now drop them.
4100 skb_rbtree_purge(&tp
->out_of_order_queue
);
4101 if (tcp_is_sack(tp
))
4102 tcp_sack_reset(&tp
->rx_opt
);
4105 if (!sock_flag(sk
, SOCK_DEAD
)) {
4106 sk
->sk_state_change(sk
);
4108 /* Do not send POLL_HUP for half duplex close. */
4109 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4110 sk
->sk_state
== TCP_CLOSE
)
4111 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4113 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4117 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4120 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4121 if (before(seq
, sp
->start_seq
))
4122 sp
->start_seq
= seq
;
4123 if (after(end_seq
, sp
->end_seq
))
4124 sp
->end_seq
= end_seq
;
4130 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4132 struct tcp_sock
*tp
= tcp_sk(sk
);
4134 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4137 if (before(seq
, tp
->rcv_nxt
))
4138 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4140 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4142 NET_INC_STATS(sock_net(sk
), mib_idx
);
4144 tp
->rx_opt
.dsack
= 1;
4145 tp
->duplicate_sack
[0].start_seq
= seq
;
4146 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4150 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4152 struct tcp_sock
*tp
= tcp_sk(sk
);
4154 if (!tp
->rx_opt
.dsack
)
4155 tcp_dsack_set(sk
, seq
, end_seq
);
4157 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4160 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4162 struct tcp_sock
*tp
= tcp_sk(sk
);
4164 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4165 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4166 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4167 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4169 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4170 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4172 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4173 end_seq
= tp
->rcv_nxt
;
4174 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4187 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4188 struct tcp_sack_block
*swalk
= sp
+ 1;
4190 /* See if the recent change to the first SACK eats into
4191 * or hits the sequence space of other SACK blocks, if so coalesce.
4193 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4194 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4197 /* Zap SWALK, by moving every further SACK up by one slot.
4198 * Decrease num_sacks.
4200 tp
->rx_opt
.num_sacks
--;
4201 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4205 this_sack
++, swalk
++;
4209 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4211 struct tcp_sock
*tp
= tcp_sk(sk
);
4212 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4213 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4219 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4220 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4221 /* Rotate this_sack to the first one. */
4222 for (; this_sack
> 0; this_sack
--, sp
--)
4223 swap(*sp
, *(sp
- 1));
4225 tcp_sack_maybe_coalesce(tp
);
4230 /* Could not find an adjacent existing SACK, build a new one,
4231 * put it at the front, and shift everyone else down. We
4232 * always know there is at least one SACK present already here.
4234 * If the sack array is full, forget about the last one.
4236 if (this_sack
>= TCP_NUM_SACKS
) {
4238 tp
->rx_opt
.num_sacks
--;
4241 for (; this_sack
> 0; this_sack
--, sp
--)
4245 /* Build the new head SACK, and we're done. */
4246 sp
->start_seq
= seq
;
4247 sp
->end_seq
= end_seq
;
4248 tp
->rx_opt
.num_sacks
++;
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4253 static void tcp_sack_remove(struct tcp_sock
*tp
)
4255 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4256 int num_sacks
= tp
->rx_opt
.num_sacks
;
4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4261 tp
->rx_opt
.num_sacks
= 0;
4265 for (this_sack
= 0; this_sack
< num_sacks
;) {
4266 /* Check if the start of the sack is covered by RCV.NXT. */
4267 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4270 /* RCV.NXT must cover all the block! */
4271 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4273 /* Zap this SACK, by moving forward any other SACKS. */
4274 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4275 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4282 tp
->rx_opt
.num_sacks
= num_sacks
;
4291 * tcp_try_coalesce - try to merge skb to prior one
4293 * @dest: destination queue
4295 * @from: buffer to add in queue
4296 * @fragstolen: pointer to boolean
4298 * Before queueing skb @from after @to, try to merge them
4299 * to reduce overall memory use and queue lengths, if cost is small.
4300 * Packets in ofo or receive queues can stay a long time.
4301 * Better try to coalesce them right now to avoid future collapses.
4302 * Returns true if caller should free @from instead of queueing it
4304 static bool tcp_try_coalesce(struct sock
*sk
,
4305 enum tcp_queue dest
,
4307 struct sk_buff
*from
,
4312 *fragstolen
= false;
4314 /* Its possible this segment overlaps with prior segment in queue */
4315 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4318 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4321 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4322 sk_mem_charge(sk
, delta
);
4323 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4324 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4325 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4326 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4328 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4329 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4330 if (dest
== OOO_QUEUE
)
4331 TCP_SKB_CB(to
)->swtstamp
= TCP_SKB_CB(from
)->swtstamp
;
4333 to
->tstamp
= from
->tstamp
;
4339 static bool tcp_ooo_try_coalesce(struct sock
*sk
,
4341 struct sk_buff
*from
,
4344 bool res
= tcp_try_coalesce(sk
, OOO_QUEUE
, to
, from
, fragstolen
);
4346 /* In case tcp_drop() is called later, update to->gso_segs */
4348 u32 gso_segs
= max_t(u16
, 1, skb_shinfo(to
)->gso_segs
) +
4349 max_t(u16
, 1, skb_shinfo(from
)->gso_segs
);
4351 skb_shinfo(to
)->gso_segs
= min_t(u32
, gso_segs
, 0xFFFF);
4356 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4358 sk_drops_add(sk
, skb
);
4362 /* This one checks to see if we can put data from the
4363 * out_of_order queue into the receive_queue.
4365 static void tcp_ofo_queue(struct sock
*sk
)
4367 struct tcp_sock
*tp
= tcp_sk(sk
);
4368 __u32 dsack_high
= tp
->rcv_nxt
;
4369 bool fin
, fragstolen
, eaten
;
4370 struct sk_buff
*skb
, *tail
;
4373 p
= rb_first(&tp
->out_of_order_queue
);
4376 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4379 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4380 __u32 dsack
= dsack_high
;
4381 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4382 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4383 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4386 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4387 /* Replace tstamp which was stomped by rbnode */
4388 if (TCP_SKB_CB(skb
)->has_rxtstamp
)
4389 skb
->tstamp
= TCP_SKB_CB(skb
)->swtstamp
;
4391 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4392 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4396 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4397 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4398 TCP_SKB_CB(skb
)->end_seq
);
4400 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4401 eaten
= tail
&& tcp_try_coalesce(sk
, RCV_QUEUE
,
4402 tail
, skb
, &fragstolen
);
4403 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4404 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4406 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4408 kfree_skb_partial(skb
, fragstolen
);
4410 if (unlikely(fin
)) {
4412 /* tcp_fin() purges tp->out_of_order_queue,
4413 * so we must end this loop right now.
