staging: comedi: ni_labpc: set up command4 register *after* command3
[linux/fpc-iii.git] / fs / dcache.c
blobbb7f4ccdfbdea996fbf4f57d01e19bda4c6e2a6d
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
43 * Usage:
44 * dcache->d_inode->i_lock protects:
45 * - i_dentry, d_alias, d_inode of aliases
46 * dcache_hash_bucket lock protects:
47 * - the dcache hash table
48 * s_anon bl list spinlock protects:
49 * - the s_anon list (see __d_drop)
50 * dcache_lru_lock protects:
51 * - the dcache lru lists and counters
52 * d_lock protects:
53 * - d_flags
54 * - d_name
55 * - d_lru
56 * - d_count
57 * - d_unhashed()
58 * - d_parent and d_subdirs
59 * - childrens' d_child and d_parent
60 * - d_alias, d_inode
62 * Ordering:
63 * dentry->d_inode->i_lock
64 * dentry->d_lock
65 * dcache_lru_lock
66 * dcache_hash_bucket lock
67 * s_anon lock
69 * If there is an ancestor relationship:
70 * dentry->d_parent->...->d_parent->d_lock
71 * ...
72 * dentry->d_parent->d_lock
73 * dentry->d_lock
75 * If no ancestor relationship:
76 * if (dentry1 < dentry2)
77 * dentry1->d_lock
78 * dentry2->d_lock
80 int sysctl_vfs_cache_pressure __read_mostly = 100;
81 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 EXPORT_SYMBOL(rename_lock);
88 static struct kmem_cache *dentry_cache __read_mostly;
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
98 #define D_HASHBITS d_hash_shift
99 #define D_HASHMASK d_hash_mask
101 static unsigned int d_hash_mask __read_mostly;
102 static unsigned int d_hash_shift __read_mostly;
104 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
107 unsigned long hash)
109 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
110 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
111 return dentry_hashtable + (hash & D_HASHMASK);
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
119 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 static int get_nr_dentry(void)
124 int i;
125 int sum = 0;
126 for_each_possible_cpu(i)
127 sum += per_cpu(nr_dentry, i);
128 return sum < 0 ? 0 : sum;
131 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
132 size_t *lenp, loff_t *ppos)
134 dentry_stat.nr_dentry = get_nr_dentry();
135 return proc_dointvec(table, write, buffer, lenp, ppos);
137 #endif
139 static void __d_free(struct rcu_head *head)
141 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
143 WARN_ON(!list_empty(&dentry->d_alias));
144 if (dname_external(dentry))
145 kfree(dentry->d_name.name);
146 kmem_cache_free(dentry_cache, dentry);
150 * no locks, please.
152 static void d_free(struct dentry *dentry)
154 BUG_ON(dentry->d_count);
155 this_cpu_dec(nr_dentry);
156 if (dentry->d_op && dentry->d_op->d_release)
157 dentry->d_op->d_release(dentry);
159 /* if dentry was never visible to RCU, immediate free is OK */
160 if (!(dentry->d_flags & DCACHE_RCUACCESS))
161 __d_free(&dentry->d_u.d_rcu);
162 else
163 call_rcu(&dentry->d_u.d_rcu, __d_free);
167 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
168 * @dentry: the target dentry
169 * After this call, in-progress rcu-walk path lookup will fail. This
170 * should be called after unhashing, and after changing d_inode (if
171 * the dentry has not already been unhashed).
173 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
175 assert_spin_locked(&dentry->d_lock);
176 /* Go through a barrier */
177 write_seqcount_barrier(&dentry->d_seq);
181 * Release the dentry's inode, using the filesystem
182 * d_iput() operation if defined. Dentry has no refcount
183 * and is unhashed.
185 static void dentry_iput(struct dentry * dentry)
186 __releases(dentry->d_lock)
187 __releases(dentry->d_inode->i_lock)
189 struct inode *inode = dentry->d_inode;
190 if (inode) {
191 dentry->d_inode = NULL;
192 list_del_init(&dentry->d_alias);
193 spin_unlock(&dentry->d_lock);
194 spin_unlock(&inode->i_lock);
195 if (!inode->i_nlink)
196 fsnotify_inoderemove(inode);
197 if (dentry->d_op && dentry->d_op->d_iput)
198 dentry->d_op->d_iput(dentry, inode);
199 else
200 iput(inode);
201 } else {
202 spin_unlock(&dentry->d_lock);
207 * Release the dentry's inode, using the filesystem
208 * d_iput() operation if defined. dentry remains in-use.
210 static void dentry_unlink_inode(struct dentry * dentry)
211 __releases(dentry->d_lock)
212 __releases(dentry->d_inode->i_lock)
214 struct inode *inode = dentry->d_inode;
215 dentry->d_inode = NULL;
216 list_del_init(&dentry->d_alias);
217 dentry_rcuwalk_barrier(dentry);
218 spin_unlock(&dentry->d_lock);
219 spin_unlock(&inode->i_lock);
220 if (!inode->i_nlink)
221 fsnotify_inoderemove(inode);
222 if (dentry->d_op && dentry->d_op->d_iput)
223 dentry->d_op->d_iput(dentry, inode);
224 else
225 iput(inode);
229 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
231 static void dentry_lru_add(struct dentry *dentry)
233 if (list_empty(&dentry->d_lru)) {
234 spin_lock(&dcache_lru_lock);
235 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
236 dentry->d_sb->s_nr_dentry_unused++;
237 dentry_stat.nr_unused++;
238 spin_unlock(&dcache_lru_lock);
242 static void __dentry_lru_del(struct dentry *dentry)
244 list_del_init(&dentry->d_lru);
245 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
246 dentry->d_sb->s_nr_dentry_unused--;
247 dentry_stat.nr_unused--;
251 * Remove a dentry with references from the LRU.
253 static void dentry_lru_del(struct dentry *dentry)
255 if (!list_empty(&dentry->d_lru)) {
256 spin_lock(&dcache_lru_lock);
257 __dentry_lru_del(dentry);
258 spin_unlock(&dcache_lru_lock);
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
267 static void dentry_lru_prune(struct dentry *dentry)
269 if (!list_empty(&dentry->d_lru)) {
270 if (dentry->d_flags & DCACHE_OP_PRUNE)
271 dentry->d_op->d_prune(dentry);
273 spin_lock(&dcache_lru_lock);
274 __dentry_lru_del(dentry);
275 spin_unlock(&dcache_lru_lock);
279 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
281 spin_lock(&dcache_lru_lock);
282 if (list_empty(&dentry->d_lru)) {
283 list_add_tail(&dentry->d_lru, list);
284 dentry->d_sb->s_nr_dentry_unused++;
285 dentry_stat.nr_unused++;
286 } else {
287 list_move_tail(&dentry->d_lru, list);
289 spin_unlock(&dcache_lru_lock);
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
295 * @parent: parent dentry
297 * The dentry must already be unhashed and removed from the LRU.
299 * If this is the root of the dentry tree, return NULL.
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
302 * d_kill.
304 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
305 __releases(dentry->d_lock)
306 __releases(parent->d_lock)
307 __releases(dentry->d_inode->i_lock)
309 list_del(&dentry->d_u.d_child);
311 * Inform try_to_ascend() that we are no longer attached to the
312 * dentry tree
314 dentry->d_flags |= DCACHE_DENTRY_KILLED;
315 if (parent)
316 spin_unlock(&parent->d_lock);
317 dentry_iput(dentry);
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
322 d_free(dentry);
323 return parent;
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
329 * appropriate.
331 static void __d_shrink(struct dentry *dentry)
333 if (!d_unhashed(dentry)) {
334 struct hlist_bl_head *b;
335 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
336 b = &dentry->d_sb->s_anon;
337 else
338 b = d_hash(dentry->d_parent, dentry->d_name.hash);
340 hlist_bl_lock(b);
341 __hlist_bl_del(&dentry->d_hash);
342 dentry->d_hash.pprev = NULL;
343 hlist_bl_unlock(b);
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
360 * __d_drop requires dentry->d_lock.
362 void __d_drop(struct dentry *dentry)
364 if (!d_unhashed(dentry)) {
365 __d_shrink(dentry);
366 dentry_rcuwalk_barrier(dentry);
369 EXPORT_SYMBOL(__d_drop);
371 void d_drop(struct dentry *dentry)
373 spin_lock(&dentry->d_lock);
374 __d_drop(dentry);
375 spin_unlock(&dentry->d_lock);
377 EXPORT_SYMBOL(d_drop);
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
388 void d_clear_need_lookup(struct dentry *dentry)
390 spin_lock(&dentry->d_lock);
391 __d_drop(dentry);
392 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
393 spin_unlock(&dentry->d_lock);
395 EXPORT_SYMBOL(d_clear_need_lookup);
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
403 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
404 __releases(dentry->d_lock)
406 struct inode *inode;
407 struct dentry *parent;
409 inode = dentry->d_inode;
410 if (inode && !spin_trylock(&inode->i_lock)) {
411 relock:
412 spin_unlock(&dentry->d_lock);
413 cpu_relax();
414 return dentry; /* try again with same dentry */
416 if (IS_ROOT(dentry))
417 parent = NULL;
418 else
419 parent = dentry->d_parent;
420 if (parent && !spin_trylock(&parent->d_lock)) {
421 if (inode)
422 spin_unlock(&inode->i_lock);
423 goto relock;
426 if (ref)
427 dentry->d_count--;
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
433 dentry_lru_prune(dentry);
434 /* if it was on the hash then remove it */
435 __d_drop(dentry);
436 return d_kill(dentry, parent);
440 * This is dput
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
457 * dput - release a dentry
458 * @dentry: dentry to release
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
465 void dput(struct dentry *dentry)
467 if (!dentry)
468 return;
470 repeat:
471 if (dentry->d_count == 1)
472 might_sleep();
473 spin_lock(&dentry->d_lock);
474 BUG_ON(!dentry->d_count);
475 if (dentry->d_count > 1) {
476 dentry->d_count--;
477 spin_unlock(&dentry->d_lock);
478 return;
481 if (dentry->d_flags & DCACHE_OP_DELETE) {
482 if (dentry->d_op->d_delete(dentry))
483 goto kill_it;
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry))
488 goto kill_it;
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
493 * memory pressure.
