4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
44 * dcache->d_inode->i_lock protects:
45 * - i_dentry, d_alias, d_inode of aliases
46 * dcache_hash_bucket lock protects:
47 * - the dcache hash table
48 * s_anon bl list spinlock protects:
49 * - the s_anon list (see __d_drop)
50 * dcache_lru_lock protects:
51 * - the dcache lru lists and counters
58 * - d_parent and d_subdirs
59 * - childrens' d_child and d_parent
63 * dentry->d_inode->i_lock
66 * dcache_hash_bucket lock
69 * If there is an ancestor relationship:
70 * dentry->d_parent->...->d_parent->d_lock
72 * dentry->d_parent->d_lock
75 * If no ancestor relationship:
76 * if (dentry1 < dentry2)
80 int sysctl_vfs_cache_pressure __read_mostly
= 100;
81 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
83 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
84 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
86 EXPORT_SYMBOL(rename_lock
);
88 static struct kmem_cache
*dentry_cache __read_mostly
;
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
98 #define D_HASHBITS d_hash_shift
99 #define D_HASHMASK d_hash_mask
101 static unsigned int d_hash_mask __read_mostly
;
102 static unsigned int d_hash_shift __read_mostly
;
104 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
106 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
109 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
110 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
111 return dentry_hashtable
+ (hash
& D_HASHMASK
);
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat
= {
119 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 static int get_nr_dentry(void)
126 for_each_possible_cpu(i
)
127 sum
+= per_cpu(nr_dentry
, i
);
128 return sum
< 0 ? 0 : sum
;
131 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
132 size_t *lenp
, loff_t
*ppos
)
134 dentry_stat
.nr_dentry
= get_nr_dentry();
135 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
139 static void __d_free(struct rcu_head
*head
)
141 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
143 WARN_ON(!list_empty(&dentry
->d_alias
));
144 if (dname_external(dentry
))
145 kfree(dentry
->d_name
.name
);
146 kmem_cache_free(dentry_cache
, dentry
);
152 static void d_free(struct dentry
*dentry
)
154 BUG_ON(dentry
->d_count
);
155 this_cpu_dec(nr_dentry
);
156 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
157 dentry
->d_op
->d_release(dentry
);
159 /* if dentry was never visible to RCU, immediate free is OK */
160 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
161 __d_free(&dentry
->d_u
.d_rcu
);
163 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
167 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
168 * @dentry: the target dentry
169 * After this call, in-progress rcu-walk path lookup will fail. This
170 * should be called after unhashing, and after changing d_inode (if
171 * the dentry has not already been unhashed).
173 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
175 assert_spin_locked(&dentry
->d_lock
);
176 /* Go through a barrier */
177 write_seqcount_barrier(&dentry
->d_seq
);
181 * Release the dentry's inode, using the filesystem
182 * d_iput() operation if defined. Dentry has no refcount
185 static void dentry_iput(struct dentry
* dentry
)
186 __releases(dentry
->d_lock
)
187 __releases(dentry
->d_inode
->i_lock
)
189 struct inode
*inode
= dentry
->d_inode
;
191 dentry
->d_inode
= NULL
;
192 list_del_init(&dentry
->d_alias
);
193 spin_unlock(&dentry
->d_lock
);
194 spin_unlock(&inode
->i_lock
);
196 fsnotify_inoderemove(inode
);
197 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
198 dentry
->d_op
->d_iput(dentry
, inode
);
202 spin_unlock(&dentry
->d_lock
);
207 * Release the dentry's inode, using the filesystem
208 * d_iput() operation if defined. dentry remains in-use.
210 static void dentry_unlink_inode(struct dentry
* dentry
)
211 __releases(dentry
->d_lock
)
212 __releases(dentry
->d_inode
->i_lock
)
214 struct inode
*inode
= dentry
->d_inode
;
215 dentry
->d_inode
= NULL
;
216 list_del_init(&dentry
->d_alias
);
217 dentry_rcuwalk_barrier(dentry
);
218 spin_unlock(&dentry
->d_lock
);
219 spin_unlock(&inode
->i_lock
);
221 fsnotify_inoderemove(inode
);
222 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
223 dentry
->d_op
->d_iput(dentry
, inode
);
229 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
231 static void dentry_lru_add(struct dentry
*dentry
)
233 if (list_empty(&dentry
->d_lru
)) {
234 spin_lock(&dcache_lru_lock
);
235 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
236 dentry
->d_sb
->s_nr_dentry_unused
++;
237 dentry_stat
.nr_unused
++;
238 spin_unlock(&dcache_lru_lock
);
242 static void __dentry_lru_del(struct dentry
*dentry
)
244 list_del_init(&dentry
->d_lru
);
245 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
246 dentry
->d_sb
->s_nr_dentry_unused
--;
247 dentry_stat
.nr_unused
--;
251 * Remove a dentry with references from the LRU.
253 static void dentry_lru_del(struct dentry
*dentry
)
255 if (!list_empty(&dentry
->d_lru
)) {
256 spin_lock(&dcache_lru_lock
);
257 __dentry_lru_del(dentry
);
258 spin_unlock(&dcache_lru_lock
);
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
267 static void dentry_lru_prune(struct dentry
*dentry
)
269 if (!list_empty(&dentry
->d_lru
)) {
270 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
271 dentry
->d_op
->d_prune(dentry
);
273 spin_lock(&dcache_lru_lock
);
274 __dentry_lru_del(dentry
);
275 spin_unlock(&dcache_lru_lock
);
279 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
281 spin_lock(&dcache_lru_lock
);
282 if (list_empty(&dentry
->d_lru
)) {
283 list_add_tail(&dentry
->d_lru
, list
);
284 dentry
->d_sb
->s_nr_dentry_unused
++;
285 dentry_stat
.nr_unused
++;
287 list_move_tail(&dentry
->d_lru
, list
);
289 spin_unlock(&dcache_lru_lock
);
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
295 * @parent: parent dentry
297 * The dentry must already be unhashed and removed from the LRU.
299 * If this is the root of the dentry tree, return NULL.
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
304 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
305 __releases(dentry
->d_lock
)
306 __releases(parent
->d_lock
)
307 __releases(dentry
->d_inode
->i_lock
)
309 list_del(&dentry
->d_u
.d_child
);
311 * Inform try_to_ascend() that we are no longer attached to the
314 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
316 spin_unlock(&parent
->d_lock
);
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
331 static void __d_shrink(struct dentry
*dentry
)
333 if (!d_unhashed(dentry
)) {
334 struct hlist_bl_head
*b
;
335 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
336 b
= &dentry
->d_sb
->s_anon
;
338 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
341 __hlist_bl_del(&dentry
->d_hash
);
342 dentry
->d_hash
.pprev
= NULL
;
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
360 * __d_drop requires dentry->d_lock.
362 void __d_drop(struct dentry
*dentry
)
364 if (!d_unhashed(dentry
)) {
366 dentry_rcuwalk_barrier(dentry
);
369 EXPORT_SYMBOL(__d_drop
);
371 void d_drop(struct dentry
*dentry
)
373 spin_lock(&dentry
->d_lock
);
375 spin_unlock(&dentry
->d_lock
);
377 EXPORT_SYMBOL(d_drop
);
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
388 void d_clear_need_lookup(struct dentry
*dentry
)
390 spin_lock(&dentry
->d_lock
);
392 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
393 spin_unlock(&dentry
->d_lock
);
395 EXPORT_SYMBOL(d_clear_need_lookup
);
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
403 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
404 __releases(dentry
->d_lock
)
407 struct dentry
*parent
;
409 inode
= dentry
->d_inode
;
410 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
412 spin_unlock(&dentry
->d_lock
);
414 return dentry
; /* try again with same dentry */
419 parent
= dentry
->d_parent
;
420 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
422 spin_unlock(&inode
->i_lock
);
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
433 dentry_lru_prune(dentry
);
434 /* if it was on the hash then remove it */
436 return d_kill(dentry
, parent
);
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
457 * dput - release a dentry
458 * @dentry: dentry to release
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
465 void dput(struct dentry
*dentry
)
471 if (dentry
->d_count
== 1)
473 spin_lock(&dentry
->d_lock
);
474 BUG_ON(!dentry
->d_count
);
475 if (dentry
->d_count
> 1) {
477 spin_unlock(&dentry
->d_lock
);
481 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
482 if (dentry
->d_op
->d_delete(dentry
))
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry
))
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
495 if (!d_need_lookup(dentry
))
496 dentry
->d_flags
|= DCACHE_REFERENCED
;
497 dentry_lru_add(dentry
);
500 spin_unlock(&dentry
->d_lock
);
504 dentry
= dentry_kill(dentry
, 1);
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
522 int d_invalidate(struct dentry
* dentry
)
525 * If it's already been dropped, return OK.
