x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / net / ipv4 / tcp_output.c
blob24bad638c2ecfe97c1eb6a7c2ae5930aa1330203
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 const struct tcp_sock *tp = tcp_sk(sk);
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16 tcp_advertise_mss(struct sock *sk)
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
134 return (__u16)mss;
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
168 tp->lsndtime = now;
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 u32 rcv_nxt)
181 struct tcp_sock *tp = tcp_sk(sk);
183 if (unlikely(rcv_nxt != tp->rcv_nxt))
184 return; /* Special ACK sent by DCTCP to reflect ECN */
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 u32 tcp_default_init_rwnd(u32 mss)
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
197 u32 init_rwnd = TCP_INIT_CWND * 2;
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
216 unsigned int space = (__space < 0 ? 0 : __space);
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
221 space = min(*window_clamp, space);
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = rounddown(space, mss);
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
247 space >>= 1;
248 (*rcv_wscale)++;
252 if (mss > (1 << *rcv_wscale)) {
253 if (!init_rcv_wnd) /* Use default unless specified otherwise */
254 init_rcv_wnd = tcp_default_init_rwnd(mss);
255 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
258 /* Set the clamp no higher than max representable value */
259 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
261 EXPORT_SYMBOL(tcp_select_initial_window);
263 /* Chose a new window to advertise, update state in tcp_sock for the
264 * socket, and return result with RFC1323 scaling applied. The return
265 * value can be stuffed directly into th->window for an outgoing
266 * frame.
268 static u16 tcp_select_window(struct sock *sk)
270 struct tcp_sock *tp = tcp_sk(sk);
271 u32 old_win = tp->rcv_wnd;
272 u32 cur_win = tcp_receive_window(tp);
273 u32 new_win = __tcp_select_window(sk);
275 /* Never shrink the offered window */
276 if (new_win < cur_win) {
277 /* Danger Will Robinson!
278 * Don't update rcv_wup/rcv_wnd here or else
279 * we will not be able to advertise a zero
280 * window in time. --DaveM
282 * Relax Will Robinson.
284 if (new_win == 0)
285 NET_INC_STATS(sock_net(sk),
286 LINUX_MIB_TCPWANTZEROWINDOWADV);
287 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 tp->rcv_wnd = new_win;
290 tp->rcv_wup = tp->rcv_nxt;
292 /* Make sure we do not exceed the maximum possible
293 * scaled window.
295 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
296 new_win = min(new_win, MAX_TCP_WINDOW);
297 else
298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300 /* RFC1323 scaling applied */
301 new_win >>= tp->rx_opt.rcv_wscale;
303 /* If we advertise zero window, disable fast path. */
304 if (new_win == 0) {
305 tp->pred_flags = 0;
306 if (old_win)
307 NET_INC_STATS(sock_net(sk),
308 LINUX_MIB_TCPTOZEROWINDOWADV);
309 } else if (old_win == 0) {
310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
313 return new_win;
316 /* Packet ECN state for a SYN-ACK */
317 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 const struct tcp_sock *tp = tcp_sk(sk);
321 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
322 if (!(tp->ecn_flags & TCP_ECN_OK))
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
324 else if (tcp_ca_needs_ecn(sk) ||
325 tcp_bpf_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
334 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
335 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
337 if (!use_ecn) {
338 const struct dst_entry *dst = __sk_dst_get(sk);
340 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
341 use_ecn = true;
344 tp->ecn_flags = 0;
346 if (use_ecn) {
347 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
348 tp->ecn_flags = TCP_ECN_OK;
349 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
350 INET_ECN_xmit(sk);
354 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
356 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
357 /* tp->ecn_flags are cleared at a later point in time when
358 * SYN ACK is ultimatively being received.
360 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
363 static void
364 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
366 if (inet_rsk(req)->ecn_ok)
367 th->ece = 1;
370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
371 * be sent.
373 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
374 struct tcphdr *th, int tcp_header_len)
376 struct tcp_sock *tp = tcp_sk(sk);
378 if (tp->ecn_flags & TCP_ECN_OK) {
379 /* Not-retransmitted data segment: set ECT and inject CWR. */
380 if (skb->len != tcp_header_len &&
381 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
382 INET_ECN_xmit(sk);
383 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
384 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
385 th->cwr = 1;
386 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
388 } else if (!tcp_ca_needs_ecn(sk)) {
389 /* ACK or retransmitted segment: clear ECT|CE */
390 INET_ECN_dontxmit(sk);
392 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
393 th->ece = 1;
397 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
398 * auto increment end seqno.
400 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
402 skb->ip_summed = CHECKSUM_PARTIAL;
403 skb->csum = 0;
405 TCP_SKB_CB(skb)->tcp_flags = flags;
406 TCP_SKB_CB(skb)->sacked = 0;
408 tcp_skb_pcount_set(skb, 1);
410 TCP_SKB_CB(skb)->seq = seq;
411 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
412 seq++;
413 TCP_SKB_CB(skb)->end_seq = seq;
416 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
418 return tp->snd_una != tp->snd_up;
421 #define OPTION_SACK_ADVERTISE (1 << 0)
422 #define OPTION_TS (1 << 1)
423 #define OPTION_MD5 (1 << 2)
424 #define OPTION_WSCALE (1 << 3)
425 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
427 struct tcp_out_options {
428 u16 options; /* bit field of OPTION_* */
429 u16 mss; /* 0 to disable */
430 u8 ws; /* window scale, 0 to disable */
431 u8 num_sack_blocks; /* number of SACK blocks to include */
432 u8 hash_size; /* bytes in hash_location */
433 __u8 *hash_location; /* temporary pointer, overloaded */
434 __u32 tsval, tsecr; /* need to include OPTION_TS */
435 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
438 /* Write previously computed TCP options to the packet.
440 * Beware: Something in the Internet is very sensitive to the ordering of
441 * TCP options, we learned this through the hard way, so be careful here.
442 * Luckily we can at least blame others for their non-compliance but from
443 * inter-operability perspective it seems that we're somewhat stuck with
444 * the ordering which we have been using if we want to keep working with
445 * those broken things (not that it currently hurts anybody as there isn't
446 * particular reason why the ordering would need to be changed).
448 * At least SACK_PERM as the first option is known to lead to a disaster
449 * (but it may well be that other scenarios fail similarly).
451 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
452 struct tcp_out_options *opts)
454 u16 options = opts->options; /* mungable copy */
456 if (unlikely(OPTION_MD5 & options)) {
457 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
458 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
459 /* overload cookie hash location */
460 opts->hash_location = (__u8 *)ptr;
461 ptr += 4;
464 if (unlikely(opts->mss)) {
465 *ptr++ = htonl((TCPOPT_MSS << 24) |
466 (TCPOLEN_MSS << 16) |
467 opts->mss);
470 if (likely(OPTION_TS & options)) {
471 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
472 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
473 (TCPOLEN_SACK_PERM << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 options &= ~OPTION_SACK_ADVERTISE;
477 } else {
478 *ptr++ = htonl((TCPOPT_NOP << 24) |
479 (TCPOPT_NOP << 16) |
480 (TCPOPT_TIMESTAMP << 8) |
481 TCPOLEN_TIMESTAMP);
483 *ptr++ = htonl(opts->tsval);
484 *ptr++ = htonl(opts->tsecr);
487 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_NOP << 16) |
490 (TCPOPT_SACK_PERM << 8) |
491 TCPOLEN_SACK_PERM);
494 if (unlikely(OPTION_WSCALE & options)) {
495 *ptr++ = htonl((TCPOPT_NOP << 24) |
496 (TCPOPT_WINDOW << 16) |
497 (TCPOLEN_WINDOW << 8) |
498 opts->ws);
501 if (unlikely(opts->num_sack_blocks)) {
502 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
503 tp->duplicate_sack : tp->selective_acks;
504 int this_sack;
506 *ptr++ = htonl((TCPOPT_NOP << 24) |
507 (TCPOPT_NOP << 16) |
508 (TCPOPT_SACK << 8) |
509 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
510 TCPOLEN_SACK_PERBLOCK)));
512 for (this_sack = 0; this_sack < opts->num_sack_blocks;
513 ++this_sack) {
514 *ptr++ = htonl(sp[this_sack].start_seq);
515 *ptr++ = htonl(sp[this_sack].end_seq);
518 tp->rx_opt.dsack = 0;
521 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
522 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
523 u8 *p = (u8 *)ptr;
524 u32 len; /* Fast Open option length */
526 if (foc->exp) {
527 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
528 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
529 TCPOPT_FASTOPEN_MAGIC);
530 p += TCPOLEN_EXP_FASTOPEN_BASE;
531 } else {
532 len = TCPOLEN_FASTOPEN_BASE + foc->len;
533 *p++ = TCPOPT_FASTOPEN;
534 *p++ = len;
537 memcpy(p, foc->val, foc->len);
538 if ((len & 3) == 2) {
539 p[foc->len] = TCPOPT_NOP;
540 p[foc->len + 1] = TCPOPT_NOP;
542 ptr += (len + 3) >> 2;
546 /* Compute TCP options for SYN packets. This is not the final
547 * network wire format yet.
549 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
550 struct tcp_out_options *opts,
551 struct tcp_md5sig_key **md5)
553 struct tcp_sock *tp = tcp_sk(sk);
554 unsigned int remaining = MAX_TCP_OPTION_SPACE;
555 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
557 #ifdef CONFIG_TCP_MD5SIG
558 *md5 = tp->af_specific->md5_lookup(sk, sk);
559 if (*md5) {
560 opts->options |= OPTION_MD5;
561 remaining -= TCPOLEN_MD5SIG_ALIGNED;
563 #else
564 *md5 = NULL;
565 #endif
567 /* We always get an MSS option. The option bytes which will be seen in
568 * normal data packets should timestamps be used, must be in the MSS
569 * advertised. But we subtract them from tp->mss_cache so that
570 * calculations in tcp_sendmsg are simpler etc. So account for this
571 * fact here if necessary. If we don't do this correctly, as a
572 * receiver we won't recognize data packets as being full sized when we
573 * should, and thus we won't abide by the delayed ACK rules correctly.
574 * SACKs don't matter, we never delay an ACK when we have any of those
575 * going out. */
576 opts->mss = tcp_advertise_mss(sk);
577 remaining -= TCPOLEN_MSS_ALIGNED;
579 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
580 opts->options |= OPTION_TS;
581 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
582 opts->tsecr = tp->rx_opt.ts_recent;
583 remaining -= TCPOLEN_TSTAMP_ALIGNED;
585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
586 opts->ws = tp->rx_opt.rcv_wscale;
587 opts->options |= OPTION_WSCALE;
588 remaining -= TCPOLEN_WSCALE_ALIGNED;
590 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
591 opts->options |= OPTION_SACK_ADVERTISE;
592 if (unlikely(!(OPTION_TS & opts->options)))
593 remaining -= TCPOLEN_SACKPERM_ALIGNED;
596 if (fastopen && fastopen->cookie.len >= 0) {
597 u32 need = fastopen->cookie.len;
599 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
600 TCPOLEN_FASTOPEN_BASE;
601 need = (need + 3) & ~3U; /* Align to 32 bits */
602 if (remaining >= need) {
603 opts->options |= OPTION_FAST_OPEN_COOKIE;
604 opts->fastopen_cookie = &fastopen->cookie;
605 remaining -= need;
606 tp->syn_fastopen = 1;
607 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
611 return MAX_TCP_OPTION_SPACE - remaining;
614 /* Set up TCP options for SYN-ACKs. */
615 static unsigned int tcp_synack_options(struct request_sock *req,
616 unsigned int mss, struct sk_buff *skb,
617 struct tcp_out_options *opts,
618 const struct tcp_md5sig_key *md5,
619 struct tcp_fastopen_cookie *foc)
621 struct inet_request_sock *ireq = inet_rsk(req);
622 unsigned int remaining = MAX_TCP_OPTION_SPACE;
624 #ifdef CONFIG_TCP_MD5SIG
625 if (md5) {
626 opts->options |= OPTION_MD5;
627 remaining -= TCPOLEN_MD5SIG_ALIGNED;
629 /* We can't fit any SACK blocks in a packet with MD5 + TS
630 * options. There was discussion about disabling SACK
631 * rather than TS in order to fit in better with old,
632 * buggy kernels, but that was deemed to be unnecessary.