4420 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4421 static int tcp_prune_queue(struct sock
*sk
);
4423 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4426 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4427 !sk_rmem_schedule(sk
, skb
, size
)) {
4429 if (tcp_prune_queue(sk
) < 0)
4432 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4433 if (!tcp_prune_ofo_queue(sk
))
4440 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4442 struct tcp_sock
*tp
= tcp_sk(sk
);
4443 struct rb_node
**p
, *parent
;
4444 struct sk_buff
*skb1
;
4448 tcp_ecn_check_ce(sk
, skb
);
4450 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4451 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4456 /* Stash tstamp to avoid being stomped on by rbnode */
4457 if (TCP_SKB_CB(skb
)->has_rxtstamp
)
4458 TCP_SKB_CB(skb
)->swtstamp
= skb
->tstamp
;
4460 /* Disable header prediction. */
4462 inet_csk_schedule_ack(sk
);
4464 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4465 seq
= TCP_SKB_CB(skb
)->seq
;
4466 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4467 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4468 tp
->rcv_nxt
, seq
, end_seq
);
4470 p
= &tp
->out_of_order_queue
.rb_node
;
4471 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4472 /* Initial out of order segment, build 1 SACK. */
4473 if (tcp_is_sack(tp
)) {
4474 tp
->rx_opt
.num_sacks
= 1;
4475 tp
->selective_acks
[0].start_seq
= seq
;
4476 tp
->selective_acks
[0].end_seq
= end_seq
;
4478 rb_link_node(&skb
->rbnode
, NULL
, p
);
4479 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4480 tp
->ooo_last_skb
= skb
;
4484 /* In the typical case, we are adding an skb to the end of the list.
4485 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4487 if (tcp_ooo_try_coalesce(sk
, tp
->ooo_last_skb
,
4488 skb
, &fragstolen
)) {
4490 tcp_grow_window(sk
, skb
);
4491 kfree_skb_partial(skb
, fragstolen
);
4495 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4496 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4497 parent
= &tp
->ooo_last_skb
->rbnode
;
4498 p
= &parent
->rb_right
;
4502 /* Find place to insert this segment. Handle overlaps on the way. */
4506 skb1
= rb_to_skb(parent
);
4507 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4508 p
= &parent
->rb_left
;
4511 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4512 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4513 /* All the bits are present. Drop. */
4514 NET_INC_STATS(sock_net(sk
),
4515 LINUX_MIB_TCPOFOMERGE
);
4518 tcp_dsack_set(sk
, seq
, end_seq
);
4521 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4522 /* Partial overlap. */
4523 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4525 /* skb's seq == skb1's seq and skb covers skb1.
4526 * Replace skb1 with skb.
4528 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4529 &tp
->out_of_order_queue
);
4530 tcp_dsack_extend(sk
,
4531 TCP_SKB_CB(skb1
)->seq
,
4532 TCP_SKB_CB(skb1
)->end_seq
);
4533 NET_INC_STATS(sock_net(sk
),
4534 LINUX_MIB_TCPOFOMERGE
);
4538 } else if (tcp_ooo_try_coalesce(sk
, skb1
,
4539 skb
, &fragstolen
)) {
4542 p
= &parent
->rb_right
;
4545 /* Insert segment into RB tree. */
4546 rb_link_node(&skb
->rbnode
, parent
, p
);
4547 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4550 /* Remove other segments covered by skb. */
4551 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4552 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4554 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4555 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4559 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4560 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4561 TCP_SKB_CB(skb1
)->end_seq
);
4562 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4565 /* If there is no skb after us, we are the last_skb ! */
4567 tp
->ooo_last_skb
= skb
;
4570 if (tcp_is_sack(tp
))
4571 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4574 tcp_grow_window(sk
, skb
);
4576 skb_set_owner_r(skb
, sk
);
4580 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4584 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4586 __skb_pull(skb
, hdrlen
);
4588 tcp_try_coalesce(sk
, RCV_QUEUE
, tail
,
4589 skb
, fragstolen
)) ? 1 : 0;
4590 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4592 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4593 skb_set_owner_r(skb
, sk
);
4598 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4600 struct sk_buff
*skb
;
4608 if (size
> PAGE_SIZE
) {
4609 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4611 data_len
= npages
<< PAGE_SHIFT
;
4612 size
= data_len
+ (size
& ~PAGE_MASK
);
4614 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4615 PAGE_ALLOC_COSTLY_ORDER
,
4616 &err
, sk
->sk_allocation
);
4620 skb_put(skb
, size
- data_len
);
4621 skb
->data_len
= data_len
;
4624 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4627 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4631 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4632 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4633 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4635 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4636 WARN_ON_ONCE(fragstolen
); /* should not happen */
4648 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4650 struct tcp_sock
*tp
= tcp_sk(sk
);
4654 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4659 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4661 tcp_ecn_accept_cwr(tp
, skb
);
4663 tp
->rx_opt
.dsack
= 0;
4665 /* Queue data for delivery to the user.
4666 * Packets in sequence go to the receive queue.
4667 * Out of sequence packets to the out_of_order_queue.
4669 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4670 if (tcp_receive_window(tp
) == 0)
4673 /* Ok. In sequence. In window. */
4675 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4676 sk_forced_mem_schedule(sk
, skb
->truesize
);
4677 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4680 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4681 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4683 tcp_event_data_recv(sk
, skb
);
4684 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4687 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4690 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4691 * gap in queue is filled.
4693 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4694 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4697 if (tp
->rx_opt
.num_sacks
)
4698 tcp_sack_remove(tp
);
4700 tcp_fast_path_check(sk
);
4703 kfree_skb_partial(skb
, fragstolen
);
4704 if (!sock_flag(sk
, SOCK_DEAD
))
4705 sk
->sk_data_ready(sk
);
4709 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4710 /* A retransmit, 2nd most common case. Force an immediate ack. */
4711 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4712 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4715 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4716 inet_csk_schedule_ack(sk
);
4722 /* Out of window. F.e. zero window probe. */
4723 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4726 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4727 /* Partial packet, seq < rcv_next < end_seq */
4728 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4729 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4730 TCP_SKB_CB(skb
)->end_seq
);
4732 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4734 /* If window is closed, drop tail of packet. But after
4735 * remembering D-SACK for its head made in previous line.