527 spin_lock(&dentry
->d_lock
);
528 if (d_unhashed(dentry
)) {
529 spin_unlock(&dentry
->d_lock
);
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
536 if (!list_empty(&dentry
->d_subdirs
)) {
537 spin_unlock(&dentry
->d_lock
);
538 shrink_dcache_parent(dentry
);
539 spin_lock(&dentry
->d_lock
);
543 * Somebody else still using it?
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
551 * We also need to leave mountpoints alone,
554 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
555 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
556 spin_unlock(&dentry
->d_lock
);
562 spin_unlock(&dentry
->d_lock
);
565 EXPORT_SYMBOL(d_invalidate
);
567 /* This must be called with d_lock held */
568 static inline void __dget_dlock(struct dentry
*dentry
)
573 static inline void __dget(struct dentry
*dentry
)
575 spin_lock(&dentry
->d_lock
);
576 __dget_dlock(dentry
);
577 spin_unlock(&dentry
->d_lock
);
580 struct dentry
*dget_parent(struct dentry
*dentry
)
586 * Don't need rcu_dereference because we re-check it was correct under
590 ret
= dentry
->d_parent
;
591 spin_lock(&ret
->d_lock
);
592 if (unlikely(ret
!= dentry
->d_parent
)) {
593 spin_unlock(&ret
->d_lock
);
598 BUG_ON(!ret
->d_count
);
600 spin_unlock(&ret
->d_lock
);
603 EXPORT_SYMBOL(dget_parent
);
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
618 * any other hashed alias over that one unless @want_discon is set,
619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
623 struct dentry
*alias
, *discon_alias
;
627 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
628 spin_lock(&alias
->d_lock
);
629 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
630 if (IS_ROOT(alias
) &&
631 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
632 discon_alias
= alias
;
633 } else if (!want_discon
) {
635 spin_unlock(&alias
->d_lock
);
639 spin_unlock(&alias
->d_lock
);
642 alias
= discon_alias
;
643 spin_lock(&alias
->d_lock
);
644 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
645 if (IS_ROOT(alias
) &&
646 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
648 spin_unlock(&alias
->d_lock
);
652 spin_unlock(&alias
->d_lock
);
658 struct dentry
*d_find_alias(struct inode
*inode
)
660 struct dentry
*de
= NULL
;
662 if (!list_empty(&inode
->i_dentry
)) {
663 spin_lock(&inode
->i_lock
);
664 de
= __d_find_alias(inode
, 0);
665 spin_unlock(&inode
->i_lock
);
669 EXPORT_SYMBOL(d_find_alias
);
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
675 void d_prune_aliases(struct inode
*inode
)
677 struct dentry
*dentry
;
679 spin_lock(&inode
->i_lock
);
680 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
681 spin_lock(&dentry
->d_lock
);
682 if (!dentry
->d_count
) {
683 __dget_dlock(dentry
);
685 spin_unlock(&dentry
->d_lock
);
686 spin_unlock(&inode
->i_lock
);
690 spin_unlock(&dentry
->d_lock
);
692 spin_unlock(&inode
->i_lock
);
694 EXPORT_SYMBOL(d_prune_aliases
);
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
701 * This may fail if locks cannot be acquired no problem, just try again.
703 static void try_prune_one_dentry(struct dentry
*dentry
)
704 __releases(dentry
->d_lock
)
706 struct dentry
*parent
;
708 parent
= dentry_kill(dentry
, 0);
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
721 if (parent
== dentry
)
724 /* Prune ancestors. */
727 spin_lock(&dentry
->d_lock
);
728 if (dentry
->d_count
> 1) {
730 spin_unlock(&dentry
->d_lock
);
733 dentry
= dentry_kill(dentry
, 1);
737 static void shrink_dentry_list(struct list_head
*list
)
739 struct dentry
*dentry
;
743 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
744 if (&dentry
->d_lru
== list
)
746 spin_lock(&dentry
->d_lock
);
747 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
748 spin_unlock(&dentry
->d_lock
);
753 * We found an inuse dentry which was not removed from
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
757 if (dentry
->d_count
) {
758 dentry_lru_del(dentry
);
759 spin_unlock(&dentry
->d_lock
);
765 try_prune_one_dentry(dentry
);
773 * prune_dcache_sb - shrink the dcache
775 * @count: number of entries to try to free
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
781 * This function may fail to free any resources if all the dentries are in
784 void prune_dcache_sb(struct super_block
*sb
, int count
)
786 struct dentry
*dentry
;
787 LIST_HEAD(referenced
);
791 spin_lock(&dcache_lru_lock
);
792 while (!list_empty(&sb
->s_dentry_lru
)) {
793 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
794 struct dentry
, d_lru
);
795 BUG_ON(dentry
->d_sb
!= sb
);
797 if (!spin_trylock(&dentry
->d_lock
)) {
798 spin_unlock(&dcache_lru_lock
);
803 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
804 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
805 list_move(&dentry
->d_lru
, &referenced
);
806 spin_unlock(&dentry
->d_lock
);
808 list_move_tail(&dentry
->d_lru
, &tmp
);
809 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
810 spin_unlock(&dentry
->d_lock
);
814 cond_resched_lock(&dcache_lru_lock
);
816 if (!list_empty(&referenced
))
817 list_splice(&referenced
, &sb
->s_dentry_lru
);
818 spin_unlock(&dcache_lru_lock
);
820 shrink_dentry_list(&tmp
);
824 * shrink_dcache_sb - shrink dcache for a superblock
827 * Shrink the dcache for the specified super block. This is used to free
828 * the dcache before unmounting a file system.
830 void shrink_dcache_sb(struct super_block
*sb
)
834 spin_lock(&dcache_lru_lock
);
835 while (!list_empty(&sb
->s_dentry_lru
)) {
836 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
837 spin_unlock(&dcache_lru_lock
);
838 shrink_dentry_list(&tmp
);
839 spin_lock(&dcache_lru_lock
);
841 spin_unlock(&dcache_lru_lock
);
843 EXPORT_SYMBOL(shrink_dcache_sb
);
846 * destroy a single subtree of dentries for unmount
847 * - see the comments on shrink_dcache_for_umount() for a description of the
850 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
852 struct dentry
*parent
;
854 BUG_ON(!IS_ROOT(dentry
));
857 /* descend to the first leaf in the current subtree */
858 while (!list_empty(&dentry
->d_subdirs
))
859 dentry
= list_entry(dentry
->d_subdirs
.next
,
860 struct dentry
, d_u
.d_child
);
862 /* consume the dentries from this leaf up through its parents
863 * until we find one with children or run out altogether */
868 * remove the dentry from the lru, and inform
869 * the fs that this dentry is about to be
870 * unhashed and destroyed.
