2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
66 int push_one
, gfp_t gfp
);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
71 struct inet_connection_sock
*icsk
= inet_csk(sk
);
72 struct tcp_sock
*tp
= tcp_sk(sk
);
73 unsigned int prior_packets
= tp
->packets_out
;
75 tcp_advance_send_head(sk
, skb
);
76 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
78 tp
->packets_out
+= tcp_skb_pcount(skb
);
79 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
82 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
95 const struct tcp_sock
*tp
= tcp_sk(sk
);
97 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
) ||
98 (tp
->rx_opt
.wscale_ok
&&
99 ((tp
->snd_nxt
- tcp_wnd_end(tp
)) < (1 << tp
->rx_opt
.rcv_wscale
))))
102 return tcp_wnd_end(tp
);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16
tcp_advertise_mss(struct sock
*sk
)
121 struct tcp_sock
*tp
= tcp_sk(sk
);
122 const struct dst_entry
*dst
= __sk_dst_get(sk
);
123 int mss
= tp
->advmss
;
126 unsigned int metric
= dst_metric_advmss(dst
);
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
142 struct tcp_sock
*tp
= tcp_sk(sk
);
143 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
144 u32 cwnd
= tp
->snd_cwnd
;
146 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
148 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
149 restart_cwnd
= min(restart_cwnd
, cwnd
);
151 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
153 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
154 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
155 tp
->snd_cwnd_used
= 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock
*tp
,
162 struct inet_connection_sock
*icsk
= inet_csk(sk
);
163 const u32 now
= tcp_jiffies32
;
165 if (tcp_packets_in_flight(tp
) == 0)
166 tcp_ca_event(sk
, CA_EVENT_TX_START
);
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
173 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
174 icsk
->icsk_ack
.pingpong
= 1;
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
,
181 struct tcp_sock
*tp
= tcp_sk(sk
);
183 if (unlikely(rcv_nxt
!= tp
->rcv_nxt
))
184 return; /* Special ACK sent by DCTCP to reflect ECN */
185 tcp_dec_quickack_mode(sk
, pkts
);
186 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
190 u32
tcp_default_init_rwnd(u32 mss
)
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
197 u32 init_rwnd
= TCP_INIT_CWND
* 2;
200 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
211 void tcp_select_initial_window(int __space
, __u32 mss
,
212 __u32
*rcv_wnd
, __u32
*window_clamp
,
213 int wscale_ok
, __u8
*rcv_wscale
,
216 unsigned int space
= (__space
< 0 ? 0 : __space
);
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp
== 0)
220 (*window_clamp
) = (U16_MAX
<< TCP_MAX_WSCALE
);
221 space
= min(*window_clamp
, space
);
223 /* Quantize space offering to a multiple of mss if possible. */
225 space
= rounddown(space
, mss
);
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
235 if (sysctl_tcp_workaround_signed_windows
)
236 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
242 /* Set window scaling on max possible window */
243 space
= max_t(u32
, space
, sysctl_tcp_rmem
[2]);
244 space
= max_t(u32
, space
, sysctl_rmem_max
);
245 space
= min_t(u32
, space
, *window_clamp
);
246 while (space
> U16_MAX
&& (*rcv_wscale
) < TCP_MAX_WSCALE
) {
252 if (mss
> (1 << *rcv_wscale
)) {
253 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
254 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
255 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
258 /* Set the clamp no higher than max representable value */
259 (*window_clamp
) = min_t(__u32
, U16_MAX
<< (*rcv_wscale
), *window_clamp
);
261 EXPORT_SYMBOL(tcp_select_initial_window
);
263 /* Chose a new window to advertise, update state in tcp_sock for the
264 * socket, and return result with RFC1323 scaling applied. The return
265 * value can be stuffed directly into th->window for an outgoing
268 static u16
tcp_select_window(struct sock
*sk
)
270 struct tcp_sock
*tp
= tcp_sk(sk
);
271 u32 old_win
= tp
->rcv_wnd
;
272 u32 cur_win
= tcp_receive_window(tp
);
273 u32 new_win
= __tcp_select_window(sk
);
275 /* Never shrink the offered window */
276 if (new_win
< cur_win
) {
277 /* Danger Will Robinson!
278 * Don't update rcv_wup/rcv_wnd here or else
279 * we will not be able to advertise a zero
280 * window in time. --DaveM
282 * Relax Will Robinson.
285 NET_INC_STATS(sock_net(sk
),
286 LINUX_MIB_TCPWANTZEROWINDOWADV
);
287 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
289 tp
->rcv_wnd
= new_win
;
290 tp
->rcv_wup
= tp
->rcv_nxt
;
292 /* Make sure we do not exceed the maximum possible
295 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
296 new_win
= min(new_win
, MAX_TCP_WINDOW
);
298 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
300 /* RFC1323 scaling applied */
301 new_win
>>= tp
->rx_opt
.rcv_wscale
;
303 /* If we advertise zero window, disable fast path. */
307 NET_INC_STATS(sock_net(sk
),
308 LINUX_MIB_TCPTOZEROWINDOWADV
);
309 } else if (old_win
== 0) {
310 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
316 /* Packet ECN state for a SYN-ACK */
317 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
319 const struct tcp_sock
*tp
= tcp_sk(sk
);
321 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
322 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
323 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
324 else if (tcp_ca_needs_ecn(sk
) ||
325 tcp_bpf_ca_needs_ecn(sk
))
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
332 struct tcp_sock
*tp
= tcp_sk(sk
);
333 bool bpf_needs_ecn
= tcp_bpf_ca_needs_ecn(sk
);
334 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
335 tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
;
338 const struct dst_entry
*dst
= __sk_dst_get(sk
);
340 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
347 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
348 tp
->ecn_flags
= TCP_ECN_OK
;
349 if (tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
)
354 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
356 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
357 /* tp->ecn_flags are cleared at a later point in time when
358 * SYN ACK is ultimatively being received.
360 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
364 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
366 if (inet_rsk(req
)->ecn_ok
)
370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
373 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
374 struct tcphdr
*th
, int tcp_header_len
)
376 struct tcp_sock
*tp
= tcp_sk(sk
);
378 if (tp
->ecn_flags
& TCP_ECN_OK
) {
379 /* Not-retransmitted data segment: set ECT and inject CWR. */
380 if (skb
->len
!= tcp_header_len
&&
381 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
383 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
384 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
386 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
388 } else if (!tcp_ca_needs_ecn(sk
)) {
389 /* ACK or retransmitted segment: clear ECT|CE */
390 INET_ECN_dontxmit(sk
);
392 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
397 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
398 * auto increment end seqno.
400 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
402 skb
->ip_summed
= CHECKSUM_PARTIAL
;
405 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
406 TCP_SKB_CB(skb
)->sacked
= 0;
408 tcp_skb_pcount_set(skb
, 1);
410 TCP_SKB_CB(skb
)->seq
= seq
;
411 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
413 TCP_SKB_CB(skb
)->end_seq
= seq
;
416 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
418 return tp
->snd_una
!= tp
->snd_up
;
421 #define OPTION_SACK_ADVERTISE (1 << 0)
422 #define OPTION_TS (1 << 1)
423 #define OPTION_MD5 (1 << 2)
424 #define OPTION_WSCALE (1 << 3)
425 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
427 struct tcp_out_options
{
428 u16 options
; /* bit field of OPTION_* */
429 u16 mss
; /* 0 to disable */
430 u8 ws
; /* window scale, 0 to disable */
431 u8 num_sack_blocks
; /* number of SACK blocks to include */
432 u8 hash_size
; /* bytes in hash_location */
433 __u8
*hash_location
; /* temporary pointer, overloaded */
434 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
435 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
438 /* Write previously computed TCP options to the packet.
440 * Beware: Something in the Internet is very sensitive to the ordering of
441 * TCP options, we learned this through the hard way, so be careful here.
442 * Luckily we can at least blame others for their non-compliance but from
443 * inter-operability perspective it seems that we're somewhat stuck with
444 * the ordering which we have been using if we want to keep working with
445 * those broken things (not that it currently hurts anybody as there isn't
446 * particular reason why the ordering would need to be changed).
448 * At least SACK_PERM as the first option is known to lead to a disaster
449 * (but it may well be that other scenarios fail similarly).
451 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
452 struct tcp_out_options
*opts
)
454 u16 options
= opts
->options
; /* mungable copy */
456 if (unlikely(OPTION_MD5
& options
)) {
457 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
458 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
459 /* overload cookie hash location */
460 opts
->hash_location
= (__u8
*)ptr
;
464 if (unlikely(opts
->mss
)) {
465 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
466 (TCPOLEN_MSS
<< 16) |
470 if (likely(OPTION_TS
& options
)) {
471 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
472 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
473 (TCPOLEN_SACK_PERM
<< 16) |
474 (TCPOPT_TIMESTAMP
<< 8) |
476 options
&= ~OPTION_SACK_ADVERTISE
;
478 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
480 (TCPOPT_TIMESTAMP
<< 8) |
483 *ptr
++ = htonl(opts
->tsval
);
484 *ptr
++ = htonl(opts
->tsecr
);
487 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
488 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
490 (TCPOPT_SACK_PERM
<< 8) |
494 if (unlikely(OPTION_WSCALE
& options
)) {
495 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
496 (TCPOPT_WINDOW
<< 16) |
497 (TCPOLEN_WINDOW
<< 8) |
501 if (unlikely(opts
->num_sack_blocks
)) {
502 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
503 tp
->duplicate_sack
: tp
->selective_acks
;
506 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
509 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
510 TCPOLEN_SACK_PERBLOCK
)));
512 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
514 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
515 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
518 tp
->rx_opt
.dsack
= 0;
521 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
522 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
524 u32 len
; /* Fast Open option length */
527 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
528 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
529 TCPOPT_FASTOPEN_MAGIC
);
530 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
532 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
533 *p
++ = TCPOPT_FASTOPEN
;
537 memcpy(p
, foc
->val
, foc
->len
);
538 if ((len
& 3) == 2) {
539 p
[foc
->len
] = TCPOPT_NOP
;
540 p
[foc
->len
+ 1] = TCPOPT_NOP
;
542 ptr
+= (len
+ 3) >> 2;
546 /* Compute TCP options for SYN packets. This is not the final
547 * network wire format yet.
549 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
550 struct tcp_out_options
*opts
,
551 struct tcp_md5sig_key
**md5
)
553 struct tcp_sock
*tp
= tcp_sk(sk
);
554 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
555 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
557 #ifdef CONFIG_TCP_MD5SIG
558 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
560 opts
->options
|= OPTION_MD5
;
561 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
567 /* We always get an MSS option. The option bytes which will be seen in
568 * normal data packets should timestamps be used, must be in the MSS
569 * advertised. But we subtract them from tp->mss_cache so that
570 * calculations in tcp_sendmsg are simpler etc. So account for this
571 * fact here if necessary. If we don't do this correctly, as a
572 * receiver we won't recognize data packets as being full sized when we
573 * should, and thus we won't abide by the delayed ACK rules correctly.
574 * SACKs don't matter, we never delay an ACK when we have any of those
576 opts
->mss
= tcp_advertise_mss(sk
);
577 remaining
-= TCPOLEN_MSS_ALIGNED
;
579 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
&& !*md5
)) {
580 opts
->options
|= OPTION_TS
;
581 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
582 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
583 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
585 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
)) {
586 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
587 opts
->options
|= OPTION_WSCALE
;
588 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
590 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_sack
)) {
591 opts
->options
|= OPTION_SACK_ADVERTISE
;
592 if (unlikely(!(OPTION_TS
& opts
->options
)))
593 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
596 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
597 u32 need
= fastopen
->cookie
.len
;
599 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
600 TCPOLEN_FASTOPEN_BASE
;
601 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
602 if (remaining
>= need
) {
603 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
604 opts
->fastopen_cookie
= &fastopen
->cookie
;
606 tp
->syn_fastopen
= 1;
607 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
611 return MAX_TCP_OPTION_SPACE
- remaining
;
614 /* Set up TCP options for SYN-ACKs. */
615 static unsigned int tcp_synack_options(struct request_sock
*req
,
616 unsigned int mss
, struct sk_buff
*skb
,
617 struct tcp_out_options
*opts
,
618 const struct tcp_md5sig_key
*md5
,
619 struct tcp_fastopen_cookie
*foc
)
621 struct inet_request_sock
*ireq
= inet_rsk(req
);
622 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
624 #ifdef CONFIG_TCP_MD5SIG
626 opts
->options
|= OPTION_MD5
;
627 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
629 /* We can't fit any SACK blocks in a packet with MD5 + TS
630 * options. There was discussion about disabling SACK
631 * rather than TS in order to fit in better with old,
632 * buggy kernels, but that was deemed to be unnecessary.
