1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
43 #include "compression.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
53 struct btrfs_iget_args
{
54 struct btrfs_key
*location
;
55 struct btrfs_root
*root
;
58 struct btrfs_dio_data
{
60 u64 unsubmitted_oe_range_start
;
61 u64 unsubmitted_oe_range_end
;
65 static const struct inode_operations btrfs_dir_inode_operations
;
66 static const struct inode_operations btrfs_symlink_inode_operations
;
67 static const struct inode_operations btrfs_dir_ro_inode_operations
;
68 static const struct inode_operations btrfs_special_inode_operations
;
69 static const struct inode_operations btrfs_file_inode_operations
;
70 static const struct address_space_operations btrfs_aops
;
71 static const struct file_operations btrfs_dir_file_operations
;
72 static const struct extent_io_ops btrfs_extent_io_ops
;
74 static struct kmem_cache
*btrfs_inode_cachep
;
75 struct kmem_cache
*btrfs_trans_handle_cachep
;
76 struct kmem_cache
*btrfs_path_cachep
;
77 struct kmem_cache
*btrfs_free_space_cachep
;
78 struct kmem_cache
*btrfs_free_space_bitmap_cachep
;
80 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
81 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
83 static noinline
int cow_file_range(struct inode
*inode
,
84 struct page
*locked_page
,
85 u64 start
, u64 end
, int *page_started
,
86 unsigned long *nr_written
, int unlock
);
87 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
88 u64 orig_start
, u64 block_start
,
89 u64 block_len
, u64 orig_block_len
,
90 u64 ram_bytes
, int compress_type
,
93 static void __endio_write_update_ordered(struct inode
*inode
,
94 const u64 offset
, const u64 bytes
,
98 * Cleanup all submitted ordered extents in specified range to handle errors
99 * from the btrfs_run_delalloc_range() callback.
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
105 * extent (btrfs_finish_ordered_io()).
107 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
108 struct page
*locked_page
,
109 u64 offset
, u64 bytes
)
111 unsigned long index
= offset
>> PAGE_SHIFT
;
112 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
113 u64 page_start
= page_offset(locked_page
);
114 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
118 while (index
<= end_index
) {
119 page
= find_get_page(inode
->i_mapping
, index
);
123 ClearPagePrivate2(page
);
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
132 if (page_start
>= offset
&& page_end
<= (offset
+ bytes
- 1)) {
137 return __endio_write_update_ordered(inode
, offset
, bytes
, false);
140 static int btrfs_dirty_inode(struct inode
*inode
);
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode
*inode
)
145 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
149 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
150 struct inode
*inode
, struct inode
*dir
,
151 const struct qstr
*qstr
)
155 err
= btrfs_init_acl(trans
, inode
, dir
);
157 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
166 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
167 struct btrfs_path
*path
, int extent_inserted
,
168 struct btrfs_root
*root
, struct inode
*inode
,
169 u64 start
, size_t size
, size_t compressed_size
,
171 struct page
**compressed_pages
)
173 struct extent_buffer
*leaf
;
174 struct page
*page
= NULL
;
177 struct btrfs_file_extent_item
*ei
;
179 size_t cur_size
= size
;
180 unsigned long offset
;
182 ASSERT((compressed_size
> 0 && compressed_pages
) ||
183 (compressed_size
== 0 && !compressed_pages
));
185 if (compressed_size
&& compressed_pages
)
186 cur_size
= compressed_size
;
188 inode_add_bytes(inode
, size
);
190 if (!extent_inserted
) {
191 struct btrfs_key key
;
194 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
196 key
.type
= BTRFS_EXTENT_DATA_KEY
;
198 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
199 path
->leave_spinning
= 1;
200 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
205 leaf
= path
->nodes
[0];
206 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
207 struct btrfs_file_extent_item
);
208 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
209 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
210 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
211 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
212 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
213 ptr
= btrfs_file_extent_inline_start(ei
);
215 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
218 while (compressed_size
> 0) {
219 cpage
= compressed_pages
[i
];
220 cur_size
= min_t(unsigned long, compressed_size
,
223 kaddr
= kmap_atomic(cpage
);
224 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
225 kunmap_atomic(kaddr
);
229 compressed_size
-= cur_size
;
231 btrfs_set_file_extent_compression(leaf
, ei
,
234 page
= find_get_page(inode
->i_mapping
,
235 start
>> PAGE_SHIFT
);
236 btrfs_set_file_extent_compression(leaf
, ei
, 0);
237 kaddr
= kmap_atomic(page
);
238 offset
= offset_in_page(start
);
239 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
240 kunmap_atomic(kaddr
);
243 btrfs_mark_buffer_dirty(leaf
);
244 btrfs_release_path(path
);
247 * we're an inline extent, so nobody can
248 * extend the file past i_size without locking
249 * a page we already have locked.