872 dentry_lru_prune(dentry
);
875 if (dentry
->d_count
!= 0) {
877 "BUG: Dentry %p{i=%lx,n=%s}"
879 " [unmount of %s %s]\n",
882 dentry
->d_inode
->i_ino
: 0UL,
885 dentry
->d_sb
->s_type
->name
,
890 if (IS_ROOT(dentry
)) {
892 list_del(&dentry
->d_u
.d_child
);
894 parent
= dentry
->d_parent
;
896 list_del(&dentry
->d_u
.d_child
);
899 inode
= dentry
->d_inode
;
901 dentry
->d_inode
= NULL
;
902 list_del_init(&dentry
->d_alias
);
903 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
904 dentry
->d_op
->d_iput(dentry
, inode
);
911 /* finished when we fall off the top of the tree,
912 * otherwise we ascend to the parent and move to the
913 * next sibling if there is one */
917 } while (list_empty(&dentry
->d_subdirs
));
919 dentry
= list_entry(dentry
->d_subdirs
.next
,
920 struct dentry
, d_u
.d_child
);
925 * destroy the dentries attached to a superblock on unmounting
926 * - we don't need to use dentry->d_lock because:
927 * - the superblock is detached from all mountings and open files, so the
928 * dentry trees will not be rearranged by the VFS
929 * - s_umount is write-locked, so the memory pressure shrinker will ignore
930 * any dentries belonging to this superblock that it comes across
931 * - the filesystem itself is no longer permitted to rearrange the dentries
934 void shrink_dcache_for_umount(struct super_block
*sb
)
936 struct dentry
*dentry
;
938 if (down_read_trylock(&sb
->s_umount
))
944 shrink_dcache_for_umount_subtree(dentry
);
946 while (!hlist_bl_empty(&sb
->s_anon
)) {
947 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
948 shrink_dcache_for_umount_subtree(dentry
);
953 * This tries to ascend one level of parenthood, but
954 * we can race with renaming, so we need to re-check
955 * the parenthood after dropping the lock and check
956 * that the sequence number still matches.
958 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
960 struct dentry
*new = old
->d_parent
;
963 spin_unlock(&old
->d_lock
);
964 spin_lock(&new->d_lock
);
967 * might go back up the wrong parent if we have had a rename
970 if (new != old
->d_parent
||
971 (old
->d_flags
& DCACHE_DENTRY_KILLED
) ||
972 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
973 spin_unlock(&new->d_lock
);
982 * Search for at least 1 mount point in the dentry's subdirs.
983 * We descend to the next level whenever the d_subdirs
984 * list is non-empty and continue searching.
988 * have_submounts - check for mounts over a dentry
989 * @parent: dentry to check.
991 * Return true if the parent or its subdirectories contain
994 int have_submounts(struct dentry
*parent
)
996 struct dentry
*this_parent
;
997 struct list_head
*next
;
1001 seq
= read_seqbegin(&rename_lock
);
1003 this_parent
= parent
;
1005 if (d_mountpoint(parent
))
1007 spin_lock(&this_parent
->d_lock
);
1009 next
= this_parent
->d_subdirs
.next
;
1011 while (next
!= &this_parent
->d_subdirs
) {
1012 struct list_head
*tmp
= next
;
1013 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1016 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1017 /* Have we found a mount point ? */
1018 if (d_mountpoint(dentry
)) {
1019 spin_unlock(&dentry
->d_lock
);
1020 spin_unlock(&this_parent
->d_lock
);
1023 if (!list_empty(&dentry
->d_subdirs
)) {
1024 spin_unlock(&this_parent
->d_lock
);
1025 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1026 this_parent
= dentry
;
1027 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1030 spin_unlock(&dentry
->d_lock
);
1033 * All done at this level ... ascend and resume the search.
1035 if (this_parent
!= parent
) {
1036 struct dentry
*child
= this_parent
;
1037 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1040 next
= child
->d_u
.d_child
.next
;
1043 spin_unlock(&this_parent
->d_lock
);
1044 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1047 write_sequnlock(&rename_lock
);
1048 return 0; /* No mount points found in tree */
1050 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1053 write_sequnlock(&rename_lock
);
1060 write_seqlock(&rename_lock
);
1063 EXPORT_SYMBOL(have_submounts
);
1066 * Search the dentry child list for the specified parent,
1067 * and move any unused dentries to the end of the unused
1068 * list for prune_dcache(). We descend to the next level
1069 * whenever the d_subdirs list is non-empty and continue
1072 * It returns zero iff there are no unused children,
1073 * otherwise it returns the number of children moved to
1074 * the end of the unused list. This may not be the total
1075 * number of unused children, because select_parent can
1076 * drop the lock and return early due to latency
1079 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1081 struct dentry
*this_parent
;
1082 struct list_head
*next
;
1087 seq
= read_seqbegin(&rename_lock
);
1089 this_parent
= parent
;
1090 spin_lock(&this_parent
->d_lock
);
1092 next
= this_parent
->d_subdirs
.next
;
1094 while (next
!= &this_parent
->d_subdirs
) {
1095 struct list_head
*tmp
= next
;
1096 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1099 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1102 * move only zero ref count dentries to the dispose list.
1104 * Those which are presently on the shrink list, being processed
1105 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1106 * loop in shrink_dcache_parent() might not make any progress
1109 if (dentry
->d_count
) {
1110 dentry_lru_del(dentry
);
1111 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1112 dentry_lru_move_list(dentry
, dispose
);
1113 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1117 * We can return to the caller if we have found some (this
1118 * ensures forward progress). We'll be coming back to find
1121 if (found
&& need_resched()) {
1122 spin_unlock(&dentry
->d_lock
);
1127 * Descend a level if the d_subdirs list is non-empty.
1129 if (!list_empty(&dentry
->d_subdirs
)) {
1130 spin_unlock(&this_parent
->d_lock
);
1131 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1132 this_parent
= dentry
;
1133 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1137 spin_unlock(&dentry
->d_lock
);
1140 * All done at this level ... ascend and resume the search.
1142 if (this_parent
!= parent
) {
1143 struct dentry
*child
= this_parent
;
1144 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1147 next
= child
->d_u
.d_child
.next
;
1151 spin_unlock(&this_parent
->d_lock
);
1152 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1155 write_sequnlock(&rename_lock
);
1164 write_seqlock(&rename_lock
);
1169 * shrink_dcache_parent - prune dcache
1170 * @parent: parent of entries to prune
1172 * Prune the dcache to remove unused children of the parent dentry.
1174 void shrink_dcache_parent(struct dentry
* parent
)
1179 while ((found
= select_parent(parent
, &dispose
)) != 0)
1180 shrink_dentry_list(&dispose
);
1182 EXPORT_SYMBOL(shrink_dcache_parent
);
1185 * __d_alloc - allocate a dcache entry
1186 * @sb: filesystem it will belong to
1187 * @name: qstr of the name
1189 * Allocates a dentry. It returns %NULL if there is insufficient memory
1190 * available. On a success the dentry is returned. The name passed in is
1191 * copied and the copy passed in may be reused after this call.
1194 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1196 struct dentry
*dentry
;
1199 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1203 if (name
->len
> DNAME_INLINE_LEN
-1) {
1204 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1206 kmem_cache_free(dentry_cache
, dentry
);
1210 dname
= dentry
->d_iname
;
1212 dentry
->d_name
.name
= dname
;
1214 dentry
->d_name
.len
= name
->len
;
1215 dentry
->d_name
.hash
= name
->hash
;
1216 memcpy(dname
, name
->name
, name
->len
);
1217 dname
[name
->len
] = 0;
1219 dentry
->d_count
= 1;
1220 dentry
->d_flags
= 0;
1221 spin_lock_init(&dentry
->d_lock
);
1222 seqcount_init(&dentry
->d_seq
);
1223 dentry
->d_inode
= NULL
;
1224 dentry
->d_parent
= dentry
;
1226 dentry
->d_op
= NULL
;
1227 dentry
->d_fsdata
= NULL
;
1228 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1229 INIT_LIST_HEAD(&dentry
->d_lru
);
1230 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1231 INIT_LIST_HEAD(&dentry
->d_alias
);
1232 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1233 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1235 this_cpu_inc(nr_dentry
);
1241 * d_alloc - allocate a dcache entry
1242 * @parent: parent of entry to allocate
1243 * @name: qstr of the name
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1249 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1251 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1255 spin_lock(&parent
->d_lock
);
1257 * don't need child lock because it is not subject
1258 * to concurrency here
1260 __dget_dlock(parent
);
1261 dentry
->d_parent
= parent
;
1262 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1263 spin_unlock(&parent
->d_lock
);
1267 EXPORT_SYMBOL(d_alloc
);
1269 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1271 struct dentry
*dentry
= __d_alloc(sb
, name
);
1273 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1276 EXPORT_SYMBOL(d_alloc_pseudo
);
1278 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1283 q
.len
= strlen(name
);
1284 q
.hash
= full_name_hash(q
.name
, q
.len
);
1285 return d_alloc(parent
, &q
);
1287 EXPORT_SYMBOL(d_alloc_name
);
1289 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1291 WARN_ON_ONCE(dentry
->d_op
);
1292 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1294 DCACHE_OP_REVALIDATE
|
1295 DCACHE_OP_DELETE
));
1300 dentry
->d_flags
|= DCACHE_OP_HASH
;
1302 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1303 if (op
->d_revalidate
)
1304 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1306 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1308 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1311 EXPORT_SYMBOL(d_set_d_op
);
1313 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1315 spin_lock(&dentry
->d_lock
);
1317 if (unlikely(IS_AUTOMOUNT(inode
)))
1318 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1319 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1321 dentry
->d_inode
= inode
;
1322 dentry_rcuwalk_barrier(dentry
);
1323 spin_unlock(&dentry
->d_lock
);
1324 fsnotify_d_instantiate(dentry
, inode
);
1328 * d_instantiate - fill in inode information for a dentry
1329 * @entry: dentry to complete
1330 * @inode: inode to attach to this dentry
1332 * Fill in inode information in the entry.