634 ireq->tstamp_ok &= !ireq->sack_ok;
636 #endif
638 /* We always send an MSS option. */
639 opts->mss = mss;
640 remaining -= TCPOLEN_MSS_ALIGNED;
642 if (likely(ireq->wscale_ok)) {
643 opts->ws = ireq->rcv_wscale;
644 opts->options |= OPTION_WSCALE;
645 remaining -= TCPOLEN_WSCALE_ALIGNED;
647 if (likely(ireq->tstamp_ok)) {
648 opts->options |= OPTION_TS;
649 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
650 opts->tsecr = req->ts_recent;
651 remaining -= TCPOLEN_TSTAMP_ALIGNED;
653 if (likely(ireq->sack_ok)) {
654 opts->options |= OPTION_SACK_ADVERTISE;
655 if (unlikely(!ireq->tstamp_ok))
656 remaining -= TCPOLEN_SACKPERM_ALIGNED;
658 if (foc != NULL && foc->len >= 0) {
659 u32 need = foc->len;
661 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
662 TCPOLEN_FASTOPEN_BASE;
663 need = (need + 3) & ~3U; /* Align to 32 bits */
664 if (remaining >= need) {
665 opts->options |= OPTION_FAST_OPEN_COOKIE;
666 opts->fastopen_cookie = foc;
667 remaining -= need;
671 return MAX_TCP_OPTION_SPACE - remaining;
674 /* Compute TCP options for ESTABLISHED sockets. This is not the
675 * final wire format yet.
677 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
678 struct tcp_out_options *opts,
679 struct tcp_md5sig_key **md5)
681 struct tcp_sock *tp = tcp_sk(sk);
682 unsigned int size = 0;
683 unsigned int eff_sacks;
685 opts->options = 0;
687 #ifdef CONFIG_TCP_MD5SIG
688 *md5 = tp->af_specific->md5_lookup(sk, sk);
689 if (unlikely(*md5)) {
690 opts->options |= OPTION_MD5;
691 size += TCPOLEN_MD5SIG_ALIGNED;
693 #else
694 *md5 = NULL;
695 #endif
697 if (likely(tp->rx_opt.tstamp_ok)) {
698 opts->options |= OPTION_TS;
699 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
700 opts->tsecr = tp->rx_opt.ts_recent;
701 size += TCPOLEN_TSTAMP_ALIGNED;
704 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
705 if (unlikely(eff_sacks)) {
706 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
707 opts->num_sack_blocks =
708 min_t(unsigned int, eff_sacks,
709 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
710 TCPOLEN_SACK_PERBLOCK);
711 size += TCPOLEN_SACK_BASE_ALIGNED +
712 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
715 return size;
719 /* TCP SMALL QUEUES (TSQ)
721 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
722 * to reduce RTT and bufferbloat.
723 * We do this using a special skb destructor (tcp_wfree).
725 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
726 * needs to be reallocated in a driver.
727 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
729 * Since transmit from skb destructor is forbidden, we use a tasklet
730 * to process all sockets that eventually need to send more skbs.
731 * We use one tasklet per cpu, with its own queue of sockets.
733 struct tsq_tasklet {
734 struct tasklet_struct tasklet;
735 struct list_head head; /* queue of tcp sockets */
737 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
739 static void tcp_tsq_handler(struct sock *sk)
741 if ((1 << sk->sk_state) &
742 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
743 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
744 struct tcp_sock *tp = tcp_sk(sk);
746 if (tp->lost_out > tp->retrans_out &&
747 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
748 tcp_mstamp_refresh(tp);
749 tcp_xmit_retransmit_queue(sk);
752 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
753 0, GFP_ATOMIC);
757 * One tasklet per cpu tries to send more skbs.
758 * We run in tasklet context but need to disable irqs when
759 * transferring tsq->head because tcp_wfree() might
760 * interrupt us (non NAPI drivers)
762 static void tcp_tasklet_func(unsigned long data)
764 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
765 LIST_HEAD(list);
766 unsigned long flags;
767 struct list_head *q, *n;
768 struct tcp_sock *tp;
769 struct sock *sk;
771 local_irq_save(flags);
772 list_splice_init(&tsq->head, &list);
773 local_irq_restore(flags);
775 list_for_each_safe(q, n, &list) {
776 tp = list_entry(q, struct tcp_sock, tsq_node);
777 list_del(&tp->tsq_node);
779 sk = (struct sock *)tp;
780 smp_mb__before_atomic();
781 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
783 if (!sk->sk_lock.owned &&
784 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
785 bh_lock_sock(sk);
786 if (!sock_owned_by_user(sk)) {
787 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
788 tcp_tsq_handler(sk);
790 bh_unlock_sock(sk);
793 sk_free(sk);
797 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
798 TCPF_WRITE_TIMER_DEFERRED | \
799 TCPF_DELACK_TIMER_DEFERRED | \
800 TCPF_MTU_REDUCED_DEFERRED)
802 * tcp_release_cb - tcp release_sock() callback
803 * @sk: socket
805 * called from release_sock() to perform protocol dependent
806 * actions before socket release.
808 void tcp_release_cb(struct sock *sk)
810 unsigned long flags, nflags;
812 /* perform an atomic operation only if at least one flag is set */
813 do {
814 flags = sk->sk_tsq_flags;
815 if (!(flags & TCP_DEFERRED_ALL))
816 return;
817 nflags = flags & ~TCP_DEFERRED_ALL;
818 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
820 if (flags & TCPF_TSQ_DEFERRED)
821 tcp_tsq_handler(sk);
823 /* Here begins the tricky part :
824 * We are called from release_sock() with :
825 * 1) BH disabled
826 * 2) sk_lock.slock spinlock held
827 * 3) socket owned by us (sk->sk_lock.owned == 1)
829 * But following code is meant to be called from BH handlers,
830 * so we should keep BH disabled, but early release socket ownership
832 sock_release_ownership(sk);
834 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
835 tcp_write_timer_handler(sk);
836 __sock_put(sk);
838 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
839 tcp_delack_timer_handler(sk);
840 __sock_put(sk);
842 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
843 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
844 __sock_put(sk);
847 EXPORT_SYMBOL(tcp_release_cb);
849 void __init tcp_tasklet_init(void)
851 int i;
853 for_each_possible_cpu(i) {
854 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
856 INIT_LIST_HEAD(&tsq->head);
857 tasklet_init(&tsq->tasklet,
858 tcp_tasklet_func,
859 (unsigned long)tsq);
864 * Write buffer destructor automatically called from kfree_skb.
865 * We can't xmit new skbs from this context, as we might already
866 * hold qdisc lock.
868 void tcp_wfree(struct sk_buff *skb)
870 struct sock *sk = skb->sk;
871 struct tcp_sock *tp = tcp_sk(sk);
872 unsigned long flags, nval, oval;
874 /* Keep one reference on sk_wmem_alloc.
875 * Will be released by sk_free() from here or tcp_tasklet_func()
877 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
879 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
880 * Wait until our queues (qdisc + devices) are drained.
881 * This gives :
882 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
883 * - chance for incoming ACK (processed by another cpu maybe)
884 * to migrate this flow (skb->ooo_okay will be eventually set)
886 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
887 goto out;
889 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
890 struct tsq_tasklet *tsq;
891 bool empty;
893 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
894 goto out;
896 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
897 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
898 if (nval != oval)
899 continue;
901 /* queue this socket to tasklet queue */
902 local_irq_save(flags);
903 tsq = this_cpu_ptr(&tsq_tasklet);
904 empty = list_empty(&tsq->head);
905 list_add(&tp->tsq_node, &tsq->head);
906 if (empty)
907 tasklet_schedule(&tsq->tasklet);
908 local_irq_restore(flags);
909 return;
911 out:
912 sk_free(sk);
915 /* Note: Called under hard irq.
916 * We can not call TCP stack right away.
918 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
920 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
921 struct sock *sk = (struct sock *)tp;
922 unsigned long nval, oval;
924 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
925 struct tsq_tasklet *tsq;
926 bool empty;
928 if (oval & TSQF_QUEUED)
929 break;
931 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
932 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
933 if (nval != oval)
934 continue;
936 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
937 break;
938 /* queue this socket to tasklet queue */
939 tsq = this_cpu_ptr(&tsq_tasklet);
940 empty = list_empty(&tsq->head);
941 list_add(&tp->tsq_node, &tsq->head);
942 if (empty)
943 tasklet_schedule(&tsq->tasklet);
944 break;
946 return HRTIMER_NORESTART;
949 /* BBR congestion control needs pacing.
950 * Same remark for SO_MAX_PACING_RATE.
951 * sch_fq packet scheduler is efficiently handling pacing,
952 * but is not always installed/used.
953 * Return true if TCP stack should pace packets itself.
955 static bool tcp_needs_internal_pacing(const struct sock *sk)
957 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
960 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
962 u64 len_ns;
963 u32 rate;
965 if (!tcp_needs_internal_pacing(sk))
966 return;
967 rate = sk->sk_pacing_rate;
968 if (!rate || rate == ~0U)
969 return;
971 /* Should account for header sizes as sch_fq does,
972 * but lets make things simple.
974 len_ns = (u64)skb->len * NSEC_PER_SEC;
975 do_div(len_ns, rate);
976 hrtimer_start(&tcp_sk(sk)->pacing_timer,
977 ktime_add_ns(ktime_get(), len_ns),
978 HRTIMER_MODE_ABS_PINNED);
981 /* This routine actually transmits TCP packets queued in by
982 * tcp_do_sendmsg(). This is used by both the initial
983 * transmission and possible later retransmissions.
984 * All SKB's seen here are completely headerless. It is our
985 * job to build the TCP header, and pass the packet down to
986 * IP so it can do the same plus pass the packet off to the
987 * device.
989 * We are working here with either a clone of the original
990 * SKB, or a fresh unique copy made by the retransmit engine.
992 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
993 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
995 const struct inet_connection_sock *icsk = inet_csk(sk);
996 struct inet_sock *inet;
997 struct tcp_sock *tp;
998 struct tcp_skb_cb *tcb;
999 struct tcp_out_options opts;
1000 unsigned int tcp_options_size, tcp_header_size;
1001 struct sk_buff *oskb = NULL;
1002 struct tcp_md5sig_key *md5;
1003 struct tcphdr *th;
1004 int err;
1006 BUG_ON(!skb || !tcp_skb_pcount(skb));
1007 tp = tcp_sk(sk);
1009 if (clone_it) {
1010 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1011 - tp->snd_una;
1012 oskb = skb;
1013 if (unlikely(skb_cloned(skb)))
1014 skb = pskb_copy(skb, gfp_mask);
1015 else
1016 skb = skb_clone(skb, gfp_mask);
1017 if (unlikely(!skb))
1018 return -ENOBUFS;
1020 skb->skb_mstamp = tp->tcp_mstamp;
1022 inet = inet_sk(sk);
1023 tcb = TCP_SKB_CB(skb);
1024 memset(&opts, 0, sizeof(opts));
1026 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1027 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1028 else
1029 tcp_options_size = tcp_established_options(sk, skb, &opts,
1030 &md5);
1031 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1033 /* if no packet is in qdisc/device queue, then allow XPS to select
1034 * another queue. We can be called from tcp_tsq_handler()
1035 * which holds one reference to sk_wmem_alloc.
1037 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1038 * One way to get this would be to set skb->truesize = 2 on them.
1040 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1042 /* If we had to use memory reserve to allocate this skb,
1043 * this might cause drops if packet is looped back :
1044 * Other socket might not have SOCK_MEMALLOC.
1045 * Packets not looped back do not care about pfmemalloc.
1047 skb->pfmemalloc = 0;
1049 skb_push(skb, tcp_header_size);
1050 skb_reset_transport_header(skb);
1052 skb_orphan(skb);
1053 skb->sk = sk;
1054 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1055 skb_set_hash_from_sk(skb, sk);
1056 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1058 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1060 /* Build TCP header and checksum it. */
1061 th = (struct tcphdr *)skb->data;
1062 th->source = inet->inet_sport;
1063 th->dest = inet->inet_dport;
1064 th->seq = htonl(tcb->seq);
1065 th->ack_seq = htonl(rcv_nxt);
1066 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1067 tcb->tcp_flags);
1069 th->check = 0;
1070 th->urg_ptr = 0;
1072 /* The urg_mode check is necessary during a below snd_una win probe */
1073 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1074 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1075 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1076 th->urg = 1;
1077 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1078 th->urg_ptr = htons(0xFFFF);
1079 th->urg = 1;
1083 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1084 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1085 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1086 th->window = htons(tcp_select_window(sk));
1087 tcp_ecn_send(sk, skb, th, tcp_header_size);
1088 } else {
1089 /* RFC1323: The window in SYN & SYN/ACK segments
1090 * is never scaled.