251 * We must do any isize and inode updates
252 * before we unlock the pages. Otherwise we
253 * could end up racing with unlink.
255 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
256 ret
= btrfs_update_inode(trans
, root
, inode
);
264 * conditionally insert an inline extent into the file. This
265 * does the checks required to make sure the data is small enough
266 * to fit as an inline extent.
268 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
269 u64 end
, size_t compressed_size
,
271 struct page
**compressed_pages
)
273 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
274 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
275 struct btrfs_trans_handle
*trans
;
276 u64 isize
= i_size_read(inode
);
277 u64 actual_end
= min(end
+ 1, isize
);
278 u64 inline_len
= actual_end
- start
;
279 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
280 u64 data_len
= inline_len
;
282 struct btrfs_path
*path
;
283 int extent_inserted
= 0;
284 u32 extent_item_size
;
287 data_len
= compressed_size
;
290 actual_end
> fs_info
->sectorsize
||
291 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
293 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
295 data_len
> fs_info
->max_inline
) {
299 path
= btrfs_alloc_path();
303 trans
= btrfs_join_transaction(root
);
305 btrfs_free_path(path
);
306 return PTR_ERR(trans
);
308 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
310 if (compressed_size
&& compressed_pages
)
311 extent_item_size
= btrfs_file_extent_calc_inline_size(
314 extent_item_size
= btrfs_file_extent_calc_inline_size(
317 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
318 start
, aligned_end
, NULL
,
319 1, 1, extent_item_size
, &extent_inserted
);
321 btrfs_abort_transaction(trans
, ret
);
325 if (isize
> actual_end
)
326 inline_len
= min_t(u64
, isize
, actual_end
);
327 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
329 inline_len
, compressed_size
,
330 compress_type
, compressed_pages
);
331 if (ret
&& ret
!= -ENOSPC
) {
332 btrfs_abort_transaction(trans
, ret
);
334 } else if (ret
== -ENOSPC
) {
339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
340 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
348 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
349 btrfs_free_path(path
);
350 btrfs_end_transaction(trans
);
354 struct async_extent
{
359 unsigned long nr_pages
;
361 struct list_head list
;
366 struct page
*locked_page
;
369 unsigned int write_flags
;
370 struct list_head extents
;
371 struct cgroup_subsys_state
*blkcg_css
;
372 struct btrfs_work work
;
377 /* Number of chunks in flight; must be first in the structure */
379 struct async_chunk chunks
[];
382 static noinline
int add_async_extent(struct async_chunk
*cow
,
383 u64 start
, u64 ram_size
,
386 unsigned long nr_pages
,
389 struct async_extent
*async_extent
;
391 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
392 BUG_ON(!async_extent
); /* -ENOMEM */
393 async_extent
->start
= start
;
394 async_extent
->ram_size
= ram_size
;
395 async_extent
->compressed_size
= compressed_size
;
396 async_extent
->pages
= pages
;
397 async_extent
->nr_pages
= nr_pages
;
398 async_extent
->compress_type
= compress_type
;
399 list_add_tail(&async_extent
->list
, &cow
->extents
);
404 * Check if the inode has flags compatible with compression
406 static inline bool inode_can_compress(struct inode
*inode
)
408 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
||
409 BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
415 * Check if the inode needs to be submitted to compression, based on mount
416 * options, defragmentation, properties or heuristics.
