2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
119 struct udp_table udp_table __read_mostly
;
120 EXPORT_SYMBOL(udp_table
);
122 long sysctl_udp_mem
[3] __read_mostly
;
123 EXPORT_SYMBOL(sysctl_udp_mem
);
125 int sysctl_udp_rmem_min __read_mostly
;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min
);
128 int sysctl_udp_wmem_min __read_mostly
;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min
);
131 atomic_long_t udp_memory_allocated
;
132 EXPORT_SYMBOL(udp_memory_allocated
);
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net
*net
, struct sk_buff
*skb
)
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 if (!net
->ipv4
.sysctl_udp_l3mdev_accept
&&
142 skb
&& ipv4_l3mdev_skb(IPCB(skb
)->flags
))
148 static int udp_lib_lport_inuse(struct net
*net
, __u16 num
,
149 const struct udp_hslot
*hslot
,
150 unsigned long *bitmap
,
151 struct sock
*sk
, unsigned int log
)
154 kuid_t uid
= sock_i_uid(sk
);
156 sk_for_each(sk2
, &hslot
->head
) {
157 if (net_eq(sock_net(sk2
), net
) &&
159 (bitmap
|| udp_sk(sk2
)->udp_port_hash
== num
) &&
160 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
161 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
162 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
163 inet_rcv_saddr_equal(sk
, sk2
, true)) {
164 if (sk2
->sk_reuseport
&& sk
->sk_reuseport
&&
165 !rcu_access_pointer(sk
->sk_reuseport_cb
) &&
166 uid_eq(uid
, sock_i_uid(sk2
))) {
172 __set_bit(udp_sk(sk2
)->udp_port_hash
>> log
,
181 * Note: we still hold spinlock of primary hash chain, so no other writer
182 * can insert/delete a socket with local_port == num
184 static int udp_lib_lport_inuse2(struct net
*net
, __u16 num
,
185 struct udp_hslot
*hslot2
,
189 kuid_t uid
= sock_i_uid(sk
);
192 spin_lock(&hslot2
->lock
);
193 udp_portaddr_for_each_entry(sk2
, &hslot2
->head
) {
194 if (net_eq(sock_net(sk2
), net
) &&
196 (udp_sk(sk2
)->udp_port_hash
== num
) &&
197 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
198 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
199 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
200 inet_rcv_saddr_equal(sk
, sk2
, true)) {
201 if (sk2
->sk_reuseport
&& sk
->sk_reuseport
&&
202 !rcu_access_pointer(sk
->sk_reuseport_cb
) &&
203 uid_eq(uid
, sock_i_uid(sk2
))) {
211 spin_unlock(&hslot2
->lock
);
215 static int udp_reuseport_add_sock(struct sock
*sk
, struct udp_hslot
*hslot
)
217 struct net
*net
= sock_net(sk
);
218 kuid_t uid
= sock_i_uid(sk
);
221 sk_for_each(sk2
, &hslot
->head
) {
222 if (net_eq(sock_net(sk2
), net
) &&
224 sk2
->sk_family
== sk
->sk_family
&&
225 ipv6_only_sock(sk2
) == ipv6_only_sock(sk
) &&
226 (udp_sk(sk2
)->udp_port_hash
== udp_sk(sk
)->udp_port_hash
) &&
227 (sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
228 sk2
->sk_reuseport
&& uid_eq(uid
, sock_i_uid(sk2
)) &&
229 inet_rcv_saddr_equal(sk
, sk2
, false)) {
230 return reuseport_add_sock(sk
, sk2
);
234 return reuseport_alloc(sk
);
238 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
240 * @sk: socket struct in question
241 * @snum: port number to look up
242 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
245 int udp_lib_get_port(struct sock
*sk
, unsigned short snum
,
246 unsigned int hash2_nulladdr
)
248 struct udp_hslot
*hslot
, *hslot2
;
249 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
251 struct net
*net
= sock_net(sk
);
254 int low
, high
, remaining
;
256 unsigned short first
, last
;
257 DECLARE_BITMAP(bitmap
, PORTS_PER_CHAIN
);
259 inet_get_local_port_range(net
, &low
, &high
);
260 remaining
= (high
- low
) + 1;
262 rand
= prandom_u32();
263 first
= reciprocal_scale(rand
, remaining
) + low
;
265 * force rand to be an odd multiple of UDP_HTABLE_SIZE
267 rand
= (rand
| 1) * (udptable
->mask
+ 1);
268 last
= first
+ udptable
->mask
+ 1;
270 hslot
= udp_hashslot(udptable
, net
, first
);
271 bitmap_zero(bitmap
, PORTS_PER_CHAIN
);
272 spin_lock_bh(&hslot
->lock
);
273 udp_lib_lport_inuse(net
, snum
, hslot
, bitmap
, sk
,
278 * Iterate on all possible values of snum for this hash.
279 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 * give us randomization and full range coverage.
283 if (low
<= snum
&& snum
<= high
&&
284 !test_bit(snum
>> udptable
->log
, bitmap
) &&
285 !inet_is_local_reserved_port(net
, snum
))
288 } while (snum
!= first
);
289 spin_unlock_bh(&hslot
->lock
);
291 } while (++first
!= last
);
294 hslot
= udp_hashslot(udptable
, net
, snum
);
295 spin_lock_bh(&hslot
->lock
);
296 if (hslot
->count
> 10) {
298 unsigned int slot2
= udp_sk(sk
)->udp_portaddr_hash
^ snum
;
300 slot2
&= udptable
->mask
;
301 hash2_nulladdr
&= udptable
->mask
;
303 hslot2
= udp_hashslot2(udptable
, slot2
);
304 if (hslot
->count
< hslot2
->count
)
305 goto scan_primary_hash
;
307 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
, sk
);
308 if (!exist
&& (hash2_nulladdr
!= slot2
)) {
309 hslot2
= udp_hashslot2(udptable
, hash2_nulladdr
);
310 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
319 if (udp_lib_lport_inuse(net
, snum
, hslot
, NULL
, sk
, 0))
323 inet_sk(sk
)->inet_num
= snum
;
324 udp_sk(sk
)->udp_port_hash
= snum
;
325 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
326 if (sk_unhashed(sk
)) {
327 if (sk
->sk_reuseport
&&
328 udp_reuseport_add_sock(sk
, hslot
)) {
329 inet_sk(sk
)->inet_num
= 0;
330 udp_sk(sk
)->udp_port_hash
= 0;
331 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
335 sk_add_node_rcu(sk
, &hslot
->head
);
337 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, 1);
339 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
340 spin_lock(&hslot2
->lock
);
341 if (IS_ENABLED(CONFIG_IPV6
) && sk
->sk_reuseport
&&
342 sk
->sk_family
== AF_INET6
)
343 hlist_add_tail_rcu(&udp_sk(sk
)->udp_portaddr_node
,
346 hlist_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
349 spin_unlock(&hslot2
->lock
);
351 sock_set_flag(sk
, SOCK_RCU_FREE
);
354 spin_unlock_bh(&hslot
->lock
);
358 EXPORT_SYMBOL(udp_lib_get_port
);
360 static u32
udp4_portaddr_hash(const struct net
*net
, __be32 saddr
,
363 return jhash_1word((__force u32
)saddr
, net_hash_mix(net
)) ^ port
;
366 int udp_v4_get_port(struct sock
*sk
, unsigned short snum
)
368 unsigned int hash2_nulladdr
=
369 udp4_portaddr_hash(sock_net(sk
), htonl(INADDR_ANY
), snum
);
370 unsigned int hash2_partial
=
371 udp4_portaddr_hash(sock_net(sk
), inet_sk(sk
)->inet_rcv_saddr
, 0);
373 /* precompute partial secondary hash */
374 udp_sk(sk
)->udp_portaddr_hash
= hash2_partial
;
375 return udp_lib_get_port(sk
, snum
, hash2_nulladdr
);
378 static int compute_score(struct sock
*sk
, struct net
*net
,
379 __be32 saddr
, __be16 sport
,
380 __be32 daddr
, unsigned short hnum
,
381 int dif
, int sdif
, bool exact_dif
)
384 struct inet_sock
*inet
;
386 if (!net_eq(sock_net(sk
), net
) ||
387 udp_sk(sk
)->udp_port_hash
!= hnum
||
391 score
= (sk
->sk_family
== PF_INET
) ? 2 : 1;
394 if (inet
->inet_rcv_saddr
) {
395 if (inet
->inet_rcv_saddr
!= daddr
)
400 if (inet
->inet_daddr
) {
401 if (inet
->inet_daddr
!= saddr
)
406 if (inet
->inet_dport
) {
407 if (inet
->inet_dport
!= sport
)
412 if (sk
->sk_bound_dev_if
|| exact_dif
) {
413 bool dev_match
= (sk
->sk_bound_dev_if
== dif
||
414 sk
->sk_bound_dev_if
== sdif
);
418 if (sk
->sk_bound_dev_if
)
422 if (sk
->sk_incoming_cpu
== raw_smp_processor_id())
427 static u32
udp_ehashfn(const struct net
*net
, const __be32 laddr
,
428 const __u16 lport
, const __be32 faddr
,
431 static u32 udp_ehash_secret __read_mostly
;
433 net_get_random_once(&udp_ehash_secret
, sizeof(udp_ehash_secret
));
435 return __inet_ehashfn(laddr
, lport
, faddr
, fport
,
436 udp_ehash_secret
+ net_hash_mix(net
));