1092 th->window = htons(min(tp->rcv_wnd, 65535U));
1094 #ifdef CONFIG_TCP_MD5SIG
1095 /* Calculate the MD5 hash, as we have all we need now */
1096 if (md5) {
1097 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1098 tp->af_specific->calc_md5_hash(opts.hash_location,
1099 md5, sk, skb);
1101 #endif
1103 icsk->icsk_af_ops->send_check(sk, skb);
1105 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1106 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1108 if (skb->len != tcp_header_size) {
1109 tcp_event_data_sent(tp, sk);
1110 tp->data_segs_out += tcp_skb_pcount(skb);
1111 tcp_internal_pacing(sk, skb);
1114 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1115 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1116 tcp_skb_pcount(skb));
1118 tp->segs_out += tcp_skb_pcount(skb);
1119 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1120 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1121 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1123 /* Our usage of tstamp should remain private */
1124 skb->tstamp = 0;
1126 /* Cleanup our debris for IP stacks */
1127 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1128 sizeof(struct inet6_skb_parm)));
1130 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1132 if (unlikely(err > 0)) {
1133 tcp_enter_cwr(sk);
1134 err = net_xmit_eval(err);
1136 if (!err && oskb) {
1137 oskb->skb_mstamp = tp->tcp_mstamp;
1138 tcp_rate_skb_sent(sk, oskb);
1140 return err;
1143 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1144 gfp_t gfp_mask)
1146 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1147 tcp_sk(sk)->rcv_nxt);
1150 /* This routine just queues the buffer for sending.
1152 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1153 * otherwise socket can stall.
1155 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1157 struct tcp_sock *tp = tcp_sk(sk);
1159 /* Advance write_seq and place onto the write_queue. */
1160 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1161 __skb_header_release(skb);
1162 tcp_add_write_queue_tail(sk, skb);
1163 sk->sk_wmem_queued += skb->truesize;
1164 sk_mem_charge(sk, skb->truesize);
1167 /* Initialize TSO segments for a packet. */
1168 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1170 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1171 /* Avoid the costly divide in the normal
1172 * non-TSO case.
1174 tcp_skb_pcount_set(skb, 1);
1175 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1176 } else {
1177 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1178 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1182 /* When a modification to fackets out becomes necessary, we need to check
1183 * skb is counted to fackets_out or not.
1185 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1186 int decr)
1188 struct tcp_sock *tp = tcp_sk(sk);
1190 if (!tp->sacked_out || tcp_is_reno(tp))
1191 return;
1193 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1194 tp->fackets_out -= decr;
1197 /* Pcount in the middle of the write queue got changed, we need to do various
1198 * tweaks to fix counters
1200 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1202 struct tcp_sock *tp = tcp_sk(sk);
1204 tp->packets_out -= decr;
1206 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1207 tp->sacked_out -= decr;
1208 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1209 tp->retrans_out -= decr;
1210 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1211 tp->lost_out -= decr;
1213 /* Reno case is special. Sigh... */
1214 if (tcp_is_reno(tp) && decr > 0)
1215 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1217 tcp_adjust_fackets_out(sk, skb, decr);
1219 if (tp->lost_skb_hint &&
1220 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1221 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1222 tp->lost_cnt_hint -= decr;
1224 tcp_verify_left_out(tp);
1227 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1229 return TCP_SKB_CB(skb)->txstamp_ack ||
1230 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1233 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1235 struct skb_shared_info *shinfo = skb_shinfo(skb);
1237 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1238 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1239 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1240 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1242 shinfo->tx_flags &= ~tsflags;
1243 shinfo2->tx_flags |= tsflags;
1244 swap(shinfo->tskey, shinfo2->tskey);
1245 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1246 TCP_SKB_CB(skb)->txstamp_ack = 0;
1250 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1252 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1253 TCP_SKB_CB(skb)->eor = 0;
1256 /* Function to create two new TCP segments. Shrinks the given segment
1257 * to the specified size and appends a new segment with the rest of the
1258 * packet to the list. This won't be called frequently, I hope.
1259 * Remember, these are still headerless SKBs at this point.
1261 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1262 unsigned int mss_now, gfp_t gfp)
1264 struct tcp_sock *tp = tcp_sk(sk);
1265 struct sk_buff *buff;
1266 int nsize, old_factor;
1267 int nlen;
1268 u8 flags;
1270 if (WARN_ON(len > skb->len))
1271 return -EINVAL;
1273 nsize = skb_headlen(skb) - len;
1274 if (nsize < 0)
1275 nsize = 0;
1277 if (skb_unclone(skb, gfp))
1278 return -ENOMEM;
1280 /* Get a new skb... force flag on. */
1281 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1282 if (!buff)
1283 return -ENOMEM; /* We'll just try again later. */
1285 sk->sk_wmem_queued += buff->truesize;
1286 sk_mem_charge(sk, buff->truesize);
1287 nlen = skb->len - len - nsize;
1288 buff->truesize += nlen;
1289 skb->truesize -= nlen;
1291 /* Correct the sequence numbers. */
1292 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1293 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1294 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1296 /* PSH and FIN should only be set in the second packet. */
1297 flags = TCP_SKB_CB(skb)->tcp_flags;
1298 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1299 TCP_SKB_CB(buff)->tcp_flags = flags;
1300 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1301 tcp_skb_fragment_eor(skb, buff);
1303 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1304 /* Copy and checksum data tail into the new buffer. */
1305 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1306 skb_put(buff, nsize),
1307 nsize, 0);
1309 skb_trim(skb, len);
1311 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1312 } else {
1313 skb->ip_summed = CHECKSUM_PARTIAL;
1314 skb_split(skb, buff, len);
1317 buff->ip_summed = skb->ip_summed;
1319 buff->tstamp = skb->tstamp;
1320 tcp_fragment_tstamp(skb, buff);
1322 old_factor = tcp_skb_pcount(skb);
1324 /* Fix up tso_factor for both original and new SKB. */
1325 tcp_set_skb_tso_segs(skb, mss_now);
1326 tcp_set_skb_tso_segs(buff, mss_now);
1328 /* Update delivered info for the new segment */
1329 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1331 /* If this packet has been sent out already, we must
1332 * adjust the various packet counters.
1334 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1335 int diff = old_factor - tcp_skb_pcount(skb) -
1336 tcp_skb_pcount(buff);
1338 if (diff)
1339 tcp_adjust_pcount(sk, skb, diff);
1342 /* Link BUFF into the send queue. */
1343 __skb_header_release(buff);
1344 tcp_insert_write_queue_after(skb, buff, sk);
1346 return 0;
1349 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1350 * data is not copied, but immediately discarded.
1352 static int __pskb_trim_head(struct sk_buff *skb, int len)
1354 struct skb_shared_info *shinfo;
1355 int i, k, eat;
1357 eat = min_t(int, len, skb_headlen(skb));
1358 if (eat) {
1359 __skb_pull(skb, eat);
1360 len -= eat;
1361 if (!len)
1362 return 0;
1364 eat = len;
1365 k = 0;
1366 shinfo = skb_shinfo(skb);
1367 for (i = 0; i < shinfo->nr_frags; i++) {
1368 int size = skb_frag_size(&shinfo->frags[i]);
1370 if (size <= eat) {
1371 skb_frag_unref(skb, i);
1372 eat -= size;
1373 } else {
1374 shinfo->frags[k] = shinfo->frags[i];
1375 if (eat) {
1376 shinfo->frags[k].page_offset += eat;
1377 skb_frag_size_sub(&shinfo->frags[k], eat);
1378 eat = 0;
1380 k++;
1383 shinfo->nr_frags = k;
1385 skb->data_len -= len;
1386 skb->len = skb->data_len;
1387 return len;
1390 /* Remove acked data from a packet in the transmit queue. */
1391 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1393 u32 delta_truesize;
1395 if (skb_unclone(skb, GFP_ATOMIC))
1396 return -ENOMEM;
1398 delta_truesize = __pskb_trim_head(skb, len);
1400 TCP_SKB_CB(skb)->seq += len;
1401 skb->ip_summed = CHECKSUM_PARTIAL;
1403 if (delta_truesize) {
1404 skb->truesize -= delta_truesize;
1405 sk->sk_wmem_queued -= delta_truesize;
1406 sk_mem_uncharge(sk, delta_truesize);
1407 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1410 /* Any change of skb->len requires recalculation of tso factor. */
1411 if (tcp_skb_pcount(skb) > 1)
1412 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1414 return 0;
1417 /* Calculate MSS not accounting any TCP options. */
1418 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1420 const struct tcp_sock *tp = tcp_sk(sk);
1421 const struct inet_connection_sock *icsk = inet_csk(sk);
1422 int mss_now;
1424 /* Calculate base mss without TCP options:
1425 It is MMS_S - sizeof(tcphdr) of rfc1122
1427 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1429 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1430 if (icsk->icsk_af_ops->net_frag_header_len) {
1431 const struct dst_entry *dst = __sk_dst_get(sk);
1433 if (dst && dst_allfrag(dst))
1434 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1437 /* Clamp it (mss_clamp does not include tcp options) */
1438 if (mss_now > tp->rx_opt.mss_clamp)
1439 mss_now = tp->rx_opt.mss_clamp;
1441 /* Now subtract optional transport overhead */
1442 mss_now -= icsk->icsk_ext_hdr_len;
1444 /* Then reserve room for full set of TCP options and 8 bytes of data */
1445 if (mss_now < 48)
1446 mss_now = 48;
1447 return mss_now;
1450 /* Calculate MSS. Not accounting for SACKs here. */
1451 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1453 /* Subtract TCP options size, not including SACKs */
1454 return __tcp_mtu_to_mss(sk, pmtu) -
1455 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1458 /* Inverse of above */
1459 int tcp_mss_to_mtu(struct sock *sk, int mss)
1461 const struct tcp_sock *tp = tcp_sk(sk);
1462 const struct inet_connection_sock *icsk = inet_csk(sk);
1463 int mtu;
1465 mtu = mss +
1466 tp->tcp_header_len +
1467 icsk->icsk_ext_hdr_len +
1468 icsk->icsk_af_ops->net_header_len;
1470 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1471 if (icsk->icsk_af_ops->net_frag_header_len) {
1472 const struct dst_entry *dst = __sk_dst_get(sk);
1474 if (dst && dst_allfrag(dst))
1475 mtu += icsk->icsk_af_ops->net_frag_header_len;
1477 return mtu;
1479 EXPORT_SYMBOL(tcp_mss_to_mtu);
1481 /* MTU probing init per socket */
1482 void tcp_mtup_init(struct sock *sk)
1484 struct tcp_sock *tp = tcp_sk(sk);
1485 struct inet_connection_sock *icsk = inet_csk(sk);
1486 struct net *net = sock_net(sk);
1488 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1489 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1490 icsk->icsk_af_ops->net_header_len;
1491 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1492 icsk->icsk_mtup.probe_size = 0;
1493 if (icsk->icsk_mtup.enabled)
1494 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1496 EXPORT_SYMBOL(tcp_mtup_init);
1498 /* This function synchronize snd mss to current pmtu/exthdr set.
1500 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1501 for TCP options, but includes only bare TCP header.
1503 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1504 It is minimum of user_mss and mss received with SYN.
1505 It also does not include TCP options.
1507 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1509 tp->mss_cache is current effective sending mss, including
1510 all tcp options except for SACKs. It is evaluated,
1511 taking into account current pmtu, but never exceeds
1512 tp->rx_opt.mss_clamp.
1514 NOTE1. rfc1122 clearly states that advertised MSS
1515 DOES NOT include either tcp or ip options.
1517 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1518 are READ ONLY outside this function. --ANK (980731)
1520 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1522 struct tcp_sock *tp = tcp_sk(sk);
1523 struct inet_connection_sock *icsk = inet_csk(sk);
1524 int mss_now;
1526 if (icsk->icsk_mtup.search_high > pmtu)
1527 icsk->icsk_mtup.search_high = pmtu;
1529 mss_now = tcp_mtu_to_mss(sk, pmtu);
1530 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1532 /* And store cached results */
1533 icsk->icsk_pmtu_cookie = pmtu;
1534 if (icsk->icsk_mtup.enabled)
1535 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1536 tp->mss_cache = mss_now;
1538 return mss_now;
1540 EXPORT_SYMBOL(tcp_sync_mss);
1542 /* Compute the current effective MSS, taking SACKs and IP options,
1543 * and even PMTU discovery events into account.