1334 * This turns negative dentries into productive full members
1337 * NOTE! This assumes that the inode count has been incremented
1338 * (or otherwise set) by the caller to indicate that it is now
1339 * in use by the dcache.
1342 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1344 BUG_ON(!list_empty(&entry
->d_alias
));
1346 spin_lock(&inode
->i_lock
);
1347 __d_instantiate(entry
, inode
);
1349 spin_unlock(&inode
->i_lock
);
1350 security_d_instantiate(entry
, inode
);
1352 EXPORT_SYMBOL(d_instantiate
);
1355 * d_instantiate_unique - instantiate a non-aliased dentry
1356 * @entry: dentry to instantiate
1357 * @inode: inode to attach to this dentry
1359 * Fill in inode information in the entry. On success, it returns NULL.
1360 * If an unhashed alias of "entry" already exists, then we return the
1361 * aliased dentry instead and drop one reference to inode.
1363 * Note that in order to avoid conflicts with rename() etc, the caller
1364 * had better be holding the parent directory semaphore.
1366 * This also assumes that the inode count has been incremented
1367 * (or otherwise set) by the caller to indicate that it is now
1368 * in use by the dcache.
1370 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1371 struct inode
*inode
)
1373 struct dentry
*alias
;
1374 int len
= entry
->d_name
.len
;
1375 const char *name
= entry
->d_name
.name
;
1376 unsigned int hash
= entry
->d_name
.hash
;
1379 __d_instantiate(entry
, NULL
);
1383 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1384 struct qstr
*qstr
= &alias
->d_name
;
1387 * Don't need alias->d_lock here, because aliases with
1388 * d_parent == entry->d_parent are not subject to name or
1389 * parent changes, because the parent inode i_mutex is held.
1391 if (qstr
->hash
!= hash
)
1393 if (alias
->d_parent
!= entry
->d_parent
)
1395 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1401 __d_instantiate(entry
, inode
);
1405 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1407 struct dentry
*result
;
1409 BUG_ON(!list_empty(&entry
->d_alias
));
1412 spin_lock(&inode
->i_lock
);
1413 result
= __d_instantiate_unique(entry
, inode
);
1415 spin_unlock(&inode
->i_lock
);
1418 security_d_instantiate(entry
, inode
);
1422 BUG_ON(!d_unhashed(result
));
1427 EXPORT_SYMBOL(d_instantiate_unique
);
1430 * d_alloc_root - allocate root dentry
1431 * @root_inode: inode to allocate the root for
1433 * Allocate a root ("/") dentry for the inode given. The inode is
1434 * instantiated and returned. %NULL is returned if there is insufficient
1435 * memory or the inode passed is %NULL.
1438 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1440 struct dentry
*res
= NULL
;
1443 static const struct qstr name
= { .name
= "/", .len
= 1 };
1445 res
= __d_alloc(root_inode
->i_sb
, &name
);
1447 d_instantiate(res
, root_inode
);
1451 EXPORT_SYMBOL(d_alloc_root
);
1453 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1455 struct dentry
*alias
;
1457 if (list_empty(&inode
->i_dentry
))
1459 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1464 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1468 spin_lock(&inode
->i_lock
);
1469 de
= __d_find_any_alias(inode
);
1470 spin_unlock(&inode
->i_lock
);
1476 * d_obtain_alias - find or allocate a dentry for a given inode
1477 * @inode: inode to allocate the dentry for
1479 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1480 * similar open by handle operations. The returned dentry may be anonymous,
1481 * or may have a full name (if the inode was already in the cache).
1483 * When called on a directory inode, we must ensure that the inode only ever
1484 * has one dentry. If a dentry is found, that is returned instead of
1485 * allocating a new one.
1487 * On successful return, the reference to the inode has been transferred
1488 * to the dentry. In case of an error the reference on the inode is released.
1489 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1490 * be passed in and will be the error will be propagate to the return value,
1491 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1493 struct dentry
*d_obtain_alias(struct inode
*inode
)
1495 static const struct qstr anonstring
= { .name
= "/", .len
= 1 };
1500 return ERR_PTR(-ESTALE
);
1502 return ERR_CAST(inode
);
1504 res
= d_find_any_alias(inode
);
1508 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1510 res
= ERR_PTR(-ENOMEM
);
1514 spin_lock(&inode
->i_lock
);
1515 res
= __d_find_any_alias(inode
);
1517 spin_unlock(&inode
->i_lock
);
1522 /* attach a disconnected dentry */
1523 spin_lock(&tmp
->d_lock
);
1524 tmp
->d_inode
= inode
;
1525 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1526 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1527 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1528 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1529 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1530 spin_unlock(&tmp
->d_lock
);
1531 spin_unlock(&inode
->i_lock
);
1532 security_d_instantiate(tmp
, inode
);
1537 if (res
&& !IS_ERR(res
))
1538 security_d_instantiate(res
, inode
);
1542 EXPORT_SYMBOL(d_obtain_alias
);
1545 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1546 * @inode: the inode which may have a disconnected dentry
1547 * @dentry: a negative dentry which we want to point to the inode.
1549 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1550 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1551 * and return it, else simply d_add the inode to the dentry and return NULL.
1553 * This is needed in the lookup routine of any filesystem that is exportable
1554 * (via knfsd) so that we can build dcache paths to directories effectively.
1556 * If a dentry was found and moved, then it is returned. Otherwise NULL
1557 * is returned. This matches the expected return value of ->lookup.
1560 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1562 struct dentry
*new = NULL
;
1565 return ERR_CAST(inode
);
1567 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1568 spin_lock(&inode
->i_lock
);
1569 new = __d_find_alias(inode
, 1);
1571 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1572 spin_unlock(&inode
->i_lock
);
1573 security_d_instantiate(new, inode
);
1574 d_move(new, dentry
);
1577 /* already taking inode->i_lock, so d_add() by hand */
1578 __d_instantiate(dentry
, inode
);
1579 spin_unlock(&inode
->i_lock
);
1580 security_d_instantiate(dentry
, inode
);
1584 d_add(dentry
, inode
);
1587 EXPORT_SYMBOL(d_splice_alias
);
1590 * d_add_ci - lookup or allocate new dentry with case-exact name
1591 * @inode: the inode case-insensitive lookup has found
1592 * @dentry: the negative dentry that was passed to the parent's lookup func
1593 * @name: the case-exact name to be associated with the returned dentry
1595 * This is to avoid filling the dcache with case-insensitive names to the
1596 * same inode, only the actual correct case is stored in the dcache for
1597 * case-insensitive filesystems.
1599 * For a case-insensitive lookup match and if the the case-exact dentry
1600 * already exists in in the dcache, use it and return it.
1602 * If no entry exists with the exact case name, allocate new dentry with
1603 * the exact case, and return the spliced entry.
1605 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1609 struct dentry
*found
;
1613 * First check if a dentry matching the name already exists,
1614 * if not go ahead and create it now.