4737 if (!tcp_receive_window(tp
))
4742 tcp_data_queue_ofo(sk
, skb
);
4745 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4748 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4750 return skb_rb_next(skb
);
4753 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4754 struct sk_buff_head
*list
,
4755 struct rb_root
*root
)
4757 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4760 __skb_unlink(skb
, list
);
4762 rb_erase(&skb
->rbnode
, root
);
4765 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4770 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4771 static void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4773 struct rb_node
**p
= &root
->rb_node
;
4774 struct rb_node
*parent
= NULL
;
4775 struct sk_buff
*skb1
;
4779 skb1
= rb_to_skb(parent
);
4780 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4781 p
= &parent
->rb_left
;
4783 p
= &parent
->rb_right
;
4785 rb_link_node(&skb
->rbnode
, parent
, p
);
4786 rb_insert_color(&skb
->rbnode
, root
);
4789 /* Collapse contiguous sequence of skbs head..tail with
4790 * sequence numbers start..end.
4792 * If tail is NULL, this means until the end of the queue.
4794 * Segments with FIN/SYN are not collapsed (only because this
4798 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4799 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4801 struct sk_buff
*skb
= head
, *n
;
4802 struct sk_buff_head tmp
;
4805 /* First, check that queue is collapsible and find
4806 * the point where collapsing can be useful.
4809 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4810 n
= tcp_skb_next(skb
, list
);
4812 /* No new bits? It is possible on ofo queue. */
4813 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4814 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4820 /* The first skb to collapse is:
4822 * - bloated or contains data before "start" or
4823 * overlaps to the next one.
4825 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4826 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4827 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4828 end_of_skbs
= false;
4832 if (n
&& n
!= tail
&&
4833 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4834 end_of_skbs
= false;
4838 /* Decided to skip this, advance start seq. */
4839 start
= TCP_SKB_CB(skb
)->end_seq
;
4842 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4845 __skb_queue_head_init(&tmp
);
4847 while (before(start
, end
)) {
4848 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4849 struct sk_buff
*nskb
;
4851 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4855 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4856 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4858 __skb_queue_before(list
, skb
, nskb
);
4860 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4861 skb_set_owner_r(nskb
, sk
);
4863 /* Copy data, releasing collapsed skbs. */
4865 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4866 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4870 size
= min(copy
, size
);
4871 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4873 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4877 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4878 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4881 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4887 skb_queue_walk_safe(&tmp
, skb
, n
)
4888 tcp_rbtree_insert(root
, skb
);
4891 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4892 * and tcp_collapse() them until all the queue is collapsed.
4894 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4896 struct tcp_sock
*tp
= tcp_sk(sk
);
4897 u32 range_truesize
, sum_tiny
= 0;
4898 struct sk_buff
*skb
, *head
;
4901 skb
= skb_rb_first(&tp
->out_of_order_queue
);
4904 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
4907 start
= TCP_SKB_CB(skb
)->seq
;
4908 end
= TCP_SKB_CB(skb
)->end_seq
;
4909 range_truesize
= skb
->truesize
;
4911 for (head
= skb
;;) {
4912 skb
= skb_rb_next(skb
);
4914 /* Range is terminated when we see a gap or when
4915 * we are at the queue end.
4918 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4919 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4920 /* Do not attempt collapsing tiny skbs */
4921 if (range_truesize
!= head
->truesize
||
4922 end
- start
>= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM
)) {
4923 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4924 head
, skb
, start
, end
);
4926 sum_tiny
+= range_truesize
;
4927 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
4933 range_truesize
+= skb
->truesize
;
4934 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4935 start
= TCP_SKB_CB(skb
)->seq
;
4936 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4937 end
= TCP_SKB_CB(skb
)->end_seq
;
4942 * Clean the out-of-order queue to make room.
4943 * We drop high sequences packets to :
4944 * 1) Let a chance for holes to be filled.
4945 * 2) not add too big latencies if thousands of packets sit there.
4946 * (But if application shrinks SO_RCVBUF, we could still end up
4947 * freeing whole queue here)
4948 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4950 * Return true if queue has shrunk.
4952 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4954 struct tcp_sock
*tp
= tcp_sk(sk
);
4955 struct rb_node
*node
, *prev
;
4958 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4961 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4962 goal
= sk
->sk_rcvbuf
>> 3;
4963 node
= &tp
->ooo_last_skb
->rbnode
;
4965 prev
= rb_prev(node
);
4966 rb_erase(node
, &tp
->out_of_order_queue
);
4967 goal
-= rb_to_skb(node
)->truesize
;
4968 tcp_drop(sk
, rb_to_skb(node
));
4969 if (!prev
|| goal
<= 0) {
4971 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4972 !tcp_under_memory_pressure(sk
))
4974 goal
= sk
->sk_rcvbuf
>> 3;
4978 tp
->ooo_last_skb
= rb_to_skb(prev
);
4980 /* Reset SACK state. A conforming SACK implementation will
4981 * do the same at a timeout based retransmit. When a connection
4982 * is in a sad state like this, we care only about integrity
4983 * of the connection not performance.
4985 if (tp
->rx_opt
.sack_ok
)
4986 tcp_sack_reset(&tp
->rx_opt
);
4990 /* Reduce allocated memory if we can, trying to get
4991 * the socket within its memory limits again.
4993 * Return less than zero if we should start dropping frames
4994 * until the socket owning process reads some of the data
4995 * to stabilize the situation.
4997 static int tcp_prune_queue(struct sock
*sk
)
4999 struct tcp_sock
*tp
= tcp_sk(sk
);
5001 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
5003 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5005 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5006 tcp_clamp_window(sk
);
5007 else if (tcp_under_memory_pressure(sk
))
5008 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5010 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5013 tcp_collapse_ofo_queue(sk
);
5014 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5015 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5016 skb_peek(&sk
->sk_receive_queue
),
5018 tp
->copied_seq
, tp
->rcv_nxt
);
5021 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5024 /* Collapsing did not help, destructive actions follow.
5025 * This must not ever occur. */
5027 tcp_prune_ofo_queue(sk
);
5029 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5032 /* If we are really being abused, tell the caller to silently
5033 * drop receive data on the floor. It will get retransmitted
5034 * and hopefully then we'll have sufficient space.