1545 unsigned int tcp_current_mss(struct sock *sk)
1547 const struct tcp_sock *tp = tcp_sk(sk);
1548 const struct dst_entry *dst = __sk_dst_get(sk);
1549 u32 mss_now;
1550 unsigned int header_len;
1551 struct tcp_out_options opts;
1552 struct tcp_md5sig_key *md5;
1554 mss_now = tp->mss_cache;
1556 if (dst) {
1557 u32 mtu = dst_mtu(dst);
1558 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1559 mss_now = tcp_sync_mss(sk, mtu);
1562 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1563 sizeof(struct tcphdr);
1564 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1565 * some common options. If this is an odd packet (because we have SACK
1566 * blocks etc) then our calculated header_len will be different, and
1567 * we have to adjust mss_now correspondingly */
1568 if (header_len != tp->tcp_header_len) {
1569 int delta = (int) header_len - tp->tcp_header_len;
1570 mss_now -= delta;
1573 return mss_now;
1576 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1577 * As additional protections, we do not touch cwnd in retransmission phases,
1578 * and if application hit its sndbuf limit recently.
1580 static void tcp_cwnd_application_limited(struct sock *sk)
1582 struct tcp_sock *tp = tcp_sk(sk);
1584 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1585 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1586 /* Limited by application or receiver window. */
1587 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1588 u32 win_used = max(tp->snd_cwnd_used, init_win);
1589 if (win_used < tp->snd_cwnd) {
1590 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1591 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1593 tp->snd_cwnd_used = 0;
1595 tp->snd_cwnd_stamp = tcp_jiffies32;
1598 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1600 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1601 struct tcp_sock *tp = tcp_sk(sk);
1603 /* Track the maximum number of outstanding packets in each
1604 * window, and remember whether we were cwnd-limited then.
1606 if (!before(tp->snd_una, tp->max_packets_seq) ||
1607 tp->packets_out > tp->max_packets_out) {
1608 tp->max_packets_out = tp->packets_out;
1609 tp->max_packets_seq = tp->snd_nxt;
1610 tp->is_cwnd_limited = is_cwnd_limited;
1613 if (tcp_is_cwnd_limited(sk)) {
1614 /* Network is feed fully. */
1615 tp->snd_cwnd_used = 0;
1616 tp->snd_cwnd_stamp = tcp_jiffies32;
1617 } else {
1618 /* Network starves. */
1619 if (tp->packets_out > tp->snd_cwnd_used)
1620 tp->snd_cwnd_used = tp->packets_out;
1622 if (sysctl_tcp_slow_start_after_idle &&
1623 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1624 !ca_ops->cong_control)
1625 tcp_cwnd_application_limited(sk);
1627 /* The following conditions together indicate the starvation
1628 * is caused by insufficient sender buffer:
1629 * 1) just sent some data (see tcp_write_xmit)
1630 * 2) not cwnd limited (this else condition)
1631 * 3) no more data to send (null tcp_send_head )
1632 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1634 if (!tcp_send_head(sk) && sk->sk_socket &&
1635 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1636 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1637 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1641 /* Minshall's variant of the Nagle send check. */
1642 static bool tcp_minshall_check(const struct tcp_sock *tp)
1644 return after(tp->snd_sml, tp->snd_una) &&
1645 !after(tp->snd_sml, tp->snd_nxt);
1648 /* Update snd_sml if this skb is under mss
1649 * Note that a TSO packet might end with a sub-mss segment
1650 * The test is really :
1651 * if ((skb->len % mss) != 0)
1652 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1653 * But we can avoid doing the divide again given we already have
1654 * skb_pcount = skb->len / mss_now
1656 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1657 const struct sk_buff *skb)
1659 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1660 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1663 /* Return false, if packet can be sent now without violation Nagle's rules:
1664 * 1. It is full sized. (provided by caller in %partial bool)
1665 * 2. Or it contains FIN. (already checked by caller)
1666 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1667 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1668 * With Minshall's modification: all sent small packets are ACKed.
1670 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1671 int nonagle)
1673 return partial &&
1674 ((nonagle & TCP_NAGLE_CORK) ||
1675 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1678 /* Return how many segs we'd like on a TSO packet,
1679 * to send one TSO packet per ms
1681 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1682 int min_tso_segs)
1684 u32 bytes, segs;
1686 bytes = min(sk->sk_pacing_rate >> 10,
1687 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1689 /* Goal is to send at least one packet per ms,
1690 * not one big TSO packet every 100 ms.
1691 * This preserves ACK clocking and is consistent
1692 * with tcp_tso_should_defer() heuristic.
1694 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1696 return segs;
1698 EXPORT_SYMBOL(tcp_tso_autosize);
1700 /* Return the number of segments we want in the skb we are transmitting.
1701 * See if congestion control module wants to decide; otherwise, autosize.
1703 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1705 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1706 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1708 if (!tso_segs)
1709 tso_segs = tcp_tso_autosize(sk, mss_now,
1710 sysctl_tcp_min_tso_segs);
1711 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1714 /* Returns the portion of skb which can be sent right away */
1715 static unsigned int tcp_mss_split_point(const struct sock *sk,
1716 const struct sk_buff *skb,
1717 unsigned int mss_now,
1718 unsigned int max_segs,
1719 int nonagle)
1721 const struct tcp_sock *tp = tcp_sk(sk);
1722 u32 partial, needed, window, max_len;
1724 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1725 max_len = mss_now * max_segs;
1727 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1728 return max_len;
1730 needed = min(skb->len, window);
1732 if (max_len <= needed)
1733 return max_len;
1735 partial = needed % mss_now;
1736 /* If last segment is not a full MSS, check if Nagle rules allow us
1737 * to include this last segment in this skb.
1738 * Otherwise, we'll split the skb at last MSS boundary
1740 if (tcp_nagle_check(partial != 0, tp, nonagle))
1741 return needed - partial;
1743 return needed;
1746 /* Can at least one segment of SKB be sent right now, according to the
1747 * congestion window rules? If so, return how many segments are allowed.
1749 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1750 const struct sk_buff *skb)
1752 u32 in_flight, cwnd, halfcwnd;
1754 /* Don't be strict about the congestion window for the final FIN. */
1755 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1756 tcp_skb_pcount(skb) == 1)
1757 return 1;
1759 in_flight = tcp_packets_in_flight(tp);
1760 cwnd = tp->snd_cwnd;
1761 if (in_flight >= cwnd)
1762 return 0;
1764 /* For better scheduling, ensure we have at least
1765 * 2 GSO packets in flight.
1767 halfcwnd = max(cwnd >> 1, 1U);
1768 return min(halfcwnd, cwnd - in_flight);
1771 /* Initialize TSO state of a skb.
1772 * This must be invoked the first time we consider transmitting
1773 * SKB onto the wire.
1775 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1777 int tso_segs = tcp_skb_pcount(skb);
1779 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1780 tcp_set_skb_tso_segs(skb, mss_now);
1781 tso_segs = tcp_skb_pcount(skb);
1783 return tso_segs;
1787 /* Return true if the Nagle test allows this packet to be
1788 * sent now.
1790 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1791 unsigned int cur_mss, int nonagle)
1793 /* Nagle rule does not apply to frames, which sit in the middle of the
1794 * write_queue (they have no chances to get new data).
1796 * This is implemented in the callers, where they modify the 'nonagle'
1797 * argument based upon the location of SKB in the send queue.
1799 if (nonagle & TCP_NAGLE_PUSH)
1800 return true;
1802 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1803 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1804 return true;
1806 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1807 return true;
1809 return false;
1812 /* Does at least the first segment of SKB fit into the send window? */
1813 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1814 const struct sk_buff *skb,
1815 unsigned int cur_mss)
1817 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1819 if (skb->len > cur_mss)
1820 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1822 return !after(end_seq, tcp_wnd_end(tp));
1825 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1826 * which is put after SKB on the list. It is very much like
1827 * tcp_fragment() except that it may make several kinds of assumptions
1828 * in order to speed up the splitting operation. In particular, we
1829 * know that all the data is in scatter-gather pages, and that the
1830 * packet has never been sent out before (and thus is not cloned).
1832 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1833 unsigned int mss_now, gfp_t gfp)
1835 struct sk_buff *buff;
1836 int nlen = skb->len - len;
1837 u8 flags;
1839 /* All of a TSO frame must be composed of paged data. */
1840 if (skb->len != skb->data_len)
1841 return tcp_fragment(sk, skb, len, mss_now, gfp);
1843 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1844 if (unlikely(!buff))
1845 return -ENOMEM;
1847 sk->sk_wmem_queued += buff->truesize;
1848 sk_mem_charge(sk, buff->truesize);
1849 buff->truesize += nlen;
1850 skb->truesize -= nlen;
1852 /* Correct the sequence numbers. */
1853 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1854 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1855 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1857 /* PSH and FIN should only be set in the second packet. */
1858 flags = TCP_SKB_CB(skb)->tcp_flags;
1859 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1860 TCP_SKB_CB(buff)->tcp_flags = flags;
1862 /* This packet was never sent out yet, so no SACK bits. */
1863 TCP_SKB_CB(buff)->sacked = 0;
1865 tcp_skb_fragment_eor(skb, buff);
1867 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1868 skb_split(skb, buff, len);
1869 tcp_fragment_tstamp(skb, buff);
1871 /* Fix up tso_factor for both original and new SKB. */
1872 tcp_set_skb_tso_segs(skb, mss_now);
1873 tcp_set_skb_tso_segs(buff, mss_now);
1875 /* Link BUFF into the send queue. */
1876 __skb_header_release(buff);
1877 tcp_insert_write_queue_after(skb, buff, sk);
1879 return 0;
1882 /* Try to defer sending, if possible, in order to minimize the amount
1883 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1885 * This algorithm is from John Heffner.
1887 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1888 bool *is_cwnd_limited,
1889 bool *is_rwnd_limited,
1890 u32 max_segs)
1892 const struct inet_connection_sock *icsk = inet_csk(sk);
1893 u32 age, send_win, cong_win, limit, in_flight;
1894 struct tcp_sock *tp = tcp_sk(sk);
1895 struct sk_buff *head;
1896 int win_divisor;
1898 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1899 goto send_now;
1901 /* Avoid bursty behavior by allowing defer
1902 * only if the last write was recent.
1904 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1905 goto send_now;
1907 in_flight = tcp_packets_in_flight(tp);
1909 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1911 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1913 /* From in_flight test above, we know that cwnd > in_flight. */
1914 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1916 limit = min(send_win, cong_win);
1918 /* If a full-sized TSO skb can be sent, do it. */
1919 if (limit >= max_segs * tp->mss_cache)
1920 goto send_now;
1922 /* Middle in queue won't get any more data, full sendable already? */
1923 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1924 goto send_now;
1926 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1927 if (win_divisor) {
1928 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1930 /* If at least some fraction of a window is available,
1931 * just use it.
1933 chunk /= win_divisor;
1934 if (limit >= chunk)
1935 goto send_now;
1936 } else {
1937 /* Different approach, try not to defer past a single
1938 * ACK. Receiver should ACK every other full sized
1939 * frame, so if we have space for more than 3 frames
1940 * then send now.
1942 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1943 goto send_now;
1946 head = tcp_write_queue_head(sk);
1948 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1949 /* If next ACK is likely to come too late (half srtt), do not defer */
1950 if (age < (tp->srtt_us >> 4))
1951 goto send_now;
1953 /* Ok, it looks like it is advisable to defer.
1954 * Three cases are tracked :
1955 * 1) We are cwnd-limited
1956 * 2) We are rwnd-limited
1957 * 3) We are application limited.
1959 if (cong_win < send_win) {
1960 if (cong_win <= skb->len) {
1961 *is_cwnd_limited = true;
1962 return true;
1964 } else {
1965 if (send_win <= skb->len) {
1966 *is_rwnd_limited = true;
1967 return true;
1971 /* If this packet won't get more data, do not wait. */
1972 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1973 goto send_now;
1975 return true;
1977 send_now:
1978 return false;
1981 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1983 struct inet_connection_sock *icsk = inet_csk(sk);
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 struct net *net = sock_net(sk);
1986 u32 interval;
1987 s32 delta;
1989 interval = net->ipv4.sysctl_tcp_probe_interval;
1990 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1991 if (unlikely(delta >= interval * HZ)) {
1992 int mss = tcp_current_mss(sk);
1994 /* Update current search range */
1995 icsk->icsk_mtup.probe_size = 0;
1996 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1997 sizeof(struct tcphdr) +
1998 icsk->icsk_af_ops->net_header_len;
1999 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2001 /* Update probe time stamp */
2002 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2006 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2008 struct sk_buff *skb, *next;
2010 skb = tcp_send_head(sk);
2011 tcp_for_write_queue_from_safe(skb, next, sk) {
2012 if (len <= skb->len)
2013 break;
2015 if (unlikely(TCP_SKB_CB(skb)->eor))
2016 return false;
2018 len -= skb->len;
2021 return true;
2024 /* Create a new MTU probe if we are ready.