1616 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1618 new = d_alloc(dentry
->d_parent
, name
);
1624 found
= d_splice_alias(inode
, new);
1633 * If a matching dentry exists, and it's not negative use it.
1635 * Decrement the reference count to balance the iget() done
1638 if (found
->d_inode
) {
1639 if (unlikely(found
->d_inode
!= inode
)) {
1640 /* This can't happen because bad inodes are unhashed. */
1641 BUG_ON(!is_bad_inode(inode
));
1642 BUG_ON(!is_bad_inode(found
->d_inode
));
1649 * We are going to instantiate this dentry, unhash it and clear the
1650 * lookup flag so we can do that.
1652 if (unlikely(d_need_lookup(found
)))
1653 d_clear_need_lookup(found
);
1656 * Negative dentry: instantiate it unless the inode is a directory and
1657 * already has a dentry.
1659 new = d_splice_alias(inode
, found
);
1668 return ERR_PTR(error
);
1670 EXPORT_SYMBOL(d_add_ci
);
1673 * __d_lookup_rcu - search for a dentry (racy, store-free)
1674 * @parent: parent dentry
1675 * @name: qstr of name we wish to find
1676 * @seq: returns d_seq value at the point where the dentry was found
1677 * @inode: returns dentry->d_inode when the inode was found valid.
1678 * Returns: dentry, or NULL
1680 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1681 * resolution (store-free path walking) design described in
1682 * Documentation/filesystems/path-lookup.txt.
1684 * This is not to be used outside core vfs.
1686 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1687 * held, and rcu_read_lock held. The returned dentry must not be stored into
1688 * without taking d_lock and checking d_seq sequence count against @seq
1691 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1694 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1695 * the returned dentry, so long as its parent's seqlock is checked after the
1696 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1697 * is formed, giving integrity down the path walk.
1699 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1700 unsigned *seq
, struct inode
**inode
)
1702 unsigned int len
= name
->len
;
1703 unsigned int hash
= name
->hash
;
1704 const unsigned char *str
= name
->name
;
1705 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1706 struct hlist_bl_node
*node
;
1707 struct dentry
*dentry
;
1710 * Note: There is significant duplication with __d_lookup_rcu which is
1711 * required to prevent single threaded performance regressions
1712 * especially on architectures where smp_rmb (in seqcounts) are costly.
1713 * Keep the two functions in sync.
1717 * The hash list is protected using RCU.
1719 * Carefully use d_seq when comparing a candidate dentry, to avoid
1720 * races with d_move().
1722 * It is possible that concurrent renames can mess up our list
1723 * walk here and result in missing our dentry, resulting in the
1724 * false-negative result. d_lookup() protects against concurrent
1725 * renames using rename_lock seqlock.
1727 * See Documentation/filesystems/path-lookup.txt for more details.
1729 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1734 if (dentry
->d_name
.hash
!= hash
)
1738 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1739 if (dentry
->d_parent
!= parent
)
1741 if (d_unhashed(dentry
))
1743 tlen
= dentry
->d_name
.len
;
1744 tname
= dentry
->d_name
.name
;
1745 i
= dentry
->d_inode
;
1748 * This seqcount check is required to ensure name and
1749 * len are loaded atomically, so as not to walk off the
1750 * edge of memory when walking. If we could load this
1751 * atomically some other way, we could drop this check.
1753 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1755 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1756 if (parent
->d_op
->d_compare(parent
, *inode
,
1761 if (dentry_cmp(tname
, tlen
, str
, len
))
1765 * No extra seqcount check is required after the name
1766 * compare. The caller must perform a seqcount check in
1767 * order to do anything useful with the returned dentry
1777 * d_lookup - search for a dentry
1778 * @parent: parent dentry
1779 * @name: qstr of name we wish to find
1780 * Returns: dentry, or NULL
1782 * d_lookup searches the children of the parent dentry for the name in
1783 * question. If the dentry is found its reference count is incremented and the
1784 * dentry is returned. The caller must use dput to free the entry when it has
1785 * finished using it. %NULL is returned if the dentry does not exist.
1787 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1789 struct dentry
*dentry
;
1793 seq
= read_seqbegin(&rename_lock
);
1794 dentry
= __d_lookup(parent
, name
);
1797 } while (read_seqretry(&rename_lock
, seq
));
1800 EXPORT_SYMBOL(d_lookup
);
1803 * __d_lookup - search for a dentry (racy)
1804 * @parent: parent dentry
1805 * @name: qstr of name we wish to find
1806 * Returns: dentry, or NULL
1808 * __d_lookup is like d_lookup, however it may (rarely) return a
1809 * false-negative result due to unrelated rename activity.
1811 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1812 * however it must be used carefully, eg. with a following d_lookup in
1813 * the case of failure.
1815 * __d_lookup callers must be commented.
1817 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1819 unsigned int len
= name
->len
;
1820 unsigned int hash
= name
->hash
;
1821 const unsigned char *str
= name
->name
;
1822 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1823 struct hlist_bl_node
*node
;
1824 struct dentry
*found
= NULL
;
1825 struct dentry
*dentry
;
1828 * Note: There is significant duplication with __d_lookup_rcu which is
1829 * required to prevent single threaded performance regressions
1830 * especially on architectures where smp_rmb (in seqcounts) are costly.
1831 * Keep the two functions in sync.
1835 * The hash list is protected using RCU.
1837 * Take d_lock when comparing a candidate dentry, to avoid races
1840 * It is possible that concurrent renames can mess up our list
1841 * walk here and result in missing our dentry, resulting in the
1842 * false-negative result. d_lookup() protects against concurrent
1843 * renames using rename_lock seqlock.
1845 * See Documentation/filesystems/path-lookup.txt for more details.
1849 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1853 if (dentry
->d_name
.hash
!= hash
)
1856 spin_lock(&dentry
->d_lock
);
1857 if (dentry
->d_parent
!= parent
)
1859 if (d_unhashed(dentry
))
1863 * It is safe to compare names since d_move() cannot
1864 * change the qstr (protected by d_lock).
1866 tlen
= dentry
->d_name
.len
;
1867 tname
= dentry
->d_name
.name
;
1868 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1869 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1870 dentry
, dentry
->d_inode
,
1874 if (dentry_cmp(tname
, tlen
, str
, len
))
1880 spin_unlock(&dentry
->d_lock
);
1883 spin_unlock(&dentry
->d_lock
);
1891 * d_hash_and_lookup - hash the qstr then search for a dentry
1892 * @dir: Directory to search in
1893 * @name: qstr of name we wish to find
1895 * On hash failure or on lookup failure NULL is returned.
1897 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1899 struct dentry
*dentry
= NULL
;
1902 * Check for a fs-specific hash function. Note that we must
1903 * calculate the standard hash first, as the d_op->d_hash()
1904 * routine may choose to leave the hash value unchanged.
1906 name
->hash
= full_name_hash(name
->name
, name
->len
);
1907 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1908 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1911 dentry
= d_lookup(dir
, name
);
1917 * d_validate - verify dentry provided from insecure source (deprecated)
1918 * @dentry: The dentry alleged to be valid child of @dparent
1919 * @dparent: The parent dentry (known to be valid)
1921 * An insecure source has sent us a dentry, here we verify it and dget() it.
1922 * This is used by ncpfs in its readdir implementation.
1923 * Zero is returned in the dentry is invalid.
1925 * This function is slow for big directories, and deprecated, do not use it.
1927 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1929 struct dentry
*child
;
1931 spin_lock(&dparent
->d_lock
);
1932 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
1933 if (dentry
== child
) {
1934 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1935 __dget_dlock(dentry
);
1936 spin_unlock(&dentry
->d_lock
);
1937 spin_unlock(&dparent
->d_lock
);
1941 spin_unlock(&dparent
->d_lock
);
1945 EXPORT_SYMBOL(d_validate
);
1948 * When a file is deleted, we have two options:
1949 * - turn this dentry into a negative dentry
1950 * - unhash this dentry and free it.