495 if (!d_need_lookup(dentry))
496 dentry->d_flags |= DCACHE_REFERENCED;
497 dentry_lru_add(dentry);
499 dentry->d_count--;
500 spin_unlock(&dentry->d_lock);
501 return;
503 kill_it:
504 dentry = dentry_kill(dentry, 1);
505 if (dentry)
506 goto repeat;
508 EXPORT_SYMBOL(dput);
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
519 * no dcache lock.
522 int d_invalidate(struct dentry * dentry)
525 * If it's already been dropped, return OK.
527 spin_lock(&dentry->d_lock);
528 if (d_unhashed(dentry)) {
529 spin_unlock(&dentry->d_lock);
530 return 0;
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
536 if (!list_empty(&dentry->d_subdirs)) {
537 spin_unlock(&dentry->d_lock);
538 shrink_dcache_parent(dentry);
539 spin_lock(&dentry->d_lock);
543 * Somebody else still using it?
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
551 * We also need to leave mountpoints alone,
552 * directory or not.
554 if (dentry->d_count > 1 && dentry->d_inode) {
555 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
556 spin_unlock(&dentry->d_lock);
557 return -EBUSY;
561 __d_drop(dentry);
562 spin_unlock(&dentry->d_lock);
563 return 0;
565 EXPORT_SYMBOL(d_invalidate);
567 /* This must be called with d_lock held */
568 static inline void __dget_dlock(struct dentry *dentry)
570 dentry->d_count++;
573 static inline void __dget(struct dentry *dentry)
575 spin_lock(&dentry->d_lock);
576 __dget_dlock(dentry);
577 spin_unlock(&dentry->d_lock);
580 struct dentry *dget_parent(struct dentry *dentry)
582 struct dentry *ret;
584 repeat:
586 * Don't need rcu_dereference because we re-check it was correct under
587 * the lock.
589 rcu_read_lock();
590 ret = dentry->d_parent;
591 spin_lock(&ret->d_lock);
592 if (unlikely(ret != dentry->d_parent)) {
593 spin_unlock(&ret->d_lock);
594 rcu_read_unlock();
595 goto repeat;
597 rcu_read_unlock();
598 BUG_ON(!ret->d_count);
599 ret->d_count++;
600 spin_unlock(&ret->d_lock);
601 return ret;
603 EXPORT_SYMBOL(dget_parent);
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
615 * of a filesystem.
617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
618 * any other hashed alias over that one unless @want_discon is set,
619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
623 struct dentry *alias, *discon_alias;
625 again:
626 discon_alias = NULL;
627 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
628 spin_lock(&alias->d_lock);
629 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
630 if (IS_ROOT(alias) &&
631 (alias->d_flags & DCACHE_DISCONNECTED)) {
632 discon_alias = alias;
633 } else if (!want_discon) {
634 __dget_dlock(alias);
635 spin_unlock(&alias->d_lock);
636 return alias;
639 spin_unlock(&alias->d_lock);
641 if (discon_alias) {
642 alias = discon_alias;
643 spin_lock(&alias->d_lock);
644 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
645 if (IS_ROOT(alias) &&
646 (alias->d_flags & DCACHE_DISCONNECTED)) {
647 __dget_dlock(alias);
648 spin_unlock(&alias->d_lock);
649 return alias;
652 spin_unlock(&alias->d_lock);
653 goto again;
655 return NULL;
658 struct dentry *d_find_alias(struct inode *inode)
660 struct dentry *de = NULL;
662 if (!list_empty(&inode->i_dentry)) {
663 spin_lock(&inode->i_lock);
664 de = __d_find_alias(inode, 0);
665 spin_unlock(&inode->i_lock);
667 return de;
669 EXPORT_SYMBOL(d_find_alias);
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
675 void d_prune_aliases(struct inode *inode)
677 struct dentry *dentry;
678 restart:
679 spin_lock(&inode->i_lock);
680 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
681 spin_lock(&dentry->d_lock);
682 if (!dentry->d_count) {
683 __dget_dlock(dentry);
684 __d_drop(dentry);
685 spin_unlock(&dentry->d_lock);
686 spin_unlock(&inode->i_lock);
687 dput(dentry);
688 goto restart;
690 spin_unlock(&dentry->d_lock);
692 spin_unlock(&inode->i_lock);
694 EXPORT_SYMBOL(d_prune_aliases);
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
701 * This may fail if locks cannot be acquired no problem, just try again.
703 static void try_prune_one_dentry(struct dentry *dentry)
704 __releases(dentry->d_lock)
706 struct dentry *parent;
708 parent = dentry_kill(dentry, 0);
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
717 * fragmentation.
719 if (!parent)
720 return;
721 if (parent == dentry)
722 return;
724 /* Prune ancestors. */
725 dentry = parent;
726 while (dentry) {
727 spin_lock(&dentry->d_lock);
728 if (dentry->d_count > 1) {
729 dentry->d_count--;
730 spin_unlock(&dentry->d_lock);
731 return;
733 dentry = dentry_kill(dentry, 1);
737 static void shrink_dentry_list(struct list_head *list)
739 struct dentry *dentry;
741 rcu_read_lock();
742 for (;;) {
743 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
744 if (&dentry->d_lru == list)
745 break; /* empty */
746 spin_lock(&dentry->d_lock);
747 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
748 spin_unlock(&dentry->d_lock);
749 continue;
753 * We found an inuse dentry which was not removed from
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
757 if (dentry->d_count) {
758 dentry_lru_del(dentry);
759 spin_unlock(&dentry->d_lock);
760 continue;
763 rcu_read_unlock();
765 try_prune_one_dentry(dentry);
767 rcu_read_lock();
769 rcu_read_unlock();
773 * prune_dcache_sb - shrink the dcache
774 * @sb: superblock
775 * @count: number of entries to try to free
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
779 * function.
781 * This function may fail to free any resources if all the dentries are in
782 * use.
784 void prune_dcache_sb(struct super_block *sb, int count)
786 struct dentry *dentry;
787 LIST_HEAD(referenced);
788 LIST_HEAD(tmp);
790 relock:
791 spin_lock(&dcache_lru_lock);
792 while (!list_empty(&sb->s_dentry_lru)) {
793 dentry = list_entry(sb->s_dentry_lru.prev,
794 struct dentry, d_lru);
795 BUG_ON(dentry->d_sb != sb);
797 if (!spin_trylock(&dentry->d_lock)) {
798 spin_unlock(&dcache_lru_lock);
799 cpu_relax();
800 goto relock;
803 if (dentry->d_flags & DCACHE_REFERENCED) {
804 dentry->d_flags &= ~DCACHE_REFERENCED;
805 list_move(&dentry->d_lru, &referenced);
806 spin_unlock(&dentry->d_lock);
807 } else {
808 list_move_tail(&dentry->d_lru, &tmp);
809 dentry->d_flags |= DCACHE_SHRINK_LIST;
810 spin_unlock(&dentry->d_lock);
811 if (!--count)
812 break;
814 cond_resched_lock(&dcache_lru_lock);
816 if (!list_empty(&referenced))
817 list_splice(&referenced, &sb->s_dentry_lru);
818 spin_unlock(&dcache_lru_lock);
820 shrink_dentry_list(&tmp);
824 * shrink_dcache_sb - shrink dcache for a superblock
825 * @sb: superblock
827 * Shrink the dcache for the specified super block. This is used to free
828 * the dcache before unmounting a file system.
830 void shrink_dcache_sb(struct super_block *sb)
832 LIST_HEAD(tmp);
834 spin_lock(&dcache_lru_lock);
835 while (!list_empty(&sb->s_dentry_lru)) {
836 list_splice_init(&sb->s_dentry_lru, &tmp);
837 spin_unlock(&dcache_lru_lock);
838 shrink_dentry_list(&tmp);
839 spin_lock(&dcache_lru_lock);
841 spin_unlock(&dcache_lru_lock);
843 EXPORT_SYMBOL(shrink_dcache_sb);
846 * destroy a single subtree of dentries for unmount
847 * - see the comments on shrink_dcache_for_umount() for a description of the
848 * locking
850 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
852 struct dentry *parent;
854 BUG_ON(!IS_ROOT(dentry));
856 for (;;) {
857 /* descend to the first leaf in the current subtree */
858 while (!list_empty(&dentry->d_subdirs))
859 dentry = list_entry(dentry->d_subdirs.next,
860 struct dentry, d_u.d_child);
862 /* consume the dentries from this leaf up through its parents
863 * until we find one with children or run out altogether */
864 do {
865 struct inode *inode;
868 * remove the dentry from the lru, and inform
869 * the fs that this dentry is about to be
870 * unhashed and destroyed.
872 dentry_lru_prune(dentry);
873 __d_shrink(dentry);
875 if (dentry->d_count != 0) {
876 printk(KERN_ERR
877 "BUG: Dentry %p{i=%lx,n=%s}"
878 " still in use (%d)"
879 " [unmount of %s %s]\n",
880 dentry,
881 dentry->d_inode ?