2025 * MTU probe is regularly attempting to increase the path MTU by
2026 * deliberately sending larger packets. This discovers routing
2027 * changes resulting in larger path MTUs.
2029 * Returns 0 if we should wait to probe (no cwnd available),
2030 * 1 if a probe was sent,
2031 * -1 otherwise
2033 static int tcp_mtu_probe(struct sock *sk)
2035 struct inet_connection_sock *icsk = inet_csk(sk);
2036 struct tcp_sock *tp = tcp_sk(sk);
2037 struct sk_buff *skb, *nskb, *next;
2038 struct net *net = sock_net(sk);
2039 int probe_size;
2040 int size_needed;
2041 int copy, len;
2042 int mss_now;
2043 int interval;
2045 /* Not currently probing/verifying,
2046 * not in recovery,
2047 * have enough cwnd, and
2048 * not SACKing (the variable headers throw things off)
2050 if (likely(!icsk->icsk_mtup.enabled ||
2051 icsk->icsk_mtup.probe_size ||
2052 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2053 tp->snd_cwnd < 11 ||
2054 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2055 return -1;
2057 /* Use binary search for probe_size between tcp_mss_base,
2058 * and current mss_clamp. if (search_high - search_low)
2059 * smaller than a threshold, backoff from probing.
2061 mss_now = tcp_current_mss(sk);
2062 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2063 icsk->icsk_mtup.search_low) >> 1);
2064 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2065 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2066 /* When misfortune happens, we are reprobing actively,
2067 * and then reprobe timer has expired. We stick with current
2068 * probing process by not resetting search range to its orignal.
2070 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2071 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2072 /* Check whether enough time has elaplased for
2073 * another round of probing.
2075 tcp_mtu_check_reprobe(sk);
2076 return -1;
2079 /* Have enough data in the send queue to probe? */
2080 if (tp->write_seq - tp->snd_nxt < size_needed)
2081 return -1;
2083 if (tp->snd_wnd < size_needed)
2084 return -1;
2085 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2086 return 0;
2088 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2089 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2090 if (!tcp_packets_in_flight(tp))
2091 return -1;
2092 else
2093 return 0;
2096 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2097 return -1;
2099 /* We're allowed to probe. Build it now. */
2100 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2101 if (!nskb)
2102 return -1;
2103 sk->sk_wmem_queued += nskb->truesize;
2104 sk_mem_charge(sk, nskb->truesize);
2106 skb = tcp_send_head(sk);
2108 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2109 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2110 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2111 TCP_SKB_CB(nskb)->sacked = 0;
2112 nskb->csum = 0;
2113 nskb->ip_summed = skb->ip_summed;
2115 tcp_insert_write_queue_before(nskb, skb, sk);
2116 tcp_highest_sack_replace(sk, skb, nskb);
2118 len = 0;
2119 tcp_for_write_queue_from_safe(skb, next, sk) {
2120 copy = min_t(int, skb->len, probe_size - len);
2121 if (nskb->ip_summed) {
2122 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2123 } else {
2124 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2125 skb_put(nskb, copy),
2126 copy, 0);
2127 nskb->csum = csum_block_add(nskb->csum, csum, len);
2130 if (skb->len <= copy) {
2131 /* We've eaten all the data from this skb.
2132 * Throw it away. */
2133 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2134 /* If this is the last SKB we copy and eor is set
2135 * we need to propagate it to the new skb.
2137 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2138 tcp_unlink_write_queue(skb, sk);
2139 sk_wmem_free_skb(sk, skb);
2140 } else {
2141 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2142 ~(TCPHDR_FIN|TCPHDR_PSH);
2143 if (!skb_shinfo(skb)->nr_frags) {
2144 skb_pull(skb, copy);
2145 if (skb->ip_summed != CHECKSUM_PARTIAL)
2146 skb->csum = csum_partial(skb->data,
2147 skb->len, 0);
2148 } else {
2149 __pskb_trim_head(skb, copy);
2150 tcp_set_skb_tso_segs(skb, mss_now);
2152 TCP_SKB_CB(skb)->seq += copy;
2155 len += copy;
2157 if (len >= probe_size)
2158 break;
2160 tcp_init_tso_segs(nskb, nskb->len);
2162 /* We're ready to send. If this fails, the probe will
2163 * be resegmented into mss-sized pieces by tcp_write_xmit().
2165 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2166 /* Decrement cwnd here because we are sending
2167 * effectively two packets. */
2168 tp->snd_cwnd--;
2169 tcp_event_new_data_sent(sk, nskb);
2171 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2172 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2173 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2175 return 1;
2178 return -1;
2181 static bool tcp_pacing_check(const struct sock *sk)
2183 return tcp_needs_internal_pacing(sk) &&
2184 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2187 /* TCP Small Queues :
2188 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2189 * (These limits are doubled for retransmits)
2190 * This allows for :
2191 * - better RTT estimation and ACK scheduling
2192 * - faster recovery
2193 * - high rates
2194 * Alas, some drivers / subsystems require a fair amount
2195 * of queued bytes to ensure line rate.
2196 * One example is wifi aggregation (802.11 AMPDU)
2198 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2199 unsigned int factor)
2201 unsigned int limit;
2203 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2204 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2205 limit <<= factor;
2207 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2208 /* Always send the 1st or 2nd skb in write queue.
2209 * No need to wait for TX completion to call us back,
2210 * after softirq/tasklet schedule.
2211 * This helps when TX completions are delayed too much.
2213 if (skb == sk->sk_write_queue.next ||
2214 skb->prev == sk->sk_write_queue.next)
2215 return false;
2217 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2218 /* It is possible TX completion already happened
2219 * before we set TSQ_THROTTLED, so we must
2220 * test again the condition.
2222 smp_mb__after_atomic();
2223 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2224 return true;
2226 return false;
2229 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2231 const u32 now = tcp_jiffies32;
2232 enum tcp_chrono old = tp->chrono_type;
2234 if (old > TCP_CHRONO_UNSPEC)
2235 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2236 tp->chrono_start = now;
2237 tp->chrono_type = new;
2240 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2242 struct tcp_sock *tp = tcp_sk(sk);
2244 /* If there are multiple conditions worthy of tracking in a
2245 * chronograph then the highest priority enum takes precedence
2246 * over the other conditions. So that if something "more interesting"
2247 * starts happening, stop the previous chrono and start a new one.
2249 if (type > tp->chrono_type)
2250 tcp_chrono_set(tp, type);
2253 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2255 struct tcp_sock *tp = tcp_sk(sk);
2258 /* There are multiple conditions worthy of tracking in a
2259 * chronograph, so that the highest priority enum takes
2260 * precedence over the other conditions (see tcp_chrono_start).
2261 * If a condition stops, we only stop chrono tracking if
2262 * it's the "most interesting" or current chrono we are
2263 * tracking and starts busy chrono if we have pending data.
2265 if (tcp_write_queue_empty(sk))
2266 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2267 else if (type == tp->chrono_type)
2268 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2271 /* This routine writes packets to the network. It advances the
2272 * send_head. This happens as incoming acks open up the remote
2273 * window for us.
2275 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2276 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2277 * account rare use of URG, this is not a big flaw.
2279 * Send at most one packet when push_one > 0. Temporarily ignore
2280 * cwnd limit to force at most one packet out when push_one == 2.
2282 * Returns true, if no segments are in flight and we have queued segments,
2283 * but cannot send anything now because of SWS or another problem.
2285 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2286 int push_one, gfp_t gfp)
2288 struct tcp_sock *tp = tcp_sk(sk);
2289 struct sk_buff *skb;
2290 unsigned int tso_segs, sent_pkts;
2291 int cwnd_quota;
2292 int result;
2293 bool is_cwnd_limited = false, is_rwnd_limited = false;
2294 u32 max_segs;
2296 sent_pkts = 0;
2298 tcp_mstamp_refresh(tp);
2299 if (!push_one) {
2300 /* Do MTU probing. */
2301 result = tcp_mtu_probe(sk);
2302 if (!result) {
2303 return false;
2304 } else if (result > 0) {
2305 sent_pkts = 1;
2309 max_segs = tcp_tso_segs(sk, mss_now);
2310 while ((skb = tcp_send_head(sk))) {
2311 unsigned int limit;
2313 if (tcp_pacing_check(sk))
2314 break;
2316 tso_segs = tcp_init_tso_segs(skb, mss_now);
2317 BUG_ON(!tso_segs);
2319 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2320 /* "skb_mstamp" is used as a start point for the retransmit timer */
2321 skb->skb_mstamp = tp->tcp_mstamp;
2322 goto repair; /* Skip network transmission */
2325 cwnd_quota = tcp_cwnd_test(tp, skb);
2326 if (!cwnd_quota) {
2327 if (push_one == 2)
2328 /* Force out a loss probe pkt. */
2329 cwnd_quota = 1;
2330 else
2331 break;
2334 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2335 is_rwnd_limited = true;
2336 break;
2339 if (tso_segs == 1) {
2340 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2341 (tcp_skb_is_last(sk, skb) ?
2342 nonagle : TCP_NAGLE_PUSH))))
2343 break;
2344 } else {
2345 if (!push_one &&
2346 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2347 &is_rwnd_limited, max_segs))
2348 break;
2351 limit = mss_now;
2352 if (tso_segs > 1 && !tcp_urg_mode(tp))
2353 limit = tcp_mss_split_point(sk, skb, mss_now,
2354 min_t(unsigned int,
2355 cwnd_quota,
2356 max_segs),
2357 nonagle);
2359 if (skb->len > limit &&
2360 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2361 break;
2363 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2364 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2365 if (tcp_small_queue_check(sk, skb, 0))
2366 break;
2368 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2369 break;
2371 repair:
2372 /* Advance the send_head. This one is sent out.
2373 * This call will increment packets_out.
2375 tcp_event_new_data_sent(sk, skb);
2377 tcp_minshall_update(tp, mss_now, skb);
2378 sent_pkts += tcp_skb_pcount(skb);
2380 if (push_one)
2381 break;
2384 if (is_rwnd_limited)
2385 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2386 else
2387 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2389 if (likely(sent_pkts)) {
2390 if (tcp_in_cwnd_reduction(sk))
2391 tp->prr_out += sent_pkts;
2393 /* Send one loss probe per tail loss episode. */
2394 if (push_one != 2)
2395 tcp_schedule_loss_probe(sk, false);
2396 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2397 tcp_cwnd_validate(sk, is_cwnd_limited);
2398 return false;
2400 return !tp->packets_out && tcp_send_head(sk);
2403 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2405 struct inet_connection_sock *icsk = inet_csk(sk);
2406 struct tcp_sock *tp = tcp_sk(sk);
2407 u32 timeout, rto_delta_us;
2409 /* Don't do any loss probe on a Fast Open connection before 3WHS
2410 * finishes.
2412 if (tp->fastopen_rsk)
2413 return false;
2415 /* Schedule a loss probe in 2*RTT for SACK capable connections
2416 * in Open state, that are either limited by cwnd or application.
2418 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2419 !tp->packets_out || !tcp_is_sack(tp) ||
2420 icsk->icsk_ca_state != TCP_CA_Open)
2421 return false;
2423 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2424 tcp_send_head(sk))
2425 return false;
2427 /* Probe timeout is 2*rtt. Add minimum RTO to account
2428 * for delayed ack when there's one outstanding packet. If no RTT
2429 * sample is available then probe after TCP_TIMEOUT_INIT.
2431 if (tp->srtt_us) {
2432 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2433 if (tp->packets_out == 1)
2434 timeout += TCP_RTO_MIN;
2435 else
2436 timeout += TCP_TIMEOUT_MIN;
2437 } else {
2438 timeout = TCP_TIMEOUT_INIT;
2441 /* If the RTO formula yields an earlier time, then use that time. */
2442 rto_delta_us = advancing_rto ?
2443 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2444 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2445 if (rto_delta_us > 0)
2446 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2449 TCP_RTO_MAX);
2450 return true;
2453 /* Thanks to skb fast clones, we can detect if a prior transmit of
2454 * a packet is still in a qdisc or driver queue.
2455 * In this case, there is very little point doing a retransmit !
2457 static bool skb_still_in_host_queue(const struct sock *sk,
2458 const struct sk_buff *skb)
2460 if (unlikely(skb_fclone_busy(sk, skb))) {
2461 NET_INC_STATS(sock_net(sk),
2462 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2463 return true;
2465 return false;
2468 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2469 * retransmit the last segment.