439 /* called with rcu_read_lock() */
440 static struct sock
*udp4_lib_lookup2(struct net
*net
,
441 __be32 saddr
, __be16 sport
,
442 __be32 daddr
, unsigned int hnum
,
443 int dif
, int sdif
, bool exact_dif
,
444 struct udp_hslot
*hslot2
,
447 struct sock
*sk
, *result
;
448 int score
, badness
, matches
= 0, reuseport
= 0;
453 udp_portaddr_for_each_entry_rcu(sk
, &hslot2
->head
) {
454 score
= compute_score(sk
, net
, saddr
, sport
,
455 daddr
, hnum
, dif
, sdif
, exact_dif
);
456 if (score
> badness
) {
457 reuseport
= sk
->sk_reuseport
;
459 hash
= udp_ehashfn(net
, daddr
, hnum
,
461 result
= reuseport_select_sock(sk
, hash
, skb
,
462 sizeof(struct udphdr
));
469 } else if (score
== badness
&& reuseport
) {
471 if (reciprocal_scale(hash
, matches
) == 0)
473 hash
= next_pseudo_random32(hash
);
479 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
480 * harder than this. -DaveM
482 struct sock
*__udp4_lib_lookup(struct net
*net
, __be32 saddr
,
483 __be16 sport
, __be32 daddr
, __be16 dport
, int dif
,
484 int sdif
, struct udp_table
*udptable
, struct sk_buff
*skb
)
486 struct sock
*sk
, *result
;
487 unsigned short hnum
= ntohs(dport
);
488 unsigned int hash2
, slot2
, slot
= udp_hashfn(net
, hnum
, udptable
->mask
);
489 struct udp_hslot
*hslot2
, *hslot
= &udptable
->hash
[slot
];
490 bool exact_dif
= udp_lib_exact_dif_match(net
, skb
);
491 int score
, badness
, matches
= 0, reuseport
= 0;
494 if (hslot
->count
> 10) {
495 hash2
= udp4_portaddr_hash(net
, daddr
, hnum
);
496 slot2
= hash2
& udptable
->mask
;
497 hslot2
= &udptable
->hash2
[slot2
];
498 if (hslot
->count
< hslot2
->count
)
501 result
= udp4_lib_lookup2(net
, saddr
, sport
,
502 daddr
, hnum
, dif
, sdif
,
503 exact_dif
, hslot2
, skb
);
505 unsigned int old_slot2
= slot2
;
506 hash2
= udp4_portaddr_hash(net
, htonl(INADDR_ANY
), hnum
);
507 slot2
= hash2
& udptable
->mask
;
508 /* avoid searching the same slot again. */
509 if (unlikely(slot2
== old_slot2
))
512 hslot2
= &udptable
->hash2
[slot2
];
513 if (hslot
->count
< hslot2
->count
)
516 result
= udp4_lib_lookup2(net
, saddr
, sport
,
517 daddr
, hnum
, dif
, sdif
,
518 exact_dif
, hslot2
, skb
);
525 sk_for_each_rcu(sk
, &hslot
->head
) {
526 score
= compute_score(sk
, net
, saddr
, sport
,
527 daddr
, hnum
, dif
, sdif
, exact_dif
);
528 if (score
> badness
) {
529 reuseport
= sk
->sk_reuseport
;
531 hash
= udp_ehashfn(net
, daddr
, hnum
,
533 result
= reuseport_select_sock(sk
, hash
, skb
,
534 sizeof(struct udphdr
));
541 } else if (score
== badness
&& reuseport
) {
543 if (reciprocal_scale(hash
, matches
) == 0)
545 hash
= next_pseudo_random32(hash
);
550 EXPORT_SYMBOL_GPL(__udp4_lib_lookup
);
552 static inline struct sock
*__udp4_lib_lookup_skb(struct sk_buff
*skb
,
553 __be16 sport
, __be16 dport
,
554 struct udp_table
*udptable
)
556 const struct iphdr
*iph
= ip_hdr(skb
);
558 return __udp4_lib_lookup(dev_net(skb
->dev
), iph
->saddr
, sport
,
559 iph
->daddr
, dport
, inet_iif(skb
),
560 inet_sdif(skb
), udptable
, skb
);
563 struct sock
*udp4_lib_lookup_skb(struct sk_buff
*skb
,
564 __be16 sport
, __be16 dport
)
566 return __udp4_lib_lookup_skb(skb
, sport
, dport
, &udp_table
);
568 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb
);
570 /* Must be called under rcu_read_lock().
571 * Does increment socket refcount.
573 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
574 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
575 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
576 struct sock
*udp4_lib_lookup(struct net
*net
, __be32 saddr
, __be16 sport
,
577 __be32 daddr
, __be16 dport
, int dif
)
581 sk
= __udp4_lib_lookup(net
, saddr
, sport
, daddr
, dport
,
582 dif
, 0, &udp_table
, NULL
);
583 if (sk
&& !refcount_inc_not_zero(&sk
->sk_refcnt
))
587 EXPORT_SYMBOL_GPL(udp4_lib_lookup
);
590 static inline bool __udp_is_mcast_sock(struct net
*net
, struct sock
*sk
,
591 __be16 loc_port
, __be32 loc_addr
,
592 __be16 rmt_port
, __be32 rmt_addr
,
593 int dif
, int sdif
, unsigned short hnum
)
595 struct inet_sock
*inet
= inet_sk(sk
);
597 if (!net_eq(sock_net(sk
), net
) ||
598 udp_sk(sk
)->udp_port_hash
!= hnum
||
599 (inet
->inet_daddr
&& inet
->inet_daddr
!= rmt_addr
) ||
600 (inet
->inet_dport
!= rmt_port
&& inet
->inet_dport
) ||
601 (inet
->inet_rcv_saddr
&& inet
->inet_rcv_saddr
!= loc_addr
) ||
602 ipv6_only_sock(sk
) ||
603 (sk
->sk_bound_dev_if
&& sk
->sk_bound_dev_if
!= dif
&&
604 sk
->sk_bound_dev_if
!= sdif
))
606 if (!ip_mc_sf_allow(sk
, loc_addr
, rmt_addr
, dif
, sdif
))
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition. If err < 0 then the socket should
614 * be closed and the error returned to the user. If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header. We need
619 * to find the appropriate port.
622 void __udp4_lib_err(struct sk_buff
*skb
, u32 info
, struct udp_table
*udptable
)
624 struct inet_sock
*inet
;
625 const struct iphdr
*iph
= (const struct iphdr
*)skb
->data
;
626 struct udphdr
*uh
= (struct udphdr
*)(skb
->data
+(iph
->ihl
<<2));
627 const int type
= icmp_hdr(skb
)->type
;
628 const int code
= icmp_hdr(skb
)->code
;
632 struct net
*net
= dev_net(skb
->dev
);
634 sk
= __udp4_lib_lookup(net
, iph
->daddr
, uh
->dest
,
635 iph
->saddr
, uh
->source
, skb
->dev
->ifindex
, 0,
638 __ICMP_INC_STATS(net
, ICMP_MIB_INERRORS
);
639 return; /* No socket for error */
648 case ICMP_TIME_EXCEEDED
:
651 case ICMP_SOURCE_QUENCH
:
653 case ICMP_PARAMETERPROB
:
657 case ICMP_DEST_UNREACH
:
658 if (code
== ICMP_FRAG_NEEDED
) { /* Path MTU discovery */
659 ipv4_sk_update_pmtu(skb
, sk
, info
);
660 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
) {
668 if (code
<= NR_ICMP_UNREACH
) {
669 harderr
= icmp_err_convert
[code
].fatal
;
670 err
= icmp_err_convert
[code
].errno
;
674 ipv4_sk_redirect(skb
, sk
);
679 * RFC1122: OK. Passes ICMP errors back to application, as per
682 if (!inet
->recverr
) {
683 if (!harderr
|| sk
->sk_state
!= TCP_ESTABLISHED
)
686 ip_icmp_error(sk
, skb
, err
, uh
->dest
, info
, (u8
*)(uh
+1));
689 sk
->sk_error_report(sk
);
694 void udp_err(struct sk_buff
*skb
, u32 info
)
696 __udp4_lib_err(skb
, info
, &udp_table
);
700 * Throw away all pending data and cancel the corking. Socket is locked.
702 void udp_flush_pending_frames(struct sock
*sk
)
704 struct udp_sock
*up
= udp_sk(sk
);
709 ip_flush_pending_frames(sk
);
712 EXPORT_SYMBOL(udp_flush_pending_frames
);
715 * udp4_hwcsum - handle outgoing HW checksumming
716 * @skb: sk_buff containing the filled-in UDP header
717 * (checksum field must be zeroed out)
718 * @src: source IP address
719 * @dst: destination IP address
721 void udp4_hwcsum(struct sk_buff
*skb
, __be32 src
, __be32 dst
)
723 struct udphdr
*uh
= udp_hdr(skb
);
724 int offset
= skb_transport_offset(skb
);
725 int len
= skb
->len
- offset
;
729 if (!skb_has_frag_list(skb
)) {
731 * Only one fragment on the socket.
733 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
734 skb
->csum_offset
= offsetof(struct udphdr
, check
);
735 uh
->check
= ~csum_tcpudp_magic(src
, dst
, len
,
738 struct sk_buff
*frags
;
741 * HW-checksum won't work as there are two or more
742 * fragments on the socket so that all csums of sk_buffs
745 skb_walk_frags(skb
, frags
) {
746 csum
= csum_add(csum
, frags
->csum
);
750 csum
= skb_checksum(skb
, offset
, hlen
, csum
);
751 skb
->ip_summed
= CHECKSUM_NONE
;
753 uh
->check
= csum_tcpudp_magic(src
, dst
, len
, IPPROTO_UDP
, csum
);
755 uh
->check
= CSUM_MANGLED_0
;
758 EXPORT_SYMBOL_GPL(udp4_hwcsum
);
760 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
761 * for the simple case like when setting the checksum for a UDP tunnel.