418 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
420 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
422 if (!inode_can_compress(inode
)) {
423 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
424 KERN_ERR
"BTRFS: unexpected compression for ino %llu\n",
425 btrfs_ino(BTRFS_I(inode
)));
429 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
432 if (BTRFS_I(inode
)->defrag_compress
)
434 /* bad compression ratios */
435 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
437 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
438 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
439 BTRFS_I(inode
)->prop_compress
)
440 return btrfs_compress_heuristic(inode
, start
, end
);
444 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
445 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
447 /* If this is a small write inside eof, kick off a defrag */
448 if (num_bytes
< small_write
&&
449 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
450 btrfs_add_inode_defrag(NULL
, inode
);
454 * we create compressed extents in two phases. The first
455 * phase compresses a range of pages that have already been
456 * locked (both pages and state bits are locked).
458 * This is done inside an ordered work queue, and the compression
459 * is spread across many cpus. The actual IO submission is step
460 * two, and the ordered work queue takes care of making sure that
461 * happens in the same order things were put onto the queue by
462 * writepages and friends.
464 * If this code finds it can't get good compression, it puts an
465 * entry onto the work queue to write the uncompressed bytes. This
466 * makes sure that both compressed inodes and uncompressed inodes
467 * are written in the same order that the flusher thread sent them
470 static noinline
int compress_file_range(struct async_chunk
*async_chunk
)
472 struct inode
*inode
= async_chunk
->inode
;
473 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
474 u64 blocksize
= fs_info
->sectorsize
;
475 u64 start
= async_chunk
->start
;
476 u64 end
= async_chunk
->end
;
480 struct page
**pages
= NULL
;
481 unsigned long nr_pages
;
482 unsigned long total_compressed
= 0;
483 unsigned long total_in
= 0;
486 int compress_type
= fs_info
->compress_type
;
487 int compressed_extents
= 0;
490 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
494 * We need to save i_size before now because it could change in between
495 * us evaluating the size and assigning it. This is because we lock and
496 * unlock the page in truncate and fallocate, and then modify the i_size
499 * The barriers are to emulate READ_ONCE, remove that once i_size_read
503 i_size
= i_size_read(inode
);
505 actual_end
= min_t(u64
, i_size
, end
+ 1);
508 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
509 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
510 nr_pages
= min_t(unsigned long, nr_pages
,
511 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
514 * we don't want to send crud past the end of i_size through
515 * compression, that's just a waste of CPU time. So, if the
516 * end of the file is before the start of our current
517 * requested range of bytes, we bail out to the uncompressed
518 * cleanup code that can deal with all of this.
520 * It isn't really the fastest way to fix things, but this is a
521 * very uncommon corner.
523 if (actual_end
<= start
)
524 goto cleanup_and_bail_uncompressed
;
526 total_compressed
= actual_end
- start
;
529 * skip compression for a small file range(<=blocksize) that
530 * isn't an inline extent, since it doesn't save disk space at all.
532 if (total_compressed
<= blocksize
&&
533 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
534 goto cleanup_and_bail_uncompressed
;
536 total_compressed
= min_t(unsigned long, total_compressed
,
537 BTRFS_MAX_UNCOMPRESSED
);
542 * we do compression for mount -o compress and when the
543 * inode has not been flagged as nocompress. This flag can
544 * change at any time if we discover bad compression ratios.
546 if (inode_need_compress(inode
, start
, end
)) {
548 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
550 /* just bail out to the uncompressed code */
555 if (BTRFS_I(inode
)->defrag_compress
)
556 compress_type
= BTRFS_I(inode
)->defrag_compress
;
557 else if (BTRFS_I(inode
)->prop_compress
)
558 compress_type
= BTRFS_I(inode
)->prop_compress
;
561 * we need to call clear_page_dirty_for_io on each
562 * page in the range. Otherwise applications with the file
563 * mmap'd can wander in and change the page contents while
564 * we are compressing them.