2471 void tcp_send_loss_probe(struct sock *sk)
2473 struct tcp_sock *tp = tcp_sk(sk);
2474 struct sk_buff *skb;
2475 int pcount;
2476 int mss = tcp_current_mss(sk);
2478 skb = tcp_send_head(sk);
2479 if (skb) {
2480 if (tcp_snd_wnd_test(tp, skb, mss)) {
2481 pcount = tp->packets_out;
2482 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2483 if (tp->packets_out > pcount)
2484 goto probe_sent;
2485 goto rearm_timer;
2487 skb = tcp_write_queue_prev(sk, skb);
2488 } else {
2489 skb = tcp_write_queue_tail(sk);
2492 if (unlikely(!skb)) {
2493 WARN_ONCE(tp->packets_out,
2494 "invalid inflight: %u state %u cwnd %u mss %d\n",
2495 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2496 inet_csk(sk)->icsk_pending = 0;
2497 return;
2500 /* At most one outstanding TLP retransmission. */
2501 if (tp->tlp_high_seq)
2502 goto rearm_timer;
2504 if (skb_still_in_host_queue(sk, skb))
2505 goto rearm_timer;
2507 pcount = tcp_skb_pcount(skb);
2508 if (WARN_ON(!pcount))
2509 goto rearm_timer;
2511 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2512 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2513 GFP_ATOMIC)))
2514 goto rearm_timer;
2515 skb = tcp_write_queue_next(sk, skb);
2518 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2519 goto rearm_timer;
2521 if (__tcp_retransmit_skb(sk, skb, 1))
2522 goto rearm_timer;
2524 /* Record snd_nxt for loss detection. */
2525 tp->tlp_high_seq = tp->snd_nxt;
2527 probe_sent:
2528 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2529 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2530 inet_csk(sk)->icsk_pending = 0;
2531 rearm_timer:
2532 tcp_rearm_rto(sk);
2535 /* Push out any pending frames which were held back due to
2536 * TCP_CORK or attempt at coalescing tiny packets.
2537 * The socket must be locked by the caller.
2539 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2540 int nonagle)
2542 /* If we are closed, the bytes will have to remain here.
2543 * In time closedown will finish, we empty the write queue and
2544 * all will be happy.
2546 if (unlikely(sk->sk_state == TCP_CLOSE))
2547 return;
2549 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2550 sk_gfp_mask(sk, GFP_ATOMIC)))
2551 tcp_check_probe_timer(sk);
2554 /* Send _single_ skb sitting at the send head. This function requires
2555 * true push pending frames to setup probe timer etc.
2557 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2559 struct sk_buff *skb = tcp_send_head(sk);
2561 BUG_ON(!skb || skb->len < mss_now);
2563 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2566 /* This function returns the amount that we can raise the
2567 * usable window based on the following constraints
2569 * 1. The window can never be shrunk once it is offered (RFC 793)
2570 * 2. We limit memory per socket
2572 * RFC 1122:
2573 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2574 * RECV.NEXT + RCV.WIN fixed until:
2575 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2577 * i.e. don't raise the right edge of the window until you can raise
2578 * it at least MSS bytes.
2580 * Unfortunately, the recommended algorithm breaks header prediction,
2581 * since header prediction assumes th->window stays fixed.
2583 * Strictly speaking, keeping th->window fixed violates the receiver
2584 * side SWS prevention criteria. The problem is that under this rule
2585 * a stream of single byte packets will cause the right side of the
2586 * window to always advance by a single byte.
2588 * Of course, if the sender implements sender side SWS prevention
2589 * then this will not be a problem.
2591 * BSD seems to make the following compromise:
2593 * If the free space is less than the 1/4 of the maximum
2594 * space available and the free space is less than 1/2 mss,
2595 * then set the window to 0.
2596 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2597 * Otherwise, just prevent the window from shrinking
2598 * and from being larger than the largest representable value.
2600 * This prevents incremental opening of the window in the regime
2601 * where TCP is limited by the speed of the reader side taking
2602 * data out of the TCP receive queue. It does nothing about
2603 * those cases where the window is constrained on the sender side
2604 * because the pipeline is full.
2606 * BSD also seems to "accidentally" limit itself to windows that are a
2607 * multiple of MSS, at least until the free space gets quite small.
2608 * This would appear to be a side effect of the mbuf implementation.
2609 * Combining these two algorithms results in the observed behavior
2610 * of having a fixed window size at almost all times.
2612 * Below we obtain similar behavior by forcing the offered window to
2613 * a multiple of the mss when it is feasible to do so.
2615 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2616 * Regular options like TIMESTAMP are taken into account.
2618 u32 __tcp_select_window(struct sock *sk)
2620 struct inet_connection_sock *icsk = inet_csk(sk);
2621 struct tcp_sock *tp = tcp_sk(sk);
2622 /* MSS for the peer's data. Previous versions used mss_clamp
2623 * here. I don't know if the value based on our guesses
2624 * of peer's MSS is better for the performance. It's more correct
2625 * but may be worse for the performance because of rcv_mss
2626 * fluctuations. --SAW 1998/11/1
2628 int mss = icsk->icsk_ack.rcv_mss;
2629 int free_space = tcp_space(sk);
2630 int allowed_space = tcp_full_space(sk);
2631 int full_space = min_t(int, tp->window_clamp, allowed_space);
2632 int window;
2634 if (unlikely(mss > full_space)) {
2635 mss = full_space;
2636 if (mss <= 0)
2637 return 0;
2639 if (free_space < (full_space >> 1)) {
2640 icsk->icsk_ack.quick = 0;
2642 if (tcp_under_memory_pressure(sk))
2643 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2644 4U * tp->advmss);
2646 /* free_space might become our new window, make sure we don't
2647 * increase it due to wscale.
2649 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2651 /* if free space is less than mss estimate, or is below 1/16th
2652 * of the maximum allowed, try to move to zero-window, else
2653 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2654 * new incoming data is dropped due to memory limits.
2655 * With large window, mss test triggers way too late in order
2656 * to announce zero window in time before rmem limit kicks in.
2658 if (free_space < (allowed_space >> 4) || free_space < mss)
2659 return 0;
2662 if (free_space > tp->rcv_ssthresh)
2663 free_space = tp->rcv_ssthresh;
2665 /* Don't do rounding if we are using window scaling, since the
2666 * scaled window will not line up with the MSS boundary anyway.
2668 if (tp->rx_opt.rcv_wscale) {
2669 window = free_space;
2671 /* Advertise enough space so that it won't get scaled away.
2672 * Import case: prevent zero window announcement if
2673 * 1<<rcv_wscale > mss.
2675 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2676 } else {
2677 window = tp->rcv_wnd;
2678 /* Get the largest window that is a nice multiple of mss.
2679 * Window clamp already applied above.
2680 * If our current window offering is within 1 mss of the
2681 * free space we just keep it. This prevents the divide
2682 * and multiply from happening most of the time.
2683 * We also don't do any window rounding when the free space
2684 * is too small.
2686 if (window <= free_space - mss || window > free_space)
2687 window = rounddown(free_space, mss);
2688 else if (mss == full_space &&
2689 free_space > window + (full_space >> 1))
2690 window = free_space;
2693 return window;
2696 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2697 const struct sk_buff *next_skb)
2699 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2700 const struct skb_shared_info *next_shinfo =
2701 skb_shinfo(next_skb);
2702 struct skb_shared_info *shinfo = skb_shinfo(skb);
2704 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2705 shinfo->tskey = next_shinfo->tskey;
2706 TCP_SKB_CB(skb)->txstamp_ack |=
2707 TCP_SKB_CB(next_skb)->txstamp_ack;
2711 /* Collapses two adjacent SKB's during retransmission. */
2712 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2714 struct tcp_sock *tp = tcp_sk(sk);
2715 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2716 int skb_size, next_skb_size;
2718 skb_size = skb->len;
2719 next_skb_size = next_skb->len;
2721 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2723 if (next_skb_size) {
2724 if (next_skb_size <= skb_availroom(skb))
2725 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2726 next_skb_size);
2727 else if (!skb_shift(skb, next_skb, next_skb_size))
2728 return false;
2730 tcp_highest_sack_replace(sk, next_skb, skb);
2732 tcp_unlink_write_queue(next_skb, sk);
2734 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2735 skb->ip_summed = CHECKSUM_PARTIAL;
2737 if (skb->ip_summed != CHECKSUM_PARTIAL)
2738 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2740 /* Update sequence range on original skb. */
2741 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2743 /* Merge over control information. This moves PSH/FIN etc. over */
2744 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2746 /* All done, get rid of second SKB and account for it so
2747 * packet counting does not break.
2749 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2750 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2752 /* changed transmit queue under us so clear hints */
2753 tcp_clear_retrans_hints_partial(tp);
2754 if (next_skb == tp->retransmit_skb_hint)
2755 tp->retransmit_skb_hint = skb;
2757 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2759 tcp_skb_collapse_tstamp(skb, next_skb);
2761 sk_wmem_free_skb(sk, next_skb);
2762 return true;
2765 /* Check if coalescing SKBs is legal. */
2766 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2768 if (tcp_skb_pcount(skb) > 1)
2769 return false;
2770 if (skb_cloned(skb))
2771 return false;
2772 if (skb == tcp_send_head(sk))
2773 return false;
2774 /* Some heuristics for collapsing over SACK'd could be invented */
2775 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2776 return false;
2778 return true;
2781 /* Collapse packets in the retransmit queue to make to create
2782 * less packets on the wire. This is only done on retransmission.
2784 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2785 int space)
2787 struct tcp_sock *tp = tcp_sk(sk);
2788 struct sk_buff *skb = to, *tmp;
2789 bool first = true;
2791 if (!sysctl_tcp_retrans_collapse)
2792 return;
2793 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2794 return;
2796 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2797 if (!tcp_can_collapse(sk, skb))
2798 break;
2800 if (!tcp_skb_can_collapse_to(to))
2801 break;
2803 space -= skb->len;
2805 if (first) {
2806 first = false;
2807 continue;
2810 if (space < 0)
2811 break;
2813 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2814 break;
2816 if (!tcp_collapse_retrans(sk, to))
2817 break;
2821 /* This retransmits one SKB. Policy decisions and retransmit queue
2822 * state updates are done by the caller. Returns non-zero if an
2823 * error occurred which prevented the send.
2825 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2827 struct inet_connection_sock *icsk = inet_csk(sk);
2828 struct tcp_sock *tp = tcp_sk(sk);
2829 unsigned int cur_mss;
2830 int diff, len, err;
2833 /* Inconclusive MTU probe */
2834 if (icsk->icsk_mtup.probe_size)
2835 icsk->icsk_mtup.probe_size = 0;
2837 /* Do not sent more than we queued. 1/4 is reserved for possible
2838 * copying overhead: fragmentation, tunneling, mangling etc.
2840 if (refcount_read(&sk->sk_wmem_alloc) >
2841 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2842 sk->sk_sndbuf))
2843 return -EAGAIN;
2845 if (skb_still_in_host_queue(sk, skb))
2846 return -EBUSY;
2848 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2849 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2850 WARN_ON_ONCE(1);
2851 return -EINVAL;
2853 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2854 return -ENOMEM;
2857 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2858 return -EHOSTUNREACH; /* Routing failure or similar. */
2860 cur_mss = tcp_current_mss(sk);
2862 /* If receiver has shrunk his window, and skb is out of
2863 * new window, do not retransmit it. The exception is the
2864 * case, when window is shrunk to zero. In this case
2865 * our retransmit serves as a zero window probe.
2867 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2868 TCP_SKB_CB(skb)->seq != tp->snd_una)
2869 return -EAGAIN;
2871 len = cur_mss * segs;
2872 if (skb->len > len) {
2873 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2874 return -ENOMEM; /* We'll try again later. */
2875 } else {
2876 if (skb_unclone(skb, GFP_ATOMIC))
2877 return -ENOMEM;
2879 diff = tcp_skb_pcount(skb);
2880 tcp_set_skb_tso_segs(skb, cur_mss);
2881 diff -= tcp_skb_pcount(skb);
2882 if (diff)
2883 tcp_adjust_pcount(sk, skb, diff);
2884 if (skb->len < cur_mss)
2885 tcp_retrans_try_collapse(sk, skb, cur_mss);
2888 /* RFC3168, section 6.1.1.1. ECN fallback */
2889 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2890 tcp_ecn_clear_syn(sk, skb);
2892 /* Update global and local TCP statistics. */
2893 segs = tcp_skb_pcount(skb);
2894 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2895 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2896 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2897 tp->total_retrans += segs;
2899 /* make sure skb->data is aligned on arches that require it
2900 * and check if ack-trimming & collapsing extended the headroom
2901 * beyond what csum_start can cover.