634 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
638 /* We always send an MSS option. */
640 remaining
-= TCPOLEN_MSS_ALIGNED
;
642 if (likely(ireq
->wscale_ok
)) {
643 opts
->ws
= ireq
->rcv_wscale
;
644 opts
->options
|= OPTION_WSCALE
;
645 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
647 if (likely(ireq
->tstamp_ok
)) {
648 opts
->options
|= OPTION_TS
;
649 opts
->tsval
= tcp_skb_timestamp(skb
) + tcp_rsk(req
)->ts_off
;
650 opts
->tsecr
= req
->ts_recent
;
651 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
653 if (likely(ireq
->sack_ok
)) {
654 opts
->options
|= OPTION_SACK_ADVERTISE
;
655 if (unlikely(!ireq
->tstamp_ok
))
656 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
658 if (foc
!= NULL
&& foc
->len
>= 0) {
661 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
662 TCPOLEN_FASTOPEN_BASE
;
663 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
664 if (remaining
>= need
) {
665 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
666 opts
->fastopen_cookie
= foc
;
671 return MAX_TCP_OPTION_SPACE
- remaining
;
674 /* Compute TCP options for ESTABLISHED sockets. This is not the
675 * final wire format yet.
677 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
678 struct tcp_out_options
*opts
,
679 struct tcp_md5sig_key
**md5
)
681 struct tcp_sock
*tp
= tcp_sk(sk
);
682 unsigned int size
= 0;
683 unsigned int eff_sacks
;
687 #ifdef CONFIG_TCP_MD5SIG
688 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
689 if (unlikely(*md5
)) {
690 opts
->options
|= OPTION_MD5
;
691 size
+= TCPOLEN_MD5SIG_ALIGNED
;
697 if (likely(tp
->rx_opt
.tstamp_ok
)) {
698 opts
->options
|= OPTION_TS
;
699 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
700 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
701 size
+= TCPOLEN_TSTAMP_ALIGNED
;
704 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
705 if (unlikely(eff_sacks
)) {
706 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
707 opts
->num_sack_blocks
=
708 min_t(unsigned int, eff_sacks
,
709 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
710 TCPOLEN_SACK_PERBLOCK
);
711 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
712 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
719 /* TCP SMALL QUEUES (TSQ)
721 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
722 * to reduce RTT and bufferbloat.
723 * We do this using a special skb destructor (tcp_wfree).
725 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
726 * needs to be reallocated in a driver.
727 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
729 * Since transmit from skb destructor is forbidden, we use a tasklet
730 * to process all sockets that eventually need to send more skbs.
731 * We use one tasklet per cpu, with its own queue of sockets.
734 struct tasklet_struct tasklet
;
735 struct list_head head
; /* queue of tcp sockets */
737 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
739 static void tcp_tsq_handler(struct sock
*sk
)
741 if ((1 << sk
->sk_state
) &
742 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
743 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
)) {
744 struct tcp_sock
*tp
= tcp_sk(sk
);
746 if (tp
->lost_out
> tp
->retrans_out
&&
747 tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) {
748 tcp_mstamp_refresh(tp
);
749 tcp_xmit_retransmit_queue(sk
);
752 tcp_write_xmit(sk
, tcp_current_mss(sk
), tp
->nonagle
,
757 * One tasklet per cpu tries to send more skbs.
758 * We run in tasklet context but need to disable irqs when
759 * transferring tsq->head because tcp_wfree() might
760 * interrupt us (non NAPI drivers)
762 static void tcp_tasklet_func(unsigned long data
)
764 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
767 struct list_head
*q
, *n
;
771 local_irq_save(flags
);
772 list_splice_init(&tsq
->head
, &list
);
773 local_irq_restore(flags
);
775 list_for_each_safe(q
, n
, &list
) {
776 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
777 list_del(&tp
->tsq_node
);
779 sk
= (struct sock
*)tp
;
780 smp_mb__before_atomic();
781 clear_bit(TSQ_QUEUED
, &sk
->sk_tsq_flags
);
783 if (!sk
->sk_lock
.owned
&&
784 test_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
)) {
786 if (!sock_owned_by_user(sk
)) {
787 clear_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
);
797 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
798 TCPF_WRITE_TIMER_DEFERRED | \
799 TCPF_DELACK_TIMER_DEFERRED | \
800 TCPF_MTU_REDUCED_DEFERRED)
802 * tcp_release_cb - tcp release_sock() callback
805 * called from release_sock() to perform protocol dependent
806 * actions before socket release.
808 void tcp_release_cb(struct sock
*sk
)
810 unsigned long flags
, nflags
;
812 /* perform an atomic operation only if at least one flag is set */
814 flags
= sk
->sk_tsq_flags
;
815 if (!(flags
& TCP_DEFERRED_ALL
))
817 nflags
= flags
& ~TCP_DEFERRED_ALL
;
818 } while (cmpxchg(&sk
->sk_tsq_flags
, flags
, nflags
) != flags
);
820 if (flags
& TCPF_TSQ_DEFERRED
)
823 /* Here begins the tricky part :
824 * We are called from release_sock() with :
826 * 2) sk_lock.slock spinlock held
827 * 3) socket owned by us (sk->sk_lock.owned == 1)
829 * But following code is meant to be called from BH handlers,
830 * so we should keep BH disabled, but early release socket ownership
832 sock_release_ownership(sk
);
834 if (flags
& TCPF_WRITE_TIMER_DEFERRED
) {
835 tcp_write_timer_handler(sk
);
838 if (flags
& TCPF_DELACK_TIMER_DEFERRED
) {
839 tcp_delack_timer_handler(sk
);
842 if (flags
& TCPF_MTU_REDUCED_DEFERRED
) {
843 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
847 EXPORT_SYMBOL(tcp_release_cb
);
849 void __init
tcp_tasklet_init(void)
853 for_each_possible_cpu(i
) {
854 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
856 INIT_LIST_HEAD(&tsq
->head
);
857 tasklet_init(&tsq
->tasklet
,
864 * Write buffer destructor automatically called from kfree_skb.
865 * We can't xmit new skbs from this context, as we might already
868 void tcp_wfree(struct sk_buff
*skb
)
870 struct sock
*sk
= skb
->sk
;
871 struct tcp_sock
*tp
= tcp_sk(sk
);
872 unsigned long flags
, nval
, oval
;
874 /* Keep one reference on sk_wmem_alloc.
875 * Will be released by sk_free() from here or tcp_tasklet_func()
877 WARN_ON(refcount_sub_and_test(skb
->truesize
- 1, &sk
->sk_wmem_alloc
));
879 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
880 * Wait until our queues (qdisc + devices) are drained.
882 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
883 * - chance for incoming ACK (processed by another cpu maybe)
884 * to migrate this flow (skb->ooo_okay will be eventually set)
886 if (refcount_read(&sk
->sk_wmem_alloc
) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
889 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
890 struct tsq_tasklet
*tsq
;
893 if (!(oval
& TSQF_THROTTLED
) || (oval
& TSQF_QUEUED
))
896 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
| TCPF_TSQ_DEFERRED
;
897 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
901 /* queue this socket to tasklet queue */
902 local_irq_save(flags
);
903 tsq
= this_cpu_ptr(&tsq_tasklet
);
904 empty
= list_empty(&tsq
->head
);
905 list_add(&tp
->tsq_node
, &tsq
->head
);
907 tasklet_schedule(&tsq
->tasklet
);
908 local_irq_restore(flags
);
915 /* Note: Called under hard irq.
916 * We can not call TCP stack right away.
918 enum hrtimer_restart
tcp_pace_kick(struct hrtimer
*timer
)
920 struct tcp_sock
*tp
= container_of(timer
, struct tcp_sock
, pacing_timer
);
921 struct sock
*sk
= (struct sock
*)tp
;
922 unsigned long nval
, oval
;
924 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
925 struct tsq_tasklet
*tsq
;
928 if (oval
& TSQF_QUEUED
)
931 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
| TCPF_TSQ_DEFERRED
;
932 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
936 if (!refcount_inc_not_zero(&sk
->sk_wmem_alloc
))
938 /* queue this socket to tasklet queue */
939 tsq
= this_cpu_ptr(&tsq_tasklet
);
940 empty
= list_empty(&tsq
->head
);
941 list_add(&tp
->tsq_node
, &tsq
->head
);
943 tasklet_schedule(&tsq
->tasklet
);
946 return HRTIMER_NORESTART
;
949 /* BBR congestion control needs pacing.
950 * Same remark for SO_MAX_PACING_RATE.
951 * sch_fq packet scheduler is efficiently handling pacing,
952 * but is not always installed/used.
953 * Return true if TCP stack should pace packets itself.
955 static bool tcp_needs_internal_pacing(const struct sock
*sk
)
957 return smp_load_acquire(&sk
->sk_pacing_status
) == SK_PACING_NEEDED
;
960 static void tcp_internal_pacing(struct sock
*sk
, const struct sk_buff
*skb
)
965 if (!tcp_needs_internal_pacing(sk
))
967 rate
= sk
->sk_pacing_rate
;
968 if (!rate
|| rate
== ~0U)
971 /* Should account for header sizes as sch_fq does,
972 * but lets make things simple.
974 len_ns
= (u64
)skb
->len
* NSEC_PER_SEC
;
975 do_div(len_ns
, rate
);
976 hrtimer_start(&tcp_sk(sk
)->pacing_timer
,
977 ktime_add_ns(ktime_get(), len_ns
),
978 HRTIMER_MODE_ABS_PINNED
);
981 /* This routine actually transmits TCP packets queued in by
982 * tcp_do_sendmsg(). This is used by both the initial
983 * transmission and possible later retransmissions.
984 * All SKB's seen here are completely headerless. It is our
985 * job to build the TCP header, and pass the packet down to
986 * IP so it can do the same plus pass the packet off to the
989 * We are working here with either a clone of the original
990 * SKB, or a fresh unique copy made by the retransmit engine.
992 static int __tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
,
993 int clone_it
, gfp_t gfp_mask
, u32 rcv_nxt
)
995 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
996 struct inet_sock
*inet
;
998 struct tcp_skb_cb
*tcb
;
999 struct tcp_out_options opts
;
1000 unsigned int tcp_options_size
, tcp_header_size
;
1001 struct sk_buff
*oskb
= NULL
;
1002 struct tcp_md5sig_key
*md5
;
1006 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
1010 TCP_SKB_CB(skb
)->tx
.in_flight
= TCP_SKB_CB(skb
)->end_seq
1013 if (unlikely(skb_cloned(skb
)))
1014 skb
= pskb_copy(skb
, gfp_mask
);
1016 skb
= skb_clone(skb
, gfp_mask
);
1020 skb
->skb_mstamp
= tp
->tcp_mstamp
;
1023 tcb
= TCP_SKB_CB(skb
);
1024 memset(&opts
, 0, sizeof(opts
));
1026 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
1027 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
1029 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
1031 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
1033 /* if no packet is in qdisc/device queue, then allow XPS to select
1034 * another queue. We can be called from tcp_tsq_handler()
1035 * which holds one reference to sk_wmem_alloc.