566 * If the compression fails for any reason, we set the pages
567 * dirty again later on.
569 * Note that the remaining part is redirtied, the start pointer
570 * has moved, the end is the original one.
573 extent_range_clear_dirty_for_io(inode
, start
, end
);
577 /* Compression level is applied here and only here */
578 ret
= btrfs_compress_pages(
579 compress_type
| (fs_info
->compress_level
<< 4),
580 inode
->i_mapping
, start
,
587 unsigned long offset
= offset_in_page(total_compressed
);
588 struct page
*page
= pages
[nr_pages
- 1];
591 /* zero the tail end of the last page, we might be
592 * sending it down to disk
595 kaddr
= kmap_atomic(page
);
596 memset(kaddr
+ offset
, 0,
598 kunmap_atomic(kaddr
);
605 /* lets try to make an inline extent */
606 if (ret
|| total_in
< actual_end
) {
607 /* we didn't compress the entire range, try
608 * to make an uncompressed inline extent.
610 ret
= cow_file_range_inline(inode
, start
, end
, 0,
611 BTRFS_COMPRESS_NONE
, NULL
);
613 /* try making a compressed inline extent */
614 ret
= cow_file_range_inline(inode
, start
, end
,
616 compress_type
, pages
);
619 unsigned long clear_flags
= EXTENT_DELALLOC
|
620 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
621 EXTENT_DO_ACCOUNTING
;
622 unsigned long page_error_op
;
624 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
627 * inline extent creation worked or returned error,
628 * we don't need to create any more async work items.
629 * Unlock and free up our temp pages.
631 * We use DO_ACCOUNTING here because we need the
632 * delalloc_release_metadata to be done _after_ we drop
633 * our outstanding extent for clearing delalloc for this
636 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
644 for (i
= 0; i
< nr_pages
; i
++) {
645 WARN_ON(pages
[i
]->mapping
);
656 * we aren't doing an inline extent round the compressed size
657 * up to a block size boundary so the allocator does sane
660 total_compressed
= ALIGN(total_compressed
, blocksize
);
663 * one last check to make sure the compression is really a
664 * win, compare the page count read with the blocks on disk,
665 * compression must free at least one sector size
667 total_in
= ALIGN(total_in
, PAGE_SIZE
);
668 if (total_compressed
+ blocksize
<= total_in
) {
669 compressed_extents
++;
672 * The async work queues will take care of doing actual
673 * allocation on disk for these compressed pages, and
674 * will submit them to the elevator.
676 add_async_extent(async_chunk
, start
, total_in
,
677 total_compressed
, pages
, nr_pages
,
680 if (start
+ total_in
< end
) {
686 return compressed_extents
;
691 * the compression code ran but failed to make things smaller,
692 * free any pages it allocated and our page pointer array
694 for (i
= 0; i
< nr_pages
; i
++) {
695 WARN_ON(pages
[i
]->mapping
);
700 total_compressed
= 0;
703 /* flag the file so we don't compress in the future */
704 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
705 !(BTRFS_I(inode
)->prop_compress
)) {
706 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
709 cleanup_and_bail_uncompressed
:
711 * No compression, but we still need to write the pages in the file
712 * we've been given so far. redirty the locked page if it corresponds
713 * to our extent and set things up for the async work queue to run
714 * cow_file_range to do the normal delalloc dance.
716 if (async_chunk
->locked_page
&&
717 (page_offset(async_chunk
->locked_page
) >= start
&&
718 page_offset(async_chunk
->locked_page
)) <= end
) {
719 __set_page_dirty_nobuffers(async_chunk
->locked_page
);
720 /* unlocked later on in the async handlers */
724 extent_range_redirty_for_io(inode
, start
, end
);
725 add_async_extent(async_chunk
, start
, end
- start
+ 1, 0, NULL
, 0,
726 BTRFS_COMPRESS_NONE
);
727 compressed_extents
++;
729 return compressed_extents
;
732 static void free_async_extent_pages(struct async_extent
*async_extent
)
736 if (!async_extent
->pages
)
739 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
740 WARN_ON(async_extent
->pages
[i
]->mapping
);
741 put_page(async_extent
->pages
[i
]);
743 kfree(async_extent
->pages
);
744 async_extent
->nr_pages
= 0;
745 async_extent
->pages
= NULL
;
749 * phase two of compressed writeback. This is the ordered portion
750 * of the code, which only gets called in the order the work was
751 * queued. We walk all the async extents created by compress_file_range
752 * and send them down to the disk.