2903 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2904 skb_headroom(skb) >= 0xFFFF)) {
2905 struct sk_buff *nskb;
2907 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2908 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2909 -ENOBUFS;
2910 if (!err) {
2911 skb->skb_mstamp = tp->tcp_mstamp;
2912 tcp_rate_skb_sent(sk, skb);
2914 } else {
2915 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2918 if (likely(!err)) {
2919 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2920 } else if (err != -EBUSY) {
2921 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2923 return err;
2926 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 int err = __tcp_retransmit_skb(sk, skb, segs);
2931 if (err == 0) {
2932 #if FASTRETRANS_DEBUG > 0
2933 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2934 net_dbg_ratelimited("retrans_out leaked\n");
2936 #endif
2937 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2938 tp->retrans_out += tcp_skb_pcount(skb);
2940 /* Save stamp of the first retransmit. */
2941 if (!tp->retrans_stamp)
2942 tp->retrans_stamp = tcp_skb_timestamp(skb);
2946 if (tp->undo_retrans < 0)
2947 tp->undo_retrans = 0;
2948 tp->undo_retrans += tcp_skb_pcount(skb);
2949 return err;
2952 /* This gets called after a retransmit timeout, and the initially
2953 * retransmitted data is acknowledged. It tries to continue
2954 * resending the rest of the retransmit queue, until either
2955 * we've sent it all or the congestion window limit is reached.
2956 * If doing SACK, the first ACK which comes back for a timeout
2957 * based retransmit packet might feed us FACK information again.
2958 * If so, we use it to avoid unnecessarily retransmissions.
2960 void tcp_xmit_retransmit_queue(struct sock *sk)
2962 const struct inet_connection_sock *icsk = inet_csk(sk);
2963 struct tcp_sock *tp = tcp_sk(sk);
2964 struct sk_buff *skb;
2965 struct sk_buff *hole = NULL;
2966 u32 max_segs;
2967 int mib_idx;
2969 if (!tp->packets_out)
2970 return;
2972 if (tp->retransmit_skb_hint) {
2973 skb = tp->retransmit_skb_hint;
2974 } else {
2975 skb = tcp_write_queue_head(sk);
2978 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2979 tcp_for_write_queue_from(skb, sk) {
2980 __u8 sacked;
2981 int segs;
2983 if (skb == tcp_send_head(sk))
2984 break;
2986 if (tcp_pacing_check(sk))
2987 break;
2989 /* we could do better than to assign each time */
2990 if (!hole)
2991 tp->retransmit_skb_hint = skb;
2993 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2994 if (segs <= 0)
2995 return;
2996 sacked = TCP_SKB_CB(skb)->sacked;
2997 /* In case tcp_shift_skb_data() have aggregated large skbs,
2998 * we need to make sure not sending too bigs TSO packets
3000 segs = min_t(int, segs, max_segs);
3002 if (tp->retrans_out >= tp->lost_out) {
3003 break;
3004 } else if (!(sacked & TCPCB_LOST)) {
3005 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3006 hole = skb;
3007 continue;
3009 } else {
3010 if (icsk->icsk_ca_state != TCP_CA_Loss)
3011 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3012 else
3013 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3016 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3017 continue;
3019 if (tcp_small_queue_check(sk, skb, 1))
3020 return;
3022 if (tcp_retransmit_skb(sk, skb, segs))
3023 return;
3025 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3027 if (tcp_in_cwnd_reduction(sk))
3028 tp->prr_out += tcp_skb_pcount(skb);
3030 if (skb == tcp_write_queue_head(sk) &&
3031 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3033 inet_csk(sk)->icsk_rto,
3034 TCP_RTO_MAX);
3038 /* We allow to exceed memory limits for FIN packets to expedite
3039 * connection tear down and (memory) recovery.
3040 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3041 * or even be forced to close flow without any FIN.
3042 * In general, we want to allow one skb per socket to avoid hangs
3043 * with edge trigger epoll()
3045 void sk_forced_mem_schedule(struct sock *sk, int size)
3047 int amt;
3049 if (size <= sk->sk_forward_alloc)
3050 return;
3051 amt = sk_mem_pages(size);
3052 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3053 sk_memory_allocated_add(sk, amt);
3055 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3056 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3059 /* Send a FIN. The caller locks the socket for us.
3060 * We should try to send a FIN packet really hard, but eventually give up.
3062 void tcp_send_fin(struct sock *sk)
3064 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3065 struct tcp_sock *tp = tcp_sk(sk);
3067 /* Optimization, tack on the FIN if we have one skb in write queue and
3068 * this skb was not yet sent, or we are under memory pressure.
3069 * Note: in the latter case, FIN packet will be sent after a timeout,
3070 * as TCP stack thinks it has already been transmitted.
3072 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3073 coalesce:
3074 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3075 TCP_SKB_CB(tskb)->end_seq++;
3076 tp->write_seq++;
3077 if (!tcp_send_head(sk)) {
3078 /* This means tskb was already sent.
3079 * Pretend we included the FIN on previous transmit.
3080 * We need to set tp->snd_nxt to the value it would have
3081 * if FIN had been sent. This is because retransmit path
3082 * does not change tp->snd_nxt.
3084 tp->snd_nxt++;
3085 return;
3087 } else {
3088 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3089 if (unlikely(!skb)) {
3090 if (tskb)
3091 goto coalesce;
3092 return;
3094 skb_reserve(skb, MAX_TCP_HEADER);
3095 sk_forced_mem_schedule(sk, skb->truesize);
3096 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3097 tcp_init_nondata_skb(skb, tp->write_seq,
3098 TCPHDR_ACK | TCPHDR_FIN);
3099 tcp_queue_skb(sk, skb);
3101 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3104 /* We get here when a process closes a file descriptor (either due to
3105 * an explicit close() or as a byproduct of exit()'ing) and there
3106 * was unread data in the receive queue. This behavior is recommended
3107 * by RFC 2525, section 2.17. -DaveM
3109 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3111 struct sk_buff *skb;
3113 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3115 /* NOTE: No TCP options attached and we never retransmit this. */
3116 skb = alloc_skb(MAX_TCP_HEADER, priority);
3117 if (!skb) {
3118 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3119 return;
3122 /* Reserve space for headers and prepare control bits. */
3123 skb_reserve(skb, MAX_TCP_HEADER);
3124 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3125 TCPHDR_ACK | TCPHDR_RST);
3126 tcp_mstamp_refresh(tcp_sk(sk));
3127 /* Send it off. */
3128 if (tcp_transmit_skb(sk, skb, 0, priority))
3129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3132 /* Send a crossed SYN-ACK during socket establishment.
3133 * WARNING: This routine must only be called when we have already sent
3134 * a SYN packet that crossed the incoming SYN that caused this routine
3135 * to get called. If this assumption fails then the initial rcv_wnd
3136 * and rcv_wscale values will not be correct.
3138 int tcp_send_synack(struct sock *sk)
3140 struct sk_buff *skb;
3142 skb = tcp_write_queue_head(sk);
3143 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3144 pr_debug("%s: wrong queue state\n", __func__);
3145 return -EFAULT;
3147 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3148 if (skb_cloned(skb)) {
3149 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3150 if (!nskb)
3151 return -ENOMEM;
3152 tcp_unlink_write_queue(skb, sk);
3153 __skb_header_release(nskb);
3154 __tcp_add_write_queue_head(sk, nskb);
3155 sk_wmem_free_skb(sk, skb);
3156 sk->sk_wmem_queued += nskb->truesize;
3157 sk_mem_charge(sk, nskb->truesize);
3158 skb = nskb;
3161 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3162 tcp_ecn_send_synack(sk, skb);
3164 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3168 * tcp_make_synack - Prepare a SYN-ACK.
3169 * sk: listener socket
3170 * dst: dst entry attached to the SYNACK
3171 * req: request_sock pointer
3173 * Allocate one skb and build a SYNACK packet.
3174 * @dst is consumed : Caller should not use it again.
3176 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3177 struct request_sock *req,
3178 struct tcp_fastopen_cookie *foc,
3179 enum tcp_synack_type synack_type)
3181 struct inet_request_sock *ireq = inet_rsk(req);
3182 const struct tcp_sock *tp = tcp_sk(sk);
3183 struct tcp_md5sig_key *md5 = NULL;
3184 struct tcp_out_options opts;
3185 struct sk_buff *skb;
3186 int tcp_header_size;
3187 struct tcphdr *th;
3188 int mss;
3190 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3191 if (unlikely(!skb)) {
3192 dst_release(dst);
3193 return NULL;
3195 /* Reserve space for headers. */
3196 skb_reserve(skb, MAX_TCP_HEADER);
3198 switch (synack_type) {
3199 case TCP_SYNACK_NORMAL:
3200 skb_set_owner_w(skb, req_to_sk(req));
3201 break;
3202 case TCP_SYNACK_COOKIE:
3203 /* Under synflood, we do not attach skb to a socket,
3204 * to avoid false sharing.
3206 break;
3207 case TCP_SYNACK_FASTOPEN:
3208 /* sk is a const pointer, because we want to express multiple
3209 * cpu might call us concurrently.
3210 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3212 skb_set_owner_w(skb, (struct sock *)sk);
3213 break;
3215 skb_dst_set(skb, dst);
3217 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3219 memset(&opts, 0, sizeof(opts));
3220 #ifdef CONFIG_SYN_COOKIES
3221 if (unlikely(req->cookie_ts))
3222 skb->skb_mstamp = cookie_init_timestamp(req);
3223 else
3224 #endif
3225 skb->skb_mstamp = tcp_clock_us();
3227 #ifdef CONFIG_TCP_MD5SIG
3228 rcu_read_lock();
3229 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3230 #endif
3231 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3232 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3233 sizeof(*th);
3235 skb_push(skb, tcp_header_size);
3236 skb_reset_transport_header(skb);
3238 th = (struct tcphdr *)skb->data;
3239 memset(th, 0, sizeof(struct tcphdr));
3240 th->syn = 1;
3241 th->ack = 1;
3242 tcp_ecn_make_synack(req, th);
3243 th->source = htons(ireq->ir_num);
3244 th->dest = ireq->ir_rmt_port;
3245 skb->mark = ireq->ir_mark;
3246 skb->ip_summed = CHECKSUM_PARTIAL;
3247 th->seq = htonl(tcp_rsk(req)->snt_isn);
3248 /* XXX data is queued and acked as is. No buffer/window check */
3249 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3251 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3252 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3253 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3254 th->doff = (tcp_header_size >> 2);
3255 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3257 #ifdef CONFIG_TCP_MD5SIG
3258 /* Okay, we have all we need - do the md5 hash if needed */
3259 if (md5)
3260 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3261 md5, req_to_sk(req), skb);
3262 rcu_read_unlock();
3263 #endif
3265 /* Do not fool tcpdump (if any), clean our debris */
3266 skb->tstamp = 0;
3267 return skb;
3269 EXPORT_SYMBOL(tcp_make_synack);
3271 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3273 struct inet_connection_sock *icsk = inet_csk(sk);
3274 const struct tcp_congestion_ops *ca;
3275 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3277 if (ca_key == TCP_CA_UNSPEC)
3278 return;
3280 rcu_read_lock();
3281 ca = tcp_ca_find_key(ca_key);
3282 if (likely(ca && try_module_get(ca->owner))) {
3283 module_put(icsk->icsk_ca_ops->owner);
3284 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3285 icsk->icsk_ca_ops = ca;
3287 rcu_read_unlock();
3290 /* Do all connect socket setups that can be done AF independent. */
3291 static void tcp_connect_init(struct sock *sk)
3293 const struct dst_entry *dst = __sk_dst_get(sk);
3294 struct tcp_sock *tp = tcp_sk(sk);
3295 __u8 rcv_wscale;
3296 u32 rcv_wnd;
3298 /* We'll fix this up when we get a response from the other end.