1952 * Usually, we want to just turn this into
1953 * a negative dentry, but if anybody else is
1954 * currently using the dentry or the inode
1955 * we can't do that and we fall back on removing
1956 * it from the hash queues and waiting for
1957 * it to be deleted later when it has no users
1961 * d_delete - delete a dentry
1962 * @dentry: The dentry to delete
1964 * Turn the dentry into a negative dentry if possible, otherwise
1965 * remove it from the hash queues so it can be deleted later
1968 void d_delete(struct dentry
* dentry
)
1970 struct inode
*inode
;
1973 * Are we the only user?
1976 spin_lock(&dentry
->d_lock
);
1977 inode
= dentry
->d_inode
;
1978 isdir
= S_ISDIR(inode
->i_mode
);
1979 if (dentry
->d_count
== 1) {
1980 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
1981 spin_unlock(&dentry
->d_lock
);
1985 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
1986 dentry_unlink_inode(dentry
);
1987 fsnotify_nameremove(dentry
, isdir
);
1991 if (!d_unhashed(dentry
))
1994 spin_unlock(&dentry
->d_lock
);
1996 fsnotify_nameremove(dentry
, isdir
);
1998 EXPORT_SYMBOL(d_delete
);
2000 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2002 BUG_ON(!d_unhashed(entry
));
2004 entry
->d_flags
|= DCACHE_RCUACCESS
;
2005 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2009 static void _d_rehash(struct dentry
* entry
)
2011 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2015 * d_rehash - add an entry back to the hash
2016 * @entry: dentry to add to the hash
2018 * Adds a dentry to the hash according to its name.
2021 void d_rehash(struct dentry
* entry
)
2023 spin_lock(&entry
->d_lock
);
2025 spin_unlock(&entry
->d_lock
);
2027 EXPORT_SYMBOL(d_rehash
);
2030 * dentry_update_name_case - update case insensitive dentry with a new name
2031 * @dentry: dentry to be updated
2034 * Update a case insensitive dentry with new case of name.
2036 * dentry must have been returned by d_lookup with name @name. Old and new
2037 * name lengths must match (ie. no d_compare which allows mismatched name
2040 * Parent inode i_mutex must be held over d_lookup and into this call (to
2041 * keep renames and concurrent inserts, and readdir(2) away).
2043 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2045 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2046 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2048 spin_lock(&dentry
->d_lock
);
2049 write_seqcount_begin(&dentry
->d_seq
);
2050 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2051 write_seqcount_end(&dentry
->d_seq
);
2052 spin_unlock(&dentry
->d_lock
);
2054 EXPORT_SYMBOL(dentry_update_name_case
);
2056 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2058 if (dname_external(target
)) {
2059 if (dname_external(dentry
)) {
2061 * Both external: swap the pointers
2063 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2066 * dentry:internal, target:external. Steal target's
2067 * storage and make target internal.
2069 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2070 dentry
->d_name
.len
+ 1);
2071 dentry
->d_name
.name
= target
->d_name
.name
;
2072 target
->d_name
.name
= target
->d_iname
;
2075 if (dname_external(dentry
)) {
2077 * dentry:external, target:internal. Give dentry's
2078 * storage to target and make dentry internal
2080 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2081 target
->d_name
.len
+ 1);
2082 target
->d_name
.name
= dentry
->d_name
.name
;
2083 dentry
->d_name
.name
= dentry
->d_iname
;
2086 * Both are internal. Just copy target to dentry
2088 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2089 target
->d_name
.len
+ 1);
2090 dentry
->d_name
.len
= target
->d_name
.len
;
2094 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2097 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2100 * XXXX: do we really need to take target->d_lock?
2102 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2103 spin_lock(&target
->d_parent
->d_lock
);
2105 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2106 spin_lock(&dentry
->d_parent
->d_lock
);
2107 spin_lock_nested(&target
->d_parent
->d_lock
,
2108 DENTRY_D_LOCK_NESTED
);
2110 spin_lock(&target
->d_parent
->d_lock
);
2111 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2112 DENTRY_D_LOCK_NESTED
);
2115 if (target
< dentry
) {
2116 spin_lock_nested(&target
->d_lock
, 2);
2117 spin_lock_nested(&dentry
->d_lock
, 3);
2119 spin_lock_nested(&dentry
->d_lock
, 2);
2120 spin_lock_nested(&target
->d_lock
, 3);
2124 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2125 struct dentry
*target
)
2127 if (target
->d_parent
!= dentry
->d_parent
)
2128 spin_unlock(&dentry
->d_parent
->d_lock
);
2129 if (target
->d_parent
!= target
)
2130 spin_unlock(&target
->d_parent
->d_lock
);
2134 * When switching names, the actual string doesn't strictly have to
2135 * be preserved in the target - because we're dropping the target
2136 * anyway. As such, we can just do a simple memcpy() to copy over
2137 * the new name before we switch.
2139 * Note that we have to be a lot more careful about getting the hash
2140 * switched - we have to switch the hash value properly even if it
2141 * then no longer matches the actual (corrupted) string of the target.
2142 * The hash value has to match the hash queue that the dentry is on..
2145 * __d_move - move a dentry
2146 * @dentry: entry to move
2147 * @target: new dentry
2149 * Update the dcache to reflect the move of a file name. Negative
2150 * dcache entries should not be moved in this way. Caller must hold
2151 * rename_lock, the i_mutex of the source and target directories,
2152 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2154 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2156 if (!dentry
->d_inode
)
2157 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2159 BUG_ON(d_ancestor(dentry
, target
));
2160 BUG_ON(d_ancestor(target
, dentry
));
2162 dentry_lock_for_move(dentry
, target
);
2164 write_seqcount_begin(&dentry
->d_seq
);
2165 write_seqcount_begin(&target
->d_seq
);
2167 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2170 * Move the dentry to the target hash queue. Don't bother checking
2171 * for the same hash queue because of how unlikely it is.
2174 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2176 /* Unhash the target: dput() will then get rid of it */
2179 list_del(&dentry
->d_u
.d_child
);
2180 list_del(&target
->d_u
.d_child
);
2182 /* Switch the names.. */
2183 switch_names(dentry
, target
);
2184 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2186 /* ... and switch the parents */
2187 if (IS_ROOT(dentry
)) {
2188 dentry
->d_parent
= target
->d_parent
;
2189 target
->d_parent
= target
;
2190 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2192 swap(dentry
->d_parent
, target
->d_parent
);
2194 /* And add them back to the (new) parent lists */
2195 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2198 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2200 write_seqcount_end(&target
->d_seq
);
2201 write_seqcount_end(&dentry
->d_seq
);
2203 dentry_unlock_parents_for_move(dentry
, target
);
2204 spin_unlock(&target
->d_lock
);
2205 fsnotify_d_move(dentry
);
2206 spin_unlock(&dentry
->d_lock
);
2210 * d_move - move a dentry
2211 * @dentry: entry to move
2212 * @target: new dentry
2214 * Update the dcache to reflect the move of a file name. Negative
2215 * dcache entries should not be moved in this way. See the locking
2216 * requirements for __d_move.
2218 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2220 write_seqlock(&rename_lock
);
2221 __d_move(dentry
, target
);
2222 write_sequnlock(&rename_lock
);
2224 EXPORT_SYMBOL(d_move
);
2227 * d_ancestor - search for an ancestor
2228 * @p1: ancestor dentry
2231 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2232 * an ancestor of p2, else NULL.
2234 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2238 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2239 if (p
->d_parent
== p1
)
2246 * This helper attempts to cope with remotely renamed directories
2248 * It assumes that the caller is already holding
2249 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2251 * Note: If ever the locking in lock_rename() changes, then please
2252 * remember to update this too...
2254 static struct dentry
*__d_unalias(struct inode
*inode
,
2255 struct dentry
*dentry
, struct dentry
*alias
)
2257 struct mutex
*m1
= NULL
, *m2
= NULL
;
2260 /* If alias and dentry share a parent, then no extra locks required */
2261 if (alias
->d_parent
== dentry
->d_parent
)
2264 /* See lock_rename() */
2265 ret
= ERR_PTR(-EBUSY
);
2266 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2268 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2269 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2271 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2273 __d_move(alias
, dentry
);
2276 spin_unlock(&inode
->i_lock
);
2285 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2286 * named dentry in place of the dentry to be replaced.