882 dentry->d_inode->i_ino : 0UL,
883 dentry->d_name.name,
884 dentry->d_count,
885 dentry->d_sb->s_type->name,
886 dentry->d_sb->s_id);
887 BUG();
890 if (IS_ROOT(dentry)) {
891 parent = NULL;
892 list_del(&dentry->d_u.d_child);
893 } else {
894 parent = dentry->d_parent;
895 parent->d_count--;
896 list_del(&dentry->d_u.d_child);
899 inode = dentry->d_inode;
900 if (inode) {
901 dentry->d_inode = NULL;
902 list_del_init(&dentry->d_alias);
903 if (dentry->d_op && dentry->d_op->d_iput)
904 dentry->d_op->d_iput(dentry, inode);
905 else
906 iput(inode);
909 d_free(dentry);
911 /* finished when we fall off the top of the tree,
912 * otherwise we ascend to the parent and move to the
913 * next sibling if there is one */
914 if (!parent)
915 return;
916 dentry = parent;
917 } while (list_empty(&dentry->d_subdirs));
919 dentry = list_entry(dentry->d_subdirs.next,
920 struct dentry, d_u.d_child);
925 * destroy the dentries attached to a superblock on unmounting
926 * - we don't need to use dentry->d_lock because:
927 * - the superblock is detached from all mountings and open files, so the
928 * dentry trees will not be rearranged by the VFS
929 * - s_umount is write-locked, so the memory pressure shrinker will ignore
930 * any dentries belonging to this superblock that it comes across
931 * - the filesystem itself is no longer permitted to rearrange the dentries
932 * in this superblock
934 void shrink_dcache_for_umount(struct super_block *sb)
936 struct dentry *dentry;
938 if (down_read_trylock(&sb->s_umount))
939 BUG();
941 dentry = sb->s_root;
942 sb->s_root = NULL;
943 dentry->d_count--;
944 shrink_dcache_for_umount_subtree(dentry);
946 while (!hlist_bl_empty(&sb->s_anon)) {
947 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
948 shrink_dcache_for_umount_subtree(dentry);
953 * This tries to ascend one level of parenthood, but
954 * we can race with renaming, so we need to re-check
955 * the parenthood after dropping the lock and check
956 * that the sequence number still matches.
958 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
960 struct dentry *new = old->d_parent;
962 rcu_read_lock();
963 spin_unlock(&old->d_lock);
964 spin_lock(&new->d_lock);
967 * might go back up the wrong parent if we have had a rename
968 * or deletion
970 if (new != old->d_parent ||
971 (old->d_flags & DCACHE_DENTRY_KILLED) ||
972 (!locked && read_seqretry(&rename_lock, seq))) {
973 spin_unlock(&new->d_lock);
974 new = NULL;
976 rcu_read_unlock();
977 return new;
982 * Search for at least 1 mount point in the dentry's subdirs.
983 * We descend to the next level whenever the d_subdirs
984 * list is non-empty and continue searching.
988 * have_submounts - check for mounts over a dentry
989 * @parent: dentry to check.
991 * Return true if the parent or its subdirectories contain
992 * a mount point
994 int have_submounts(struct dentry *parent)
996 struct dentry *this_parent;
997 struct list_head *next;
998 unsigned seq;
999 int locked = 0;
1001 seq = read_seqbegin(&rename_lock);
1002 again:
1003 this_parent = parent;
1005 if (d_mountpoint(parent))
1006 goto positive;
1007 spin_lock(&this_parent->d_lock);
1008 repeat:
1009 next = this_parent->d_subdirs.next;
1010 resume:
1011 while (next != &this_parent->d_subdirs) {
1012 struct list_head *tmp = next;
1013 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1014 next = tmp->next;
1016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1017 /* Have we found a mount point ? */
1018 if (d_mountpoint(dentry)) {
1019 spin_unlock(&dentry->d_lock);
1020 spin_unlock(&this_parent->d_lock);
1021 goto positive;
1023 if (!list_empty(&dentry->d_subdirs)) {
1024 spin_unlock(&this_parent->d_lock);
1025 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1026 this_parent = dentry;
1027 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1028 goto repeat;
1030 spin_unlock(&dentry->d_lock);
1033 * All done at this level ... ascend and resume the search.
1035 if (this_parent != parent) {
1036 struct dentry *child = this_parent;
1037 this_parent = try_to_ascend(this_parent, locked, seq);
1038 if (!this_parent)
1039 goto rename_retry;
1040 next = child->d_u.d_child.next;
1041 goto resume;
1043 spin_unlock(&this_parent->d_lock);
1044 if (!locked && read_seqretry(&rename_lock, seq))
1045 goto rename_retry;
1046 if (locked)
1047 write_sequnlock(&rename_lock);
1048 return 0; /* No mount points found in tree */
1049 positive:
1050 if (!locked && read_seqretry(&rename_lock, seq))
1051 goto rename_retry;
1052 if (locked)
1053 write_sequnlock(&rename_lock);
1054 return 1;
1056 rename_retry:
1057 if (locked)
1058 goto again;
1059 locked = 1;
1060 write_seqlock(&rename_lock);
1061 goto again;
1063 EXPORT_SYMBOL(have_submounts);
1066 * Search the dentry child list for the specified parent,
1067 * and move any unused dentries to the end of the unused
1068 * list for prune_dcache(). We descend to the next level
1069 * whenever the d_subdirs list is non-empty and continue
1070 * searching.
1072 * It returns zero iff there are no unused children,
1073 * otherwise it returns the number of children moved to
1074 * the end of the unused list. This may not be the total
1075 * number of unused children, because select_parent can
1076 * drop the lock and return early due to latency
1077 * constraints.
1079 static int select_parent(struct dentry *parent, struct list_head *dispose)
1081 struct dentry *this_parent;
1082 struct list_head *next;
1083 unsigned seq;
1084 int found = 0;
1085 int locked = 0;
1087 seq = read_seqbegin(&rename_lock);
1088 again:
1089 this_parent = parent;
1090 spin_lock(&this_parent->d_lock);
1091 repeat:
1092 next = this_parent->d_subdirs.next;
1093 resume:
1094 while (next != &this_parent->d_subdirs) {
1095 struct list_head *tmp = next;
1096 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1097 next = tmp->next;
1099 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1102 * move only zero ref count dentries to the dispose list.
1104 * Those which are presently on the shrink list, being processed
1105 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1106 * loop in shrink_dcache_parent() might not make any progress
1107 * and loop forever.
1109 if (dentry->d_count) {
1110 dentry_lru_del(dentry);
1111 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1112 dentry_lru_move_list(dentry, dispose);
1113 dentry->d_flags |= DCACHE_SHRINK_LIST;
1114 found++;
1117 * We can return to the caller if we have found some (this
1118 * ensures forward progress). We'll be coming back to find
1119 * the rest.
1121 if (found && need_resched()) {
1122 spin_unlock(&dentry->d_lock);
1123 goto out;
1127 * Descend a level if the d_subdirs list is non-empty.
1129 if (!list_empty(&dentry->d_subdirs)) {
1130 spin_unlock(&this_parent->d_lock);
1131 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1132 this_parent = dentry;
1133 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1134 goto repeat;
1137 spin_unlock(&dentry->d_lock);
1140 * All done at this level ... ascend and resume the search.
1142 if (this_parent != parent) {
1143 struct dentry *child = this_parent;
1144 this_parent = try_to_ascend(this_parent, locked, seq);
1145 if (!this_parent)
1146 goto rename_retry;
1147 next = child->d_u.d_child.next;
1148 goto resume;
1150 out:
1151 spin_unlock(&this_parent->d_lock);
1152 if (!locked && read_seqretry(&rename_lock, seq))
1153 goto rename_retry;
1154 if (locked)
1155 write_sequnlock(&rename_lock);
1156 return found;
1158 rename_retry:
1159 if (found)
1160 return found;
1161 if (locked)
1162 goto again;
1163 locked = 1;
1164 write_seqlock(&rename_lock);
1165 goto again;
1169 * shrink_dcache_parent - prune dcache
1170 * @parent: parent of entries to prune
1172 * Prune the dcache to remove unused children of the parent dentry.
1174 void shrink_dcache_parent(struct dentry * parent)
1176 LIST_HEAD(dispose);
1177 int found;
1179 while ((found = select_parent(parent, &dispose)) != 0)
1180 shrink_dentry_list(&dispose);
1182 EXPORT_SYMBOL(shrink_dcache_parent);
1185 * __d_alloc - allocate a dcache entry
1186 * @sb: filesystem it will belong to
1187 * @name: qstr of the name
1189 * Allocates a dentry. It returns %NULL if there is insufficient memory
1190 * available. On a success the dentry is returned. The name passed in is
1191 * copied and the copy passed in may be reused after this call.
1194 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1196 struct dentry *dentry;
1197 char *dname;
1199 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1200 if (!dentry)
1201 return NULL;
1203 if (name->len > DNAME_INLINE_LEN-1) {
1204 dname = kmalloc(name->len + 1, GFP_KERNEL);
1205 if (!dname) {
1206 kmem_cache_free(dentry_cache, dentry);
1207 return NULL;
1209 } else {
1210 dname = dentry->d_iname;
1212 dentry->d_name.name = dname;
1214 dentry->d_name.len = name->len;
1215 dentry->d_name.hash = name->hash;
1216 memcpy(dname, name->name, name->len);
1217 dname[name->len] = 0;
1219 dentry->d_count = 1;
1220 dentry->d_flags = 0;
1221 spin_lock_init(&dentry->d_lock);
1222 seqcount_init(&dentry->d_seq);
1223 dentry->d_inode = NULL;
1224 dentry->d_parent = dentry;
1225 dentry->d_sb = sb;
1226 dentry->d_op = NULL;
1227 dentry->d_fsdata = NULL;
1228 INIT_HLIST_BL_NODE(&dentry->d_hash);
1229 INIT_LIST_HEAD(&dentry->d_lru);
1230 INIT_LIST_HEAD(&dentry->d_subdirs);
1231 INIT_LIST_HEAD(&dentry->d_alias);
1232 INIT_LIST_HEAD(&dentry->d_u.d_child);
1233 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1235 this_cpu_inc(nr_dentry);
1237 return dentry;
1241 * d_alloc - allocate a dcache entry
1242 * @parent: parent of entry to allocate
1243 * @name: qstr of the name
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1249 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1251 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1252 if (!dentry)
1253 return NULL;
1255 spin_lock(&parent->d_lock);
1257 * don't need child lock because it is not subject
1258 * to concurrency here
1260 __dget_dlock(parent);
1261 dentry->d_parent = parent;
1262 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1263 spin_unlock(&parent->d_lock);
1265 return dentry;
1267 EXPORT_SYMBOL(d_alloc);
1269 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1271 struct dentry *dentry = __d_alloc(sb, name);
1272 if (dentry)
1273 dentry->d_flags |= DCACHE_DISCONNECTED;
1274 return dentry;
1276 EXPORT_SYMBOL(d_alloc_pseudo);
1278 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1280 struct qstr q;
1282 q.name = name;
1283 q.len = strlen(name);
1284 q.hash = full_name_hash(q.name, q.len);
1285 return d_alloc(parent, &q);
1287 EXPORT_SYMBOL(d_alloc_name);
1289 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1291 WARN_ON_ONCE(dentry->d_op);
1292 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1293 DCACHE_OP_COMPARE |
1294 DCACHE_OP_REVALIDATE |
1295 DCACHE_OP_DELETE ));
1296 dentry->d_op = op;
1297 if (!op)
1298 return;
1299 if (op->d_hash)
1300 dentry->d_flags |= DCACHE_OP_HASH;
1301 if (op->d_compare)
1302 dentry->d_flags |= DCACHE_OP_COMPARE;
1303 if (op->d_revalidate)
1304 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1305 if (op->d_delete)
1306 dentry->d_flags |= DCACHE_OP_DELETE;
1307 if (op->d_prune)
1308 dentry->d_flags |= DCACHE_OP_PRUNE;
1311 EXPORT_SYMBOL(d_set_d_op);
1313 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1315 spin_lock(&dentry->d_lock);
1316 if (inode) {
1317 if (unlikely(IS_AUTOMOUNT(inode)))
1318 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1319 list_add(&dentry->d_alias, &inode->i_dentry);
1321 dentry->d_inode = inode;
1322 dentry_rcuwalk_barrier(dentry);
1323 spin_unlock(&dentry->d_lock);
1324 fsnotify_d_instantiate(dentry, inode);
1328 * d_instantiate - fill in inode information for a dentry
1329 * @entry: dentry to complete
1330 * @inode: inode to attach to this dentry
1332 * Fill in inode information in the entry.