5036 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5038 /* Massive buffer overcommit. */
5043 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5045 const struct tcp_sock
*tp
= tcp_sk(sk
);
5047 /* If the user specified a specific send buffer setting, do
5050 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5053 /* If we are under global TCP memory pressure, do not expand. */
5054 if (tcp_under_memory_pressure(sk
))
5057 /* If we are under soft global TCP memory pressure, do not expand. */
5058 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5061 /* If we filled the congestion window, do not expand. */
5062 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5068 /* When incoming ACK allowed to free some skb from write_queue,
5069 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5070 * on the exit from tcp input handler.
5072 * PROBLEM: sndbuf expansion does not work well with largesend.
5074 static void tcp_new_space(struct sock
*sk
)
5076 struct tcp_sock
*tp
= tcp_sk(sk
);
5078 if (tcp_should_expand_sndbuf(sk
)) {
5079 tcp_sndbuf_expand(sk
);
5080 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5083 sk
->sk_write_space(sk
);
5086 static void tcp_check_space(struct sock
*sk
)
5088 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5089 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5090 /* pairs with tcp_poll() */
5092 if (sk
->sk_socket
&&
5093 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5095 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5096 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5101 static inline void tcp_data_snd_check(struct sock
*sk
)
5103 tcp_push_pending_frames(sk
);
5104 tcp_check_space(sk
);
5108 * Check if sending an ack is needed.
5110 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5112 struct tcp_sock
*tp
= tcp_sk(sk
);
5114 /* More than one full frame received... */
5115 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5116 /* ... and right edge of window advances far enough.
5117 * (tcp_recvmsg() will send ACK otherwise). Or...
5119 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5120 /* We ACK each frame or... */
5121 tcp_in_quickack_mode(sk
) ||
5122 /* We have out of order data. */
5123 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5124 /* Then ack it now */
5127 /* Else, send delayed ack. */
5128 tcp_send_delayed_ack(sk
);
5132 static inline void tcp_ack_snd_check(struct sock
*sk
)
5134 if (!inet_csk_ack_scheduled(sk
)) {
5135 /* We sent a data segment already. */
5138 __tcp_ack_snd_check(sk
, 1);
5142 * This routine is only called when we have urgent data
5143 * signaled. Its the 'slow' part of tcp_urg. It could be
5144 * moved inline now as tcp_urg is only called from one
5145 * place. We handle URGent data wrong. We have to - as
5146 * BSD still doesn't use the correction from RFC961.
5147 * For 1003.1g we should support a new option TCP_STDURG to permit
5148 * either form (or just set the sysctl tcp_stdurg).
5151 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5153 struct tcp_sock
*tp
= tcp_sk(sk
);
5154 u32 ptr
= ntohs(th
->urg_ptr
);
5156 if (ptr
&& !sysctl_tcp_stdurg
)
5158 ptr
+= ntohl(th
->seq
);
5160 /* Ignore urgent data that we've already seen and read. */
5161 if (after(tp
->copied_seq
, ptr
))
5164 /* Do not replay urg ptr.
5166 * NOTE: interesting situation not covered by specs.
5167 * Misbehaving sender may send urg ptr, pointing to segment,
5168 * which we already have in ofo queue. We are not able to fetch
5169 * such data and will stay in TCP_URG_NOTYET until will be eaten
5170 * by recvmsg(). Seems, we are not obliged to handle such wicked
5171 * situations. But it is worth to think about possibility of some
5172 * DoSes using some hypothetical application level deadlock.
5174 if (before(ptr
, tp
->rcv_nxt
))
5177 /* Do we already have a newer (or duplicate) urgent pointer? */
5178 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5181 /* Tell the world about our new urgent pointer. */
5184 /* We may be adding urgent data when the last byte read was
5185 * urgent. To do this requires some care. We cannot just ignore
5186 * tp->copied_seq since we would read the last urgent byte again
5187 * as data, nor can we alter copied_seq until this data arrives
5188 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5190 * NOTE. Double Dutch. Rendering to plain English: author of comment
5191 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5192 * and expect that both A and B disappear from stream. This is _wrong_.
5193 * Though this happens in BSD with high probability, this is occasional.
5194 * Any application relying on this is buggy. Note also, that fix "works"
5195 * only in this artificial test. Insert some normal data between A and B and we will
5196 * decline of BSD again. Verdict: it is better to remove to trap
5199 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5200 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5201 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5203 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5204 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5209 tp
->urg_data
= TCP_URG_NOTYET
;
5212 /* Disable header prediction. */
5216 /* This is the 'fast' part of urgent handling. */
5217 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5219 struct tcp_sock
*tp
= tcp_sk(sk
);
5221 /* Check if we get a new urgent pointer - normally not. */
5223 tcp_check_urg(sk
, th
);
5225 /* Do we wait for any urgent data? - normally not... */
5226 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5227 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5230 /* Is the urgent pointer pointing into this packet? */
5231 if (ptr
< skb
->len
) {
5233 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5235 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5236 if (!sock_flag(sk
, SOCK_DEAD
))
5237 sk
->sk_data_ready(sk
);
5242 /* Accept RST for rcv_nxt - 1 after a FIN.
5243 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5244 * FIN is sent followed by a RST packet. The RST is sent with the same
5245 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5246 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5247 * ACKs on the closed socket. In addition middleboxes can drop either the
5248 * challenge ACK or a subsequent RST.
5250 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5252 struct tcp_sock
*tp
= tcp_sk(sk
);
5254 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5255 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5259 /* Does PAWS and seqno based validation of an incoming segment, flags will
5260 * play significant role here.
5262 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5263 const struct tcphdr
*th
, int syn_inerr
)
5265 struct tcp_sock
*tp
= tcp_sk(sk
);
5266 bool rst_seq_match
= false;
5268 /* RFC1323: H1. Apply PAWS check first. */
5269 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5270 tp
->rx_opt
.saw_tstamp
&&
5271 tcp_paws_discard(sk
, skb
)) {
5273 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5274 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5275 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5276 &tp
->last_oow_ack_time
))
5277 tcp_send_dupack(sk
, skb
);
5280 /* Reset is accepted even if it did not pass PAWS. */
5283 /* Step 1: check sequence number */
5284 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5285 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5286 * (RST) segments are validated by checking their SEQ-fields."
5287 * And page 69: "If an incoming segment is not acceptable,
5288 * an acknowledgment should be sent in reply (unless the RST
5289 * bit is set, if so drop the segment and return)".