2287 * returns with anon->d_lock held!
2289 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2291 struct dentry
*dparent
, *aparent
;
2293 dentry_lock_for_move(anon
, dentry
);
2295 write_seqcount_begin(&dentry
->d_seq
);
2296 write_seqcount_begin(&anon
->d_seq
);
2298 dparent
= dentry
->d_parent
;
2299 aparent
= anon
->d_parent
;
2301 switch_names(dentry
, anon
);
2302 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2304 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2305 list_del(&dentry
->d_u
.d_child
);
2306 if (!IS_ROOT(dentry
))
2307 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2309 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2311 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2312 list_del(&anon
->d_u
.d_child
);
2314 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2316 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2318 write_seqcount_end(&dentry
->d_seq
);
2319 write_seqcount_end(&anon
->d_seq
);
2321 dentry_unlock_parents_for_move(anon
, dentry
);
2322 spin_unlock(&dentry
->d_lock
);
2324 /* anon->d_lock still locked, returns locked */
2325 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2329 * d_materialise_unique - introduce an inode into the tree
2330 * @dentry: candidate dentry
2331 * @inode: inode to bind to the dentry, to which aliases may be attached
2333 * Introduces an dentry into the tree, substituting an extant disconnected
2334 * root directory alias in its place if there is one. Caller must hold the
2335 * i_mutex of the parent directory.
2337 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2339 struct dentry
*actual
;
2341 BUG_ON(!d_unhashed(dentry
));
2345 __d_instantiate(dentry
, NULL
);
2350 spin_lock(&inode
->i_lock
);
2352 if (S_ISDIR(inode
->i_mode
)) {
2353 struct dentry
*alias
;
2355 /* Does an aliased dentry already exist? */
2356 alias
= __d_find_alias(inode
, 0);
2359 write_seqlock(&rename_lock
);
2361 if (d_ancestor(alias
, dentry
)) {
2362 /* Check for loops */
2363 actual
= ERR_PTR(-ELOOP
);
2364 spin_unlock(&inode
->i_lock
);
2365 } else if (IS_ROOT(alias
)) {
2366 /* Is this an anonymous mountpoint that we
2367 * could splice into our tree? */
2368 __d_materialise_dentry(dentry
, alias
);
2369 write_sequnlock(&rename_lock
);
2373 /* Nope, but we must(!) avoid directory
2374 * aliasing. This drops inode->i_lock */
2375 actual
= __d_unalias(inode
, dentry
, alias
);
2377 write_sequnlock(&rename_lock
);
2378 if (IS_ERR(actual
)) {
2379 if (PTR_ERR(actual
) == -ELOOP
)
2380 pr_warn_ratelimited(
2381 "VFS: Lookup of '%s' in %s %s"
2382 " would have caused loop\n",
2383 dentry
->d_name
.name
,
2384 inode
->i_sb
->s_type
->name
,
2392 /* Add a unique reference */
2393 actual
= __d_instantiate_unique(dentry
, inode
);
2397 BUG_ON(!d_unhashed(actual
));
2399 spin_lock(&actual
->d_lock
);
2402 spin_unlock(&actual
->d_lock
);
2403 spin_unlock(&inode
->i_lock
);
2405 if (actual
== dentry
) {
2406 security_d_instantiate(dentry
, inode
);
2413 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2415 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2419 return -ENAMETOOLONG
;
2421 memcpy(*buffer
, str
, namelen
);
2425 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2427 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2431 * prepend_path - Prepend path string to a buffer
2432 * @path: the dentry/vfsmount to report
2433 * @root: root vfsmnt/dentry
2434 * @buffer: pointer to the end of the buffer
2435 * @buflen: pointer to buffer length
2437 * Caller holds the rename_lock.
2439 static int prepend_path(const struct path
*path
,
2440 const struct path
*root
,
2441 char **buffer
, int *buflen
)
2443 struct dentry
*dentry
= path
->dentry
;
2444 struct vfsmount
*vfsmnt
= path
->mnt
;
2448 br_read_lock(vfsmount_lock
);
2449 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2450 struct dentry
* parent
;
2452 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2454 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2457 dentry
= vfsmnt
->mnt_mountpoint
;
2458 vfsmnt
= vfsmnt
->mnt_parent
;
2461 parent
= dentry
->d_parent
;
2463 spin_lock(&dentry
->d_lock
);
2464 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2465 spin_unlock(&dentry
->d_lock
);
2467 error
= prepend(buffer
, buflen
, "/", 1);
2475 if (!error
&& !slash
)
2476 error
= prepend(buffer
, buflen
, "/", 1);
2479 br_read_unlock(vfsmount_lock
);
2484 * Filesystems needing to implement special "root names"
2485 * should do so with ->d_dname()
2487 if (IS_ROOT(dentry
) &&
2488 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2489 WARN(1, "Root dentry has weird name <%.*s>\n",
2490 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2493 error
= prepend(buffer
, buflen
, "/", 1);
2495 error
= vfsmnt
->mnt_ns
? 1 : 2;
2500 * __d_path - return the path of a dentry
2501 * @path: the dentry/vfsmount to report
2502 * @root: root vfsmnt/dentry
2503 * @buf: buffer to return value in
2504 * @buflen: buffer length
2506 * Convert a dentry into an ASCII path name.
2508 * Returns a pointer into the buffer or an error code if the
2509 * path was too long.
2511 * "buflen" should be positive.
2513 * If the path is not reachable from the supplied root, return %NULL.
2515 char *__d_path(const struct path
*path
,
2516 const struct path
*root
,
2517 char *buf
, int buflen
)
2519 char *res
= buf
+ buflen
;
2522 prepend(&res
, &buflen
, "\0", 1);
2523 write_seqlock(&rename_lock
);
2524 error
= prepend_path(path
, root
, &res
, &buflen
);
2525 write_sequnlock(&rename_lock
);
2528 return ERR_PTR(error
);
2534 char *d_absolute_path(const struct path
*path
,
2535 char *buf
, int buflen
)
2537 struct path root
= {};
2538 char *res
= buf
+ buflen
;
2541 prepend(&res
, &buflen
, "\0", 1);
2542 write_seqlock(&rename_lock
);
2543 error
= prepend_path(path
, &root
, &res
, &buflen
);
2544 write_sequnlock(&rename_lock
);
2549 return ERR_PTR(error
);
2554 * same as __d_path but appends "(deleted)" for unlinked files.
2556 static int path_with_deleted(const struct path
*path
,
2557 const struct path
*root
,
2558 char **buf
, int *buflen
)
2560 prepend(buf
, buflen
, "\0", 1);
2561 if (d_unlinked(path
->dentry
)) {
2562 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2567 return prepend_path(path
, root
, buf
, buflen
);
2570 static int prepend_unreachable(char **buffer
, int *buflen
)
2572 return prepend(buffer
, buflen
, "(unreachable)", 13);
2576 * d_path - return the path of a dentry
2577 * @path: path to report
2578 * @buf: buffer to return value in
2579 * @buflen: buffer length
2581 * Convert a dentry into an ASCII path name. If the entry has been deleted
2582 * the string " (deleted)" is appended. Note that this is ambiguous.
2584 * Returns a pointer into the buffer or an error code if the path was
2585 * too long. Note: Callers should use the returned pointer, not the passed
2586 * in buffer, to use the name! The implementation often starts at an offset
2587 * into the buffer, and may leave 0 bytes at the start.
2589 * "buflen" should be positive.
2591 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2593 char *res
= buf
+ buflen
;
2598 * We have various synthetic filesystems that never get mounted. On
2599 * these filesystems dentries are never used for lookup purposes, and
2600 * thus don't need to be hashed. They also don't need a name until a
2601 * user wants to identify the object in /proc/pid/fd/. The little hack
2602 * below allows us to generate a name for these objects on demand:
2604 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2605 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2607 get_fs_root(current
->fs
, &root
);
2608 write_seqlock(&rename_lock
);
2609 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2611 res
= ERR_PTR(error
);
2612 write_sequnlock(&rename_lock
);
2616 EXPORT_SYMBOL(d_path
);
2619 * d_path_with_unreachable - return the path of a dentry
2620 * @path: path to report
2621 * @buf: buffer to return value in
2622 * @buflen: buffer length
2624 * The difference from d_path() is that this prepends "(unreachable)"
2625 * to paths which are unreachable from the current process' root.