1037 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1038 * One way to get this would be to set skb->truesize = 2 on them.
1040 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
1042 /* If we had to use memory reserve to allocate this skb,
1043 * this might cause drops if packet is looped back :
1044 * Other socket might not have SOCK_MEMALLOC.
1045 * Packets not looped back do not care about pfmemalloc.
1047 skb
->pfmemalloc
= 0;
1049 skb_push(skb
, tcp_header_size
);
1050 skb_reset_transport_header(skb
);
1054 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? __sock_wfree
: tcp_wfree
;
1055 skb_set_hash_from_sk(skb
, sk
);
1056 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1058 skb_set_dst_pending_confirm(skb
, sk
->sk_dst_pending_confirm
);
1060 /* Build TCP header and checksum it. */
1061 th
= (struct tcphdr
*)skb
->data
;
1062 th
->source
= inet
->inet_sport
;
1063 th
->dest
= inet
->inet_dport
;
1064 th
->seq
= htonl(tcb
->seq
);
1065 th
->ack_seq
= htonl(rcv_nxt
);
1066 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
1072 /* The urg_mode check is necessary during a below snd_una win probe */
1073 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
1074 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
1075 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
1077 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
1078 th
->urg_ptr
= htons(0xFFFF);
1083 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1084 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1085 if (likely(!(tcb
->tcp_flags
& TCPHDR_SYN
))) {
1086 th
->window
= htons(tcp_select_window(sk
));
1087 tcp_ecn_send(sk
, skb
, th
, tcp_header_size
);
1089 /* RFC1323: The window in SYN & SYN/ACK segments
1092 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
1094 #ifdef CONFIG_TCP_MD5SIG
1095 /* Calculate the MD5 hash, as we have all we need now */
1097 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1098 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1103 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1105 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1106 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
), rcv_nxt
);
1108 if (skb
->len
!= tcp_header_size
) {
1109 tcp_event_data_sent(tp
, sk
);
1110 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1111 tcp_internal_pacing(sk
, skb
);
1114 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1115 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1116 tcp_skb_pcount(skb
));
1118 tp
->segs_out
+= tcp_skb_pcount(skb
);
1119 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1120 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1121 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1123 /* Our usage of tstamp should remain private */
1126 /* Cleanup our debris for IP stacks */
1127 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1128 sizeof(struct inet6_skb_parm
)));
1130 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1132 if (unlikely(err
> 0)) {
1134 err
= net_xmit_eval(err
);
1137 oskb
->skb_mstamp
= tp
->tcp_mstamp
;
1138 tcp_rate_skb_sent(sk
, oskb
);
1143 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
1146 return __tcp_transmit_skb(sk
, skb
, clone_it
, gfp_mask
,
1147 tcp_sk(sk
)->rcv_nxt
);
1150 /* This routine just queues the buffer for sending.
1152 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1153 * otherwise socket can stall.
1155 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1157 struct tcp_sock
*tp
= tcp_sk(sk
);
1159 /* Advance write_seq and place onto the write_queue. */
1160 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1161 __skb_header_release(skb
);
1162 tcp_add_write_queue_tail(sk
, skb
);
1163 sk
->sk_wmem_queued
+= skb
->truesize
;
1164 sk_mem_charge(sk
, skb
->truesize
);
1167 /* Initialize TSO segments for a packet. */
1168 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1170 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1171 /* Avoid the costly divide in the normal
1174 tcp_skb_pcount_set(skb
, 1);
1175 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1177 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1178 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1182 /* When a modification to fackets out becomes necessary, we need to check
1183 * skb is counted to fackets_out or not.
1185 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1188 struct tcp_sock
*tp
= tcp_sk(sk
);
1190 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1193 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1194 tp
->fackets_out
-= decr
;
1197 /* Pcount in the middle of the write queue got changed, we need to do various
1198 * tweaks to fix counters
1200 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1202 struct tcp_sock
*tp
= tcp_sk(sk
);
1204 tp
->packets_out
-= decr
;
1206 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1207 tp
->sacked_out
-= decr
;
1208 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1209 tp
->retrans_out
-= decr
;
1210 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1211 tp
->lost_out
-= decr
;
1213 /* Reno case is special. Sigh... */
1214 if (tcp_is_reno(tp
) && decr
> 0)
1215 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1217 tcp_adjust_fackets_out(sk
, skb
, decr
);
1219 if (tp
->lost_skb_hint
&&
1220 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1221 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1222 tp
->lost_cnt_hint
-= decr
;
1224 tcp_verify_left_out(tp
);
1227 static bool tcp_has_tx_tstamp(const struct sk_buff
*skb
)
1229 return TCP_SKB_CB(skb
)->txstamp_ack
||
1230 (skb_shinfo(skb
)->tx_flags
& SKBTX_ANY_TSTAMP
);
1233 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1235 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1237 if (unlikely(tcp_has_tx_tstamp(skb
)) &&
1238 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1239 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1240 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1242 shinfo
->tx_flags
&= ~tsflags
;
1243 shinfo2
->tx_flags
|= tsflags
;
1244 swap(shinfo
->tskey
, shinfo2
->tskey
);
1245 TCP_SKB_CB(skb2
)->txstamp_ack
= TCP_SKB_CB(skb
)->txstamp_ack
;
1246 TCP_SKB_CB(skb
)->txstamp_ack
= 0;
1250 static void tcp_skb_fragment_eor(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1252 TCP_SKB_CB(skb2
)->eor
= TCP_SKB_CB(skb
)->eor
;
1253 TCP_SKB_CB(skb
)->eor
= 0;
1256 /* Function to create two new TCP segments. Shrinks the given segment
1257 * to the specified size and appends a new segment with the rest of the
1258 * packet to the list. This won't be called frequently, I hope.
1259 * Remember, these are still headerless SKBs at this point.
1261 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1262 unsigned int mss_now
, gfp_t gfp
)
1264 struct tcp_sock
*tp
= tcp_sk(sk
);
1265 struct sk_buff
*buff
;
1266 int nsize
, old_factor
;
1270 if (WARN_ON(len
> skb
->len
))
1273 nsize
= skb_headlen(skb
) - len
;
1277 if (skb_unclone(skb
, gfp
))
1280 /* Get a new skb... force flag on. */
1281 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1283 return -ENOMEM
; /* We'll just try again later. */
1285 sk
->sk_wmem_queued
+= buff
->truesize
;
1286 sk_mem_charge(sk
, buff
->truesize
);
1287 nlen
= skb
->len
- len
- nsize
;
1288 buff
->truesize
+= nlen
;
1289 skb
->truesize
-= nlen
;
1291 /* Correct the sequence numbers. */
1292 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1293 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1294 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1296 /* PSH and FIN should only be set in the second packet. */
1297 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1298 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1299 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1300 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1301 tcp_skb_fragment_eor(skb
, buff
);
1303 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1304 /* Copy and checksum data tail into the new buffer. */
1305 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1306 skb_put(buff
, nsize
),
1311 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1313 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1314 skb_split(skb
, buff
, len
);
1317 buff
->ip_summed
= skb
->ip_summed
;
1319 buff
->tstamp
= skb
->tstamp
;
1320 tcp_fragment_tstamp(skb
, buff
);
1322 old_factor
= tcp_skb_pcount(skb
);
1324 /* Fix up tso_factor for both original and new SKB. */
1325 tcp_set_skb_tso_segs(skb
, mss_now
);
1326 tcp_set_skb_tso_segs(buff
, mss_now
);
1328 /* Update delivered info for the new segment */
1329 TCP_SKB_CB(buff
)->tx
= TCP_SKB_CB(skb
)->tx
;
1331 /* If this packet has been sent out already, we must
1332 * adjust the various packet counters.
1334 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1335 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1336 tcp_skb_pcount(buff
);
1339 tcp_adjust_pcount(sk
, skb
, diff
);
1342 /* Link BUFF into the send queue. */
1343 __skb_header_release(buff
);
1344 tcp_insert_write_queue_after(skb
, buff
, sk
);
1349 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1350 * data is not copied, but immediately discarded.
1352 static int __pskb_trim_head(struct sk_buff
*skb
, int len
)
1354 struct skb_shared_info
*shinfo
;
1357 eat
= min_t(int, len
, skb_headlen(skb
));
1359 __skb_pull(skb
, eat
);
1366 shinfo
= skb_shinfo(skb
);
1367 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1368 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1371 skb_frag_unref(skb
, i
);
1374 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1376 shinfo
->frags
[k
].page_offset
+= eat
;
1377 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1383 shinfo
->nr_frags
= k
;
1385 skb
->data_len
-= len
;
1386 skb
->len
= skb
->data_len
;
1390 /* Remove acked data from a packet in the transmit queue. */
1391 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1395 if (skb_unclone(skb
, GFP_ATOMIC
))
1398 delta_truesize
= __pskb_trim_head(skb
, len
);
1400 TCP_SKB_CB(skb
)->seq
+= len
;
1401 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1403 if (delta_truesize
) {
1404 skb
->truesize
-= delta_truesize
;
1405 sk
->sk_wmem_queued
-= delta_truesize
;
1406 sk_mem_uncharge(sk
, delta_truesize
);
1407 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1410 /* Any change of skb->len requires recalculation of tso factor. */
1411 if (tcp_skb_pcount(skb
) > 1)
1412 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1417 /* Calculate MSS not accounting any TCP options. */
1418 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1420 const struct tcp_sock
*tp
= tcp_sk(sk
);
1421 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1424 /* Calculate base mss without TCP options:
1425 It is MMS_S - sizeof(tcphdr) of rfc1122
1427 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1429 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1430 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1431 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1433 if (dst
&& dst_allfrag(dst
))
1434 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1437 /* Clamp it (mss_clamp does not include tcp options) */
1438 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1439 mss_now
= tp
->rx_opt
.mss_clamp
;
1441 /* Now subtract optional transport overhead */
1442 mss_now
-= icsk
->icsk_ext_hdr_len
;
1444 /* Then reserve room for full set of TCP options and 8 bytes of data */
1450 /* Calculate MSS. Not accounting for SACKs here. */
1451 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1453 /* Subtract TCP options size, not including SACKs */
1454 return __tcp_mtu_to_mss(sk
, pmtu
) -
1455 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1458 /* Inverse of above */
1459 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1461 const struct tcp_sock
*tp
= tcp_sk(sk
);
1462 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1466 tp
->tcp_header_len
+
1467 icsk
->icsk_ext_hdr_len
+
1468 icsk
->icsk_af_ops
->net_header_len
;
1470 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1471 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1472 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1474 if (dst
&& dst_allfrag(dst
))
1475 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1479 EXPORT_SYMBOL(tcp_mss_to_mtu
);
1481 /* MTU probing init per socket */
1482 void tcp_mtup_init(struct sock
*sk
)
1484 struct tcp_sock
*tp
= tcp_sk(sk
);
1485 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1486 struct net
*net
= sock_net(sk
);
1488 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1489 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1490 icsk
->icsk_af_ops
->net_header_len
;
1491 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1492 icsk
->icsk_mtup
.probe_size
= 0;
1493 if (icsk
->icsk_mtup
.enabled
)
1494 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
1496 EXPORT_SYMBOL(tcp_mtup_init
);
1498 /* This function synchronize snd mss to current pmtu/exthdr set.
1500 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1501 for TCP options, but includes only bare TCP header.
1503 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1504 It is minimum of user_mss and mss received with SYN.
1505 It also does not include TCP options.
1507 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1509 tp->mss_cache is current effective sending mss, including
1510 all tcp options except for SACKs. It is evaluated,
1511 taking into account current pmtu, but never exceeds
1512 tp->rx_opt.mss_clamp.