5294 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5295 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5296 &tp
->last_oow_ack_time
))
5297 tcp_send_dupack(sk
, skb
);
5298 } else if (tcp_reset_check(sk
, skb
)) {
5304 /* Step 2: check RST bit */
5306 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5307 * FIN and SACK too if available):
5308 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5309 * the right-most SACK block,
5311 * RESET the connection
5313 * Send a challenge ACK
5315 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5316 tcp_reset_check(sk
, skb
)) {
5317 rst_seq_match
= true;
5318 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5319 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5320 int max_sack
= sp
[0].end_seq
;
5323 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5325 max_sack
= after(sp
[this_sack
].end_seq
,
5327 sp
[this_sack
].end_seq
: max_sack
;
5330 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5331 rst_seq_match
= true;
5337 /* Disable TFO if RST is out-of-order
5338 * and no data has been received
5339 * for current active TFO socket
5341 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5342 sk
->sk_state
== TCP_ESTABLISHED
)
5343 tcp_fastopen_active_disable(sk
);
5344 tcp_send_challenge_ack(sk
, skb
);
5349 /* step 3: check security and precedence [ignored] */
5351 /* step 4: Check for a SYN
5352 * RFC 5961 4.2 : Send a challenge ack
5357 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5358 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5359 tcp_send_challenge_ack(sk
, skb
);
5371 * TCP receive function for the ESTABLISHED state.
5373 * It is split into a fast path and a slow path. The fast path is
5375 * - A zero window was announced from us - zero window probing
5376 * is only handled properly in the slow path.
5377 * - Out of order segments arrived.
5378 * - Urgent data is expected.
5379 * - There is no buffer space left
5380 * - Unexpected TCP flags/window values/header lengths are received
5381 * (detected by checking the TCP header against pred_flags)
5382 * - Data is sent in both directions. Fast path only supports pure senders
5383 * or pure receivers (this means either the sequence number or the ack
5384 * value must stay constant)
5385 * - Unexpected TCP option.
5387 * When these conditions are not satisfied it drops into a standard
5388 * receive procedure patterned after RFC793 to handle all cases.
5389 * The first three cases are guaranteed by proper pred_flags setting,
5390 * the rest is checked inline. Fast processing is turned on in
5391 * tcp_data_queue when everything is OK.
5393 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5394 const struct tcphdr
*th
)
5396 unsigned int len
= skb
->len
;
5397 struct tcp_sock
*tp
= tcp_sk(sk
);
5399 tcp_mstamp_refresh(tp
);
5400 if (unlikely(!sk
->sk_rx_dst
))
5401 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5403 * Header prediction.
5404 * The code loosely follows the one in the famous
5405 * "30 instruction TCP receive" Van Jacobson mail.
5407 * Van's trick is to deposit buffers into socket queue
5408 * on a device interrupt, to call tcp_recv function
5409 * on the receive process context and checksum and copy
5410 * the buffer to user space. smart...
5412 * Our current scheme is not silly either but we take the
5413 * extra cost of the net_bh soft interrupt processing...
5414 * We do checksum and copy also but from device to kernel.
5417 tp
->rx_opt
.saw_tstamp
= 0;
5419 /* pred_flags is 0xS?10 << 16 + snd_wnd
5420 * if header_prediction is to be made
5421 * 'S' will always be tp->tcp_header_len >> 2
5422 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5423 * turn it off (when there are holes in the receive
5424 * space for instance)
5425 * PSH flag is ignored.
5428 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5429 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5430 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5431 int tcp_header_len
= tp
->tcp_header_len
;
5433 /* Timestamp header prediction: tcp_header_len
5434 * is automatically equal to th->doff*4 due to pred_flags
5438 /* Check timestamp */
5439 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5440 /* No? Slow path! */
5441 if (!tcp_parse_aligned_timestamp(tp
, th
))
5444 /* If PAWS failed, check it more carefully in slow path */
5445 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5448 /* DO NOT update ts_recent here, if checksum fails
5449 * and timestamp was corrupted part, it will result
5450 * in a hung connection since we will drop all
5451 * future packets due to the PAWS test.
5455 if (len
<= tcp_header_len
) {
5456 /* Bulk data transfer: sender */
5457 if (len
== tcp_header_len
) {
5458 /* Predicted packet is in window by definition.
5459 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5460 * Hence, check seq<=rcv_wup reduces to:
5462 if (tcp_header_len
==
5463 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5464 tp
->rcv_nxt
== tp
->rcv_wup
)
5465 tcp_store_ts_recent(tp
);
5467 /* We know that such packets are checksummed
5470 tcp_ack(sk
, skb
, 0);
5472 tcp_data_snd_check(sk
);
5474 } else { /* Header too small */
5475 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5480 bool fragstolen
= false;
5482 if (tcp_checksum_complete(skb
))
5485 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5488 /* Predicted packet is in window by definition.
5489 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5490 * Hence, check seq<=rcv_wup reduces to:
5492 if (tcp_header_len
==
5493 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5494 tp
->rcv_nxt
== tp
->rcv_wup
)
5495 tcp_store_ts_recent(tp
);
5497 tcp_rcv_rtt_measure_ts(sk
, skb
);
5499 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5501 /* Bulk data transfer: receiver */
5502 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5505 tcp_event_data_recv(sk
, skb
);
5507 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5508 /* Well, only one small jumplet in fast path... */
5509 tcp_ack(sk
, skb
, FLAG_DATA
);
5510 tcp_data_snd_check(sk
);
5511 if (!inet_csk_ack_scheduled(sk
))
5515 __tcp_ack_snd_check(sk
, 0);
5518 kfree_skb_partial(skb
, fragstolen
);
5519 sk
->sk_data_ready(sk
);
5525 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5528 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5532 * Standard slow path.