763 void udp_set_csum(bool nocheck
, struct sk_buff
*skb
,
764 __be32 saddr
, __be32 daddr
, int len
)
766 struct udphdr
*uh
= udp_hdr(skb
);
770 } else if (skb_is_gso(skb
)) {
771 uh
->check
= ~udp_v4_check(len
, saddr
, daddr
, 0);
772 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
774 uh
->check
= udp_v4_check(len
, saddr
, daddr
, lco_csum(skb
));
776 uh
->check
= CSUM_MANGLED_0
;
778 skb
->ip_summed
= CHECKSUM_PARTIAL
;
779 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
780 skb
->csum_offset
= offsetof(struct udphdr
, check
);
781 uh
->check
= ~udp_v4_check(len
, saddr
, daddr
, 0);
784 EXPORT_SYMBOL(udp_set_csum
);
786 static int udp_send_skb(struct sk_buff
*skb
, struct flowi4
*fl4
)
788 struct sock
*sk
= skb
->sk
;
789 struct inet_sock
*inet
= inet_sk(sk
);
792 int is_udplite
= IS_UDPLITE(sk
);
793 int offset
= skb_transport_offset(skb
);
794 int len
= skb
->len
- offset
;
798 * Create a UDP header
801 uh
->source
= inet
->inet_sport
;
802 uh
->dest
= fl4
->fl4_dport
;
803 uh
->len
= htons(len
);
806 if (is_udplite
) /* UDP-Lite */
807 csum
= udplite_csum(skb
);
809 else if (sk
->sk_no_check_tx
) { /* UDP csum off */
811 skb
->ip_summed
= CHECKSUM_NONE
;
814 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) { /* UDP hardware csum */
816 udp4_hwcsum(skb
, fl4
->saddr
, fl4
->daddr
);
820 csum
= udp_csum(skb
);
822 /* add protocol-dependent pseudo-header */
823 uh
->check
= csum_tcpudp_magic(fl4
->saddr
, fl4
->daddr
, len
,
824 sk
->sk_protocol
, csum
);
826 uh
->check
= CSUM_MANGLED_0
;
829 err
= ip_send_skb(sock_net(sk
), skb
);
831 if (err
== -ENOBUFS
&& !inet
->recverr
) {
832 UDP_INC_STATS(sock_net(sk
),
833 UDP_MIB_SNDBUFERRORS
, is_udplite
);
837 UDP_INC_STATS(sock_net(sk
),
838 UDP_MIB_OUTDATAGRAMS
, is_udplite
);
843 * Push out all pending data as one UDP datagram. Socket is locked.
845 int udp_push_pending_frames(struct sock
*sk
)
847 struct udp_sock
*up
= udp_sk(sk
);
848 struct inet_sock
*inet
= inet_sk(sk
);
849 struct flowi4
*fl4
= &inet
->cork
.fl
.u
.ip4
;
853 skb
= ip_finish_skb(sk
, fl4
);
857 err
= udp_send_skb(skb
, fl4
);
864 EXPORT_SYMBOL(udp_push_pending_frames
);
866 int udp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
)
868 struct inet_sock
*inet
= inet_sk(sk
);
869 struct udp_sock
*up
= udp_sk(sk
);
870 struct flowi4 fl4_stack
;
873 struct ipcm_cookie ipc
;
874 struct rtable
*rt
= NULL
;
877 __be32 daddr
, faddr
, saddr
;
880 int err
, is_udplite
= IS_UDPLITE(sk
);
881 int corkreq
= up
->corkflag
|| msg
->msg_flags
&MSG_MORE
;
882 int (*getfrag
)(void *, char *, int, int, int, struct sk_buff
*);
884 struct ip_options_data opt_copy
;
893 if (msg
->msg_flags
& MSG_OOB
) /* Mirror BSD error message compatibility */
901 getfrag
= is_udplite
? udplite_getfrag
: ip_generic_getfrag
;
903 fl4
= &inet
->cork
.fl
.u
.ip4
;
906 * There are pending frames.
907 * The socket lock must be held while it's corked.
910 if (likely(up
->pending
)) {
911 if (unlikely(up
->pending
!= AF_INET
)) {
919 ulen
+= sizeof(struct udphdr
);
922 * Get and verify the address.
925 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
926 if (msg
->msg_namelen
< sizeof(*usin
))
928 if (usin
->sin_family
!= AF_INET
) {
929 if (usin
->sin_family
!= AF_UNSPEC
)
930 return -EAFNOSUPPORT
;
933 daddr
= usin
->sin_addr
.s_addr
;
934 dport
= usin
->sin_port
;
938 if (sk
->sk_state
!= TCP_ESTABLISHED
)
939 return -EDESTADDRREQ
;
940 daddr
= inet
->inet_daddr
;
941 dport
= inet
->inet_dport
;
942 /* Open fast path for connected socket.
943 Route will not be used, if at least one option is set.
948 ipc
.sockc
.tsflags
= sk
->sk_tsflags
;
949 ipc
.addr
= inet
->inet_saddr
;
950 ipc
.oif
= sk
->sk_bound_dev_if
;
952 if (msg
->msg_controllen
) {
953 err
= ip_cmsg_send(sk
, msg
, &ipc
, sk
->sk_family
== AF_INET6
);
963 struct ip_options_rcu
*inet_opt
;
966 inet_opt
= rcu_dereference(inet
->inet_opt
);
968 memcpy(&opt_copy
, inet_opt
,
969 sizeof(*inet_opt
) + inet_opt
->opt
.optlen
);
970 ipc
.opt
= &opt_copy
.opt
;
976 ipc
.addr
= faddr
= daddr
;
978 sock_tx_timestamp(sk
, ipc
.sockc
.tsflags
, &ipc
.tx_flags
);
980 if (ipc
.opt
&& ipc
.opt
->opt
.srr
) {
985 faddr
= ipc
.opt
->opt
.faddr
;
988 tos
= get_rttos(&ipc
, inet
);
989 if (sock_flag(sk
, SOCK_LOCALROUTE
) ||
990 (msg
->msg_flags
& MSG_DONTROUTE
) ||
991 (ipc
.opt
&& ipc
.opt
->opt
.is_strictroute
)) {
996 if (ipv4_is_multicast(daddr
)) {
998 ipc
.oif
= inet
->mc_index
;
1000 saddr
= inet
->mc_addr
;
1002 } else if (!ipc
.oif
)
1003 ipc
.oif
= inet
->uc_index
;
1006 rt
= (struct rtable
*)sk_dst_check(sk
, 0);
1009 struct net
*net
= sock_net(sk
);
1010 __u8 flow_flags
= inet_sk_flowi_flags(sk
);
1014 flowi4_init_output(fl4
, ipc
.oif
, sk
->sk_mark
, tos
,
1015 RT_SCOPE_UNIVERSE
, sk
->sk_protocol
,
1017 faddr
, saddr
, dport
, inet
->inet_sport
,
1020 security_sk_classify_flow(sk
, flowi4_to_flowi(fl4
));
1021 rt
= ip_route_output_flow(net
, fl4
, sk
);
1025 if (err
== -ENETUNREACH
)
1026 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
1031 if ((rt
->rt_flags
& RTCF_BROADCAST
) &&
1032 !sock_flag(sk
, SOCK_BROADCAST
))
1035 sk_dst_set(sk
, dst_clone(&rt
->dst
));
1038 if (msg
->msg_flags
&MSG_CONFIRM
)
1044 daddr
= ipc
.addr
= fl4
->daddr
;
1046 /* Lockless fast path for the non-corking case. */
1048 skb
= ip_make_skb(sk
, fl4
, getfrag
, msg
, ulen
,
1049 sizeof(struct udphdr
), &ipc
, &rt
,
1052 if (!IS_ERR_OR_NULL(skb
))
1053 err
= udp_send_skb(skb
, fl4
);
1058 if (unlikely(up
->pending
)) {
1059 /* The socket is already corked while preparing it. */
1060 /* ... which is an evident application bug. --ANK */
1063 net_dbg_ratelimited("socket already corked\n");
1068 * Now cork the socket to pend data.
1070 fl4
= &inet
->cork
.fl
.u
.ip4
;
1073 fl4
->fl4_dport
= dport
;
1074 fl4
->fl4_sport
= inet
->inet_sport
;
1075 up
->pending
= AF_INET
;
1079 err
= ip_append_data(sk
, fl4
, getfrag
, msg
, ulen
,
1080 sizeof(struct udphdr
), &ipc
, &rt
,
1081 corkreq
? msg
->msg_flags
|MSG_MORE
: msg
->msg_flags
);
1083 udp_flush_pending_frames(sk
);
1085 err
= udp_push_pending_frames(sk
);
1086 else if (unlikely(skb_queue_empty(&sk
->sk_write_queue
)))
1098 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1099 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1100 * we don't have a good statistic (IpOutDiscards but it can be too many
1101 * things). We could add another new stat but at least for now that
1102 * seems like overkill.
1104 if (err
== -ENOBUFS
|| test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1105 UDP_INC_STATS(sock_net(sk
),
1106 UDP_MIB_SNDBUFERRORS
, is_udplite
);
1111 if (msg
->msg_flags
& MSG_PROBE
)
1112 dst_confirm_neigh(&rt
->dst
, &fl4
->daddr
);
1113 if (!(msg
->msg_flags
&MSG_PROBE
) || len
)
1114 goto back_from_confirm
;
1118 EXPORT_SYMBOL(udp_sendmsg
);
1120 int udp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1121 size_t size
, int flags
)
1123 struct inet_sock
*inet
= inet_sk(sk
);
1124 struct udp_sock
*up
= udp_sk(sk
);
1127 if (flags
& MSG_SENDPAGE_NOTLAST
)
1131 struct msghdr msg
= { .msg_flags
= flags
|MSG_MORE
};
1133 /* Call udp_sendmsg to specify destination address which
1134 * sendpage interface can't pass.
1135 * This will succeed only when the socket is connected.