754 static noinline
void submit_compressed_extents(struct async_chunk
*async_chunk
)
756 struct inode
*inode
= async_chunk
->inode
;
757 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
758 struct async_extent
*async_extent
;
760 struct btrfs_key ins
;
761 struct extent_map
*em
;
762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
763 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
767 while (!list_empty(&async_chunk
->extents
)) {
768 async_extent
= list_entry(async_chunk
->extents
.next
,
769 struct async_extent
, list
);
770 list_del(&async_extent
->list
);
773 lock_extent(io_tree
, async_extent
->start
,
774 async_extent
->start
+ async_extent
->ram_size
- 1);
775 /* did the compression code fall back to uncompressed IO? */
776 if (!async_extent
->pages
) {
777 int page_started
= 0;
778 unsigned long nr_written
= 0;
780 /* allocate blocks */
781 ret
= cow_file_range(inode
, async_chunk
->locked_page
,
783 async_extent
->start
+
784 async_extent
->ram_size
- 1,
785 &page_started
, &nr_written
, 0);
790 * if page_started, cow_file_range inserted an
791 * inline extent and took care of all the unlocking
792 * and IO for us. Otherwise, we need to submit
793 * all those pages down to the drive.
795 if (!page_started
&& !ret
)
796 extent_write_locked_range(inode
,
798 async_extent
->start
+
799 async_extent
->ram_size
- 1,
801 else if (ret
&& async_chunk
->locked_page
)
802 unlock_page(async_chunk
->locked_page
);
808 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
809 async_extent
->compressed_size
,
810 async_extent
->compressed_size
,
811 0, alloc_hint
, &ins
, 1, 1);
813 free_async_extent_pages(async_extent
);
815 if (ret
== -ENOSPC
) {
816 unlock_extent(io_tree
, async_extent
->start
,
817 async_extent
->start
+
818 async_extent
->ram_size
- 1);
821 * we need to redirty the pages if we decide to
822 * fallback to uncompressed IO, otherwise we
823 * will not submit these pages down to lower
826 extent_range_redirty_for_io(inode
,
828 async_extent
->start
+
829 async_extent
->ram_size
- 1);
836 * here we're doing allocation and writeback of the
839 em
= create_io_em(inode
, async_extent
->start
,
840 async_extent
->ram_size
, /* len */
841 async_extent
->start
, /* orig_start */
842 ins
.objectid
, /* block_start */
843 ins
.offset
, /* block_len */
844 ins
.offset
, /* orig_block_len */
845 async_extent
->ram_size
, /* ram_bytes */
846 async_extent
->compress_type
,
847 BTRFS_ORDERED_COMPRESSED
);
849 /* ret value is not necessary due to void function */
850 goto out_free_reserve
;
853 ret
= btrfs_add_ordered_extent_compress(inode
,
856 async_extent
->ram_size
,
858 BTRFS_ORDERED_COMPRESSED
,
859 async_extent
->compress_type
);
861 btrfs_drop_extent_cache(BTRFS_I(inode
),
863 async_extent
->start
+
864 async_extent
->ram_size
- 1, 0);
865 goto out_free_reserve
;
867 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
870 * clear dirty, set writeback and unlock the pages.