1514 NOTE1. rfc1122 clearly states that advertised MSS
1515 DOES NOT include either tcp or ip options.
1517 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1518 are READ ONLY outside this function. --ANK (980731)
1520 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1522 struct tcp_sock
*tp
= tcp_sk(sk
);
1523 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1526 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1527 icsk
->icsk_mtup
.search_high
= pmtu
;
1529 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1530 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1532 /* And store cached results */
1533 icsk
->icsk_pmtu_cookie
= pmtu
;
1534 if (icsk
->icsk_mtup
.enabled
)
1535 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1536 tp
->mss_cache
= mss_now
;
1540 EXPORT_SYMBOL(tcp_sync_mss
);
1542 /* Compute the current effective MSS, taking SACKs and IP options,
1543 * and even PMTU discovery events into account.
1545 unsigned int tcp_current_mss(struct sock
*sk
)
1547 const struct tcp_sock
*tp
= tcp_sk(sk
);
1548 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1550 unsigned int header_len
;
1551 struct tcp_out_options opts
;
1552 struct tcp_md5sig_key
*md5
;
1554 mss_now
= tp
->mss_cache
;
1557 u32 mtu
= dst_mtu(dst
);
1558 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1559 mss_now
= tcp_sync_mss(sk
, mtu
);
1562 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1563 sizeof(struct tcphdr
);
1564 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1565 * some common options. If this is an odd packet (because we have SACK
1566 * blocks etc) then our calculated header_len will be different, and
1567 * we have to adjust mss_now correspondingly */
1568 if (header_len
!= tp
->tcp_header_len
) {
1569 int delta
= (int) header_len
- tp
->tcp_header_len
;
1576 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1577 * As additional protections, we do not touch cwnd in retransmission phases,
1578 * and if application hit its sndbuf limit recently.
1580 static void tcp_cwnd_application_limited(struct sock
*sk
)
1582 struct tcp_sock
*tp
= tcp_sk(sk
);
1584 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1585 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1586 /* Limited by application or receiver window. */
1587 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1588 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1589 if (win_used
< tp
->snd_cwnd
) {
1590 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1591 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1593 tp
->snd_cwnd_used
= 0;
1595 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1598 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1600 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1601 struct tcp_sock
*tp
= tcp_sk(sk
);
1603 /* Track the maximum number of outstanding packets in each
1604 * window, and remember whether we were cwnd-limited then.
1606 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1607 tp
->packets_out
> tp
->max_packets_out
) {
1608 tp
->max_packets_out
= tp
->packets_out
;
1609 tp
->max_packets_seq
= tp
->snd_nxt
;
1610 tp
->is_cwnd_limited
= is_cwnd_limited
;
1613 if (tcp_is_cwnd_limited(sk
)) {
1614 /* Network is feed fully. */
1615 tp
->snd_cwnd_used
= 0;
1616 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1618 /* Network starves. */
1619 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1620 tp
->snd_cwnd_used
= tp
->packets_out
;
1622 if (sysctl_tcp_slow_start_after_idle
&&
1623 (s32
)(tcp_jiffies32
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
&&
1624 !ca_ops
->cong_control
)
1625 tcp_cwnd_application_limited(sk
);
1627 /* The following conditions together indicate the starvation
1628 * is caused by insufficient sender buffer:
1629 * 1) just sent some data (see tcp_write_xmit)
1630 * 2) not cwnd limited (this else condition)
1631 * 3) no more data to send (null tcp_send_head )
1632 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1634 if (!tcp_send_head(sk
) && sk
->sk_socket
&&
1635 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
) &&
1636 (1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
1637 tcp_chrono_start(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1641 /* Minshall's variant of the Nagle send check. */
1642 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1644 return after(tp
->snd_sml
, tp
->snd_una
) &&
1645 !after(tp
->snd_sml
, tp
->snd_nxt
);
1648 /* Update snd_sml if this skb is under mss
1649 * Note that a TSO packet might end with a sub-mss segment
1650 * The test is really :
1651 * if ((skb->len % mss) != 0)
1652 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1653 * But we can avoid doing the divide again given we already have
1654 * skb_pcount = skb->len / mss_now
1656 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1657 const struct sk_buff
*skb
)
1659 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1660 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1663 /* Return false, if packet can be sent now without violation Nagle's rules:
1664 * 1. It is full sized. (provided by caller in %partial bool)
1665 * 2. Or it contains FIN. (already checked by caller)
1666 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1667 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1668 * With Minshall's modification: all sent small packets are ACKed.
1670 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1674 ((nonagle
& TCP_NAGLE_CORK
) ||
1675 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1678 /* Return how many segs we'd like on a TSO packet,
1679 * to send one TSO packet per ms
1681 u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
,
1686 bytes
= min(sk
->sk_pacing_rate
>> 10,
1687 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1689 /* Goal is to send at least one packet per ms,
1690 * not one big TSO packet every 100 ms.
1691 * This preserves ACK clocking and is consistent
1692 * with tcp_tso_should_defer() heuristic.
1694 segs
= max_t(u32
, bytes
/ mss_now
, min_tso_segs
);
1698 EXPORT_SYMBOL(tcp_tso_autosize
);
1700 /* Return the number of segments we want in the skb we are transmitting.
1701 * See if congestion control module wants to decide; otherwise, autosize.
1703 static u32
tcp_tso_segs(struct sock
*sk
, unsigned int mss_now
)
1705 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1706 u32 tso_segs
= ca_ops
->tso_segs_goal
? ca_ops
->tso_segs_goal(sk
) : 0;
1709 tso_segs
= tcp_tso_autosize(sk
, mss_now
,
1710 sysctl_tcp_min_tso_segs
);
1711 return min_t(u32
, tso_segs
, sk
->sk_gso_max_segs
);
1714 /* Returns the portion of skb which can be sent right away */
1715 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1716 const struct sk_buff
*skb
,
1717 unsigned int mss_now
,
1718 unsigned int max_segs
,
1721 const struct tcp_sock
*tp
= tcp_sk(sk
);
1722 u32 partial
, needed
, window
, max_len
;
1724 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1725 max_len
= mss_now
* max_segs
;
1727 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1730 needed
= min(skb
->len
, window
);
1732 if (max_len
<= needed
)
1735 partial
= needed
% mss_now
;
1736 /* If last segment is not a full MSS, check if Nagle rules allow us
1737 * to include this last segment in this skb.
1738 * Otherwise, we'll split the skb at last MSS boundary
1740 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1741 return needed
- partial
;
1746 /* Can at least one segment of SKB be sent right now, according to the
1747 * congestion window rules? If so, return how many segments are allowed.
1749 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1750 const struct sk_buff
*skb
)
1752 u32 in_flight
, cwnd
, halfcwnd
;
1754 /* Don't be strict about the congestion window for the final FIN. */
1755 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1756 tcp_skb_pcount(skb
) == 1)
1759 in_flight
= tcp_packets_in_flight(tp
);
1760 cwnd
= tp
->snd_cwnd
;
1761 if (in_flight
>= cwnd
)
1764 /* For better scheduling, ensure we have at least
1765 * 2 GSO packets in flight.
1767 halfcwnd
= max(cwnd
>> 1, 1U);
1768 return min(halfcwnd
, cwnd
- in_flight
);
1771 /* Initialize TSO state of a skb.
1772 * This must be invoked the first time we consider transmitting
1773 * SKB onto the wire.
1775 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1777 int tso_segs
= tcp_skb_pcount(skb
);
1779 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1780 tcp_set_skb_tso_segs(skb
, mss_now
);
1781 tso_segs
= tcp_skb_pcount(skb
);
1787 /* Return true if the Nagle test allows this packet to be
1790 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1791 unsigned int cur_mss
, int nonagle
)
1793 /* Nagle rule does not apply to frames, which sit in the middle of the
1794 * write_queue (they have no chances to get new data).
1796 * This is implemented in the callers, where they modify the 'nonagle'
1797 * argument based upon the location of SKB in the send queue.
1799 if (nonagle
& TCP_NAGLE_PUSH
)
1802 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1803 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1806 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1812 /* Does at least the first segment of SKB fit into the send window? */
1813 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1814 const struct sk_buff
*skb
,
1815 unsigned int cur_mss
)
1817 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1819 if (skb
->len
> cur_mss
)
1820 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1822 return !after(end_seq
, tcp_wnd_end(tp
));
1825 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1826 * which is put after SKB on the list. It is very much like
1827 * tcp_fragment() except that it may make several kinds of assumptions
1828 * in order to speed up the splitting operation. In particular, we
1829 * know that all the data is in scatter-gather pages, and that the
1830 * packet has never been sent out before (and thus is not cloned).
1832 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1833 unsigned int mss_now
, gfp_t gfp
)
1835 struct sk_buff
*buff
;
1836 int nlen
= skb
->len
- len
;
1839 /* All of a TSO frame must be composed of paged data. */
1840 if (skb
->len
!= skb
->data_len
)
1841 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1843 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1844 if (unlikely(!buff
))
1847 sk
->sk_wmem_queued
+= buff
->truesize
;
1848 sk_mem_charge(sk
, buff
->truesize
);
1849 buff
->truesize
+= nlen
;
1850 skb
->truesize
-= nlen
;
1852 /* Correct the sequence numbers. */
1853 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1854 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1855 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1857 /* PSH and FIN should only be set in the second packet. */
1858 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1859 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1860 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1862 /* This packet was never sent out yet, so no SACK bits. */
1863 TCP_SKB_CB(buff
)->sacked
= 0;
1865 tcp_skb_fragment_eor(skb
, buff
);
1867 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1868 skb_split(skb
, buff
, len
);
1869 tcp_fragment_tstamp(skb
, buff
);
1871 /* Fix up tso_factor for both original and new SKB. */
1872 tcp_set_skb_tso_segs(skb
, mss_now
);
1873 tcp_set_skb_tso_segs(buff
, mss_now
);
1875 /* Link BUFF into the send queue. */
1876 __skb_header_release(buff
);
1877 tcp_insert_write_queue_after(skb
, buff
, sk
);
1882 /* Try to defer sending, if possible, in order to minimize the amount
1883 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1885 * This algorithm is from John Heffner.
1887 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1888 bool *is_cwnd_limited
,
1889 bool *is_rwnd_limited
,
1892 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1893 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1894 struct tcp_sock
*tp
= tcp_sk(sk
);
1895 struct sk_buff
*head
;
1898 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1901 /* Avoid bursty behavior by allowing defer
1902 * only if the last write was recent.
1904 if ((s32
)(tcp_jiffies32
- tp
->lsndtime
) > 0)
1907 in_flight
= tcp_packets_in_flight(tp
);
1909 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1911 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1913 /* From in_flight test above, we know that cwnd > in_flight. */
1914 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1916 limit
= min(send_win
, cong_win
);
1918 /* If a full-sized TSO skb can be sent, do it. */
1919 if (limit
>= max_segs
* tp
->mss_cache
)
1922 /* Middle in queue won't get any more data, full sendable already? */
1923 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1926 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1928 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1930 /* If at least some fraction of a window is available,
1933 chunk
/= win_divisor
;
1937 /* Different approach, try not to defer past a single
1938 * ACK. Receiver should ACK every other full sized
1939 * frame, so if we have space for more than 3 frames
1942 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1946 head
= tcp_write_queue_head(sk
);
1948 age
= tcp_stamp_us_delta(tp
->tcp_mstamp
, head
->skb_mstamp
);
1949 /* If next ACK is likely to come too late (half srtt), do not defer */
1950 if (age
< (tp
->srtt_us
>> 4))
1953 /* Ok, it looks like it is advisable to defer.
1954 * Three cases are tracked :
1955 * 1) We are cwnd-limited
1956 * 2) We are rwnd-limited
1957 * 3) We are application limited.