2627 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2629 char *res
= buf
+ buflen
;
2633 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2634 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2636 get_fs_root(current
->fs
, &root
);
2637 write_seqlock(&rename_lock
);
2638 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2640 error
= prepend_unreachable(&res
, &buflen
);
2641 write_sequnlock(&rename_lock
);
2644 res
= ERR_PTR(error
);
2650 * Helper function for dentry_operations.d_dname() members
2652 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2653 const char *fmt
, ...)
2659 va_start(args
, fmt
);
2660 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2663 if (sz
> sizeof(temp
) || sz
> buflen
)
2664 return ERR_PTR(-ENAMETOOLONG
);
2666 buffer
+= buflen
- sz
;
2667 return memcpy(buffer
, temp
, sz
);
2671 * Write full pathname from the root of the filesystem into the buffer.
2673 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2675 char *end
= buf
+ buflen
;
2678 prepend(&end
, &buflen
, "\0", 1);
2685 while (!IS_ROOT(dentry
)) {
2686 struct dentry
*parent
= dentry
->d_parent
;
2690 spin_lock(&dentry
->d_lock
);
2691 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2692 spin_unlock(&dentry
->d_lock
);
2693 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2701 return ERR_PTR(-ENAMETOOLONG
);
2704 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2708 write_seqlock(&rename_lock
);
2709 retval
= __dentry_path(dentry
, buf
, buflen
);
2710 write_sequnlock(&rename_lock
);
2714 EXPORT_SYMBOL(dentry_path_raw
);
2716 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2721 write_seqlock(&rename_lock
);
2722 if (d_unlinked(dentry
)) {
2724 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2728 retval
= __dentry_path(dentry
, buf
, buflen
);
2729 write_sequnlock(&rename_lock
);
2730 if (!IS_ERR(retval
) && p
)
2731 *p
= '/'; /* restore '/' overriden with '\0' */
2734 return ERR_PTR(-ENAMETOOLONG
);
2738 * NOTE! The user-level library version returns a
2739 * character pointer. The kernel system call just
2740 * returns the length of the buffer filled (which
2741 * includes the ending '\0' character), or a negative
2742 * error value. So libc would do something like
2744 * char *getcwd(char * buf, size_t size)
2748 * retval = sys_getcwd(buf, size);
2755 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2758 struct path pwd
, root
;
2759 char *page
= (char *) __get_free_page(GFP_USER
);
2764 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2767 write_seqlock(&rename_lock
);
2768 if (!d_unlinked(pwd
.dentry
)) {
2770 char *cwd
= page
+ PAGE_SIZE
;
2771 int buflen
= PAGE_SIZE
;
2773 prepend(&cwd
, &buflen
, "\0", 1);
2774 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2775 write_sequnlock(&rename_lock
);
2780 /* Unreachable from current root */
2782 error
= prepend_unreachable(&cwd
, &buflen
);
2788 len
= PAGE_SIZE
+ page
- cwd
;
2791 if (copy_to_user(buf
, cwd
, len
))
2795 write_sequnlock(&rename_lock
);
2801 free_page((unsigned long) page
);
2806 * Test whether new_dentry is a subdirectory of old_dentry.
2808 * Trivially implemented using the dcache structure
2812 * is_subdir - is new dentry a subdirectory of old_dentry
2813 * @new_dentry: new dentry
2814 * @old_dentry: old dentry
2816 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2817 * Returns 0 otherwise.
2818 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2821 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2826 if (new_dentry
== old_dentry
)
2830 /* for restarting inner loop in case of seq retry */
2831 seq
= read_seqbegin(&rename_lock
);
2833 * Need rcu_readlock to protect against the d_parent trashing
2837 if (d_ancestor(old_dentry
, new_dentry
))
2842 } while (read_seqretry(&rename_lock
, seq
));
2847 int path_is_under(struct path
*path1
, struct path
*path2
)
2849 struct vfsmount
*mnt
= path1
->mnt
;
2850 struct dentry
*dentry
= path1
->dentry
;
2853 br_read_lock(vfsmount_lock
);
2854 if (mnt
!= path2
->mnt
) {
2856 if (mnt
->mnt_parent
== mnt
) {
2857 br_read_unlock(vfsmount_lock
);
2860 if (mnt
->mnt_parent
== path2
->mnt
)
2862 mnt
= mnt
->mnt_parent
;
2864 dentry
= mnt
->mnt_mountpoint
;
2866 res
= is_subdir(dentry
, path2
->dentry
);
2867 br_read_unlock(vfsmount_lock
);
2870 EXPORT_SYMBOL(path_is_under
);
2872 void d_genocide(struct dentry
*root
)
2874 struct dentry
*this_parent
;
2875 struct list_head
*next
;
2879 seq
= read_seqbegin(&rename_lock
);
2882 spin_lock(&this_parent
->d_lock
);
2884 next
= this_parent
->d_subdirs
.next
;
2886 while (next
!= &this_parent
->d_subdirs
) {
2887 struct list_head
*tmp
= next
;
2888 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2891 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2892 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2893 spin_unlock(&dentry
->d_lock
);
2896 if (!list_empty(&dentry
->d_subdirs
)) {
2897 spin_unlock(&this_parent
->d_lock
);
2898 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2899 this_parent
= dentry
;
2900 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2903 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2904 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2907 spin_unlock(&dentry
->d_lock
);
2909 if (this_parent
!= root
) {
2910 struct dentry
*child
= this_parent
;
2911 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2912 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2913 this_parent
->d_count
--;
2915 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2918 next
= child
->d_u
.d_child
.next
;
2921 spin_unlock(&this_parent
->d_lock
);
2922 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2925 write_sequnlock(&rename_lock
);
2932 write_seqlock(&rename_lock
);
2937 * find_inode_number - check for dentry with name
2938 * @dir: directory to check
2939 * @name: Name to find.
2941 * Check whether a dentry already exists for the given name,
2942 * and return the inode number if it has an inode. Otherwise
2945 * This routine is used to post-process directory listings for
2946 * filesystems using synthetic inode numbers, and is necessary
2947 * to keep getcwd() working.
2950 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2952 struct dentry
* dentry
;
2955 dentry
= d_hash_and_lookup(dir
, name
);
2957 if (dentry
->d_inode
)
2958 ino
= dentry
->d_inode
->i_ino
;
2963 EXPORT_SYMBOL(find_inode_number
);
2965 static __initdata
unsigned long dhash_entries
;
2966 static int __init
set_dhash_entries(char *str
)
2970 dhash_entries
= simple_strtoul(str
, &str
, 0);
2973 __setup("dhash_entries=", set_dhash_entries
);
2975 static void __init
dcache_init_early(void)
2979 /* If hashes are distributed across NUMA nodes, defer
2980 * hash allocation until vmalloc space is available.
2986 alloc_large_system_hash("Dentry cache",
2987 sizeof(struct hlist_bl_head
),
2995 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2996 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
2999 static void __init
dcache_init(void)
3004 * A constructor could be added for stable state like the lists,
3005 * but it is probably not worth it because of the cache nature
3008 dentry_cache
= KMEM_CACHE(dentry
,
3009 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3011 /* Hash may have been set up in dcache_init_early */
3016 alloc_large_system_hash("Dentry cache",
3017 sizeof(struct hlist_bl_head
),
3025 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3026 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3029 /* SLAB cache for __getname() consumers */
3030 struct kmem_cache
*names_cachep __read_mostly
;
3031 EXPORT_SYMBOL(names_cachep
);
3033 EXPORT_SYMBOL(d_genocide
);
3035 void __init
vfs_caches_init_early(void)
3037 dcache_init_early();
3041 void __init
vfs_caches_init(unsigned long mempages
)
3043 unsigned long reserve
;
3045 /* Base hash sizes on available memory, with a reserve equal to
3046 150% of current kernel size */
3048 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3049 mempages
-= reserve
;
3051 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3052 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3056 files_init(mempages
);