5535 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5539 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5542 tcp_rcv_rtt_measure_ts(sk
, skb
);
5544 /* Process urgent data. */
5545 tcp_urg(sk
, skb
, th
);
5547 /* step 7: process the segment text */
5548 tcp_data_queue(sk
, skb
);
5550 tcp_data_snd_check(sk
);
5551 tcp_ack_snd_check(sk
);
5555 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5556 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5561 EXPORT_SYMBOL(tcp_rcv_established
);
5563 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5565 struct tcp_sock
*tp
= tcp_sk(sk
);
5566 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5568 tcp_set_state(sk
, TCP_ESTABLISHED
);
5569 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5572 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5573 security_inet_conn_established(sk
, skb
);
5576 /* Make sure socket is routed, for correct metrics. */
5577 icsk
->icsk_af_ops
->rebuild_header(sk
);
5579 tcp_init_metrics(sk
);
5580 tcp_call_bpf(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
);
5581 tcp_init_congestion_control(sk
);
5583 /* Prevent spurious tcp_cwnd_restart() on first data
5586 tp
->lsndtime
= tcp_jiffies32
;
5588 tcp_init_buffer_space(sk
);
5590 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5591 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5593 if (!tp
->rx_opt
.snd_wscale
)
5594 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5599 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5600 struct tcp_fastopen_cookie
*cookie
)
5602 struct tcp_sock
*tp
= tcp_sk(sk
);
5603 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5604 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5605 bool syn_drop
= false;
5607 if (mss
== tp
->rx_opt
.user_mss
) {
5608 struct tcp_options_received opt
;
5610 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5611 tcp_clear_options(&opt
);
5612 opt
.user_mss
= opt
.mss_clamp
= 0;
5613 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5614 mss
= opt
.mss_clamp
;
5617 if (!tp
->syn_fastopen
) {
5618 /* Ignore an unsolicited cookie */
5620 } else if (tp
->total_retrans
) {
5621 /* SYN timed out and the SYN-ACK neither has a cookie nor
5622 * acknowledges data. Presumably the remote received only
5623 * the retransmitted (regular) SYNs: either the original
5624 * SYN-data or the corresponding SYN-ACK was dropped.
5626 syn_drop
= (cookie
->len
< 0 && data
);
5627 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5628 /* We requested a cookie but didn't get it. If we did not use
5629 * the (old) exp opt format then try so next time (try_exp=1).
5630 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5632 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5635 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5637 if (data
) { /* Retransmit unacked data in SYN */
5638 tcp_for_write_queue_from(data
, sk
) {
5639 if (data
== tcp_send_head(sk
) ||
5640 __tcp_retransmit_skb(sk
, data
, 1))
5644 NET_INC_STATS(sock_net(sk
),
5645 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5648 tp
->syn_data_acked
= tp
->syn_data
;
5649 if (tp
->syn_data_acked
)
5650 NET_INC_STATS(sock_net(sk
),
5651 LINUX_MIB_TCPFASTOPENACTIVE
);
5653 tcp_fastopen_add_skb(sk
, synack
);
5658 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5659 const struct tcphdr
*th
)
5661 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5662 struct tcp_sock
*tp
= tcp_sk(sk
);
5663 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5664 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5667 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
5668 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5669 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5673 * "If the state is SYN-SENT then
5674 * first check the ACK bit
5675 * If the ACK bit is set
5676 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5677 * a reset (unless the RST bit is set, if so drop
5678 * the segment and return)"
5680 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5681 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5682 goto reset_and_undo
;
5684 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5685 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5686 tcp_time_stamp(tp
))) {
5687 NET_INC_STATS(sock_net(sk
),
5688 LINUX_MIB_PAWSACTIVEREJECTED
);
5689 goto reset_and_undo
;
5692 /* Now ACK is acceptable.
5694 * "If the RST bit is set
5695 * If the ACK was acceptable then signal the user "error:
5696 * connection reset", drop the segment, enter CLOSED state,
5697 * delete TCB, and return."
5706 * "fifth, if neither of the SYN or RST bits is set then
5707 * drop the segment and return."
5713 goto discard_and_undo
;
5716 * "If the SYN bit is on ...
5717 * are acceptable then ...
5718 * (our SYN has been ACKed), change the connection
5719 * state to ESTABLISHED..."
5722 tcp_ecn_rcv_synack(tp
, th
);
5724 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5725 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5727 /* Ok.. it's good. Set up sequence numbers and
5728 * move to established.
5730 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5731 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5733 /* RFC1323: The window in SYN & SYN/ACK segments is
5736 tp
->snd_wnd
= ntohs(th
->window
);
5738 if (!tp
->rx_opt
.wscale_ok
) {
5739 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5740 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5743 if (tp
->rx_opt
.saw_tstamp
) {
5744 tp
->rx_opt
.tstamp_ok
= 1;
5745 tp
->tcp_header_len
=
5746 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5747 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5748 tcp_store_ts_recent(tp
);
5750 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5753 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5754 tcp_enable_fack(tp
);
5757 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5758 tcp_initialize_rcv_mss(sk
);
5760 /* Remember, tcp_poll() does not lock socket!
5761 * Change state from SYN-SENT only after copied_seq
5762 * is initialized. */
5763 tp
->copied_seq
= tp
->rcv_nxt
;
5767 tcp_finish_connect(sk
, skb
);
5769 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5770 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5772 if (!sock_flag(sk
, SOCK_DEAD
)) {
5773 sk
->sk_state_change(sk
);
5774 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5778 if (sk
->sk_write_pending
||
5779 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5780 icsk
->icsk_ack
.pingpong
) {
5781 /* Save one ACK. Data will be ready after
5782 * several ticks, if write_pending is set.
5784 * It may be deleted, but with this feature tcpdumps
5785 * look so _wonderfully_ clever, that I was not able
5786 * to stand against the temptation 8) --ANK
5788 inet_csk_schedule_ack(sk
);
5789 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
5790 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5791 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5802 /* No ACK in the segment */
5806 * "If the RST bit is set
5808 * Otherwise (no ACK) drop the segment and return."
5811 goto discard_and_undo
;
5815 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5816 tcp_paws_reject(&tp
->rx_opt
, 0))
5817 goto discard_and_undo
;
5820 /* We see SYN without ACK. It is attempt of
5821 * simultaneous connect with crossed SYNs.
5822 * Particularly, it can be connect to self.
5824 tcp_set_state(sk
, TCP_SYN_RECV
);
5826 if (tp
->rx_opt
.saw_tstamp
) {
5827 tp
->rx_opt
.tstamp_ok
= 1;
5828 tcp_store_ts_recent(tp
);
5829 tp
->tcp_header_len
=
5830 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5832 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5835 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5836 tp
->copied_seq
= tp
->rcv_nxt
;
5837 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5839 /* RFC1323: The window in SYN & SYN/ACK segments is
5842 tp
->snd_wnd
= ntohs(th
->window
);
5843 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5844 tp
->max_window
= tp
->snd_wnd
;
5846 tcp_ecn_rcv_syn(tp
, th
);
5849 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5850 tcp_initialize_rcv_mss(sk
);
5852 tcp_send_synack(sk
);
5854 /* Note, we could accept data and URG from this segment.