1959 if (cong_win
< send_win
) {
1960 if (cong_win
<= skb
->len
) {
1961 *is_cwnd_limited
= true;
1965 if (send_win
<= skb
->len
) {
1966 *is_rwnd_limited
= true;
1971 /* If this packet won't get more data, do not wait. */
1972 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1981 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
1983 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1984 struct tcp_sock
*tp
= tcp_sk(sk
);
1985 struct net
*net
= sock_net(sk
);
1989 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
1990 delta
= tcp_jiffies32
- icsk
->icsk_mtup
.probe_timestamp
;
1991 if (unlikely(delta
>= interval
* HZ
)) {
1992 int mss
= tcp_current_mss(sk
);
1994 /* Update current search range */
1995 icsk
->icsk_mtup
.probe_size
= 0;
1996 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
1997 sizeof(struct tcphdr
) +
1998 icsk
->icsk_af_ops
->net_header_len
;
1999 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
2001 /* Update probe time stamp */
2002 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
2006 static bool tcp_can_coalesce_send_queue_head(struct sock
*sk
, int len
)
2008 struct sk_buff
*skb
, *next
;
2010 skb
= tcp_send_head(sk
);
2011 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2012 if (len
<= skb
->len
)
2015 if (unlikely(TCP_SKB_CB(skb
)->eor
))
2024 /* Create a new MTU probe if we are ready.
2025 * MTU probe is regularly attempting to increase the path MTU by
2026 * deliberately sending larger packets. This discovers routing
2027 * changes resulting in larger path MTUs.
2029 * Returns 0 if we should wait to probe (no cwnd available),
2030 * 1 if a probe was sent,
2033 static int tcp_mtu_probe(struct sock
*sk
)
2035 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2036 struct tcp_sock
*tp
= tcp_sk(sk
);
2037 struct sk_buff
*skb
, *nskb
, *next
;
2038 struct net
*net
= sock_net(sk
);
2045 /* Not currently probing/verifying,
2047 * have enough cwnd, and
2048 * not SACKing (the variable headers throw things off)
2050 if (likely(!icsk
->icsk_mtup
.enabled
||
2051 icsk
->icsk_mtup
.probe_size
||
2052 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
2053 tp
->snd_cwnd
< 11 ||
2054 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
))
2057 /* Use binary search for probe_size between tcp_mss_base,
2058 * and current mss_clamp. if (search_high - search_low)
2059 * smaller than a threshold, backoff from probing.
2061 mss_now
= tcp_current_mss(sk
);
2062 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
2063 icsk
->icsk_mtup
.search_low
) >> 1);
2064 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
2065 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
2066 /* When misfortune happens, we are reprobing actively,
2067 * and then reprobe timer has expired. We stick with current
2068 * probing process by not resetting search range to its orignal.
2070 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
2071 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
2072 /* Check whether enough time has elaplased for
2073 * another round of probing.
2075 tcp_mtu_check_reprobe(sk
);
2079 /* Have enough data in the send queue to probe? */
2080 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
2083 if (tp
->snd_wnd
< size_needed
)
2085 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
2088 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2089 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
2090 if (!tcp_packets_in_flight(tp
))
2096 if (!tcp_can_coalesce_send_queue_head(sk
, probe_size
))
2099 /* We're allowed to probe. Build it now. */
2100 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
2103 sk
->sk_wmem_queued
+= nskb
->truesize
;
2104 sk_mem_charge(sk
, nskb
->truesize
);
2106 skb
= tcp_send_head(sk
);
2108 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
2109 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
2110 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
2111 TCP_SKB_CB(nskb
)->sacked
= 0;
2113 nskb
->ip_summed
= skb
->ip_summed
;
2115 tcp_insert_write_queue_before(nskb
, skb
, sk
);
2116 tcp_highest_sack_replace(sk
, skb
, nskb
);
2119 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2120 copy
= min_t(int, skb
->len
, probe_size
- len
);
2121 if (nskb
->ip_summed
) {
2122 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
2124 __wsum csum
= skb_copy_and_csum_bits(skb
, 0,
2125 skb_put(nskb
, copy
),
2127 nskb
->csum
= csum_block_add(nskb
->csum
, csum
, len
);
2130 if (skb
->len
<= copy
) {
2131 /* We've eaten all the data from this skb.
2133 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
2134 /* If this is the last SKB we copy and eor is set
2135 * we need to propagate it to the new skb.
2137 TCP_SKB_CB(nskb
)->eor
= TCP_SKB_CB(skb
)->eor
;
2138 tcp_unlink_write_queue(skb
, sk
);
2139 sk_wmem_free_skb(sk
, skb
);
2141 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
2142 ~(TCPHDR_FIN
|TCPHDR_PSH
);
2143 if (!skb_shinfo(skb
)->nr_frags
) {
2144 skb_pull(skb
, copy
);
2145 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2146 skb
->csum
= csum_partial(skb
->data
,
2149 __pskb_trim_head(skb
, copy
);
2150 tcp_set_skb_tso_segs(skb
, mss_now
);
2152 TCP_SKB_CB(skb
)->seq
+= copy
;
2157 if (len
>= probe_size
)
2160 tcp_init_tso_segs(nskb
, nskb
->len
);
2162 /* We're ready to send. If this fails, the probe will
2163 * be resegmented into mss-sized pieces by tcp_write_xmit().
2165 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2166 /* Decrement cwnd here because we are sending
2167 * effectively two packets. */
2169 tcp_event_new_data_sent(sk
, nskb
);
2171 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2172 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2173 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2181 static bool tcp_pacing_check(const struct sock
*sk
)
2183 return tcp_needs_internal_pacing(sk
) &&
2184 hrtimer_active(&tcp_sk(sk
)->pacing_timer
);
2187 /* TCP Small Queues :
2188 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2189 * (These limits are doubled for retransmits)
2191 * - better RTT estimation and ACK scheduling
2194 * Alas, some drivers / subsystems require a fair amount
2195 * of queued bytes to ensure line rate.
2196 * One example is wifi aggregation (802.11 AMPDU)
2198 static bool tcp_small_queue_check(struct sock
*sk
, const struct sk_buff
*skb
,
2199 unsigned int factor
)
2203 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2204 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2207 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
) {
2208 /* Always send the 1st or 2nd skb in write queue.
2209 * No need to wait for TX completion to call us back,
2210 * after softirq/tasklet schedule.
2211 * This helps when TX completions are delayed too much.
2213 if (skb
== sk
->sk_write_queue
.next
||
2214 skb
->prev
== sk
->sk_write_queue
.next
)
2217 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
2218 /* It is possible TX completion already happened
2219 * before we set TSQ_THROTTLED, so we must
2220 * test again the condition.
2222 smp_mb__after_atomic();
2223 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
)
2229 static void tcp_chrono_set(struct tcp_sock
*tp
, const enum tcp_chrono
new)
2231 const u32 now
= tcp_jiffies32
;
2232 enum tcp_chrono old
= tp
->chrono_type
;
2234 if (old
> TCP_CHRONO_UNSPEC
)
2235 tp
->chrono_stat
[old
- 1] += now
- tp
->chrono_start
;
2236 tp
->chrono_start
= now
;
2237 tp
->chrono_type
= new;
2240 void tcp_chrono_start(struct sock
*sk
, const enum tcp_chrono type
)
2242 struct tcp_sock
*tp
= tcp_sk(sk
);
2244 /* If there are multiple conditions worthy of tracking in a
2245 * chronograph then the highest priority enum takes precedence
2246 * over the other conditions. So that if something "more interesting"
2247 * starts happening, stop the previous chrono and start a new one.
2249 if (type
> tp
->chrono_type
)
2250 tcp_chrono_set(tp
, type
);
2253 void tcp_chrono_stop(struct sock
*sk
, const enum tcp_chrono type
)
2255 struct tcp_sock
*tp
= tcp_sk(sk
);
2258 /* There are multiple conditions worthy of tracking in a
2259 * chronograph, so that the highest priority enum takes
2260 * precedence over the other conditions (see tcp_chrono_start).
2261 * If a condition stops, we only stop chrono tracking if
2262 * it's the "most interesting" or current chrono we are
2263 * tracking and starts busy chrono if we have pending data.
2265 if (tcp_write_queue_empty(sk
))
2266 tcp_chrono_set(tp
, TCP_CHRONO_UNSPEC
);
2267 else if (type
== tp
->chrono_type
)
2268 tcp_chrono_set(tp
, TCP_CHRONO_BUSY
);
2271 /* This routine writes packets to the network. It advances the
2272 * send_head. This happens as incoming acks open up the remote
2275 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2276 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2277 * account rare use of URG, this is not a big flaw.
2279 * Send at most one packet when push_one > 0. Temporarily ignore
2280 * cwnd limit to force at most one packet out when push_one == 2.
2282 * Returns true, if no segments are in flight and we have queued segments,
2283 * but cannot send anything now because of SWS or another problem.
2285 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2286 int push_one
, gfp_t gfp
)
2288 struct tcp_sock
*tp
= tcp_sk(sk
);
2289 struct sk_buff
*skb
;
2290 unsigned int tso_segs
, sent_pkts
;
2293 bool is_cwnd_limited
= false, is_rwnd_limited
= false;
2298 tcp_mstamp_refresh(tp
);
2300 /* Do MTU probing. */
2301 result
= tcp_mtu_probe(sk
);
2304 } else if (result
> 0) {
2309 max_segs
= tcp_tso_segs(sk
, mss_now
);
2310 while ((skb
= tcp_send_head(sk
))) {
2313 if (tcp_pacing_check(sk
))
2316 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2319 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2320 /* "skb_mstamp" is used as a start point for the retransmit timer */
2321 skb
->skb_mstamp
= tp
->tcp_mstamp
;
2322 goto repair
; /* Skip network transmission */
2325 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2328 /* Force out a loss probe pkt. */
2334 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
))) {
2335 is_rwnd_limited
= true;
2339 if (tso_segs
== 1) {
2340 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2341 (tcp_skb_is_last(sk
, skb
) ?
2342 nonagle
: TCP_NAGLE_PUSH
))))
2346 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2347 &is_rwnd_limited
, max_segs
))
2352 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2353 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2359 if (skb
->len
> limit
&&
2360 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2363 if (test_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
))
2364 clear_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
);
2365 if (tcp_small_queue_check(sk
, skb
, 0))
2368 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2372 /* Advance the send_head. This one is sent out.
2373 * This call will increment packets_out.
2375 tcp_event_new_data_sent(sk
, skb
);
2377 tcp_minshall_update(tp
, mss_now
, skb
);
2378 sent_pkts
+= tcp_skb_pcount(skb
);
2384 if (is_rwnd_limited
)
2385 tcp_chrono_start(sk
, TCP_CHRONO_RWND_LIMITED
);
2387 tcp_chrono_stop(sk
, TCP_CHRONO_RWND_LIMITED
);
2389 if (likely(sent_pkts
)) {
2390 if (tcp_in_cwnd_reduction(sk
))
2391 tp
->prr_out
+= sent_pkts
;
2393 /* Send one loss probe per tail loss episode. */
2395 tcp_schedule_loss_probe(sk
, false);
2396 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2397 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2400 return !tp
->packets_out
&& tcp_send_head(sk
);
2403 bool tcp_schedule_loss_probe(struct sock
*sk
, bool advancing_rto
)
2405 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2406 struct tcp_sock
*tp
= tcp_sk(sk
);
2407 u32 timeout
, rto_delta_us
;
2409 /* Don't do any loss probe on a Fast Open connection before 3WHS
2412 if (tp
->fastopen_rsk
)
2415 /* Schedule a loss probe in 2*RTT for SACK capable connections
2416 * in Open state, that are either limited by cwnd or application.
2418 if ((sysctl_tcp_early_retrans
!= 3 && sysctl_tcp_early_retrans
!= 4) ||
2419 !tp
->packets_out
|| !tcp_is_sack(tp
) ||
2420 icsk
->icsk_ca_state
!= TCP_CA_Open
)
2423 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2427 /* Probe timeout is 2*rtt. Add minimum RTO to account
2428 * for delayed ack when there's one outstanding packet. If no RTT
2429 * sample is available then probe after TCP_TIMEOUT_INIT.