1137 ret
= udp_sendmsg(sk
, &msg
, 0);
1144 if (unlikely(!up
->pending
)) {
1147 net_dbg_ratelimited("cork failed\n");
1151 ret
= ip_append_page(sk
, &inet
->cork
.fl
.u
.ip4
,
1152 page
, offset
, size
, flags
);
1153 if (ret
== -EOPNOTSUPP
) {
1155 return sock_no_sendpage(sk
->sk_socket
, page
, offset
,
1159 udp_flush_pending_frames(sk
);
1164 if (!(up
->corkflag
|| (flags
&MSG_MORE
)))
1165 ret
= udp_push_pending_frames(sk
);
1173 #define UDP_SKB_IS_STATELESS 0x80000000
1175 static void udp_set_dev_scratch(struct sk_buff
*skb
)
1177 struct udp_dev_scratch
*scratch
= udp_skb_scratch(skb
);
1179 BUILD_BUG_ON(sizeof(struct udp_dev_scratch
) > sizeof(long));
1180 scratch
->_tsize_state
= skb
->truesize
;
1181 #if BITS_PER_LONG == 64
1182 scratch
->len
= skb
->len
;
1183 scratch
->csum_unnecessary
= !!skb_csum_unnecessary(skb
);
1184 scratch
->is_linear
= !skb_is_nonlinear(skb
);
1186 /* all head states execept sp (dst, sk, nf) are always cleared by
1187 * udp_rcv() and we need to preserve secpath, if present, to eventually
1188 * process IP_CMSG_PASSSEC at recvmsg() time
1190 if (likely(!skb_sec_path(skb
)))
1191 scratch
->_tsize_state
|= UDP_SKB_IS_STATELESS
;
1194 static int udp_skb_truesize(struct sk_buff
*skb
)
1196 return udp_skb_scratch(skb
)->_tsize_state
& ~UDP_SKB_IS_STATELESS
;
1199 static bool udp_skb_has_head_state(struct sk_buff
*skb
)
1201 return !(udp_skb_scratch(skb
)->_tsize_state
& UDP_SKB_IS_STATELESS
);
1204 /* fully reclaim rmem/fwd memory allocated for skb */
1205 static void udp_rmem_release(struct sock
*sk
, int size
, int partial
,
1206 bool rx_queue_lock_held
)
1208 struct udp_sock
*up
= udp_sk(sk
);
1209 struct sk_buff_head
*sk_queue
;
1212 if (likely(partial
)) {
1213 up
->forward_deficit
+= size
;
1214 size
= up
->forward_deficit
;
1215 if (size
< (sk
->sk_rcvbuf
>> 2) &&
1216 !skb_queue_empty(&up
->reader_queue
))
1219 size
+= up
->forward_deficit
;
1221 up
->forward_deficit
= 0;
1223 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1224 * if the called don't held it already
1226 sk_queue
= &sk
->sk_receive_queue
;
1227 if (!rx_queue_lock_held
)
1228 spin_lock(&sk_queue
->lock
);
1231 sk
->sk_forward_alloc
+= size
;
1232 amt
= (sk
->sk_forward_alloc
- partial
) & ~(SK_MEM_QUANTUM
- 1);
1233 sk
->sk_forward_alloc
-= amt
;
1236 __sk_mem_reduce_allocated(sk
, amt
>> SK_MEM_QUANTUM_SHIFT
);
1238 atomic_sub(size
, &sk
->sk_rmem_alloc
);
1240 /* this can save us from acquiring the rx queue lock on next receive */
1241 skb_queue_splice_tail_init(sk_queue
, &up
->reader_queue
);
1243 if (!rx_queue_lock_held
)
1244 spin_unlock(&sk_queue
->lock
);
1247 /* Note: called with reader_queue.lock held.
1248 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1249 * This avoids a cache line miss while receive_queue lock is held.
1250 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1252 void udp_skb_destructor(struct sock
*sk
, struct sk_buff
*skb
)
1254 prefetch(&skb
->data
);
1255 udp_rmem_release(sk
, udp_skb_truesize(skb
), 1, false);
1257 EXPORT_SYMBOL(udp_skb_destructor
);
1259 /* as above, but the caller held the rx queue lock, too */
1260 static void udp_skb_dtor_locked(struct sock
*sk
, struct sk_buff
*skb
)
1262 prefetch(&skb
->data
);
1263 udp_rmem_release(sk
, udp_skb_truesize(skb
), 1, true);
1266 /* Idea of busylocks is to let producers grab an extra spinlock
1267 * to relieve pressure on the receive_queue spinlock shared by consumer.
1268 * Under flood, this means that only one producer can be in line
1269 * trying to acquire the receive_queue spinlock.
1270 * These busylock can be allocated on a per cpu manner, instead of a
1271 * per socket one (that would consume a cache line per socket)
1273 static int udp_busylocks_log __read_mostly
;
1274 static spinlock_t
*udp_busylocks __read_mostly
;
1276 static spinlock_t
*busylock_acquire(void *ptr
)
1280 busy
= udp_busylocks
+ hash_ptr(ptr
, udp_busylocks_log
);
1285 static void busylock_release(spinlock_t
*busy
)
1291 int __udp_enqueue_schedule_skb(struct sock
*sk
, struct sk_buff
*skb
)
1293 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
1294 int rmem
, delta
, amt
, err
= -ENOMEM
;
1295 spinlock_t
*busy
= NULL
;
1298 /* try to avoid the costly atomic add/sub pair when the receive
1299 * queue is full; always allow at least a packet
1301 rmem
= atomic_read(&sk
->sk_rmem_alloc
);
1302 if (rmem
> sk
->sk_rcvbuf
)
1305 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1306 * having linear skbs :
1307 * - Reduce memory overhead and thus increase receive queue capacity
1308 * - Less cache line misses at copyout() time
1309 * - Less work at consume_skb() (less alien page frag freeing)
1311 if (rmem
> (sk
->sk_rcvbuf
>> 1)) {
1314 busy
= busylock_acquire(sk
);
1316 size
= skb
->truesize
;
1317 udp_set_dev_scratch(skb
);
1319 /* we drop only if the receive buf is full and the receive
1320 * queue contains some other skb
1322 rmem
= atomic_add_return(size
, &sk
->sk_rmem_alloc
);
1323 if (rmem
> (size
+ sk
->sk_rcvbuf
))
1326 spin_lock(&list
->lock
);
1327 if (size
>= sk
->sk_forward_alloc
) {
1328 amt
= sk_mem_pages(size
);
1329 delta
= amt
<< SK_MEM_QUANTUM_SHIFT
;
1330 if (!__sk_mem_raise_allocated(sk
, delta
, amt
, SK_MEM_RECV
)) {
1332 spin_unlock(&list
->lock
);
1336 sk
->sk_forward_alloc
+= delta
;
1339 sk
->sk_forward_alloc
-= size
;
1341 /* no need to setup a destructor, we will explicitly release the
1342 * forward allocated memory on dequeue
1344 sock_skb_set_dropcount(sk
, skb
);
1346 __skb_queue_tail(list
, skb
);
1347 spin_unlock(&list
->lock
);
1349 if (!sock_flag(sk
, SOCK_DEAD
))
1350 sk
->sk_data_ready(sk
);
1352 busylock_release(busy
);
1356 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
1359 atomic_inc(&sk
->sk_drops
);
1360 busylock_release(busy
);
1363 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb
);
1365 void udp_destruct_sock(struct sock
*sk
)
1367 /* reclaim completely the forward allocated memory */
1368 struct udp_sock
*up
= udp_sk(sk
);
1369 unsigned int total
= 0;
1370 struct sk_buff
*skb
;
1372 skb_queue_splice_tail_init(&sk
->sk_receive_queue
, &up
->reader_queue
);
1373 while ((skb
= __skb_dequeue(&up
->reader_queue
)) != NULL
) {
1374 total
+= skb
->truesize
;
1377 udp_rmem_release(sk
, total
, 0, true);
1379 inet_sock_destruct(sk
);
1381 EXPORT_SYMBOL_GPL(udp_destruct_sock
);
1383 int udp_init_sock(struct sock
*sk
)
1385 skb_queue_head_init(&udp_sk(sk
)->reader_queue
);
1386 sk
->sk_destruct
= udp_destruct_sock
;
1389 EXPORT_SYMBOL_GPL(udp_init_sock
);
1391 void skb_consume_udp(struct sock
*sk
, struct sk_buff
*skb
, int len
)
1393 if (unlikely(READ_ONCE(sk
->sk_peek_off
) >= 0)) {
1394 bool slow
= lock_sock_fast(sk
);
1396 sk_peek_offset_bwd(sk
, len
);
1397 unlock_sock_fast(sk
, slow
);
1400 if (!skb_unref(skb
))
1403 /* In the more common cases we cleared the head states previously,
1404 * see __udp_queue_rcv_skb().
1406 if (unlikely(udp_skb_has_head_state(skb
)))
1407 skb_release_head_state(skb
);
1408 __consume_stateless_skb(skb
);
1410 EXPORT_SYMBOL_GPL(skb_consume_udp
);
1412 static struct sk_buff
*__first_packet_length(struct sock
*sk
,
1413 struct sk_buff_head
*rcvq
,
1416 struct sk_buff
*skb
;
1418 while ((skb
= skb_peek(rcvq
)) != NULL
) {
1419 if (udp_lib_checksum_complete(skb
)) {
1420 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_CSUMERRORS
,
1422 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
,
1424 atomic_inc(&sk
->sk_drops
);
1425 __skb_unlink(skb
, rcvq
);
1426 *total
+= skb
->truesize
;
1429 /* the csum related bits could be changed, refresh
1432 udp_set_dev_scratch(skb
);
1440 * first_packet_length - return length of first packet in receive queue
1443 * Drops all bad checksum frames, until a valid one is found.
1444 * Returns the length of found skb, or -1 if none is found.