1334 * This turns negative dentries into productive full members
1335 * of society.
1337 * NOTE! This assumes that the inode count has been incremented
1338 * (or otherwise set) by the caller to indicate that it is now
1339 * in use by the dcache.
1342 void d_instantiate(struct dentry *entry, struct inode * inode)
1344 BUG_ON(!list_empty(&entry->d_alias));
1345 if (inode)
1346 spin_lock(&inode->i_lock);
1347 __d_instantiate(entry, inode);
1348 if (inode)
1349 spin_unlock(&inode->i_lock);
1350 security_d_instantiate(entry, inode);
1352 EXPORT_SYMBOL(d_instantiate);
1355 * d_instantiate_unique - instantiate a non-aliased dentry
1356 * @entry: dentry to instantiate
1357 * @inode: inode to attach to this dentry
1359 * Fill in inode information in the entry. On success, it returns NULL.
1360 * If an unhashed alias of "entry" already exists, then we return the
1361 * aliased dentry instead and drop one reference to inode.
1363 * Note that in order to avoid conflicts with rename() etc, the caller
1364 * had better be holding the parent directory semaphore.
1366 * This also assumes that the inode count has been incremented
1367 * (or otherwise set) by the caller to indicate that it is now
1368 * in use by the dcache.
1370 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1371 struct inode *inode)
1373 struct dentry *alias;
1374 int len = entry->d_name.len;
1375 const char *name = entry->d_name.name;
1376 unsigned int hash = entry->d_name.hash;
1378 if (!inode) {
1379 __d_instantiate(entry, NULL);
1380 return NULL;
1383 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1384 struct qstr *qstr = &alias->d_name;
1387 * Don't need alias->d_lock here, because aliases with
1388 * d_parent == entry->d_parent are not subject to name or
1389 * parent changes, because the parent inode i_mutex is held.
1391 if (qstr->hash != hash)
1392 continue;
1393 if (alias->d_parent != entry->d_parent)
1394 continue;
1395 if (dentry_cmp(qstr->name, qstr->len, name, len))
1396 continue;
1397 __dget(alias);
1398 return alias;
1401 __d_instantiate(entry, inode);
1402 return NULL;
1405 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1407 struct dentry *result;
1409 BUG_ON(!list_empty(&entry->d_alias));
1411 if (inode)
1412 spin_lock(&inode->i_lock);
1413 result = __d_instantiate_unique(entry, inode);
1414 if (inode)
1415 spin_unlock(&inode->i_lock);
1417 if (!result) {
1418 security_d_instantiate(entry, inode);
1419 return NULL;
1422 BUG_ON(!d_unhashed(result));
1423 iput(inode);
1424 return result;
1427 EXPORT_SYMBOL(d_instantiate_unique);
1430 * d_alloc_root - allocate root dentry
1431 * @root_inode: inode to allocate the root for
1433 * Allocate a root ("/") dentry for the inode given. The inode is
1434 * instantiated and returned. %NULL is returned if there is insufficient
1435 * memory or the inode passed is %NULL.
1438 struct dentry * d_alloc_root(struct inode * root_inode)
1440 struct dentry *res = NULL;
1442 if (root_inode) {
1443 static const struct qstr name = { .name = "/", .len = 1 };
1445 res = __d_alloc(root_inode->i_sb, &name);
1446 if (res)
1447 d_instantiate(res, root_inode);
1449 return res;
1451 EXPORT_SYMBOL(d_alloc_root);
1453 static struct dentry * __d_find_any_alias(struct inode *inode)
1455 struct dentry *alias;
1457 if (list_empty(&inode->i_dentry))
1458 return NULL;
1459 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1460 __dget(alias);
1461 return alias;
1464 static struct dentry * d_find_any_alias(struct inode *inode)
1466 struct dentry *de;
1468 spin_lock(&inode->i_lock);
1469 de = __d_find_any_alias(inode);
1470 spin_unlock(&inode->i_lock);
1471 return de;
1476 * d_obtain_alias - find or allocate a dentry for a given inode
1477 * @inode: inode to allocate the dentry for
1479 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1480 * similar open by handle operations. The returned dentry may be anonymous,
1481 * or may have a full name (if the inode was already in the cache).
1483 * When called on a directory inode, we must ensure that the inode only ever
1484 * has one dentry. If a dentry is found, that is returned instead of
1485 * allocating a new one.
1487 * On successful return, the reference to the inode has been transferred
1488 * to the dentry. In case of an error the reference on the inode is released.
1489 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1490 * be passed in and will be the error will be propagate to the return value,
1491 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1493 struct dentry *d_obtain_alias(struct inode *inode)
1495 static const struct qstr anonstring = { .name = "/", .len = 1 };
1496 struct dentry *tmp;
1497 struct dentry *res;
1499 if (!inode)
1500 return ERR_PTR(-ESTALE);
1501 if (IS_ERR(inode))
1502 return ERR_CAST(inode);
1504 res = d_find_any_alias(inode);
1505 if (res)
1506 goto out_iput;
1508 tmp = __d_alloc(inode->i_sb, &anonstring);
1509 if (!tmp) {
1510 res = ERR_PTR(-ENOMEM);
1511 goto out_iput;
1514 spin_lock(&inode->i_lock);
1515 res = __d_find_any_alias(inode);
1516 if (res) {
1517 spin_unlock(&inode->i_lock);
1518 dput(tmp);
1519 goto out_iput;
1522 /* attach a disconnected dentry */
1523 spin_lock(&tmp->d_lock);
1524 tmp->d_inode = inode;
1525 tmp->d_flags |= DCACHE_DISCONNECTED;
1526 list_add(&tmp->d_alias, &inode->i_dentry);
1527 hlist_bl_lock(&tmp->d_sb->s_anon);
1528 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1529 hlist_bl_unlock(&tmp->d_sb->s_anon);
1530 spin_unlock(&tmp->d_lock);
1531 spin_unlock(&inode->i_lock);
1532 security_d_instantiate(tmp, inode);
1534 return tmp;
1536 out_iput:
1537 if (res && !IS_ERR(res))
1538 security_d_instantiate(res, inode);
1539 iput(inode);
1540 return res;
1542 EXPORT_SYMBOL(d_obtain_alias);
1545 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1546 * @inode: the inode which may have a disconnected dentry
1547 * @dentry: a negative dentry which we want to point to the inode.
1549 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1550 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1551 * and return it, else simply d_add the inode to the dentry and return NULL.
1553 * This is needed in the lookup routine of any filesystem that is exportable
1554 * (via knfsd) so that we can build dcache paths to directories effectively.
1556 * If a dentry was found and moved, then it is returned. Otherwise NULL
1557 * is returned. This matches the expected return value of ->lookup.
1560 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1562 struct dentry *new = NULL;
1564 if (IS_ERR(inode))
1565 return ERR_CAST(inode);
1567 if (inode && S_ISDIR(inode->i_mode)) {
1568 spin_lock(&inode->i_lock);
1569 new = __d_find_alias(inode, 1);
1570 if (new) {
1571 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1572 spin_unlock(&inode->i_lock);
1573 security_d_instantiate(new, inode);
1574 d_move(new, dentry);
1575 iput(inode);
1576 } else {
1577 /* already taking inode->i_lock, so d_add() by hand */
1578 __d_instantiate(dentry, inode);
1579 spin_unlock(&inode->i_lock);
1580 security_d_instantiate(dentry, inode);
1581 d_rehash(dentry);
1583 } else
1584 d_add(dentry, inode);
1585 return new;
1587 EXPORT_SYMBOL(d_splice_alias);
1590 * d_add_ci - lookup or allocate new dentry with case-exact name
1591 * @inode: the inode case-insensitive lookup has found
1592 * @dentry: the negative dentry that was passed to the parent's lookup func
1593 * @name: the case-exact name to be associated with the returned dentry
1595 * This is to avoid filling the dcache with case-insensitive names to the
1596 * same inode, only the actual correct case is stored in the dcache for
1597 * case-insensitive filesystems.
1599 * For a case-insensitive lookup match and if the the case-exact dentry
1600 * already exists in in the dcache, use it and return it.
1602 * If no entry exists with the exact case name, allocate new dentry with
1603 * the exact case, and return the spliced entry.