2432 timeout
= usecs_to_jiffies(tp
->srtt_us
>> 2);
2433 if (tp
->packets_out
== 1)
2434 timeout
+= TCP_RTO_MIN
;
2436 timeout
+= TCP_TIMEOUT_MIN
;
2438 timeout
= TCP_TIMEOUT_INIT
;
2441 /* If the RTO formula yields an earlier time, then use that time. */
2442 rto_delta_us
= advancing_rto
?
2443 jiffies_to_usecs(inet_csk(sk
)->icsk_rto
) :
2444 tcp_rto_delta_us(sk
); /* How far in future is RTO? */
2445 if (rto_delta_us
> 0)
2446 timeout
= min_t(u32
, timeout
, usecs_to_jiffies(rto_delta_us
));
2448 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2453 /* Thanks to skb fast clones, we can detect if a prior transmit of
2454 * a packet is still in a qdisc or driver queue.
2455 * In this case, there is very little point doing a retransmit !
2457 static bool skb_still_in_host_queue(const struct sock
*sk
,
2458 const struct sk_buff
*skb
)
2460 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2461 NET_INC_STATS(sock_net(sk
),
2462 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2468 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2469 * retransmit the last segment.
2471 void tcp_send_loss_probe(struct sock
*sk
)
2473 struct tcp_sock
*tp
= tcp_sk(sk
);
2474 struct sk_buff
*skb
;
2476 int mss
= tcp_current_mss(sk
);
2478 skb
= tcp_send_head(sk
);
2480 if (tcp_snd_wnd_test(tp
, skb
, mss
)) {
2481 pcount
= tp
->packets_out
;
2482 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2483 if (tp
->packets_out
> pcount
)
2487 skb
= tcp_write_queue_prev(sk
, skb
);
2489 skb
= tcp_write_queue_tail(sk
);
2492 if (unlikely(!skb
)) {
2493 WARN_ONCE(tp
->packets_out
,
2494 "invalid inflight: %u state %u cwnd %u mss %d\n",
2495 tp
->packets_out
, sk
->sk_state
, tp
->snd_cwnd
, mss
);
2496 inet_csk(sk
)->icsk_pending
= 0;
2500 /* At most one outstanding TLP retransmission. */
2501 if (tp
->tlp_high_seq
)
2504 if (skb_still_in_host_queue(sk
, skb
))
2507 pcount
= tcp_skb_pcount(skb
);
2508 if (WARN_ON(!pcount
))
2511 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2512 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2515 skb
= tcp_write_queue_next(sk
, skb
);
2518 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2521 if (__tcp_retransmit_skb(sk
, skb
, 1))
2524 /* Record snd_nxt for loss detection. */
2525 tp
->tlp_high_seq
= tp
->snd_nxt
;
2528 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2529 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2530 inet_csk(sk
)->icsk_pending
= 0;
2535 /* Push out any pending frames which were held back due to
2536 * TCP_CORK or attempt at coalescing tiny packets.
2537 * The socket must be locked by the caller.
2539 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2542 /* If we are closed, the bytes will have to remain here.
2543 * In time closedown will finish, we empty the write queue and
2544 * all will be happy.
2546 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2549 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2550 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2551 tcp_check_probe_timer(sk
);
2554 /* Send _single_ skb sitting at the send head. This function requires
2555 * true push pending frames to setup probe timer etc.
2557 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2559 struct sk_buff
*skb
= tcp_send_head(sk
);
2561 BUG_ON(!skb
|| skb
->len
< mss_now
);
2563 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2566 /* This function returns the amount that we can raise the
2567 * usable window based on the following constraints
2569 * 1. The window can never be shrunk once it is offered (RFC 793)
2570 * 2. We limit memory per socket
2573 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2574 * RECV.NEXT + RCV.WIN fixed until:
2575 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2577 * i.e. don't raise the right edge of the window until you can raise
2578 * it at least MSS bytes.
2580 * Unfortunately, the recommended algorithm breaks header prediction,
2581 * since header prediction assumes th->window stays fixed.
2583 * Strictly speaking, keeping th->window fixed violates the receiver
2584 * side SWS prevention criteria. The problem is that under this rule
2585 * a stream of single byte packets will cause the right side of the
2586 * window to always advance by a single byte.
2588 * Of course, if the sender implements sender side SWS prevention
2589 * then this will not be a problem.
2591 * BSD seems to make the following compromise:
2593 * If the free space is less than the 1/4 of the maximum
2594 * space available and the free space is less than 1/2 mss,
2595 * then set the window to 0.
2596 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2597 * Otherwise, just prevent the window from shrinking
2598 * and from being larger than the largest representable value.
2600 * This prevents incremental opening of the window in the regime
2601 * where TCP is limited by the speed of the reader side taking
2602 * data out of the TCP receive queue. It does nothing about
2603 * those cases where the window is constrained on the sender side
2604 * because the pipeline is full.
2606 * BSD also seems to "accidentally" limit itself to windows that are a
2607 * multiple of MSS, at least until the free space gets quite small.
2608 * This would appear to be a side effect of the mbuf implementation.
2609 * Combining these two algorithms results in the observed behavior
2610 * of having a fixed window size at almost all times.
2612 * Below we obtain similar behavior by forcing the offered window to
2613 * a multiple of the mss when it is feasible to do so.
2615 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2616 * Regular options like TIMESTAMP are taken into account.
2618 u32
__tcp_select_window(struct sock
*sk
)
2620 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2621 struct tcp_sock
*tp
= tcp_sk(sk
);
2622 /* MSS for the peer's data. Previous versions used mss_clamp
2623 * here. I don't know if the value based on our guesses
2624 * of peer's MSS is better for the performance. It's more correct
2625 * but may be worse for the performance because of rcv_mss
2626 * fluctuations. --SAW 1998/11/1
2628 int mss
= icsk
->icsk_ack
.rcv_mss
;
2629 int free_space
= tcp_space(sk
);
2630 int allowed_space
= tcp_full_space(sk
);
2631 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2634 if (unlikely(mss
> full_space
)) {
2639 if (free_space
< (full_space
>> 1)) {
2640 icsk
->icsk_ack
.quick
= 0;
2642 if (tcp_under_memory_pressure(sk
))
2643 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2646 /* free_space might become our new window, make sure we don't
2647 * increase it due to wscale.
2649 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2651 /* if free space is less than mss estimate, or is below 1/16th
2652 * of the maximum allowed, try to move to zero-window, else
2653 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2654 * new incoming data is dropped due to memory limits.
2655 * With large window, mss test triggers way too late in order
2656 * to announce zero window in time before rmem limit kicks in.
2658 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2662 if (free_space
> tp
->rcv_ssthresh
)
2663 free_space
= tp
->rcv_ssthresh
;
2665 /* Don't do rounding if we are using window scaling, since the
2666 * scaled window will not line up with the MSS boundary anyway.
2668 if (tp
->rx_opt
.rcv_wscale
) {
2669 window
= free_space
;
2671 /* Advertise enough space so that it won't get scaled away.
2672 * Import case: prevent zero window announcement if
2673 * 1<<rcv_wscale > mss.
2675 window
= ALIGN(window
, (1 << tp
->rx_opt
.rcv_wscale
));
2677 window
= tp
->rcv_wnd
;
2678 /* Get the largest window that is a nice multiple of mss.
2679 * Window clamp already applied above.
2680 * If our current window offering is within 1 mss of the
2681 * free space we just keep it. This prevents the divide
2682 * and multiply from happening most of the time.
2683 * We also don't do any window rounding when the free space
2686 if (window
<= free_space
- mss
|| window
> free_space
)
2687 window
= rounddown(free_space
, mss
);
2688 else if (mss
== full_space
&&
2689 free_space
> window
+ (full_space
>> 1))
2690 window
= free_space
;
2696 void tcp_skb_collapse_tstamp(struct sk_buff
*skb
,
2697 const struct sk_buff
*next_skb
)
2699 if (unlikely(tcp_has_tx_tstamp(next_skb
))) {
2700 const struct skb_shared_info
*next_shinfo
=
2701 skb_shinfo(next_skb
);
2702 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2704 shinfo
->tx_flags
|= next_shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
2705 shinfo
->tskey
= next_shinfo
->tskey
;
2706 TCP_SKB_CB(skb
)->txstamp_ack
|=
2707 TCP_SKB_CB(next_skb
)->txstamp_ack
;
2711 /* Collapses two adjacent SKB's during retransmission. */
2712 static bool tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2714 struct tcp_sock
*tp
= tcp_sk(sk
);
2715 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2716 int skb_size
, next_skb_size
;
2718 skb_size
= skb
->len
;
2719 next_skb_size
= next_skb
->len
;
2721 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2723 if (next_skb_size
) {
2724 if (next_skb_size
<= skb_availroom(skb
))
2725 skb_copy_bits(next_skb
, 0, skb_put(skb
, next_skb_size
),
2727 else if (!skb_shift(skb
, next_skb
, next_skb_size
))
2730 tcp_highest_sack_replace(sk
, next_skb
, skb
);
2732 tcp_unlink_write_queue(next_skb
, sk
);
2734 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2735 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2737 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2738 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2740 /* Update sequence range on original skb. */
2741 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2743 /* Merge over control information. This moves PSH/FIN etc. over */
2744 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2746 /* All done, get rid of second SKB and account for it so
2747 * packet counting does not break.
2749 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2750 TCP_SKB_CB(skb
)->eor
= TCP_SKB_CB(next_skb
)->eor
;
2752 /* changed transmit queue under us so clear hints */
2753 tcp_clear_retrans_hints_partial(tp
);
2754 if (next_skb
== tp
->retransmit_skb_hint
)
2755 tp
->retransmit_skb_hint
= skb
;
2757 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2759 tcp_skb_collapse_tstamp(skb
, next_skb
);
2761 sk_wmem_free_skb(sk
, next_skb
);
2765 /* Check if coalescing SKBs is legal. */
2766 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2768 if (tcp_skb_pcount(skb
) > 1)
2770 if (skb_cloned(skb
))
2772 if (skb
== tcp_send_head(sk
))
2774 /* Some heuristics for collapsing over SACK'd could be invented */
2775 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2781 /* Collapse packets in the retransmit queue to make to create
2782 * less packets on the wire. This is only done on retransmission.
2784 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2787 struct tcp_sock
*tp
= tcp_sk(sk
);
2788 struct sk_buff
*skb
= to
, *tmp
;
2791 if (!sysctl_tcp_retrans_collapse
)
2793 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2796 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2797 if (!tcp_can_collapse(sk
, skb
))
2800 if (!tcp_skb_can_collapse_to(to
))
2813 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2816 if (!tcp_collapse_retrans(sk
, to
))
2821 /* This retransmits one SKB. Policy decisions and retransmit queue
2822 * state updates are done by the caller. Returns non-zero if an
2823 * error occurred which prevented the send.
2825 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2827 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2828 struct tcp_sock
*tp
= tcp_sk(sk
);
2829 unsigned int cur_mss
;
2833 /* Inconclusive MTU probe */
2834 if (icsk
->icsk_mtup
.probe_size
)
2835 icsk
->icsk_mtup
.probe_size
= 0;
2837 /* Do not sent more than we queued. 1/4 is reserved for possible
2838 * copying overhead: fragmentation, tunneling, mangling etc.
2840 if (refcount_read(&sk
->sk_wmem_alloc
) >
2841 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2845 if (skb_still_in_host_queue(sk
, skb
))
2848 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2849 if (unlikely(before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))) {
2853 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2857 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2858 return -EHOSTUNREACH
; /* Routing failure or similar. */
2860 cur_mss
= tcp_current_mss(sk
);
2862 /* If receiver has shrunk his window, and skb is out of
2863 * new window, do not retransmit it. The exception is the
2864 * case, when window is shrunk to zero. In this case
2865 * our retransmit serves as a zero window probe.