1446 static int first_packet_length(struct sock
*sk
)
1448 struct sk_buff_head
*rcvq
= &udp_sk(sk
)->reader_queue
;
1449 struct sk_buff_head
*sk_queue
= &sk
->sk_receive_queue
;
1450 struct sk_buff
*skb
;
1454 spin_lock_bh(&rcvq
->lock
);
1455 skb
= __first_packet_length(sk
, rcvq
, &total
);
1456 if (!skb
&& !skb_queue_empty(sk_queue
)) {
1457 spin_lock(&sk_queue
->lock
);
1458 skb_queue_splice_tail_init(sk_queue
, rcvq
);
1459 spin_unlock(&sk_queue
->lock
);
1461 skb
= __first_packet_length(sk
, rcvq
, &total
);
1463 res
= skb
? skb
->len
: -1;
1465 udp_rmem_release(sk
, total
, 1, false);
1466 spin_unlock_bh(&rcvq
->lock
);
1471 * IOCTL requests applicable to the UDP protocol
1474 int udp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
1479 int amount
= sk_wmem_alloc_get(sk
);
1481 return put_user(amount
, (int __user
*)arg
);
1486 int amount
= max_t(int, 0, first_packet_length(sk
));
1488 return put_user(amount
, (int __user
*)arg
);
1492 return -ENOIOCTLCMD
;
1497 EXPORT_SYMBOL(udp_ioctl
);
1499 struct sk_buff
*__skb_recv_udp(struct sock
*sk
, unsigned int flags
,
1500 int noblock
, int *peeked
, int *off
, int *err
)
1502 struct sk_buff_head
*sk_queue
= &sk
->sk_receive_queue
;
1503 struct sk_buff_head
*queue
;
1504 struct sk_buff
*last
;
1508 queue
= &udp_sk(sk
)->reader_queue
;
1509 flags
|= noblock
? MSG_DONTWAIT
: 0;
1510 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1512 struct sk_buff
*skb
;
1514 error
= sock_error(sk
);
1521 spin_lock_bh(&queue
->lock
);
1522 skb
= __skb_try_recv_from_queue(sk
, queue
, flags
,
1527 spin_unlock_bh(&queue
->lock
);
1531 if (skb_queue_empty(sk_queue
)) {
1532 spin_unlock_bh(&queue
->lock
);
1536 /* refill the reader queue and walk it again
1537 * keep both queues locked to avoid re-acquiring
1538 * the sk_receive_queue lock if fwd memory scheduling
1541 spin_lock(&sk_queue
->lock
);
1542 skb_queue_splice_tail_init(sk_queue
, queue
);
1544 skb
= __skb_try_recv_from_queue(sk
, queue
, flags
,
1545 udp_skb_dtor_locked
,
1548 spin_unlock(&sk_queue
->lock
);
1549 spin_unlock_bh(&queue
->lock
);
1554 if (!sk_can_busy_loop(sk
))
1557 sk_busy_loop(sk
, flags
& MSG_DONTWAIT
);
1558 } while (!skb_queue_empty(sk_queue
));
1560 /* sk_queue is empty, reader_queue may contain peeked packets */
1562 !__skb_wait_for_more_packets(sk
, &error
, &timeo
,
1563 (struct sk_buff
*)sk_queue
));
1568 EXPORT_SYMBOL(__skb_recv_udp
);
1571 * This should be easy, if there is something there we
1572 * return it, otherwise we block.
1575 int udp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int noblock
,
1576 int flags
, int *addr_len
)
1578 struct inet_sock
*inet
= inet_sk(sk
);
1579 DECLARE_SOCKADDR(struct sockaddr_in
*, sin
, msg
->msg_name
);
1580 struct sk_buff
*skb
;
1581 unsigned int ulen
, copied
;
1582 int peeked
, peeking
, off
;
1584 int is_udplite
= IS_UDPLITE(sk
);
1585 bool checksum_valid
= false;
1587 if (flags
& MSG_ERRQUEUE
)
1588 return ip_recv_error(sk
, msg
, len
, addr_len
);
1591 peeking
= flags
& MSG_PEEK
;
1592 off
= sk_peek_offset(sk
, flags
);
1593 skb
= __skb_recv_udp(sk
, flags
, noblock
, &peeked
, &off
, &err
);
1597 ulen
= udp_skb_len(skb
);
1599 if (copied
> ulen
- off
)
1600 copied
= ulen
- off
;
1601 else if (copied
< ulen
)
1602 msg
->msg_flags
|= MSG_TRUNC
;
1605 * If checksum is needed at all, try to do it while copying the
1606 * data. If the data is truncated, or if we only want a partial
1607 * coverage checksum (UDP-Lite), do it before the copy.
1610 if (copied
< ulen
|| peeking
||
1611 (is_udplite
&& UDP_SKB_CB(skb
)->partial_cov
)) {
1612 checksum_valid
= udp_skb_csum_unnecessary(skb
) ||
1613 !__udp_lib_checksum_complete(skb
);
1614 if (!checksum_valid
)
1618 if (checksum_valid
|| udp_skb_csum_unnecessary(skb
)) {
1619 if (udp_skb_is_linear(skb
))
1620 err
= copy_linear_skb(skb
, copied
, off
, &msg
->msg_iter
);
1622 err
= skb_copy_datagram_msg(skb
, off
, msg
, copied
);
1624 err
= skb_copy_and_csum_datagram_msg(skb
, off
, msg
);
1630 if (unlikely(err
)) {
1632 atomic_inc(&sk
->sk_drops
);
1633 UDP_INC_STATS(sock_net(sk
),
1634 UDP_MIB_INERRORS
, is_udplite
);
1641 UDP_INC_STATS(sock_net(sk
),
1642 UDP_MIB_INDATAGRAMS
, is_udplite
);
1644 sock_recv_ts_and_drops(msg
, sk
, skb
);
1646 /* Copy the address. */
1648 sin
->sin_family
= AF_INET
;
1649 sin
->sin_port
= udp_hdr(skb
)->source
;
1650 sin
->sin_addr
.s_addr
= ip_hdr(skb
)->saddr
;
1651 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
1652 *addr_len
= sizeof(*sin
);
1654 if (inet
->cmsg_flags
)
1655 ip_cmsg_recv_offset(msg
, sk
, skb
, sizeof(struct udphdr
), off
);
1658 if (flags
& MSG_TRUNC
)
1661 skb_consume_udp(sk
, skb
, peeking
? -err
: err
);
1665 if (!__sk_queue_drop_skb(sk
, &udp_sk(sk
)->reader_queue
, skb
, flags
,
1666 udp_skb_destructor
)) {
1667 UDP_INC_STATS(sock_net(sk
), UDP_MIB_CSUMERRORS
, is_udplite
);
1668 UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1672 /* starting over for a new packet, but check if we need to yield */
1674 msg
->msg_flags
&= ~MSG_TRUNC
;
1678 int __udp_disconnect(struct sock
*sk
, int flags
)
1680 struct inet_sock
*inet
= inet_sk(sk
);
1682 * 1003.1g - break association.
1685 sk
->sk_state
= TCP_CLOSE
;
1686 inet
->inet_daddr
= 0;
1687 inet
->inet_dport
= 0;
1688 sock_rps_reset_rxhash(sk
);
1689 sk
->sk_bound_dev_if
= 0;
1690 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
1691 inet_reset_saddr(sk
);
1693 if (!(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
)) {
1694 sk
->sk_prot
->unhash(sk
);
1695 inet
->inet_sport
= 0;
1700 EXPORT_SYMBOL(__udp_disconnect
);
1702 int udp_disconnect(struct sock
*sk
, int flags
)
1705 __udp_disconnect(sk
, flags
);
1709 EXPORT_SYMBOL(udp_disconnect
);
1711 void udp_lib_unhash(struct sock
*sk
)
1713 if (sk_hashed(sk
)) {
1714 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1715 struct udp_hslot
*hslot
, *hslot2
;
1717 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1718 udp_sk(sk
)->udp_port_hash
);
1719 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1721 spin_lock_bh(&hslot
->lock
);
1722 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1723 reuseport_detach_sock(sk
);
1724 if (sk_del_node_init_rcu(sk
)) {
1726 inet_sk(sk
)->inet_num
= 0;
1727 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, -1);
1729 spin_lock(&hslot2
->lock
);
1730 hlist_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1732 spin_unlock(&hslot2
->lock
);
1734 spin_unlock_bh(&hslot
->lock
);
1737 EXPORT_SYMBOL(udp_lib_unhash
);
1740 * inet_rcv_saddr was changed, we must rehash secondary hash
1742 void udp_lib_rehash(struct sock
*sk
, u16 newhash
)
1744 if (sk_hashed(sk
)) {
1745 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1746 struct udp_hslot
*hslot
, *hslot2
, *nhslot2
;
1748 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1749 nhslot2
= udp_hashslot2(udptable
, newhash
);
1750 udp_sk(sk
)->udp_portaddr_hash
= newhash
;
1752 if (hslot2
!= nhslot2
||
1753 rcu_access_pointer(sk
->sk_reuseport_cb
)) {
1754 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1755 udp_sk(sk
)->udp_port_hash
);
1756 /* we must lock primary chain too */
1757 spin_lock_bh(&hslot
->lock
);
1758 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1759 reuseport_detach_sock(sk
);
1761 if (hslot2
!= nhslot2
) {
1762 spin_lock(&hslot2
->lock
);
1763 hlist_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1765 spin_unlock(&hslot2
->lock
);
1767 spin_lock(&nhslot2
->lock
);
1768 hlist_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
1771 spin_unlock(&nhslot2
->lock
);
1774 spin_unlock_bh(&hslot
->lock
);
1778 EXPORT_SYMBOL(udp_lib_rehash
);
1780 static void udp_v4_rehash(struct sock
*sk
)
1782 u16 new_hash
= udp4_portaddr_hash(sock_net(sk
),
1783 inet_sk(sk
)->inet_rcv_saddr
,
1784 inet_sk(sk
)->inet_num
);
1785 udp_lib_rehash(sk
, new_hash
);
1788 static int __udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1792 if (inet_sk(sk
)->inet_daddr
) {
1793 sock_rps_save_rxhash(sk
, skb
);
1794 sk_mark_napi_id(sk
, skb
);
1795 sk_incoming_cpu_update(sk
);
1797 sk_mark_napi_id_once(sk
, skb
);
1800 rc
= __udp_enqueue_schedule_skb(sk
, skb
);
1802 int is_udplite
= IS_UDPLITE(sk
);
1804 /* Note that an ENOMEM error is charged twice */
1806 UDP_INC_STATS(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1808 UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1810 trace_udp_fail_queue_rcv_skb(rc
, sk
);
1817 static struct static_key udp_encap_needed __read_mostly
;
1818 void udp_encap_enable(void)
1820 static_key_enable(&udp_encap_needed
);
1822 EXPORT_SYMBOL(udp_encap_enable
);
1827 * >0: "udp encap" protocol resubmission
1829 * Note that in the success and error cases, the skb is assumed to
1830 * have either been requeued or freed.
1832 static int udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1834 struct udp_sock
*up
= udp_sk(sk
);
1835 int is_udplite
= IS_UDPLITE(sk
);
1838 * Charge it to the socket, dropping if the queue is full.
1840 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1844 if (static_key_false(&udp_encap_needed
) && up
->encap_type
) {
1845 int (*encap_rcv
)(struct sock
*sk
, struct sk_buff
*skb
);
1848 * This is an encapsulation socket so pass the skb to
1849 * the socket's udp_encap_rcv() hook. Otherwise, just
1850 * fall through and pass this up the UDP socket.
1851 * up->encap_rcv() returns the following value:
1852 * =0 if skb was successfully passed to the encap
1853 * handler or was discarded by it.
1854 * >0 if skb should be passed on to UDP.