5855 * There are no obstacles to make this (except that we must
5856 * either change tcp_recvmsg() to prevent it from returning data
5857 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5859 * However, if we ignore data in ACKless segments sometimes,
5860 * we have no reasons to accept it sometimes.
5861 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5862 * is not flawless. So, discard packet for sanity.
5863 * Uncomment this return to process the data.
5870 /* "fifth, if neither of the SYN or RST bits is set then
5871 * drop the segment and return."
5875 tcp_clear_options(&tp
->rx_opt
);
5876 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5880 tcp_clear_options(&tp
->rx_opt
);
5881 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5886 * This function implements the receiving procedure of RFC 793 for
5887 * all states except ESTABLISHED and TIME_WAIT.
5888 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5889 * address independent.
5892 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5894 struct tcp_sock
*tp
= tcp_sk(sk
);
5895 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5896 const struct tcphdr
*th
= tcp_hdr(skb
);
5897 struct request_sock
*req
;
5901 switch (sk
->sk_state
) {
5915 /* It is possible that we process SYN packets from backlog,
5916 * so we need to make sure to disable BH and RCU right there.
5920 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5932 tp
->rx_opt
.saw_tstamp
= 0;
5933 tcp_mstamp_refresh(tp
);
5934 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5938 /* Do step6 onward by hand. */
5939 tcp_urg(sk
, skb
, th
);
5941 tcp_data_snd_check(sk
);
5945 tcp_mstamp_refresh(tp
);
5946 tp
->rx_opt
.saw_tstamp
= 0;
5947 req
= tp
->fastopen_rsk
;
5949 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5950 sk
->sk_state
!= TCP_FIN_WAIT1
);
5952 if (!tcp_check_req(sk
, skb
, req
, true))
5956 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5959 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5962 /* step 5: check the ACK field */
5963 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5964 FLAG_UPDATE_TS_RECENT
|
5965 FLAG_NO_CHALLENGE_ACK
) > 0;
5968 if (sk
->sk_state
== TCP_SYN_RECV
)
5969 return 1; /* send one RST */
5970 tcp_send_challenge_ack(sk
, skb
);
5973 switch (sk
->sk_state
) {
5976 tcp_synack_rtt_meas(sk
, req
);
5978 /* Once we leave TCP_SYN_RECV, we no longer need req
5982 inet_csk(sk
)->icsk_retransmits
= 0;
5983 reqsk_fastopen_remove(sk
, req
, false);
5985 /* Make sure socket is routed, for correct metrics. */
5986 icsk
->icsk_af_ops
->rebuild_header(sk
);
5987 tcp_call_bpf(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
);
5988 tcp_init_congestion_control(sk
);
5991 tp
->copied_seq
= tp
->rcv_nxt
;
5992 tcp_init_buffer_space(sk
);
5995 tcp_set_state(sk
, TCP_ESTABLISHED
);
5996 sk
->sk_state_change(sk
);
5998 /* Note, that this wakeup is only for marginal crossed SYN case.
5999 * Passively open sockets are not waked up, because
6000 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6003 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6005 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6006 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6007 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6009 if (tp
->rx_opt
.tstamp_ok
)
6010 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6013 /* Re-arm the timer because data may have been sent out.
6014 * This is similar to the regular data transmission case
6015 * when new data has just been ack'ed.
6017 * (TFO) - we could try to be more aggressive and
6018 * retransmitting any data sooner based on when they
6023 tcp_init_metrics(sk
);
6025 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6026 tcp_update_pacing_rate(sk
);
6028 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6029 tp
->lsndtime
= tcp_jiffies32
;
6031 tcp_initialize_rcv_mss(sk
);
6032 tcp_fast_path_on(tp
);
6035 case TCP_FIN_WAIT1
: {
6038 /* If we enter the TCP_FIN_WAIT1 state and we are a
6039 * Fast Open socket and this is the first acceptable
6040 * ACK we have received, this would have acknowledged
6041 * our SYNACK so stop the SYNACK timer.
6044 /* We no longer need the request sock. */
6045 reqsk_fastopen_remove(sk
, req
, false);
6048 if (tp
->snd_una
!= tp
->write_seq
)
6051 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6052 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6056 if (!sock_flag(sk
, SOCK_DEAD
)) {
6057 /* Wake up lingering close() */
6058 sk
->sk_state_change(sk
);
6062 if (tp
->linger2
< 0) {
6064 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6067 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6068 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6069 /* Receive out of order FIN after close() */
6070 if (tp
->syn_fastopen
&& th
->fin
)
6071 tcp_fastopen_active_disable(sk
);
6073 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6077 tmo
= tcp_fin_time(sk
);
6078 if (tmo
> TCP_TIMEWAIT_LEN
) {
6079 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6080 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6081 /* Bad case. We could lose such FIN otherwise.
6082 * It is not a big problem, but it looks confusing
6083 * and not so rare event. We still can lose it now,
6084 * if it spins in bh_lock_sock(), but it is really
6087 inet_csk_reset_keepalive_timer(sk
, tmo
);
6089 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6096 if (tp
->snd_una
== tp
->write_seq
) {
6097 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6103 if (tp
->snd_una
== tp
->write_seq
) {
6104 tcp_update_metrics(sk
);
6111 /* step 6: check the URG bit */
6112 tcp_urg(sk
, skb
, th
);
6114 /* step 7: process the segment text */
6115 switch (sk
->sk_state
) {
6116 case TCP_CLOSE_WAIT
:
6119 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6123 /* RFC 793 says to queue data in these states,
6124 * RFC 1122 says we MUST send a reset.
6125 * BSD 4.4 also does reset.
6127 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6128 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6129 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6130 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6136 case TCP_ESTABLISHED
:
6137 tcp_data_queue(sk
, skb
);
6142 /* tcp_data could move socket to TIME-WAIT */
6143 if (sk
->sk_state
!= TCP_CLOSE
) {
6144 tcp_data_snd_check(sk
);
6145 tcp_ack_snd_check(sk
);
6154 EXPORT_SYMBOL(tcp_rcv_state_process
);
6156 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6158 struct inet_request_sock
*ireq
= inet_rsk(req
);
6160 if (family
== AF_INET
)
6161 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6162 &ireq
->ir_rmt_addr
, port
);
6163 #if IS_ENABLED(CONFIG_IPV6)
6164 else if (family
== AF_INET6
)
6165 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6166 &ireq
->ir_v6_rmt_addr
, port
);
6170 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6172 * If we receive a SYN packet with these bits set, it means a
6173 * network is playing bad games with TOS bits. In order to
6174 * avoid possible false congestion notifications, we disable
6175 * TCP ECN negotiation.