1605 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1606 struct qstr *name)
1608 int error;
1609 struct dentry *found;
1610 struct dentry *new;
1613 * First check if a dentry matching the name already exists,
1614 * if not go ahead and create it now.
1616 found = d_hash_and_lookup(dentry->d_parent, name);
1617 if (!found) {
1618 new = d_alloc(dentry->d_parent, name);
1619 if (!new) {
1620 error = -ENOMEM;
1621 goto err_out;
1624 found = d_splice_alias(inode, new);
1625 if (found) {
1626 dput(new);
1627 return found;
1629 return new;
1633 * If a matching dentry exists, and it's not negative use it.
1635 * Decrement the reference count to balance the iget() done
1636 * earlier on.
1638 if (found->d_inode) {
1639 if (unlikely(found->d_inode != inode)) {
1640 /* This can't happen because bad inodes are unhashed. */
1641 BUG_ON(!is_bad_inode(inode));
1642 BUG_ON(!is_bad_inode(found->d_inode));
1644 iput(inode);
1645 return found;
1649 * We are going to instantiate this dentry, unhash it and clear the
1650 * lookup flag so we can do that.
1652 if (unlikely(d_need_lookup(found)))
1653 d_clear_need_lookup(found);
1656 * Negative dentry: instantiate it unless the inode is a directory and
1657 * already has a dentry.
1659 new = d_splice_alias(inode, found);
1660 if (new) {
1661 dput(found);
1662 found = new;
1664 return found;
1666 err_out:
1667 iput(inode);
1668 return ERR_PTR(error);
1670 EXPORT_SYMBOL(d_add_ci);
1673 * __d_lookup_rcu - search for a dentry (racy, store-free)
1674 * @parent: parent dentry
1675 * @name: qstr of name we wish to find
1676 * @seq: returns d_seq value at the point where the dentry was found
1677 * @inode: returns dentry->d_inode when the inode was found valid.
1678 * Returns: dentry, or NULL
1680 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1681 * resolution (store-free path walking) design described in
1682 * Documentation/filesystems/path-lookup.txt.
1684 * This is not to be used outside core vfs.
1686 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1687 * held, and rcu_read_lock held. The returned dentry must not be stored into
1688 * without taking d_lock and checking d_seq sequence count against @seq
1689 * returned here.
1691 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1692 * function.
1694 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1695 * the returned dentry, so long as its parent's seqlock is checked after the
1696 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1697 * is formed, giving integrity down the path walk.
1699 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1700 unsigned *seq, struct inode **inode)
1702 unsigned int len = name->len;
1703 unsigned int hash = name->hash;
1704 const unsigned char *str = name->name;
1705 struct hlist_bl_head *b = d_hash(parent, hash);
1706 struct hlist_bl_node *node;
1707 struct dentry *dentry;
1710 * Note: There is significant duplication with __d_lookup_rcu which is
1711 * required to prevent single threaded performance regressions
1712 * especially on architectures where smp_rmb (in seqcounts) are costly.
1713 * Keep the two functions in sync.
1717 * The hash list is protected using RCU.
1719 * Carefully use d_seq when comparing a candidate dentry, to avoid
1720 * races with d_move().
1722 * It is possible that concurrent renames can mess up our list
1723 * walk here and result in missing our dentry, resulting in the
1724 * false-negative result. d_lookup() protects against concurrent
1725 * renames using rename_lock seqlock.
1727 * See Documentation/filesystems/path-lookup.txt for more details.
1729 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1730 struct inode *i;
1731 const char *tname;
1732 int tlen;
1734 if (dentry->d_name.hash != hash)
1735 continue;
1737 seqretry:
1738 *seq = read_seqcount_begin(&dentry->d_seq);
1739 if (dentry->d_parent != parent)
1740 continue;
1741 if (d_unhashed(dentry))
1742 continue;
1743 tlen = dentry->d_name.len;
1744 tname = dentry->d_name.name;
1745 i = dentry->d_inode;
1746 prefetch(tname);
1748 * This seqcount check is required to ensure name and
1749 * len are loaded atomically, so as not to walk off the
1750 * edge of memory when walking. If we could load this
1751 * atomically some other way, we could drop this check.
1753 if (read_seqcount_retry(&dentry->d_seq, *seq))
1754 goto seqretry;
1755 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1756 if (parent->d_op->d_compare(parent, *inode,
1757 dentry, i,
1758 tlen, tname, name))
1759 continue;
1760 } else {
1761 if (dentry_cmp(tname, tlen, str, len))
1762 continue;
1765 * No extra seqcount check is required after the name
1766 * compare. The caller must perform a seqcount check in
1767 * order to do anything useful with the returned dentry
1768 * anyway.
1770 *inode = i;
1771 return dentry;
1773 return NULL;
1777 * d_lookup - search for a dentry
1778 * @parent: parent dentry
1779 * @name: qstr of name we wish to find
1780 * Returns: dentry, or NULL
1782 * d_lookup searches the children of the parent dentry for the name in
1783 * question. If the dentry is found its reference count is incremented and the
1784 * dentry is returned. The caller must use dput to free the entry when it has
1785 * finished using it. %NULL is returned if the dentry does not exist.
1787 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1789 struct dentry *dentry;
1790 unsigned seq;
1792 do {
1793 seq = read_seqbegin(&rename_lock);
1794 dentry = __d_lookup(parent, name);
1795 if (dentry)
1796 break;
1797 } while (read_seqretry(&rename_lock, seq));
1798 return dentry;
1800 EXPORT_SYMBOL(d_lookup);
1803 * __d_lookup - search for a dentry (racy)
1804 * @parent: parent dentry
1805 * @name: qstr of name we wish to find
1806 * Returns: dentry, or NULL
1808 * __d_lookup is like d_lookup, however it may (rarely) return a
1809 * false-negative result due to unrelated rename activity.
1811 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1812 * however it must be used carefully, eg. with a following d_lookup in
1813 * the case of failure.
1815 * __d_lookup callers must be commented.
1817 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1819 unsigned int len = name->len;
1820 unsigned int hash = name->hash;
1821 const unsigned char *str = name->name;
1822 struct hlist_bl_head *b = d_hash(parent, hash);
1823 struct hlist_bl_node *node;
1824 struct dentry *found = NULL;
1825 struct dentry *dentry;
1828 * Note: There is significant duplication with __d_lookup_rcu which is
1829 * required to prevent single threaded performance regressions
1830 * especially on architectures where smp_rmb (in seqcounts) are costly.
1831 * Keep the two functions in sync.
1835 * The hash list is protected using RCU.
1837 * Take d_lock when comparing a candidate dentry, to avoid races
1838 * with d_move().
1840 * It is possible that concurrent renames can mess up our list
1841 * walk here and result in missing our dentry, resulting in the
1842 * false-negative result. d_lookup() protects against concurrent
1843 * renames using rename_lock seqlock.
1845 * See Documentation/filesystems/path-lookup.txt for more details.
1847 rcu_read_lock();
1849 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1850 const char *tname;
1851 int tlen;
1853 if (dentry->d_name.hash != hash)
1854 continue;
1856 spin_lock(&dentry->d_lock);
1857 if (dentry->d_parent != parent)
1858 goto next;
1859 if (d_unhashed(dentry))
1860 goto next;
1863 * It is safe to compare names since d_move() cannot
1864 * change the qstr (protected by d_lock).
1866 tlen = dentry->d_name.len;
1867 tname = dentry->d_name.name;
1868 if (parent->d_flags & DCACHE_OP_COMPARE) {
1869 if (parent->d_op->d_compare(parent, parent->d_inode,
1870 dentry, dentry->d_inode,
1871 tlen, tname, name))
1872 goto next;
1873 } else {
1874 if (dentry_cmp(tname, tlen, str, len))
1875 goto next;
1878 dentry->d_count++;
1879 found = dentry;
1880 spin_unlock(&dentry->d_lock);
1881 break;
1882 next:
1883 spin_unlock(&dentry->d_lock);
1885 rcu_read_unlock();
1887 return found;
1891 * d_hash_and_lookup - hash the qstr then search for a dentry
1892 * @dir: Directory to search in
1893 * @name: qstr of name we wish to find
1895 * On hash failure or on lookup failure NULL is returned.
1897 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1899 struct dentry *dentry = NULL;
1902 * Check for a fs-specific hash function. Note that we must
1903 * calculate the standard hash first, as the d_op->d_hash()
1904 * routine may choose to leave the hash value unchanged.
1906 name->hash = full_name_hash(name->name, name->len);
1907 if (dir->d_flags & DCACHE_OP_HASH) {
1908 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1909 goto out;
1911 dentry = d_lookup(dir, name);
1912 out:
1913 return dentry;
1917 * d_validate - verify dentry provided from insecure source (deprecated)
1918 * @dentry: The dentry alleged to be valid child of @dparent
1919 * @dparent: The parent dentry (known to be valid)
1921 * An insecure source has sent us a dentry, here we verify it and dget() it.
1922 * This is used by ncpfs in its readdir implementation.
1923 * Zero is returned in the dentry is invalid.
1925 * This function is slow for big directories, and deprecated, do not use it.
1927 int d_validate(struct dentry *dentry, struct dentry *dparent)
1929 struct dentry *child;
1931 spin_lock(&dparent->d_lock);
1932 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1933 if (dentry == child) {
1934 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1935 __dget_dlock(dentry);
1936 spin_unlock(&dentry->d_lock);
1937 spin_unlock(&dparent->d_lock);
1938 return 1;
1941 spin_unlock(&dparent->d_lock);
1943 return 0;
1945 EXPORT_SYMBOL(d_validate);
1948 * When a file is deleted, we have two options:
1949 * - turn this dentry into a negative dentry
1950 * - unhash this dentry and free it.
1952 * Usually, we want to just turn this into
1953 * a negative dentry, but if anybody else is
1954 * currently using the dentry or the inode
1955 * we can't do that and we fall back on removing
1956 * it from the hash queues and waiting for
1957 * it to be deleted later when it has no users
1961 * d_delete - delete a dentry
1962 * @dentry: The dentry to delete
1964 * Turn the dentry into a negative dentry if possible, otherwise
1965 * remove it from the hash queues so it can be deleted later
1968 void d_delete(struct dentry * dentry)
1970 struct inode *inode;
1971 int isdir = 0;
1973 * Are we the only user?