1855 * <0 if skb should be resubmitted as proto -N
1858 /* if we're overly short, let UDP handle it */
1859 encap_rcv
= ACCESS_ONCE(up
->encap_rcv
);
1863 /* Verify checksum before giving to encap */
1864 if (udp_lib_checksum_complete(skb
))
1867 ret
= encap_rcv(sk
, skb
);
1869 __UDP_INC_STATS(sock_net(sk
),
1870 UDP_MIB_INDATAGRAMS
,
1876 /* FALLTHROUGH -- it's a UDP Packet */
1880 * UDP-Lite specific tests, ignored on UDP sockets
1882 if ((is_udplite
& UDPLITE_RECV_CC
) && UDP_SKB_CB(skb
)->partial_cov
) {
1885 * MIB statistics other than incrementing the error count are
1886 * disabled for the following two types of errors: these depend
1887 * on the application settings, not on the functioning of the
1888 * protocol stack as such.
1890 * RFC 3828 here recommends (sec 3.3): "There should also be a
1891 * way ... to ... at least let the receiving application block
1892 * delivery of packets with coverage values less than a value
1893 * provided by the application."
1895 if (up
->pcrlen
== 0) { /* full coverage was set */
1896 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1897 UDP_SKB_CB(skb
)->cscov
, skb
->len
);
1900 /* The next case involves violating the min. coverage requested
1901 * by the receiver. This is subtle: if receiver wants x and x is
1902 * greater than the buffersize/MTU then receiver will complain
1903 * that it wants x while sender emits packets of smaller size y.
1904 * Therefore the above ...()->partial_cov statement is essential.
1906 if (UDP_SKB_CB(skb
)->cscov
< up
->pcrlen
) {
1907 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1908 UDP_SKB_CB(skb
)->cscov
, up
->pcrlen
);
1913 prefetch(&sk
->sk_rmem_alloc
);
1914 if (rcu_access_pointer(sk
->sk_filter
) &&
1915 udp_lib_checksum_complete(skb
))
1918 if (sk_filter_trim_cap(sk
, skb
, sizeof(struct udphdr
)))
1921 udp_csum_pull_header(skb
);
1923 ipv4_pktinfo_prepare(sk
, skb
);
1924 return __udp_queue_rcv_skb(sk
, skb
);
1927 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_CSUMERRORS
, is_udplite
);
1929 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1930 atomic_inc(&sk
->sk_drops
);
1935 /* For TCP sockets, sk_rx_dst is protected by socket lock
1936 * For UDP, we use xchg() to guard against concurrent changes.
1938 bool udp_sk_rx_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
1940 struct dst_entry
*old
;
1942 if (dst_hold_safe(dst
)) {
1943 old
= xchg(&sk
->sk_rx_dst
, dst
);
1949 EXPORT_SYMBOL(udp_sk_rx_dst_set
);
1952 * Multicasts and broadcasts go to each listener.
1954 * Note: called only from the BH handler context.
1956 static int __udp4_lib_mcast_deliver(struct net
*net
, struct sk_buff
*skb
,
1958 __be32 saddr
, __be32 daddr
,
1959 struct udp_table
*udptable
,
1962 struct sock
*sk
, *first
= NULL
;
1963 unsigned short hnum
= ntohs(uh
->dest
);
1964 struct udp_hslot
*hslot
= udp_hashslot(udptable
, net
, hnum
);
1965 unsigned int hash2
= 0, hash2_any
= 0, use_hash2
= (hslot
->count
> 10);
1966 unsigned int offset
= offsetof(typeof(*sk
), sk_node
);
1967 int dif
= skb
->dev
->ifindex
;
1968 int sdif
= inet_sdif(skb
);
1969 struct hlist_node
*node
;
1970 struct sk_buff
*nskb
;
1973 hash2_any
= udp4_portaddr_hash(net
, htonl(INADDR_ANY
), hnum
) &
1975 hash2
= udp4_portaddr_hash(net
, daddr
, hnum
) & udptable
->mask
;
1977 hslot
= &udptable
->hash2
[hash2
];
1978 offset
= offsetof(typeof(*sk
), __sk_common
.skc_portaddr_node
);
1981 sk_for_each_entry_offset_rcu(sk
, node
, &hslot
->head
, offset
) {
1982 if (!__udp_is_mcast_sock(net
, sk
, uh
->dest
, daddr
,
1983 uh
->source
, saddr
, dif
, sdif
, hnum
))
1990 nskb
= skb_clone(skb
, GFP_ATOMIC
);
1992 if (unlikely(!nskb
)) {
1993 atomic_inc(&sk
->sk_drops
);
1994 __UDP_INC_STATS(net
, UDP_MIB_RCVBUFERRORS
,
1996 __UDP_INC_STATS(net
, UDP_MIB_INERRORS
,
2000 if (udp_queue_rcv_skb(sk
, nskb
) > 0)
2004 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2005 if (use_hash2
&& hash2
!= hash2_any
) {
2011 if (udp_queue_rcv_skb(first
, skb
) > 0)
2015 __UDP_INC_STATS(net
, UDP_MIB_IGNOREDMULTI
,
2016 proto
== IPPROTO_UDPLITE
);
2021 /* Initialize UDP checksum. If exited with zero value (success),
2022 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2023 * Otherwise, csum completion requires chacksumming packet body,
2024 * including udp header and folding it to skb->csum.
2026 static inline int udp4_csum_init(struct sk_buff
*skb
, struct udphdr
*uh
,
2031 UDP_SKB_CB(skb
)->partial_cov
= 0;
2032 UDP_SKB_CB(skb
)->cscov
= skb
->len
;
2034 if (proto
== IPPROTO_UDPLITE
) {
2035 err
= udplite_checksum_init(skb
, uh
);
2039 if (UDP_SKB_CB(skb
)->partial_cov
) {
2040 skb
->csum
= inet_compute_pseudo(skb
, proto
);
2045 /* Note, we are only interested in != 0 or == 0, thus the
2048 err
= (__force
int)skb_checksum_init_zero_check(skb
, proto
, uh
->check
,
2049 inet_compute_pseudo
);
2053 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& !skb
->csum_valid
) {
2054 /* If SW calculated the value, we know it's bad */
2055 if (skb
->csum_complete_sw
)
2058 /* HW says the value is bad. Let's validate that.
2059 * skb->csum is no longer the full packet checksum,
2060 * so don't treat it as such.
2062 skb_checksum_complete_unset(skb
);
2068 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2069 * return code conversion for ip layer consumption
2071 static int udp_unicast_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
,
2076 if (inet_get_convert_csum(sk
) && uh
->check
&& !IS_UDPLITE(sk
))
2077 skb_checksum_try_convert(skb
, IPPROTO_UDP
, uh
->check
,
2078 inet_compute_pseudo
);
2080 ret
= udp_queue_rcv_skb(sk
, skb
);
2082 /* a return value > 0 means to resubmit the input, but
2083 * it wants the return to be -protocol, or 0
2091 * All we need to do is get the socket, and then do a checksum.
2094 int __udp4_lib_rcv(struct sk_buff
*skb
, struct udp_table
*udptable
,
2099 unsigned short ulen
;
2100 struct rtable
*rt
= skb_rtable(skb
);
2101 __be32 saddr
, daddr
;
2102 struct net
*net
= dev_net(skb
->dev
);
2105 * Validate the packet.
2107 if (!pskb_may_pull(skb
, sizeof(struct udphdr
)))
2108 goto drop
; /* No space for header. */
2111 ulen
= ntohs(uh
->len
);
2112 saddr
= ip_hdr(skb
)->saddr
;
2113 daddr
= ip_hdr(skb
)->daddr
;
2115 if (ulen
> skb
->len
)
2118 if (proto
== IPPROTO_UDP
) {
2119 /* UDP validates ulen. */
2120 if (ulen
< sizeof(*uh
) || pskb_trim_rcsum(skb
, ulen
))
2125 if (udp4_csum_init(skb
, uh
, proto
))
2128 sk
= skb_steal_sock(skb
);
2130 struct dst_entry
*dst
= skb_dst(skb
);
2133 if (unlikely(sk
->sk_rx_dst
!= dst
))
2134 udp_sk_rx_dst_set(sk
, dst
);
2136 ret
= udp_unicast_rcv_skb(sk
, skb
, uh
);
2141 if (rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
))
2142 return __udp4_lib_mcast_deliver(net
, skb
, uh
,
2143 saddr
, daddr
, udptable
, proto
);
2145 sk
= __udp4_lib_lookup_skb(skb
, uh
->source
, uh
->dest
, udptable
);
2147 return udp_unicast_rcv_skb(sk
, skb
, uh
);
2149 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
2153 /* No socket. Drop packet silently, if checksum is wrong */
2154 if (udp_lib_checksum_complete(skb
))
2157 __UDP_INC_STATS(net
, UDP_MIB_NOPORTS
, proto
== IPPROTO_UDPLITE
);
2158 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_PORT_UNREACH
, 0);
2161 * Hmm. We got an UDP packet to a port to which we
2162 * don't wanna listen. Ignore it.
2168 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2169 proto
== IPPROTO_UDPLITE
? "Lite" : "",
2170 &saddr
, ntohs(uh
->source
),
2172 &daddr
, ntohs(uh
->dest
));
2177 * RFC1122: OK. Discards the bad packet silently (as far as
2178 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2180 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2181 proto
== IPPROTO_UDPLITE
? "Lite" : "",
2182 &saddr
, ntohs(uh
->source
), &daddr
, ntohs(uh
->dest
),
2184 __UDP_INC_STATS(net
, UDP_MIB_CSUMERRORS
, proto
== IPPROTO_UDPLITE
);
2186 __UDP_INC_STATS(net
, UDP_MIB_INERRORS
, proto
== IPPROTO_UDPLITE
);
2191 /* We can only early demux multicast if there is a single matching socket.