3299 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3301 tp->tcp_header_len = sizeof(struct tcphdr);
3302 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3303 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3305 #ifdef CONFIG_TCP_MD5SIG
3306 if (tp->af_specific->md5_lookup(sk, sk))
3307 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3308 #endif
3310 /* If user gave his TCP_MAXSEG, record it to clamp */
3311 if (tp->rx_opt.user_mss)
3312 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3313 tp->max_window = 0;
3314 tcp_mtup_init(sk);
3315 tcp_sync_mss(sk, dst_mtu(dst));
3317 tcp_ca_dst_init(sk, dst);
3319 if (!tp->window_clamp)
3320 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3321 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3323 tcp_initialize_rcv_mss(sk);
3325 /* limit the window selection if the user enforce a smaller rx buffer */
3326 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3327 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3328 tp->window_clamp = tcp_full_space(sk);
3330 rcv_wnd = tcp_rwnd_init_bpf(sk);
3331 if (rcv_wnd == 0)
3332 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3334 tcp_select_initial_window(tcp_full_space(sk),
3335 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3336 &tp->rcv_wnd,
3337 &tp->window_clamp,
3338 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3339 &rcv_wscale,
3340 rcv_wnd);
3342 tp->rx_opt.rcv_wscale = rcv_wscale;
3343 tp->rcv_ssthresh = tp->rcv_wnd;
3345 sk->sk_err = 0;
3346 sock_reset_flag(sk, SOCK_DONE);
3347 tp->snd_wnd = 0;
3348 tcp_init_wl(tp, 0);
3349 tcp_write_queue_purge(sk);
3350 tp->snd_una = tp->write_seq;
3351 tp->snd_sml = tp->write_seq;
3352 tp->snd_up = tp->write_seq;
3353 tp->snd_nxt = tp->write_seq;
3355 if (likely(!tp->repair))
3356 tp->rcv_nxt = 0;
3357 else
3358 tp->rcv_tstamp = tcp_jiffies32;
3359 tp->rcv_wup = tp->rcv_nxt;
3360 tp->copied_seq = tp->rcv_nxt;
3362 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3363 inet_csk(sk)->icsk_retransmits = 0;
3364 tcp_clear_retrans(tp);
3367 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3369 struct tcp_sock *tp = tcp_sk(sk);
3370 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3372 tcb->end_seq += skb->len;
3373 __skb_header_release(skb);
3374 __tcp_add_write_queue_tail(sk, skb);
3375 sk->sk_wmem_queued += skb->truesize;
3376 sk_mem_charge(sk, skb->truesize);
3377 tp->write_seq = tcb->end_seq;
3378 tp->packets_out += tcp_skb_pcount(skb);
3381 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3382 * queue a data-only packet after the regular SYN, such that regular SYNs
3383 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3384 * only the SYN sequence, the data are retransmitted in the first ACK.
3385 * If cookie is not cached or other error occurs, falls back to send a
3386 * regular SYN with Fast Open cookie request option.
3388 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3390 struct tcp_sock *tp = tcp_sk(sk);
3391 struct tcp_fastopen_request *fo = tp->fastopen_req;
3392 int space, err = 0;
3393 struct sk_buff *syn_data;
3395 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3396 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3397 goto fallback;
3399 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3400 * user-MSS. Reserve maximum option space for middleboxes that add
3401 * private TCP options. The cost is reduced data space in SYN :(
3403 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3405 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3406 MAX_TCP_OPTION_SPACE;
3408 space = min_t(size_t, space, fo->size);
3410 /* limit to order-0 allocations */
3411 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3413 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3414 if (!syn_data)
3415 goto fallback;
3416 syn_data->ip_summed = CHECKSUM_PARTIAL;
3417 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3418 if (space) {
3419 int copied = copy_from_iter(skb_put(syn_data, space), space,
3420 &fo->data->msg_iter);
3421 if (unlikely(!copied)) {
3422 kfree_skb(syn_data);
3423 goto fallback;
3425 if (copied != space) {
3426 skb_trim(syn_data, copied);
3427 space = copied;
3430 /* No more data pending in inet_wait_for_connect() */
3431 if (space == fo->size)
3432 fo->data = NULL;
3433 fo->copied = space;
3435 tcp_connect_queue_skb(sk, syn_data);
3436 if (syn_data->len)
3437 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3439 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3441 syn->skb_mstamp = syn_data->skb_mstamp;
3443 /* Now full SYN+DATA was cloned and sent (or not),
3444 * remove the SYN from the original skb (syn_data)
3445 * we keep in write queue in case of a retransmit, as we
3446 * also have the SYN packet (with no data) in the same queue.
3448 TCP_SKB_CB(syn_data)->seq++;
3449 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3450 if (!err) {
3451 tp->syn_data = (fo->copied > 0);
3452 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3453 goto done;
3456 /* data was not sent, this is our new send_head */
3457 sk->sk_send_head = syn_data;
3458 tp->packets_out -= tcp_skb_pcount(syn_data);
3460 fallback:
3461 /* Send a regular SYN with Fast Open cookie request option */
3462 if (fo->cookie.len > 0)
3463 fo->cookie.len = 0;
3464 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3465 if (err)
3466 tp->syn_fastopen = 0;
3467 done:
3468 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3469 return err;
3472 /* Build a SYN and send it off. */
3473 int tcp_connect(struct sock *sk)
3475 struct tcp_sock *tp = tcp_sk(sk);
3476 struct sk_buff *buff;
3477 int err;
3479 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3481 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3482 return -EHOSTUNREACH; /* Routing failure or similar. */
3484 tcp_connect_init(sk);
3486 if (unlikely(tp->repair)) {
3487 tcp_finish_connect(sk, NULL);
3488 return 0;
3491 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3492 if (unlikely(!buff))
3493 return -ENOBUFS;
3495 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3496 tcp_mstamp_refresh(tp);
3497 tp->retrans_stamp = tcp_time_stamp(tp);
3498 tcp_connect_queue_skb(sk, buff);
3499 tcp_ecn_send_syn(sk, buff);
3501 /* Send off SYN; include data in Fast Open. */
3502 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3503 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3504 if (err == -ECONNREFUSED)
3505 return err;
3507 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3508 * in order to make this packet get counted in tcpOutSegs.
3510 tp->snd_nxt = tp->write_seq;
3511 tp->pushed_seq = tp->write_seq;
3512 buff = tcp_send_head(sk);
3513 if (unlikely(buff)) {
3514 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3515 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3517 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3519 /* Timer for repeating the SYN until an answer. */
3520 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3521 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3522 return 0;
3524 EXPORT_SYMBOL(tcp_connect);
3526 /* Send out a delayed ack, the caller does the policy checking
3527 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3528 * for details.
3530 void tcp_send_delayed_ack(struct sock *sk)
3532 struct inet_connection_sock *icsk = inet_csk(sk);
3533 int ato = icsk->icsk_ack.ato;
3534 unsigned long timeout;
3536 if (ato > TCP_DELACK_MIN) {
3537 const struct tcp_sock *tp = tcp_sk(sk);
3538 int max_ato = HZ / 2;
3540 if (icsk->icsk_ack.pingpong ||
3541 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3542 max_ato = TCP_DELACK_MAX;
3544 /* Slow path, intersegment interval is "high". */
3546 /* If some rtt estimate is known, use it to bound delayed ack.
3547 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3548 * directly.
3550 if (tp->srtt_us) {
3551 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3552 TCP_DELACK_MIN);
3554 if (rtt < max_ato)
3555 max_ato = rtt;
3558 ato = min(ato, max_ato);
3561 /* Stay within the limit we were given */
3562 timeout = jiffies + ato;
3564 /* Use new timeout only if there wasn't a older one earlier. */
3565 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3566 /* If delack timer was blocked or is about to expire,
3567 * send ACK now.
3569 if (icsk->icsk_ack.blocked ||
3570 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3571 tcp_send_ack(sk);
3572 return;
3575 if (!time_before(timeout, icsk->icsk_ack.timeout))
3576 timeout = icsk->icsk_ack.timeout;
3578 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3579 icsk->icsk_ack.timeout = timeout;
3580 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3583 /* This routine sends an ack and also updates the window. */
3584 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3586 struct sk_buff *buff;
3588 /* If we have been reset, we may not send again. */
3589 if (sk->sk_state == TCP_CLOSE)
3590 return;
3592 /* We are not putting this on the write queue, so
3593 * tcp_transmit_skb() will set the ownership to this
3594 * sock.
3596 buff = alloc_skb(MAX_TCP_HEADER,
3597 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3598 if (unlikely(!buff)) {
3599 inet_csk_schedule_ack(sk);
3600 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3601 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3602 TCP_DELACK_MAX, TCP_RTO_MAX);
3603 return;
3606 /* Reserve space for headers and prepare control bits. */
3607 skb_reserve(buff, MAX_TCP_HEADER);
3608 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3610 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3611 * too much.
3612 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3614 skb_set_tcp_pure_ack(buff);
3616 /* Send it off, this clears delayed acks for us. */
3617 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3619 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3621 void tcp_send_ack(struct sock *sk)
3623 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3626 /* This routine sends a packet with an out of date sequence
3627 * number. It assumes the other end will try to ack it.
3629 * Question: what should we make while urgent mode?
3630 * 4.4BSD forces sending single byte of data. We cannot send
3631 * out of window data, because we have SND.NXT==SND.MAX...
3633 * Current solution: to send TWO zero-length segments in urgent mode:
3634 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3635 * out-of-date with SND.UNA-1 to probe window.
3637 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3639 struct tcp_sock *tp = tcp_sk(sk);
3640 struct sk_buff *skb;
3642 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3643 skb = alloc_skb(MAX_TCP_HEADER,
3644 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3645 if (!skb)
3646 return -1;
3648 /* Reserve space for headers and set control bits. */
3649 skb_reserve(skb, MAX_TCP_HEADER);
3650 /* Use a previous sequence. This should cause the other
3651 * end to send an ack. Don't queue or clone SKB, just
3652 * send it.
3654 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3655 NET_INC_STATS(sock_net(sk), mib);
3656 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3659 /* Called from setsockopt( ... TCP_REPAIR ) */
3660 void tcp_send_window_probe(struct sock *sk)
3662 if (sk->sk_state == TCP_ESTABLISHED) {
3663 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3664 tcp_mstamp_refresh(tcp_sk(sk));
3665 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3669 /* Initiate keepalive or window probe from timer. */
3670 int tcp_write_wakeup(struct sock *sk, int mib)
3672 struct tcp_sock *tp = tcp_sk(sk);
3673 struct sk_buff *skb;
3675 if (sk->sk_state == TCP_CLOSE)
3676 return -1;
3678 skb = tcp_send_head(sk);
3679 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3680 int err;
3681 unsigned int mss = tcp_current_mss(sk);
3682 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3684 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3685 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3687 /* We are probing the opening of a window
3688 * but the window size is != 0
3689 * must have been a result SWS avoidance ( sender )
3691 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3692 skb->len > mss) {
3693 seg_size = min(seg_size, mss);
3694 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3695 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3696 return -1;
3697 } else if (!tcp_skb_pcount(skb))
3698 tcp_set_skb_tso_segs(skb, mss);
3700 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3701 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3702 if (!err)
3703 tcp_event_new_data_sent(sk, skb);
3704 return err;
3705 } else {
3706 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3707 tcp_xmit_probe_skb(sk, 1, mib);
3708 return tcp_xmit_probe_skb(sk, 0, mib);
3712 /* A window probe timeout has occurred. If window is not closed send
3713 * a partial packet else a zero probe.
3715 void tcp_send_probe0(struct sock *sk)
3717 struct inet_connection_sock *icsk = inet_csk(sk);
3718 struct tcp_sock *tp = tcp_sk(sk);
3719 struct net *net = sock_net(sk);
3720 unsigned long probe_max;
3721 int err;
3723 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3725 if (tp->packets_out || !tcp_send_head(sk)) {
3726 /* Cancel probe timer, if it is not required. */
3727 icsk->icsk_probes_out = 0;
3728 icsk->icsk_backoff = 0;
3729 return;
3732 if (err <= 0) {
3733 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3734 icsk->icsk_backoff++;
3735 icsk->icsk_probes_out++;
3736 probe_max = TCP_RTO_MAX;
3737 } else {
3738 /* If packet was not sent due to local congestion,
3739 * do not backoff and do not remember icsk_probes_out.
3740 * Let local senders to fight for local resources.
3742 * Use accumulated backoff yet.
3744 if (!icsk->icsk_probes_out)
3745 icsk->icsk_probes_out = 1;
3746 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3748 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3749 tcp_probe0_when(sk, probe_max),
3750 TCP_RTO_MAX);
3753 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3755 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3756 struct flowi fl;
3757 int res;
3759 tcp_rsk(req)->txhash = net_tx_rndhash();
3760 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3761 if (!res) {
3762 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3763 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3764 if (unlikely(tcp_passive_fastopen(sk)))
3765 tcp_sk(sk)->total_retrans++;
3767 return res;
3769 EXPORT_SYMBOL(tcp_rtx_synack);