2867 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2868 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2871 len
= cur_mss
* segs
;
2872 if (skb
->len
> len
) {
2873 if (tcp_fragment(sk
, skb
, len
, cur_mss
, GFP_ATOMIC
))
2874 return -ENOMEM
; /* We'll try again later. */
2876 if (skb_unclone(skb
, GFP_ATOMIC
))
2879 diff
= tcp_skb_pcount(skb
);
2880 tcp_set_skb_tso_segs(skb
, cur_mss
);
2881 diff
-= tcp_skb_pcount(skb
);
2883 tcp_adjust_pcount(sk
, skb
, diff
);
2884 if (skb
->len
< cur_mss
)
2885 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2888 /* RFC3168, section 6.1.1.1. ECN fallback */
2889 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2890 tcp_ecn_clear_syn(sk
, skb
);
2892 /* Update global and local TCP statistics. */
2893 segs
= tcp_skb_pcount(skb
);
2894 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
, segs
);
2895 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2896 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2897 tp
->total_retrans
+= segs
;
2899 /* make sure skb->data is aligned on arches that require it
2900 * and check if ack-trimming & collapsing extended the headroom
2901 * beyond what csum_start can cover.
2903 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2904 skb_headroom(skb
) >= 0xFFFF)) {
2905 struct sk_buff
*nskb
;
2907 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
2908 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2911 skb
->skb_mstamp
= tp
->tcp_mstamp
;
2912 tcp_rate_skb_sent(sk
, skb
);
2915 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2919 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2920 } else if (err
!= -EBUSY
) {
2921 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2926 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2928 struct tcp_sock
*tp
= tcp_sk(sk
);
2929 int err
= __tcp_retransmit_skb(sk
, skb
, segs
);
2932 #if FASTRETRANS_DEBUG > 0
2933 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2934 net_dbg_ratelimited("retrans_out leaked\n");
2937 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2938 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2940 /* Save stamp of the first retransmit. */
2941 if (!tp
->retrans_stamp
)
2942 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2946 if (tp
->undo_retrans
< 0)
2947 tp
->undo_retrans
= 0;
2948 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2952 /* This gets called after a retransmit timeout, and the initially
2953 * retransmitted data is acknowledged. It tries to continue
2954 * resending the rest of the retransmit queue, until either
2955 * we've sent it all or the congestion window limit is reached.
2956 * If doing SACK, the first ACK which comes back for a timeout
2957 * based retransmit packet might feed us FACK information again.
2958 * If so, we use it to avoid unnecessarily retransmissions.
2960 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2962 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2963 struct tcp_sock
*tp
= tcp_sk(sk
);
2964 struct sk_buff
*skb
;
2965 struct sk_buff
*hole
= NULL
;
2969 if (!tp
->packets_out
)
2972 if (tp
->retransmit_skb_hint
) {
2973 skb
= tp
->retransmit_skb_hint
;
2975 skb
= tcp_write_queue_head(sk
);
2978 max_segs
= tcp_tso_segs(sk
, tcp_current_mss(sk
));
2979 tcp_for_write_queue_from(skb
, sk
) {
2983 if (skb
== tcp_send_head(sk
))
2986 if (tcp_pacing_check(sk
))
2989 /* we could do better than to assign each time */
2991 tp
->retransmit_skb_hint
= skb
;
2993 segs
= tp
->snd_cwnd
- tcp_packets_in_flight(tp
);
2996 sacked
= TCP_SKB_CB(skb
)->sacked
;
2997 /* In case tcp_shift_skb_data() have aggregated large skbs,
2998 * we need to make sure not sending too bigs TSO packets
3000 segs
= min_t(int, segs
, max_segs
);
3002 if (tp
->retrans_out
>= tp
->lost_out
) {
3004 } else if (!(sacked
& TCPCB_LOST
)) {
3005 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
3010 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
3011 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
3013 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
3016 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
3019 if (tcp_small_queue_check(sk
, skb
, 1))
3022 if (tcp_retransmit_skb(sk
, skb
, segs
))
3025 NET_ADD_STATS(sock_net(sk
), mib_idx
, tcp_skb_pcount(skb
));
3027 if (tcp_in_cwnd_reduction(sk
))
3028 tp
->prr_out
+= tcp_skb_pcount(skb
);
3030 if (skb
== tcp_write_queue_head(sk
) &&
3031 icsk
->icsk_pending
!= ICSK_TIME_REO_TIMEOUT
)
3032 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3033 inet_csk(sk
)->icsk_rto
,
3038 /* We allow to exceed memory limits for FIN packets to expedite
3039 * connection tear down and (memory) recovery.
3040 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3041 * or even be forced to close flow without any FIN.
3042 * In general, we want to allow one skb per socket to avoid hangs
3043 * with edge trigger epoll()
3045 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
3049 if (size
<= sk
->sk_forward_alloc
)
3051 amt
= sk_mem_pages(size
);
3052 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
3053 sk_memory_allocated_add(sk
, amt
);
3055 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
3056 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
3059 /* Send a FIN. The caller locks the socket for us.
3060 * We should try to send a FIN packet really hard, but eventually give up.
3062 void tcp_send_fin(struct sock
*sk
)
3064 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
3065 struct tcp_sock
*tp
= tcp_sk(sk
);
3067 /* Optimization, tack on the FIN if we have one skb in write queue and
3068 * this skb was not yet sent, or we are under memory pressure.
3069 * Note: in the latter case, FIN packet will be sent after a timeout,
3070 * as TCP stack thinks it has already been transmitted.
3072 if (tskb
&& (tcp_send_head(sk
) || tcp_under_memory_pressure(sk
))) {
3074 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
3075 TCP_SKB_CB(tskb
)->end_seq
++;
3077 if (!tcp_send_head(sk
)) {
3078 /* This means tskb was already sent.
3079 * Pretend we included the FIN on previous transmit.
3080 * We need to set tp->snd_nxt to the value it would have
3081 * if FIN had been sent. This is because retransmit path
3082 * does not change tp->snd_nxt.
3088 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
3089 if (unlikely(!skb
)) {
3094 skb_reserve(skb
, MAX_TCP_HEADER
);
3095 sk_forced_mem_schedule(sk
, skb
->truesize
);
3096 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3097 tcp_init_nondata_skb(skb
, tp
->write_seq
,
3098 TCPHDR_ACK
| TCPHDR_FIN
);
3099 tcp_queue_skb(sk
, skb
);
3101 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
3104 /* We get here when a process closes a file descriptor (either due to
3105 * an explicit close() or as a byproduct of exit()'ing) and there
3106 * was unread data in the receive queue. This behavior is recommended
3107 * by RFC 2525, section 2.17. -DaveM
3109 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
3111 struct sk_buff
*skb
;
3113 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
3115 /* NOTE: No TCP options attached and we never retransmit this. */
3116 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
3118 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3122 /* Reserve space for headers and prepare control bits. */
3123 skb_reserve(skb
, MAX_TCP_HEADER
);
3124 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
3125 TCPHDR_ACK
| TCPHDR_RST
);
3126 tcp_mstamp_refresh(tcp_sk(sk
));
3128 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
3129 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3132 /* Send a crossed SYN-ACK during socket establishment.
3133 * WARNING: This routine must only be called when we have already sent
3134 * a SYN packet that crossed the incoming SYN that caused this routine
3135 * to get called. If this assumption fails then the initial rcv_wnd
3136 * and rcv_wscale values will not be correct.
3138 int tcp_send_synack(struct sock
*sk
)
3140 struct sk_buff
*skb
;
3142 skb
= tcp_write_queue_head(sk
);
3143 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
3144 pr_debug("%s: wrong queue state\n", __func__
);
3147 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
3148 if (skb_cloned(skb
)) {
3149 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
3152 tcp_unlink_write_queue(skb
, sk
);
3153 __skb_header_release(nskb
);
3154 __tcp_add_write_queue_head(sk
, nskb
);
3155 sk_wmem_free_skb(sk
, skb
);
3156 sk
->sk_wmem_queued
+= nskb
->truesize
;
3157 sk_mem_charge(sk
, nskb
->truesize
);
3161 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
3162 tcp_ecn_send_synack(sk
, skb
);
3164 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3168 * tcp_make_synack - Prepare a SYN-ACK.
3169 * sk: listener socket
3170 * dst: dst entry attached to the SYNACK
3171 * req: request_sock pointer
3173 * Allocate one skb and build a SYNACK packet.
3174 * @dst is consumed : Caller should not use it again.
3176 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
3177 struct request_sock
*req
,
3178 struct tcp_fastopen_cookie
*foc
,
3179 enum tcp_synack_type synack_type
)
3181 struct inet_request_sock
*ireq
= inet_rsk(req
);
3182 const struct tcp_sock
*tp
= tcp_sk(sk
);
3183 struct tcp_md5sig_key
*md5
= NULL
;
3184 struct tcp_out_options opts
;
3185 struct sk_buff
*skb
;
3186 int tcp_header_size
;
3190 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
3191 if (unlikely(!skb
)) {
3195 /* Reserve space for headers. */
3196 skb_reserve(skb
, MAX_TCP_HEADER
);
3198 switch (synack_type
) {
3199 case TCP_SYNACK_NORMAL
:
3200 skb_set_owner_w(skb
, req_to_sk(req
));
3202 case TCP_SYNACK_COOKIE
:
3203 /* Under synflood, we do not attach skb to a socket,
3204 * to avoid false sharing.
3207 case TCP_SYNACK_FASTOPEN
:
3208 /* sk is a const pointer, because we want to express multiple
3209 * cpu might call us concurrently.
3210 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3212 skb_set_owner_w(skb
, (struct sock
*)sk
);
3215 skb_dst_set(skb
, dst
);
3217 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3219 memset(&opts
, 0, sizeof(opts
));
3220 #ifdef CONFIG_SYN_COOKIES
3221 if (unlikely(req
->cookie_ts
))
3222 skb
->skb_mstamp
= cookie_init_timestamp(req
);
3225 skb
->skb_mstamp
= tcp_clock_us();
3227 #ifdef CONFIG_TCP_MD5SIG
3229 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3231 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3232 tcp_header_size
= tcp_synack_options(req
, mss
, skb
, &opts
, md5
, foc
) +
3235 skb_push(skb
, tcp_header_size
);
3236 skb_reset_transport_header(skb
);
3238 th
= (struct tcphdr
*)skb
->data
;
3239 memset(th
, 0, sizeof(struct tcphdr
));
3242 tcp_ecn_make_synack(req
, th
);
3243 th
->source
= htons(ireq
->ir_num
);
3244 th
->dest
= ireq
->ir_rmt_port
;
3245 skb
->mark
= ireq
->ir_mark
;
3246 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3247 th
->seq
= htonl(tcp_rsk(req
)->snt_isn
);
3248 /* XXX data is queued and acked as is. No buffer/window check */
3249 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3251 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3252 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3253 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3254 th
->doff
= (tcp_header_size
>> 2);
3255 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
3257 #ifdef CONFIG_TCP_MD5SIG
3258 /* Okay, we have all we need - do the md5 hash if needed */
3260 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3261 md5
, req_to_sk(req
), skb
);
3265 /* Do not fool tcpdump (if any), clean our debris */
3269 EXPORT_SYMBOL(tcp_make_synack
);
3271 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3273 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3274 const struct tcp_congestion_ops
*ca
;
3275 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3277 if (ca_key
== TCP_CA_UNSPEC
)
3281 ca
= tcp_ca_find_key(ca_key
);
3282 if (likely(ca
&& try_module_get(ca
->owner
))) {
3283 module_put(icsk
->icsk_ca_ops
->owner
);
3284 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3285 icsk
->icsk_ca_ops
= ca
;
3290 /* Do all connect socket setups that can be done AF independent. */
3291 static void tcp_connect_init(struct sock
*sk
)
3293 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3294 struct tcp_sock
*tp
= tcp_sk(sk
);
3298 /* We'll fix this up when we get a response from the other end.