6177 * Exception: tcp_ca wants ECN. This is required for DCTCP
6178 * congestion control: Linux DCTCP asserts ECT on all packets,
6179 * including SYN, which is most optimal solution; however,
6180 * others, such as FreeBSD do not.
6182 static void tcp_ecn_create_request(struct request_sock
*req
,
6183 const struct sk_buff
*skb
,
6184 const struct sock
*listen_sk
,
6185 const struct dst_entry
*dst
)
6187 const struct tcphdr
*th
= tcp_hdr(skb
);
6188 const struct net
*net
= sock_net(listen_sk
);
6189 bool th_ecn
= th
->ece
&& th
->cwr
;
6196 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6197 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6198 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6200 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6201 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6202 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6203 inet_rsk(req
)->ecn_ok
= 1;
6206 static void tcp_openreq_init(struct request_sock
*req
,
6207 const struct tcp_options_received
*rx_opt
,
6208 struct sk_buff
*skb
, const struct sock
*sk
)
6210 struct inet_request_sock
*ireq
= inet_rsk(req
);
6212 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6214 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6215 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6216 tcp_rsk(req
)->snt_synack
= tcp_clock_us();
6217 tcp_rsk(req
)->last_oow_ack_time
= 0;
6218 req
->mss
= rx_opt
->mss_clamp
;
6219 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6220 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6221 ireq
->sack_ok
= rx_opt
->sack_ok
;
6222 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6223 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6226 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6227 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6228 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6231 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6232 struct sock
*sk_listener
,
6233 bool attach_listener
)
6235 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6239 struct inet_request_sock
*ireq
= inet_rsk(req
);
6241 ireq
->ireq_opt
= NULL
;
6242 #if IS_ENABLED(CONFIG_IPV6)
6243 ireq
->pktopts
= NULL
;
6245 atomic64_set(&ireq
->ir_cookie
, 0);
6246 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6247 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6248 ireq
->ireq_family
= sk_listener
->sk_family
;
6253 EXPORT_SYMBOL(inet_reqsk_alloc
);
6256 * Return true if a syncookie should be sent
6258 static bool tcp_syn_flood_action(const struct sock
*sk
,
6259 const struct sk_buff
*skb
,
6262 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6263 const char *msg
= "Dropping request";
6264 bool want_cookie
= false;
6265 struct net
*net
= sock_net(sk
);
6267 #ifdef CONFIG_SYN_COOKIES
6268 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6269 msg
= "Sending cookies";
6271 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6274 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6276 if (!queue
->synflood_warned
&&
6277 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6278 xchg(&queue
->synflood_warned
, 1) == 0)
6279 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6280 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6285 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6286 struct request_sock
*req
,
6287 const struct sk_buff
*skb
)
6289 if (tcp_sk(sk
)->save_syn
) {
6290 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6293 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6296 memcpy(©
[1], skb_network_header(skb
), len
);
6297 req
->saved_syn
= copy
;
6302 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6303 const struct tcp_request_sock_ops
*af_ops
,
6304 struct sock
*sk
, struct sk_buff
*skb
)
6306 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6307 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6308 struct tcp_options_received tmp_opt
;
6309 struct tcp_sock
*tp
= tcp_sk(sk
);
6310 struct net
*net
= sock_net(sk
);
6311 struct sock
*fastopen_sk
= NULL
;
6312 struct request_sock
*req
;
6313 bool want_cookie
= false;
6314 struct dst_entry
*dst
;
6317 /* TW buckets are converted to open requests without
6318 * limitations, they conserve resources and peer is
6319 * evidently real one.
6321 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6322 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6323 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6328 if (sk_acceptq_is_full(sk
)) {
6329 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6333 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6337 tcp_rsk(req
)->af_specific
= af_ops
;
6338 tcp_rsk(req
)->ts_off
= 0;
6340 tcp_clear_options(&tmp_opt
);
6341 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6342 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6343 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6344 want_cookie
? NULL
: &foc
);
6346 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6347 tcp_clear_options(&tmp_opt
);
6349 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6350 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6351 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6353 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6354 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6356 af_ops
->init_req(req
, sk
, skb
);
6358 if (security_inet_conn_request(sk
, skb
, req
))
6361 if (tmp_opt
.tstamp_ok
)
6362 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6364 dst
= af_ops
->route_req(sk
, &fl
, req
);
6368 if (!want_cookie
&& !isn
) {
6369 /* Kill the following clause, if you dislike this way. */
6370 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6371 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6372 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6373 !tcp_peer_is_proven(req
, dst
)) {
6374 /* Without syncookies last quarter of
6375 * backlog is filled with destinations,
6376 * proven to be alive.
6377 * It means that we continue to communicate
6378 * to destinations, already remembered
6379 * to the moment of synflood.
6381 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6383 goto drop_and_release
;
6386 isn
= af_ops
->init_seq(skb
);
6389 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6392 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6393 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6394 if (!tmp_opt
.tstamp_ok
)
6395 inet_rsk(req
)->ecn_ok
= 0;
6398 tcp_rsk(req
)->snt_isn
= isn
;
6399 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6400 tcp_openreq_init_rwin(req
, sk
, dst
);
6402 tcp_reqsk_record_syn(sk
, req
, skb
);
6403 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
);
6406 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6407 &foc
, TCP_SYNACK_FASTOPEN
);
6408 /* Add the child socket directly into the accept queue */
6409 if (!inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
)) {
6410 reqsk_fastopen_remove(fastopen_sk
, req
, false);
6411 bh_unlock_sock(fastopen_sk
);
6412 sock_put(fastopen_sk
);
6416 sk
->sk_data_ready(sk
);
6417 bh_unlock_sock(fastopen_sk
);
6418 sock_put(fastopen_sk
);
6420 tcp_rsk(req
)->tfo_listener
= false;
6422 inet_csk_reqsk_queue_hash_add(sk
, req
,
6423 tcp_timeout_init((struct sock
*)req
));
6424 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6425 !want_cookie
? TCP_SYNACK_NORMAL
:
6443 EXPORT_SYMBOL(tcp_conn_request
);