2192 * If more than one socket found returns NULL
2194 static struct sock
*__udp4_lib_mcast_demux_lookup(struct net
*net
,
2195 __be16 loc_port
, __be32 loc_addr
,
2196 __be16 rmt_port
, __be32 rmt_addr
,
2199 struct sock
*sk
, *result
;
2200 unsigned short hnum
= ntohs(loc_port
);
2201 unsigned int slot
= udp_hashfn(net
, hnum
, udp_table
.mask
);
2202 struct udp_hslot
*hslot
= &udp_table
.hash
[slot
];
2204 /* Do not bother scanning a too big list */
2205 if (hslot
->count
> 10)
2209 sk_for_each_rcu(sk
, &hslot
->head
) {
2210 if (__udp_is_mcast_sock(net
, sk
, loc_port
, loc_addr
,
2211 rmt_port
, rmt_addr
, dif
, sdif
, hnum
)) {
2221 /* For unicast we should only early demux connected sockets or we can
2222 * break forwarding setups. The chains here can be long so only check
2223 * if the first socket is an exact match and if not move on.
2225 static struct sock
*__udp4_lib_demux_lookup(struct net
*net
,
2226 __be16 loc_port
, __be32 loc_addr
,
2227 __be16 rmt_port
, __be32 rmt_addr
,
2230 unsigned short hnum
= ntohs(loc_port
);
2231 unsigned int hash2
= udp4_portaddr_hash(net
, loc_addr
, hnum
);
2232 unsigned int slot2
= hash2
& udp_table
.mask
;
2233 struct udp_hslot
*hslot2
= &udp_table
.hash2
[slot2
];
2234 INET_ADDR_COOKIE(acookie
, rmt_addr
, loc_addr
);
2235 const __portpair ports
= INET_COMBINED_PORTS(rmt_port
, hnum
);
2238 udp_portaddr_for_each_entry_rcu(sk
, &hslot2
->head
) {
2239 if (INET_MATCH(sk
, net
, acookie
, rmt_addr
,
2240 loc_addr
, ports
, dif
, sdif
))
2242 /* Only check first socket in chain */
2248 int udp_v4_early_demux(struct sk_buff
*skb
)
2250 struct net
*net
= dev_net(skb
->dev
);
2251 struct in_device
*in_dev
= NULL
;
2252 const struct iphdr
*iph
;
2253 const struct udphdr
*uh
;
2254 struct sock
*sk
= NULL
;
2255 struct dst_entry
*dst
;
2256 int dif
= skb
->dev
->ifindex
;
2257 int sdif
= inet_sdif(skb
);
2260 /* validate the packet */
2261 if (!pskb_may_pull(skb
, skb_transport_offset(skb
) + sizeof(struct udphdr
)))
2267 if (skb
->pkt_type
== PACKET_MULTICAST
) {
2268 in_dev
= __in_dev_get_rcu(skb
->dev
);
2273 ours
= ip_check_mc_rcu(in_dev
, iph
->daddr
, iph
->saddr
,
2278 sk
= __udp4_lib_mcast_demux_lookup(net
, uh
->dest
, iph
->daddr
,
2279 uh
->source
, iph
->saddr
,
2281 } else if (skb
->pkt_type
== PACKET_HOST
) {
2282 sk
= __udp4_lib_demux_lookup(net
, uh
->dest
, iph
->daddr
,
2283 uh
->source
, iph
->saddr
, dif
, sdif
);
2286 if (!sk
|| !refcount_inc_not_zero(&sk
->sk_refcnt
))
2290 skb
->destructor
= sock_efree
;
2291 dst
= READ_ONCE(sk
->sk_rx_dst
);
2294 dst
= dst_check(dst
, 0);
2298 /* set noref for now.
2299 * any place which wants to hold dst has to call
2302 skb_dst_set_noref(skb
, dst
);
2304 /* for unconnected multicast sockets we need to validate
2305 * the source on each packet
2307 if (!inet_sk(sk
)->inet_daddr
&& in_dev
)
2308 return ip_mc_validate_source(skb
, iph
->daddr
,
2309 iph
->saddr
, iph
->tos
,
2310 skb
->dev
, in_dev
, &itag
);
2315 int udp_rcv(struct sk_buff
*skb
)
2317 return __udp4_lib_rcv(skb
, &udp_table
, IPPROTO_UDP
);
2320 void udp_destroy_sock(struct sock
*sk
)
2322 struct udp_sock
*up
= udp_sk(sk
);
2323 bool slow
= lock_sock_fast(sk
);
2324 udp_flush_pending_frames(sk
);
2325 unlock_sock_fast(sk
, slow
);
2326 if (static_key_false(&udp_encap_needed
) && up
->encap_type
) {
2327 void (*encap_destroy
)(struct sock
*sk
);
2328 encap_destroy
= ACCESS_ONCE(up
->encap_destroy
);
2335 * Socket option code for UDP
2337 int udp_lib_setsockopt(struct sock
*sk
, int level
, int optname
,
2338 char __user
*optval
, unsigned int optlen
,
2339 int (*push_pending_frames
)(struct sock
*))
2341 struct udp_sock
*up
= udp_sk(sk
);
2344 int is_udplite
= IS_UDPLITE(sk
);
2346 if (optlen
< sizeof(int))
2349 if (get_user(val
, (int __user
*)optval
))
2352 valbool
= val
? 1 : 0;
2361 push_pending_frames(sk
);
2369 case UDP_ENCAP_ESPINUDP
:
2370 case UDP_ENCAP_ESPINUDP_NON_IKE
:
2371 up
->encap_rcv
= xfrm4_udp_encap_rcv
;
2373 case UDP_ENCAP_L2TPINUDP
:
2374 up
->encap_type
= val
;
2383 case UDP_NO_CHECK6_TX
:
2384 up
->no_check6_tx
= valbool
;
2387 case UDP_NO_CHECK6_RX
:
2388 up
->no_check6_rx
= valbool
;
2392 * UDP-Lite's partial checksum coverage (RFC 3828).
2394 /* The sender sets actual checksum coverage length via this option.
2395 * The case coverage > packet length is handled by send module. */
2396 case UDPLITE_SEND_CSCOV
:
2397 if (!is_udplite
) /* Disable the option on UDP sockets */
2398 return -ENOPROTOOPT
;
2399 if (val
!= 0 && val
< 8) /* Illegal coverage: use default (8) */
2401 else if (val
> USHRT_MAX
)
2404 up
->pcflag
|= UDPLITE_SEND_CC
;
2407 /* The receiver specifies a minimum checksum coverage value. To make
2408 * sense, this should be set to at least 8 (as done below). If zero is
2409 * used, this again means full checksum coverage. */
2410 case UDPLITE_RECV_CSCOV
:
2411 if (!is_udplite
) /* Disable the option on UDP sockets */
2412 return -ENOPROTOOPT
;
2413 if (val
!= 0 && val
< 8) /* Avoid silly minimal values. */
2415 else if (val
> USHRT_MAX
)
2418 up
->pcflag
|= UDPLITE_RECV_CC
;
2428 EXPORT_SYMBOL(udp_lib_setsockopt
);
2430 int udp_setsockopt(struct sock
*sk
, int level
, int optname
,
2431 char __user
*optval
, unsigned int optlen
)
2433 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2434 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
2435 udp_push_pending_frames
);
2436 return ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
2439 #ifdef CONFIG_COMPAT
2440 int compat_udp_setsockopt(struct sock
*sk
, int level
, int optname
,
2441 char __user
*optval
, unsigned int optlen
)
2443 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2444 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
2445 udp_push_pending_frames
);
2446 return compat_ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
2450 int udp_lib_getsockopt(struct sock
*sk
, int level
, int optname
,
2451 char __user
*optval
, int __user
*optlen
)
2453 struct udp_sock
*up
= udp_sk(sk
);
2456 if (get_user(len
, optlen
))
2459 len
= min_t(unsigned int, len
, sizeof(int));
2470 val
= up
->encap_type
;
2473 case UDP_NO_CHECK6_TX
:
2474 val
= up
->no_check6_tx
;
2477 case UDP_NO_CHECK6_RX
:
2478 val
= up
->no_check6_rx
;
2481 /* The following two cannot be changed on UDP sockets, the return is
2482 * always 0 (which corresponds to the full checksum coverage of UDP). */
2483 case UDPLITE_SEND_CSCOV
:
2487 case UDPLITE_RECV_CSCOV
:
2492 return -ENOPROTOOPT
;
2495 if (put_user(len
, optlen
))
2497 if (copy_to_user(optval
, &val
, len
))
2501 EXPORT_SYMBOL(udp_lib_getsockopt
);
2503 int udp_getsockopt(struct sock
*sk
, int level
, int optname
,
2504 char __user
*optval
, int __user
*optlen
)
2506 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2507 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
2508 return ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
2511 #ifdef CONFIG_COMPAT
2512 int compat_udp_getsockopt(struct sock
*sk
, int level
, int optname
,
2513 char __user
*optval
, int __user
*optlen
)
2515 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2516 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
2517 return compat_ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
2521 * udp_poll - wait for a UDP event.
2522 * @file - file struct
2524 * @wait - poll table
2526 * This is same as datagram poll, except for the special case of
2527 * blocking sockets. If application is using a blocking fd
2528 * and a packet with checksum error is in the queue;
2529 * then it could get return from select indicating data available
2530 * but then block when reading it. Add special case code
2531 * to work around these arguably broken applications.