3299 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3301 tp
->tcp_header_len
= sizeof(struct tcphdr
);
3302 if (sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
)
3303 tp
->tcp_header_len
+= TCPOLEN_TSTAMP_ALIGNED
;
3305 #ifdef CONFIG_TCP_MD5SIG
3306 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3307 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3310 /* If user gave his TCP_MAXSEG, record it to clamp */
3311 if (tp
->rx_opt
.user_mss
)
3312 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3315 tcp_sync_mss(sk
, dst_mtu(dst
));
3317 tcp_ca_dst_init(sk
, dst
);
3319 if (!tp
->window_clamp
)
3320 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3321 tp
->advmss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3323 tcp_initialize_rcv_mss(sk
);
3325 /* limit the window selection if the user enforce a smaller rx buffer */
3326 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3327 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3328 tp
->window_clamp
= tcp_full_space(sk
);
3330 rcv_wnd
= tcp_rwnd_init_bpf(sk
);
3332 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
3334 tcp_select_initial_window(tcp_full_space(sk
),
3335 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3338 sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
,
3342 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3343 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3346 sock_reset_flag(sk
, SOCK_DONE
);
3349 tcp_write_queue_purge(sk
);
3350 tp
->snd_una
= tp
->write_seq
;
3351 tp
->snd_sml
= tp
->write_seq
;
3352 tp
->snd_up
= tp
->write_seq
;
3353 tp
->snd_nxt
= tp
->write_seq
;
3355 if (likely(!tp
->repair
))
3358 tp
->rcv_tstamp
= tcp_jiffies32
;
3359 tp
->rcv_wup
= tp
->rcv_nxt
;
3360 tp
->copied_seq
= tp
->rcv_nxt
;
3362 inet_csk(sk
)->icsk_rto
= tcp_timeout_init(sk
);
3363 inet_csk(sk
)->icsk_retransmits
= 0;
3364 tcp_clear_retrans(tp
);
3367 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3369 struct tcp_sock
*tp
= tcp_sk(sk
);
3370 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3372 tcb
->end_seq
+= skb
->len
;
3373 __skb_header_release(skb
);
3374 __tcp_add_write_queue_tail(sk
, skb
);
3375 sk
->sk_wmem_queued
+= skb
->truesize
;
3376 sk_mem_charge(sk
, skb
->truesize
);
3377 tp
->write_seq
= tcb
->end_seq
;
3378 tp
->packets_out
+= tcp_skb_pcount(skb
);
3381 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3382 * queue a data-only packet after the regular SYN, such that regular SYNs
3383 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3384 * only the SYN sequence, the data are retransmitted in the first ACK.
3385 * If cookie is not cached or other error occurs, falls back to send a
3386 * regular SYN with Fast Open cookie request option.
3388 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3390 struct tcp_sock
*tp
= tcp_sk(sk
);
3391 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3393 struct sk_buff
*syn_data
;
3395 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3396 if (!tcp_fastopen_cookie_check(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
))
3399 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3400 * user-MSS. Reserve maximum option space for middleboxes that add
3401 * private TCP options. The cost is reduced data space in SYN :(
3403 tp
->rx_opt
.mss_clamp
= tcp_mss_clamp(tp
, tp
->rx_opt
.mss_clamp
);
3405 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3406 MAX_TCP_OPTION_SPACE
;
3408 space
= min_t(size_t, space
, fo
->size
);
3410 /* limit to order-0 allocations */
3411 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3413 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3416 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3417 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3419 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3420 &fo
->data
->msg_iter
);
3421 if (unlikely(!copied
)) {
3422 kfree_skb(syn_data
);
3425 if (copied
!= space
) {
3426 skb_trim(syn_data
, copied
);
3430 /* No more data pending in inet_wait_for_connect() */
3431 if (space
== fo
->size
)
3435 tcp_connect_queue_skb(sk
, syn_data
);
3437 tcp_chrono_start(sk
, TCP_CHRONO_BUSY
);
3439 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3441 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3443 /* Now full SYN+DATA was cloned and sent (or not),
3444 * remove the SYN from the original skb (syn_data)
3445 * we keep in write queue in case of a retransmit, as we
3446 * also have the SYN packet (with no data) in the same queue.
3448 TCP_SKB_CB(syn_data
)->seq
++;
3449 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3451 tp
->syn_data
= (fo
->copied
> 0);
3452 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3456 /* data was not sent, this is our new send_head */
3457 sk
->sk_send_head
= syn_data
;
3458 tp
->packets_out
-= tcp_skb_pcount(syn_data
);
3461 /* Send a regular SYN with Fast Open cookie request option */
3462 if (fo
->cookie
.len
> 0)
3464 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3466 tp
->syn_fastopen
= 0;
3468 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3472 /* Build a SYN and send it off. */
3473 int tcp_connect(struct sock
*sk
)
3475 struct tcp_sock
*tp
= tcp_sk(sk
);
3476 struct sk_buff
*buff
;
3479 tcp_call_bpf(sk
, BPF_SOCK_OPS_TCP_CONNECT_CB
);
3481 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
3482 return -EHOSTUNREACH
; /* Routing failure or similar. */
3484 tcp_connect_init(sk
);
3486 if (unlikely(tp
->repair
)) {
3487 tcp_finish_connect(sk
, NULL
);
3491 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3492 if (unlikely(!buff
))
3495 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3496 tcp_mstamp_refresh(tp
);
3497 tp
->retrans_stamp
= tcp_time_stamp(tp
);
3498 tcp_connect_queue_skb(sk
, buff
);
3499 tcp_ecn_send_syn(sk
, buff
);
3501 /* Send off SYN; include data in Fast Open. */
3502 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3503 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3504 if (err
== -ECONNREFUSED
)
3507 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3508 * in order to make this packet get counted in tcpOutSegs.
3510 tp
->snd_nxt
= tp
->write_seq
;
3511 tp
->pushed_seq
= tp
->write_seq
;
3512 buff
= tcp_send_head(sk
);
3513 if (unlikely(buff
)) {
3514 tp
->snd_nxt
= TCP_SKB_CB(buff
)->seq
;
3515 tp
->pushed_seq
= TCP_SKB_CB(buff
)->seq
;
3517 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3519 /* Timer for repeating the SYN until an answer. */
3520 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3521 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3524 EXPORT_SYMBOL(tcp_connect
);
3526 /* Send out a delayed ack, the caller does the policy checking
3527 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3530 void tcp_send_delayed_ack(struct sock
*sk
)
3532 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3533 int ato
= icsk
->icsk_ack
.ato
;
3534 unsigned long timeout
;
3536 if (ato
> TCP_DELACK_MIN
) {
3537 const struct tcp_sock
*tp
= tcp_sk(sk
);
3538 int max_ato
= HZ
/ 2;
3540 if (icsk
->icsk_ack
.pingpong
||
3541 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3542 max_ato
= TCP_DELACK_MAX
;
3544 /* Slow path, intersegment interval is "high". */
3546 /* If some rtt estimate is known, use it to bound delayed ack.
3547 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3551 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3558 ato
= min(ato
, max_ato
);
3561 /* Stay within the limit we were given */
3562 timeout
= jiffies
+ ato
;
3564 /* Use new timeout only if there wasn't a older one earlier. */
3565 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3566 /* If delack timer was blocked or is about to expire,
3569 if (icsk
->icsk_ack
.blocked
||
3570 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3575 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3576 timeout
= icsk
->icsk_ack
.timeout
;
3578 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3579 icsk
->icsk_ack
.timeout
= timeout
;
3580 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3583 /* This routine sends an ack and also updates the window. */
3584 void __tcp_send_ack(struct sock
*sk
, u32 rcv_nxt
)
3586 struct sk_buff
*buff
;
3588 /* If we have been reset, we may not send again. */
3589 if (sk
->sk_state
== TCP_CLOSE
)
3592 /* We are not putting this on the write queue, so
3593 * tcp_transmit_skb() will set the ownership to this
3596 buff
= alloc_skb(MAX_TCP_HEADER
,
3597 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3598 if (unlikely(!buff
)) {
3599 inet_csk_schedule_ack(sk
);
3600 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3601 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3602 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3606 /* Reserve space for headers and prepare control bits. */
3607 skb_reserve(buff
, MAX_TCP_HEADER
);
3608 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3610 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3612 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3614 skb_set_tcp_pure_ack(buff
);
3616 /* Send it off, this clears delayed acks for us. */
3617 __tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0, rcv_nxt
);
3619 EXPORT_SYMBOL_GPL(__tcp_send_ack
);
3621 void tcp_send_ack(struct sock
*sk
)
3623 __tcp_send_ack(sk
, tcp_sk(sk
)->rcv_nxt
);
3626 /* This routine sends a packet with an out of date sequence
3627 * number. It assumes the other end will try to ack it.
3629 * Question: what should we make while urgent mode?
3630 * 4.4BSD forces sending single byte of data. We cannot send
3631 * out of window data, because we have SND.NXT==SND.MAX...
3633 * Current solution: to send TWO zero-length segments in urgent mode:
3634 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3635 * out-of-date with SND.UNA-1 to probe window.
3637 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3639 struct tcp_sock
*tp
= tcp_sk(sk
);
3640 struct sk_buff
*skb
;
3642 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3643 skb
= alloc_skb(MAX_TCP_HEADER
,
3644 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3648 /* Reserve space for headers and set control bits. */
3649 skb_reserve(skb
, MAX_TCP_HEADER
);
3650 /* Use a previous sequence. This should cause the other
3651 * end to send an ack. Don't queue or clone SKB, just
3654 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3655 NET_INC_STATS(sock_net(sk
), mib
);
3656 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3659 /* Called from setsockopt( ... TCP_REPAIR ) */
3660 void tcp_send_window_probe(struct sock
*sk
)
3662 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3663 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3664 tcp_mstamp_refresh(tcp_sk(sk
));
3665 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3669 /* Initiate keepalive or window probe from timer. */
3670 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3672 struct tcp_sock
*tp
= tcp_sk(sk
);
3673 struct sk_buff
*skb
;
3675 if (sk
->sk_state
== TCP_CLOSE
)
3678 skb
= tcp_send_head(sk
);
3679 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3681 unsigned int mss
= tcp_current_mss(sk
);
3682 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3684 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3685 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3687 /* We are probing the opening of a window
3688 * but the window size is != 0
3689 * must have been a result SWS avoidance ( sender )
3691 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3693 seg_size
= min(seg_size
, mss
);
3694 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3695 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3697 } else if (!tcp_skb_pcount(skb
))
3698 tcp_set_skb_tso_segs(skb
, mss
);
3700 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3701 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3703 tcp_event_new_data_sent(sk
, skb
);
3706 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3707 tcp_xmit_probe_skb(sk
, 1, mib
);
3708 return tcp_xmit_probe_skb(sk
, 0, mib
);
3712 /* A window probe timeout has occurred. If window is not closed send
3713 * a partial packet else a zero probe.
3715 void tcp_send_probe0(struct sock
*sk
)
3717 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3718 struct tcp_sock
*tp
= tcp_sk(sk
);
3719 struct net
*net
= sock_net(sk
);
3720 unsigned long probe_max
;
3723 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3725 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3726 /* Cancel probe timer, if it is not required. */
3727 icsk
->icsk_probes_out
= 0;
3728 icsk
->icsk_backoff
= 0;
3733 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3734 icsk
->icsk_backoff
++;
3735 icsk
->icsk_probes_out
++;
3736 probe_max
= TCP_RTO_MAX
;
3738 /* If packet was not sent due to local congestion,
3739 * do not backoff and do not remember icsk_probes_out.
3740 * Let local senders to fight for local resources.
3742 * Use accumulated backoff yet.
3744 if (!icsk
->icsk_probes_out
)
3745 icsk
->icsk_probes_out
= 1;
3746 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3748 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3749 tcp_probe0_when(sk
, probe_max
),
3753 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3755 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3759 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3760 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, TCP_SYNACK_NORMAL
);
3762 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3763 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3764 if (unlikely(tcp_passive_fastopen(sk
)))
3765 tcp_sk(sk
)->total_retrans
++;
3769 EXPORT_SYMBOL(tcp_rtx_synack
);