1975 again:
1976 spin_lock(&dentry->d_lock);
1977 inode = dentry->d_inode;
1978 isdir = S_ISDIR(inode->i_mode);
1979 if (dentry->d_count == 1) {
1980 if (inode && !spin_trylock(&inode->i_lock)) {
1981 spin_unlock(&dentry->d_lock);
1982 cpu_relax();
1983 goto again;
1985 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1986 dentry_unlink_inode(dentry);
1987 fsnotify_nameremove(dentry, isdir);
1988 return;
1991 if (!d_unhashed(dentry))
1992 __d_drop(dentry);
1994 spin_unlock(&dentry->d_lock);
1996 fsnotify_nameremove(dentry, isdir);
1998 EXPORT_SYMBOL(d_delete);
2000 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2002 BUG_ON(!d_unhashed(entry));
2003 hlist_bl_lock(b);
2004 entry->d_flags |= DCACHE_RCUACCESS;
2005 hlist_bl_add_head_rcu(&entry->d_hash, b);
2006 hlist_bl_unlock(b);
2009 static void _d_rehash(struct dentry * entry)
2011 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2015 * d_rehash - add an entry back to the hash
2016 * @entry: dentry to add to the hash
2018 * Adds a dentry to the hash according to its name.
2021 void d_rehash(struct dentry * entry)
2023 spin_lock(&entry->d_lock);
2024 _d_rehash(entry);
2025 spin_unlock(&entry->d_lock);
2027 EXPORT_SYMBOL(d_rehash);
2030 * dentry_update_name_case - update case insensitive dentry with a new name
2031 * @dentry: dentry to be updated
2032 * @name: new name
2034 * Update a case insensitive dentry with new case of name.
2036 * dentry must have been returned by d_lookup with name @name. Old and new
2037 * name lengths must match (ie. no d_compare which allows mismatched name
2038 * lengths).
2040 * Parent inode i_mutex must be held over d_lookup and into this call (to
2041 * keep renames and concurrent inserts, and readdir(2) away).
2043 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2045 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2046 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2048 spin_lock(&dentry->d_lock);
2049 write_seqcount_begin(&dentry->d_seq);
2050 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2051 write_seqcount_end(&dentry->d_seq);
2052 spin_unlock(&dentry->d_lock);
2054 EXPORT_SYMBOL(dentry_update_name_case);
2056 static void switch_names(struct dentry *dentry, struct dentry *target)
2058 if (dname_external(target)) {
2059 if (dname_external(dentry)) {
2061 * Both external: swap the pointers
2063 swap(target->d_name.name, dentry->d_name.name);
2064 } else {
2066 * dentry:internal, target:external. Steal target's
2067 * storage and make target internal.
2069 memcpy(target->d_iname, dentry->d_name.name,
2070 dentry->d_name.len + 1);
2071 dentry->d_name.name = target->d_name.name;
2072 target->d_name.name = target->d_iname;
2074 } else {
2075 if (dname_external(dentry)) {
2077 * dentry:external, target:internal. Give dentry's
2078 * storage to target and make dentry internal
2080 memcpy(dentry->d_iname, target->d_name.name,
2081 target->d_name.len + 1);
2082 target->d_name.name = dentry->d_name.name;
2083 dentry->d_name.name = dentry->d_iname;
2084 } else {
2086 * Both are internal. Just copy target to dentry
2088 memcpy(dentry->d_iname, target->d_name.name,
2089 target->d_name.len + 1);
2090 dentry->d_name.len = target->d_name.len;
2091 return;
2094 swap(dentry->d_name.len, target->d_name.len);
2097 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2100 * XXXX: do we really need to take target->d_lock?
2102 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2103 spin_lock(&target->d_parent->d_lock);
2104 else {
2105 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2106 spin_lock(&dentry->d_parent->d_lock);
2107 spin_lock_nested(&target->d_parent->d_lock,
2108 DENTRY_D_LOCK_NESTED);
2109 } else {
2110 spin_lock(&target->d_parent->d_lock);
2111 spin_lock_nested(&dentry->d_parent->d_lock,
2112 DENTRY_D_LOCK_NESTED);
2115 if (target < dentry) {
2116 spin_lock_nested(&target->d_lock, 2);
2117 spin_lock_nested(&dentry->d_lock, 3);
2118 } else {
2119 spin_lock_nested(&dentry->d_lock, 2);
2120 spin_lock_nested(&target->d_lock, 3);
2124 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2125 struct dentry *target)
2127 if (target->d_parent != dentry->d_parent)
2128 spin_unlock(&dentry->d_parent->d_lock);
2129 if (target->d_parent != target)
2130 spin_unlock(&target->d_parent->d_lock);
2134 * When switching names, the actual string doesn't strictly have to
2135 * be preserved in the target - because we're dropping the target
2136 * anyway. As such, we can just do a simple memcpy() to copy over
2137 * the new name before we switch.
2139 * Note that we have to be a lot more careful about getting the hash
2140 * switched - we have to switch the hash value properly even if it
2141 * then no longer matches the actual (corrupted) string of the target.
2142 * The hash value has to match the hash queue that the dentry is on..
2145 * __d_move - move a dentry
2146 * @dentry: entry to move
2147 * @target: new dentry
2149 * Update the dcache to reflect the move of a file name. Negative
2150 * dcache entries should not be moved in this way. Caller must hold
2151 * rename_lock, the i_mutex of the source and target directories,
2152 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2154 static void __d_move(struct dentry * dentry, struct dentry * target)
2156 if (!dentry->d_inode)
2157 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2159 BUG_ON(d_ancestor(dentry, target));
2160 BUG_ON(d_ancestor(target, dentry));
2162 dentry_lock_for_move(dentry, target);
2164 write_seqcount_begin(&dentry->d_seq);
2165 write_seqcount_begin(&target->d_seq);
2167 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2170 * Move the dentry to the target hash queue. Don't bother checking
2171 * for the same hash queue because of how unlikely it is.
2173 __d_drop(dentry);
2174 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2176 /* Unhash the target: dput() will then get rid of it */
2177 __d_drop(target);
2179 list_del(&dentry->d_u.d_child);
2180 list_del(&target->d_u.d_child);
2182 /* Switch the names.. */
2183 switch_names(dentry, target);
2184 swap(dentry->d_name.hash, target->d_name.hash);
2186 /* ... and switch the parents */
2187 if (IS_ROOT(dentry)) {
2188 dentry->d_parent = target->d_parent;
2189 target->d_parent = target;
2190 INIT_LIST_HEAD(&target->d_u.d_child);
2191 } else {
2192 swap(dentry->d_parent, target->d_parent);
2194 /* And add them back to the (new) parent lists */
2195 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2198 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2200 write_seqcount_end(&target->d_seq);
2201 write_seqcount_end(&dentry->d_seq);
2203 dentry_unlock_parents_for_move(dentry, target);
2204 spin_unlock(&target->d_lock);
2205 fsnotify_d_move(dentry);
2206 spin_unlock(&dentry->d_lock);
2210 * d_move - move a dentry
2211 * @dentry: entry to move
2212 * @target: new dentry
2214 * Update the dcache to reflect the move of a file name. Negative
2215 * dcache entries should not be moved in this way. See the locking
2216 * requirements for __d_move.
2218 void d_move(struct dentry *dentry, struct dentry *target)
2220 write_seqlock(&rename_lock);
2221 __d_move(dentry, target);
2222 write_sequnlock(&rename_lock);
2224 EXPORT_SYMBOL(d_move);
2227 * d_ancestor - search for an ancestor
2228 * @p1: ancestor dentry
2229 * @p2: child dentry
2231 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2232 * an ancestor of p2, else NULL.
2234 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2236 struct dentry *p;
2238 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2239 if (p->d_parent == p1)
2240 return p;
2242 return NULL;
2246 * This helper attempts to cope with remotely renamed directories
2248 * It assumes that the caller is already holding
2249 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2251 * Note: If ever the locking in lock_rename() changes, then please
2252 * remember to update this too...
2254 static struct dentry *__d_unalias(struct inode *inode,
2255 struct dentry *dentry, struct dentry *alias)
2257 struct mutex *m1 = NULL, *m2 = NULL;
2258 struct dentry *ret;
2260 /* If alias and dentry share a parent, then no extra locks required */
2261 if (alias->d_parent == dentry->d_parent)
2262 goto out_unalias;
2264 /* See lock_rename() */
2265 ret = ERR_PTR(-EBUSY);
2266 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2267 goto out_err;
2268 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2269 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2270 goto out_err;
2271 m2 = &alias->d_parent->d_inode->i_mutex;
2272 out_unalias:
2273 __d_move(alias, dentry);
2274 ret = alias;
2275 out_err:
2276 spin_unlock(&inode->i_lock);
2277 if (m2)
2278 mutex_unlock(m2);
2279 if (m1)
2280 mutex_unlock(m1);
2281 return ret;
2285 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2286 * named dentry in place of the dentry to be replaced.
2287 * returns with anon->d_lock held!
2289 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2291 struct dentry *dparent, *aparent;
2293 dentry_lock_for_move(anon, dentry);
2295 write_seqcount_begin(&dentry->d_seq);
2296 write_seqcount_begin(&anon->d_seq);
2298 dparent = dentry->d_parent;
2299 aparent = anon->d_parent;
2301 switch_names(dentry, anon);
2302 swap(dentry->d_name.hash, anon->d_name.hash);
2304 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2305 list_del(&dentry->d_u.d_child);
2306 if (!IS_ROOT(dentry))
2307 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2308 else
2309 INIT_LIST_HEAD(&dentry->d_u.d_child);
2311 anon->d_parent = (dparent == dentry) ? anon : dparent;
2312 list_del(&anon->d_u.d_child);
2313 if (!IS_ROOT(anon))
2314 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2315 else
2316 INIT_LIST_HEAD(&anon->d_u.d_child);
2318 write_seqcount_end(&dentry->d_seq);
2319 write_seqcount_end(&anon->d_seq);
2321 dentry_unlock_parents_for_move(anon, dentry);
2322 spin_unlock(&dentry->d_lock);
2324 /* anon->d_lock still locked, returns locked */
2325 anon->d_flags &= ~DCACHE_DISCONNECTED;
2329 * d_materialise_unique - introduce an inode into the tree
2330 * @dentry: candidate dentry
2331 * @inode: inode to bind to the dentry, to which aliases may be attached
2333 * Introduces an dentry into the tree, substituting an extant disconnected
2334 * root directory alias in its place if there is one. Caller must hold the
2335 * i_mutex of the parent directory.