872 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
873 async_extent
->start
+
874 async_extent
->ram_size
- 1,
875 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
876 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
878 if (btrfs_submit_compressed_write(inode
,
880 async_extent
->ram_size
,
882 ins
.offset
, async_extent
->pages
,
883 async_extent
->nr_pages
,
884 async_chunk
->write_flags
,
885 async_chunk
->blkcg_css
)) {
886 struct page
*p
= async_extent
->pages
[0];
887 const u64 start
= async_extent
->start
;
888 const u64 end
= start
+ async_extent
->ram_size
- 1;
890 p
->mapping
= inode
->i_mapping
;
891 btrfs_writepage_endio_finish_ordered(p
, start
, end
, 0);
894 extent_clear_unlock_delalloc(inode
, start
, end
,
898 free_async_extent_pages(async_extent
);
900 alloc_hint
= ins
.objectid
+ ins
.offset
;
906 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
907 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
909 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
910 async_extent
->start
+
911 async_extent
->ram_size
- 1,
912 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
913 EXTENT_DELALLOC_NEW
|
914 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
915 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
916 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
918 free_async_extent_pages(async_extent
);
923 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
926 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
927 struct extent_map
*em
;
930 read_lock(&em_tree
->lock
);
931 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
934 * if block start isn't an actual block number then find the
935 * first block in this inode and use that as a hint. If that
936 * block is also bogus then just don't worry about it.
938 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
940 em
= search_extent_mapping(em_tree
, 0, 0);
941 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
942 alloc_hint
= em
->block_start
;
946 alloc_hint
= em
->block_start
;
950 read_unlock(&em_tree
->lock
);
956 * when extent_io.c finds a delayed allocation range in the file,
957 * the call backs end up in this code. The basic idea is to
958 * allocate extents on disk for the range, and create ordered data structs
959 * in ram to track those extents.
961 * locked_page is the page that writepage had locked already. We use
962 * it to make sure we don't do extra locks or unlocks.
964 * *page_started is set to one if we unlock locked_page and do everything
965 * required to start IO on it. It may be clean and already done with
968 static noinline
int cow_file_range(struct inode
*inode
,
969 struct page
*locked_page
,
970 u64 start
, u64 end
, int *page_started
,
971 unsigned long *nr_written
, int unlock
)
973 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
974 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
977 unsigned long ram_size
;
978 u64 cur_alloc_size
= 0;
979 u64 blocksize
= fs_info
->sectorsize
;
980 struct btrfs_key ins
;
981 struct extent_map
*em
;
983 unsigned long page_ops
;
984 bool extent_reserved
= false;
987 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
993 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
994 num_bytes
= max(blocksize
, num_bytes
);
995 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
997 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
1000 /* lets try to make an inline extent */
1001 ret
= cow_file_range_inline(inode
, start
, end
, 0,
1002 BTRFS_COMPRESS_NONE
, NULL
);
1005 * We use DO_ACCOUNTING here because we need the
1006 * delalloc_release_metadata to be run _after_ we drop
1007 * our outstanding extent for clearing delalloc for this
1010 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
1011 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1012 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1013 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1014 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1015 PAGE_END_WRITEBACK
);
1016 *nr_written
= *nr_written
+
1017 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1020 } else if (ret
< 0) {
1025 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1026 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1027 start
+ num_bytes
- 1, 0);
1029 while (num_bytes
> 0) {
1030 cur_alloc_size
= num_bytes
;
1031 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1032 fs_info
->sectorsize
, 0, alloc_hint
,
1036 cur_alloc_size
= ins
.offset
;
1037 extent_reserved
= true;
1039 ram_size
= ins
.offset
;
1040 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1041 start
, /* orig_start */
1042 ins
.objectid
, /* block_start */
1043 ins
.offset
, /* block_len */
1044 ins
.offset
, /* orig_block_len */
1045 ram_size
, /* ram_bytes */
1046 BTRFS_COMPRESS_NONE
, /* compress_type */
1047 BTRFS_ORDERED_REGULAR
/* type */);
1052 free_extent_map(em
);
1054 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1055 ram_size
, cur_alloc_size
, 0);
1057 goto out_drop_extent_cache
;
1059 if (root
->root_key
.objectid
==
1060 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1061 ret
= btrfs_reloc_clone_csums(inode
, start
,
1064 * Only drop cache here, and process as normal.