2533 unsigned int udp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
2535 unsigned int mask
= datagram_poll(file
, sock
, wait
);
2536 struct sock
*sk
= sock
->sk
;
2538 if (!skb_queue_empty(&udp_sk(sk
)->reader_queue
))
2539 mask
|= POLLIN
| POLLRDNORM
;
2541 sock_rps_record_flow(sk
);
2543 /* Check for false positives due to checksum errors */
2544 if ((mask
& POLLRDNORM
) && !(file
->f_flags
& O_NONBLOCK
) &&
2545 !(sk
->sk_shutdown
& RCV_SHUTDOWN
) && first_packet_length(sk
) == -1)
2546 mask
&= ~(POLLIN
| POLLRDNORM
);
2551 EXPORT_SYMBOL(udp_poll
);
2553 int udp_abort(struct sock
*sk
, int err
)
2558 sk
->sk_error_report(sk
);
2559 __udp_disconnect(sk
, 0);
2565 EXPORT_SYMBOL_GPL(udp_abort
);
2567 struct proto udp_prot
= {
2569 .owner
= THIS_MODULE
,
2570 .close
= udp_lib_close
,
2571 .connect
= ip4_datagram_connect
,
2572 .disconnect
= udp_disconnect
,
2574 .init
= udp_init_sock
,
2575 .destroy
= udp_destroy_sock
,
2576 .setsockopt
= udp_setsockopt
,
2577 .getsockopt
= udp_getsockopt
,
2578 .sendmsg
= udp_sendmsg
,
2579 .recvmsg
= udp_recvmsg
,
2580 .sendpage
= udp_sendpage
,
2581 .release_cb
= ip4_datagram_release_cb
,
2582 .hash
= udp_lib_hash
,
2583 .unhash
= udp_lib_unhash
,
2584 .rehash
= udp_v4_rehash
,
2585 .get_port
= udp_v4_get_port
,
2586 .memory_allocated
= &udp_memory_allocated
,
2587 .sysctl_mem
= sysctl_udp_mem
,
2588 .sysctl_wmem
= &sysctl_udp_wmem_min
,
2589 .sysctl_rmem
= &sysctl_udp_rmem_min
,
2590 .obj_size
= sizeof(struct udp_sock
),
2591 .h
.udp_table
= &udp_table
,
2592 #ifdef CONFIG_COMPAT
2593 .compat_setsockopt
= compat_udp_setsockopt
,
2594 .compat_getsockopt
= compat_udp_getsockopt
,
2596 .diag_destroy
= udp_abort
,
2598 EXPORT_SYMBOL(udp_prot
);
2600 /* ------------------------------------------------------------------------ */
2601 #ifdef CONFIG_PROC_FS
2603 static struct sock
*udp_get_first(struct seq_file
*seq
, int start
)
2606 struct udp_iter_state
*state
= seq
->private;
2607 struct net
*net
= seq_file_net(seq
);
2609 for (state
->bucket
= start
; state
->bucket
<= state
->udp_table
->mask
;
2611 struct udp_hslot
*hslot
= &state
->udp_table
->hash
[state
->bucket
];
2613 if (hlist_empty(&hslot
->head
))
2616 spin_lock_bh(&hslot
->lock
);
2617 sk_for_each(sk
, &hslot
->head
) {
2618 if (!net_eq(sock_net(sk
), net
))
2620 if (sk
->sk_family
== state
->family
)
2623 spin_unlock_bh(&hslot
->lock
);
2630 static struct sock
*udp_get_next(struct seq_file
*seq
, struct sock
*sk
)
2632 struct udp_iter_state
*state
= seq
->private;
2633 struct net
*net
= seq_file_net(seq
);
2637 } while (sk
&& (!net_eq(sock_net(sk
), net
) || sk
->sk_family
!= state
->family
));
2640 if (state
->bucket
<= state
->udp_table
->mask
)
2641 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
2642 return udp_get_first(seq
, state
->bucket
+ 1);
2647 static struct sock
*udp_get_idx(struct seq_file
*seq
, loff_t pos
)
2649 struct sock
*sk
= udp_get_first(seq
, 0);
2652 while (pos
&& (sk
= udp_get_next(seq
, sk
)) != NULL
)
2654 return pos
? NULL
: sk
;
2657 static void *udp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2659 struct udp_iter_state
*state
= seq
->private;
2660 state
->bucket
= MAX_UDP_PORTS
;
2662 return *pos
? udp_get_idx(seq
, *pos
-1) : SEQ_START_TOKEN
;
2665 static void *udp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2669 if (v
== SEQ_START_TOKEN
)
2670 sk
= udp_get_idx(seq
, 0);
2672 sk
= udp_get_next(seq
, v
);
2678 static void udp_seq_stop(struct seq_file
*seq
, void *v
)
2680 struct udp_iter_state
*state
= seq
->private;
2682 if (state
->bucket
<= state
->udp_table
->mask
)
2683 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
2686 int udp_seq_open(struct inode
*inode
, struct file
*file
)
2688 struct udp_seq_afinfo
*afinfo
= PDE_DATA(inode
);
2689 struct udp_iter_state
*s
;
2692 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2693 sizeof(struct udp_iter_state
));
2697 s
= ((struct seq_file
*)file
->private_data
)->private;
2698 s
->family
= afinfo
->family
;
2699 s
->udp_table
= afinfo
->udp_table
;
2702 EXPORT_SYMBOL(udp_seq_open
);
2704 /* ------------------------------------------------------------------------ */
2705 int udp_proc_register(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
2707 struct proc_dir_entry
*p
;
2710 afinfo
->seq_ops
.start
= udp_seq_start
;
2711 afinfo
->seq_ops
.next
= udp_seq_next
;
2712 afinfo
->seq_ops
.stop
= udp_seq_stop
;
2714 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2715 afinfo
->seq_fops
, afinfo
);
2720 EXPORT_SYMBOL(udp_proc_register
);
2722 void udp_proc_unregister(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
2724 remove_proc_entry(afinfo
->name
, net
->proc_net
);
2726 EXPORT_SYMBOL(udp_proc_unregister
);
2728 /* ------------------------------------------------------------------------ */
2729 static void udp4_format_sock(struct sock
*sp
, struct seq_file
*f
,
2732 struct inet_sock
*inet
= inet_sk(sp
);
2733 __be32 dest
= inet
->inet_daddr
;
2734 __be32 src
= inet
->inet_rcv_saddr
;
2735 __u16 destp
= ntohs(inet
->inet_dport
);
2736 __u16 srcp
= ntohs(inet
->inet_sport
);
2738 seq_printf(f
, "%5d: %08X:%04X %08X:%04X"
2739 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2740 bucket
, src
, srcp
, dest
, destp
, sp
->sk_state
,
2741 sk_wmem_alloc_get(sp
),
2744 from_kuid_munged(seq_user_ns(f
), sock_i_uid(sp
)),
2746 refcount_read(&sp
->sk_refcnt
), sp
,
2747 atomic_read(&sp
->sk_drops
));
2750 int udp4_seq_show(struct seq_file
*seq
, void *v
)
2752 seq_setwidth(seq
, 127);
2753 if (v
== SEQ_START_TOKEN
)
2754 seq_puts(seq
, " sl local_address rem_address st tx_queue "
2755 "rx_queue tr tm->when retrnsmt uid timeout "
2756 "inode ref pointer drops");
2758 struct udp_iter_state
*state
= seq
->private;
2760 udp4_format_sock(v
, seq
, state
->bucket
);
2766 static const struct file_operations udp_afinfo_seq_fops
= {
2767 .owner
= THIS_MODULE
,
2768 .open
= udp_seq_open
,
2770 .llseek
= seq_lseek
,
2771 .release
= seq_release_net
2774 /* ------------------------------------------------------------------------ */
2775 static struct udp_seq_afinfo udp4_seq_afinfo
= {
2778 .udp_table
= &udp_table
,
2779 .seq_fops
= &udp_afinfo_seq_fops
,
2781 .show
= udp4_seq_show
,
2785 static int __net_init
udp4_proc_init_net(struct net
*net
)
2787 return udp_proc_register(net
, &udp4_seq_afinfo
);
2790 static void __net_exit
udp4_proc_exit_net(struct net
*net
)
2792 udp_proc_unregister(net
, &udp4_seq_afinfo
);
2795 static struct pernet_operations udp4_net_ops
= {
2796 .init
= udp4_proc_init_net
,
2797 .exit
= udp4_proc_exit_net
,
2800 int __init
udp4_proc_init(void)
2802 return register_pernet_subsys(&udp4_net_ops
);
2805 void udp4_proc_exit(void)
2807 unregister_pernet_subsys(&udp4_net_ops
);
2809 #endif /* CONFIG_PROC_FS */
2811 static __initdata
unsigned long uhash_entries
;
2812 static int __init
set_uhash_entries(char *str
)
2819 ret
= kstrtoul(str
, 0, &uhash_entries
);
2823 if (uhash_entries
&& uhash_entries
< UDP_HTABLE_SIZE_MIN
)
2824 uhash_entries
= UDP_HTABLE_SIZE_MIN
;
2827 __setup("uhash_entries=", set_uhash_entries
);
2829 void __init
udp_table_init(struct udp_table
*table
, const char *name
)
2833 table
->hash
= alloc_large_system_hash(name
,
2834 2 * sizeof(struct udp_hslot
),
2836 21, /* one slot per 2 MB */
2840 UDP_HTABLE_SIZE_MIN
,
2843 table
->hash2
= table
->hash
+ (table
->mask
+ 1);
2844 for (i
= 0; i
<= table
->mask
; i
++) {
2845 INIT_HLIST_HEAD(&table
->hash
[i
].head
);
2846 table
->hash
[i
].count
= 0;
2847 spin_lock_init(&table
->hash
[i
].lock
);
2849 for (i
= 0; i
<= table
->mask
; i
++) {
2850 INIT_HLIST_HEAD(&table
->hash2
[i
].head
);
2851 table
->hash2
[i
].count
= 0;
2852 spin_lock_init(&table
->hash2
[i
].lock
);
2856 u32
udp_flow_hashrnd(void)
2858 static u32 hashrnd __read_mostly
;
2860 net_get_random_once(&hashrnd
, sizeof(hashrnd
));
2864 EXPORT_SYMBOL(udp_flow_hashrnd
);
2866 void __init
udp_init(void)
2868 unsigned long limit
;
2871 udp_table_init(&udp_table
, "UDP");
2872 limit
= nr_free_buffer_pages() / 8;
2873 limit
= max(limit
, 128UL);
2874 sysctl_udp_mem
[0] = limit
/ 4 * 3;
2875 sysctl_udp_mem
[1] = limit
;
2876 sysctl_udp_mem
[2] = sysctl_udp_mem
[0] * 2;
2878 sysctl_udp_rmem_min
= SK_MEM_QUANTUM
;
2879 sysctl_udp_wmem_min
= SK_MEM_QUANTUM
;
2881 /* 16 spinlocks per cpu */
2882 udp_busylocks_log
= ilog2(nr_cpu_ids
) + 4;
2883 udp_busylocks
= kmalloc(sizeof(spinlock_t
) << udp_busylocks_log
,
2886 panic("UDP: failed to alloc udp_busylocks\n");
2887 for (i
= 0; i
< (1U << udp_busylocks_log
); i
++)
2888 spin_lock_init(udp_busylocks
+ i
);