2337 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2339 struct dentry *actual;
2341 BUG_ON(!d_unhashed(dentry));
2343 if (!inode) {
2344 actual = dentry;
2345 __d_instantiate(dentry, NULL);
2346 d_rehash(actual);
2347 goto out_nolock;
2350 spin_lock(&inode->i_lock);
2352 if (S_ISDIR(inode->i_mode)) {
2353 struct dentry *alias;
2355 /* Does an aliased dentry already exist? */
2356 alias = __d_find_alias(inode, 0);
2357 if (alias) {
2358 actual = alias;
2359 write_seqlock(&rename_lock);
2361 if (d_ancestor(alias, dentry)) {
2362 /* Check for loops */
2363 actual = ERR_PTR(-ELOOP);
2364 spin_unlock(&inode->i_lock);
2365 } else if (IS_ROOT(alias)) {
2366 /* Is this an anonymous mountpoint that we
2367 * could splice into our tree? */
2368 __d_materialise_dentry(dentry, alias);
2369 write_sequnlock(&rename_lock);
2370 __d_drop(alias);
2371 goto found;
2372 } else {
2373 /* Nope, but we must(!) avoid directory
2374 * aliasing. This drops inode->i_lock */
2375 actual = __d_unalias(inode, dentry, alias);
2377 write_sequnlock(&rename_lock);
2378 if (IS_ERR(actual)) {
2379 if (PTR_ERR(actual) == -ELOOP)
2380 pr_warn_ratelimited(
2381 "VFS: Lookup of '%s' in %s %s"
2382 " would have caused loop\n",
2383 dentry->d_name.name,
2384 inode->i_sb->s_type->name,
2385 inode->i_sb->s_id);
2386 dput(alias);
2388 goto out_nolock;
2392 /* Add a unique reference */
2393 actual = __d_instantiate_unique(dentry, inode);
2394 if (!actual)
2395 actual = dentry;
2396 else
2397 BUG_ON(!d_unhashed(actual));
2399 spin_lock(&actual->d_lock);
2400 found:
2401 _d_rehash(actual);
2402 spin_unlock(&actual->d_lock);
2403 spin_unlock(&inode->i_lock);
2404 out_nolock:
2405 if (actual == dentry) {
2406 security_d_instantiate(dentry, inode);
2407 return NULL;
2410 iput(inode);
2411 return actual;
2413 EXPORT_SYMBOL_GPL(d_materialise_unique);
2415 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2417 *buflen -= namelen;
2418 if (*buflen < 0)
2419 return -ENAMETOOLONG;
2420 *buffer -= namelen;
2421 memcpy(*buffer, str, namelen);
2422 return 0;
2425 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2427 return prepend(buffer, buflen, name->name, name->len);
2431 * prepend_path - Prepend path string to a buffer
2432 * @path: the dentry/vfsmount to report
2433 * @root: root vfsmnt/dentry
2434 * @buffer: pointer to the end of the buffer
2435 * @buflen: pointer to buffer length
2437 * Caller holds the rename_lock.
2439 static int prepend_path(const struct path *path,
2440 const struct path *root,
2441 char **buffer, int *buflen)
2443 struct dentry *dentry = path->dentry;
2444 struct vfsmount *vfsmnt = path->mnt;
2445 bool slash = false;
2446 int error = 0;
2448 br_read_lock(vfsmount_lock);
2449 while (dentry != root->dentry || vfsmnt != root->mnt) {
2450 struct dentry * parent;
2452 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2453 /* Global root? */
2454 if (vfsmnt->mnt_parent == vfsmnt) {
2455 goto global_root;
2457 dentry = vfsmnt->mnt_mountpoint;
2458 vfsmnt = vfsmnt->mnt_parent;
2459 continue;
2461 parent = dentry->d_parent;
2462 prefetch(parent);
2463 spin_lock(&dentry->d_lock);
2464 error = prepend_name(buffer, buflen, &dentry->d_name);
2465 spin_unlock(&dentry->d_lock);
2466 if (!error)
2467 error = prepend(buffer, buflen, "/", 1);
2468 if (error)
2469 break;
2471 slash = true;
2472 dentry = parent;
2475 if (!error && !slash)
2476 error = prepend(buffer, buflen, "/", 1);
2478 out:
2479 br_read_unlock(vfsmount_lock);
2480 return error;
2482 global_root:
2484 * Filesystems needing to implement special "root names"
2485 * should do so with ->d_dname()
2487 if (IS_ROOT(dentry) &&
2488 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2489 WARN(1, "Root dentry has weird name <%.*s>\n",
2490 (int) dentry->d_name.len, dentry->d_name.name);
2492 if (!slash)
2493 error = prepend(buffer, buflen, "/", 1);
2494 if (!error)
2495 error = vfsmnt->mnt_ns ? 1 : 2;
2496 goto out;
2500 * __d_path - return the path of a dentry
2501 * @path: the dentry/vfsmount to report
2502 * @root: root vfsmnt/dentry
2503 * @buf: buffer to return value in
2504 * @buflen: buffer length
2506 * Convert a dentry into an ASCII path name.
2508 * Returns a pointer into the buffer or an error code if the
2509 * path was too long.
2511 * "buflen" should be positive.
2513 * If the path is not reachable from the supplied root, return %NULL.
2515 char *__d_path(const struct path *path,
2516 const struct path *root,
2517 char *buf, int buflen)
2519 char *res = buf + buflen;
2520 int error;
2522 prepend(&res, &buflen, "\0", 1);
2523 write_seqlock(&rename_lock);
2524 error = prepend_path(path, root, &res, &buflen);
2525 write_sequnlock(&rename_lock);
2527 if (error < 0)
2528 return ERR_PTR(error);
2529 if (error > 0)
2530 return NULL;
2531 return res;
2534 char *d_absolute_path(const struct path *path,
2535 char *buf, int buflen)
2537 struct path root = {};
2538 char *res = buf + buflen;
2539 int error;
2541 prepend(&res, &buflen, "\0", 1);
2542 write_seqlock(&rename_lock);
2543 error = prepend_path(path, &root, &res, &buflen);
2544 write_sequnlock(&rename_lock);
2546 if (error > 1)
2547 error = -EINVAL;
2548 if (error < 0)
2549 return ERR_PTR(error);
2550 return res;
2554 * same as __d_path but appends "(deleted)" for unlinked files.
2556 static int path_with_deleted(const struct path *path,
2557 const struct path *root,
2558 char **buf, int *buflen)
2560 prepend(buf, buflen, "\0", 1);
2561 if (d_unlinked(path->dentry)) {
2562 int error = prepend(buf, buflen, " (deleted)", 10);
2563 if (error)
2564 return error;
2567 return prepend_path(path, root, buf, buflen);
2570 static int prepend_unreachable(char **buffer, int *buflen)
2572 return prepend(buffer, buflen, "(unreachable)", 13);
2576 * d_path - return the path of a dentry
2577 * @path: path to report
2578 * @buf: buffer to return value in
2579 * @buflen: buffer length
2581 * Convert a dentry into an ASCII path name. If the entry has been deleted
2582 * the string " (deleted)" is appended. Note that this is ambiguous.
2584 * Returns a pointer into the buffer or an error code if the path was
2585 * too long. Note: Callers should use the returned pointer, not the passed
2586 * in buffer, to use the name! The implementation often starts at an offset
2587 * into the buffer, and may leave 0 bytes at the start.
2589 * "buflen" should be positive.
2591 char *d_path(const struct path *path, char *buf, int buflen)
2593 char *res = buf + buflen;
2594 struct path root;
2595 int error;
2598 * We have various synthetic filesystems that never get mounted. On
2599 * these filesystems dentries are never used for lookup purposes, and
2600 * thus don't need to be hashed. They also don't need a name until a
2601 * user wants to identify the object in /proc/pid/fd/. The little hack
2602 * below allows us to generate a name for these objects on demand:
2604 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2605 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2607 get_fs_root(current->fs, &root);
2608 write_seqlock(&rename_lock);
2609 error = path_with_deleted(path, &root, &res, &buflen);
2610 if (error < 0)
2611 res = ERR_PTR(error);
2612 write_sequnlock(&rename_lock);
2613 path_put(&root);
2614 return res;
2616 EXPORT_SYMBOL(d_path);
2619 * d_path_with_unreachable - return the path of a dentry
2620 * @path: path to report
2621 * @buf: buffer to return value in
2622 * @buflen: buffer length
2624 * The difference from d_path() is that this prepends "(unreachable)"
2625 * to paths which are unreachable from the current process' root.
2627 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2629 char *res = buf + buflen;
2630 struct path root;
2631 int error;
2633 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2634 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2636 get_fs_root(current->fs, &root);
2637 write_seqlock(&rename_lock);
2638 error = path_with_deleted(path, &root, &res, &buflen);
2639 if (error > 0)
2640 error = prepend_unreachable(&res, &buflen);
2641 write_sequnlock(&rename_lock);
2642 path_put(&root);
2643 if (error)
2644 res = ERR_PTR(error);
2646 return res;
2650 * Helper function for dentry_operations.d_dname() members
2652 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2653 const char *fmt, ...)
2655 va_list args;
2656 char temp[64];
2657 int sz;
2659 va_start(args, fmt);
2660 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2661 va_end(args);
2663 if (sz > sizeof(temp) || sz > buflen)
2664 return ERR_PTR(-ENAMETOOLONG);
2666 buffer += buflen - sz;
2667 return memcpy(buffer, temp, sz);
2671 * Write full pathname from the root of the filesystem into the buffer.
2673 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2675 char *end = buf + buflen;
2676 char *retval;
2678 prepend(&end, &buflen, "\0", 1);
2679 if (buflen < 1)
2680 goto Elong;
2681 /* Get '/' right */
2682 retval = end-1;
2683 *retval = '/';
2685 while (!IS_ROOT(dentry)) {
2686 struct dentry *parent = dentry->d_parent;
2687 int error;
2689 prefetch(parent);
2690 spin_lock(&dentry->d_lock);
2691 error = prepend_name(&end, &buflen, &dentry->d_name);
2692 spin_unlock(&dentry->d_lock);
2693 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2694 goto Elong;
2696 retval = end;
2697 dentry = parent;
2699 return retval;
2700 Elong:
2701 return ERR_PTR(-ENAMETOOLONG);
2704 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2706 char *retval;
2708 write_seqlock(&rename_lock);
2709 retval = __dentry_path(dentry, buf, buflen);
2710 write_sequnlock(&rename_lock);
2712 return retval;
2714 EXPORT_SYMBOL(dentry_path_raw);
2716 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2718 char *p = NULL;
2719 char *retval;
2721 write_seqlock(&rename_lock);
2722 if (d_unlinked(dentry)) {
2723 p = buf + buflen;
2724 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2725 goto Elong;
2726 buflen++;
2728 retval = __dentry_path(dentry, buf, buflen);
2729 write_sequnlock(&rename_lock);
2730 if (!IS_ERR(retval) && p)
2731 *p = '/'; /* restore '/' overriden with '\0' */
2732 return retval;
2733 Elong:
2734 return ERR_PTR(-ENAMETOOLONG);
2738 * NOTE! The user-level library version returns a
2739 * character pointer. The kernel system call just
2740 * returns the length of the buffer filled (which
2741 * includes the ending '\0' character), or a negative
2742 * error value. So libc would do something like
2744 * char *getcwd(char * buf, size_t size)
2746 * int retval;
2748 * retval = sys_getcwd(buf, size);
2749 * if (retval >= 0)
2750 * return buf;
2751 * errno = -retval;
2752 * return NULL;
2755 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2757 int error;
2758 struct path pwd, root;
2759 char *page = (char *) __get_free_page(GFP_USER);
2761 if (!page)
2762 return -ENOMEM;
2764 get_fs_root_and_pwd(current->fs, &root, &pwd);
2766 error = -ENOENT;
2767 write_seqlock(&rename_lock);
2768 if (!d_unlinked(pwd.dentry)) {
2769 unsigned long len;
2770 char *cwd = page + PAGE_SIZE;
2771 int buflen = PAGE_SIZE;
2773 prepend(&cwd, &buflen, "\0", 1);
2774 error = prepend_path(&pwd, &root, &cwd, &buflen);
2775 write_sequnlock(&rename_lock);
2777 if (error < 0)
2778 goto out;
2780 /* Unreachable from current root */
2781 if (error > 0) {
2782 error = prepend_unreachable(&cwd, &buflen);
2783 if (error)
2784 goto out;
2787 error = -ERANGE;
2788 len = PAGE_SIZE + page - cwd;
2789 if (len <= size) {
2790 error = len;
2791 if (copy_to_user(buf, cwd, len))
2792 error = -EFAULT;
2794 } else {
2795 write_sequnlock(&rename_lock);
2798 out:
2799 path_put(&pwd);
2800 path_put(&root);
2801 free_page((unsigned long) page);
2802 return error;
2806 * Test whether new_dentry is a subdirectory of old_dentry.
2808 * Trivially implemented using the dcache structure
2812 * is_subdir - is new dentry a subdirectory of old_dentry
2813 * @new_dentry: new dentry
2814 * @old_dentry: old dentry
2816 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2817 * Returns 0 otherwise.
2818 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2821 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2823 int result;
2824 unsigned seq;
2826 if (new_dentry == old_dentry)
2827 return 1;
2829 do {
2830 /* for restarting inner loop in case of seq retry */
2831 seq = read_seqbegin(&rename_lock);
2833 * Need rcu_readlock to protect against the d_parent trashing
2834 * due to d_move
2836 rcu_read_lock();
2837 if (d_ancestor(old_dentry, new_dentry))
2838 result = 1;
2839 else
2840 result = 0;
2841 rcu_read_unlock();
2842 } while (read_seqretry(&rename_lock, seq));
2844 return result;
2847 int path_is_under(struct path *path1, struct path *path2)
2849 struct vfsmount *mnt = path1->mnt;
2850 struct dentry *dentry = path1->dentry;
2851 int res;
2853 br_read_lock(vfsmount_lock);
2854 if (mnt != path2->mnt) {
2855 for (;;) {
2856 if (mnt->mnt_parent == mnt) {
2857 br_read_unlock(vfsmount_lock);
2858 return 0;
2860 if (mnt->mnt_parent == path2->mnt)
2861 break;
2862 mnt = mnt->mnt_parent;
2864 dentry = mnt->mnt_mountpoint;
2866 res = is_subdir(dentry, path2->dentry);
2867 br_read_unlock(vfsmount_lock);
2868 return res;
2870 EXPORT_SYMBOL(path_is_under);
2872 void d_genocide(struct dentry *root)
2874 struct dentry *this_parent;
2875 struct list_head *next;
2876 unsigned seq;
2877 int locked = 0;
2879 seq = read_seqbegin(&rename_lock);
2880 again:
2881 this_parent = root;
2882 spin_lock(&this_parent->d_lock);
2883 repeat:
2884 next = this_parent->d_subdirs.next;
2885 resume:
2886 while (next != &this_parent->d_subdirs) {
2887 struct list_head *tmp = next;
2888 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2889 next = tmp->next;
2891 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2892 if (d_unhashed(dentry) || !dentry->d_inode) {
2893 spin_unlock(&dentry->d_lock);
2894 continue;
2896 if (!list_empty(&dentry->d_subdirs)) {
2897 spin_unlock(&this_parent->d_lock);
2898 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2899 this_parent = dentry;
2900 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2901 goto repeat;
2903 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2904 dentry->d_flags |= DCACHE_GENOCIDE;
2905 dentry->d_count--;
2907 spin_unlock(&dentry->d_lock);
2909 if (this_parent != root) {
2910 struct dentry *child = this_parent;
2911 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2912 this_parent->d_flags |= DCACHE_GENOCIDE;
2913 this_parent->d_count--;
2915 this_parent = try_to_ascend(this_parent, locked, seq);
2916 if (!this_parent)
2917 goto rename_retry;
2918 next = child->d_u.d_child.next;
2919 goto resume;
2921 spin_unlock(&this_parent->d_lock);
2922 if (!locked && read_seqretry(&rename_lock, seq))
2923 goto rename_retry;
2924 if (locked)
2925 write_sequnlock(&rename_lock);
2926 return;
2928 rename_retry:
2929 if (locked)
2930 goto again;
2931 locked = 1;
2932 write_seqlock(&rename_lock);
2933 goto again;
2937 * find_inode_number - check for dentry with name
2938 * @dir: directory to check
2939 * @name: Name to find.
2941 * Check whether a dentry already exists for the given name,
2942 * and return the inode number if it has an inode. Otherwise
2943 * 0 is returned.
2945 * This routine is used to post-process directory listings for
2946 * filesystems using synthetic inode numbers, and is necessary
2947 * to keep getcwd() working.
2950 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2952 struct dentry * dentry;
2953 ino_t ino = 0;
2955 dentry = d_hash_and_lookup(dir, name);
2956 if (dentry) {
2957 if (dentry->d_inode)
2958 ino = dentry->d_inode->i_ino;
2959 dput(dentry);
2961 return ino;
2963 EXPORT_SYMBOL(find_inode_number);
2965 static __initdata unsigned long dhash_entries;
2966 static int __init set_dhash_entries(char *str)
2968 if (!str)
2969 return 0;
2970 dhash_entries = simple_strtoul(str, &str, 0);
2971 return 1;
2973 __setup("dhash_entries=", set_dhash_entries);
2975 static void __init dcache_init_early(void)
2977 int loop;
2979 /* If hashes are distributed across NUMA nodes, defer
2980 * hash allocation until vmalloc space is available.
2982 if (hashdist)
2983 return;
2985 dentry_hashtable =
2986 alloc_large_system_hash("Dentry cache",
2987 sizeof(struct hlist_bl_head),
2988 dhash_entries,
2990 HASH_EARLY,
2991 &d_hash_shift,
2992 &d_hash_mask,
2995 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2996 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2999 static void __init dcache_init(void)
3001 int loop;
3004 * A constructor could be added for stable state like the lists,
3005 * but it is probably not worth it because of the cache nature
3006 * of the dcache.
3008 dentry_cache = KMEM_CACHE(dentry,
3009 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3011 /* Hash may have been set up in dcache_init_early */
3012 if (!hashdist)
3013 return;
3015 dentry_hashtable =
3016 alloc_large_system_hash("Dentry cache",
3017 sizeof(struct hlist_bl_head),
3018 dhash_entries,
3021 &d_hash_shift,
3022 &d_hash_mask,
3025 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3026 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3029 /* SLAB cache for __getname() consumers */
3030 struct kmem_cache *names_cachep __read_mostly;
3031 EXPORT_SYMBOL(names_cachep);
3033 EXPORT_SYMBOL(d_genocide);
3035 void __init vfs_caches_init_early(void)
3037 dcache_init_early();
3038 inode_init_early();
3041 void __init vfs_caches_init(unsigned long mempages)
3043 unsigned long reserve;
3045 /* Base hash sizes on available memory, with a reserve equal to
3046 150% of current kernel size */
3048 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3049 mempages -= reserve;
3051 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3052 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3054 dcache_init();
3055 inode_init();
3056 files_init(mempages);
3057 mnt_init();
3058 bdev_cache_init();
3059 chrdev_init();