1066 * We must not allow extent_clear_unlock_delalloc()
1067 * at out_unlock label to free meta of this ordered
1068 * extent, as its meta should be freed by
1069 * btrfs_finish_ordered_io().
1071 * So we must continue until @start is increased to
1072 * skip current ordered extent.
1075 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1076 start
+ ram_size
- 1, 0);
1079 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1081 /* we're not doing compressed IO, don't unlock the first
1082 * page (which the caller expects to stay locked), don't
1083 * clear any dirty bits and don't set any writeback bits
1085 * Do set the Private2 bit so we know this page was properly
1086 * setup for writepage
1088 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1089 page_ops
|= PAGE_SET_PRIVATE2
;
1091 extent_clear_unlock_delalloc(inode
, start
,
1092 start
+ ram_size
- 1,
1094 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1096 if (num_bytes
< cur_alloc_size
)
1099 num_bytes
-= cur_alloc_size
;
1100 alloc_hint
= ins
.objectid
+ ins
.offset
;
1101 start
+= cur_alloc_size
;
1102 extent_reserved
= false;
1105 * btrfs_reloc_clone_csums() error, since start is increased
1106 * extent_clear_unlock_delalloc() at out_unlock label won't
1107 * free metadata of current ordered extent, we're OK to exit.
1115 out_drop_extent_cache
:
1116 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1118 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1119 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1121 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1122 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1123 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1126 * If we reserved an extent for our delalloc range (or a subrange) and
1127 * failed to create the respective ordered extent, then it means that
1128 * when we reserved the extent we decremented the extent's size from
1129 * the data space_info's bytes_may_use counter and incremented the
1130 * space_info's bytes_reserved counter by the same amount. We must make
1131 * sure extent_clear_unlock_delalloc() does not try to decrement again
1132 * the data space_info's bytes_may_use counter, therefore we do not pass
1133 * it the flag EXTENT_CLEAR_DATA_RESV.
1135 if (extent_reserved
) {
1136 extent_clear_unlock_delalloc(inode
, start
,
1137 start
+ cur_alloc_size
,
1141 start
+= cur_alloc_size
;
1145 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1146 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1152 * work queue call back to started compression on a file and pages
1154 static noinline
void async_cow_start(struct btrfs_work
*work
)
1156 struct async_chunk
*async_chunk
;
1157 int compressed_extents
;
1159 async_chunk
= container_of(work
, struct async_chunk
, work
);
1161 compressed_extents
= compress_file_range(async_chunk
);
1162 if (compressed_extents
== 0) {
1163 btrfs_add_delayed_iput(async_chunk
->inode
);
1164 async_chunk
->inode
= NULL
;
1169 * work queue call back to submit previously compressed pages
1171 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1173 struct async_chunk
*async_chunk
= container_of(work
, struct async_chunk
,
1175 struct btrfs_fs_info
*fs_info
= btrfs_work_owner(work
);
1176 unsigned long nr_pages
;
1178 nr_pages
= (async_chunk
->end
- async_chunk
->start
+ PAGE_SIZE
) >>
1181 /* atomic_sub_return implies a barrier */
1182 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1184 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1187 * ->inode could be NULL if async_chunk_start has failed to compress,
1188 * in which case we don't have anything to submit, yet we need to
1189 * always adjust ->async_delalloc_pages as its paired with the init
1190 * happening in cow_file_range_async
1192 if (async_chunk
->inode
)
1193 submit_compressed_extents(async_chunk
);
1196 static noinline
void async_cow_free(struct btrfs_work
*work
)
1198 struct async_chunk
*async_chunk
;
1200 async_chunk
= container_of(work
, struct async_chunk
, work
);
1201 if (async_chunk
->inode
)
1202 btrfs_add_delayed_iput(async_chunk
->inode
);
1203 if (async_chunk
->blkcg_css
)
1204 css_put(async_chunk
->blkcg_css
);
1206 * Since the pointer to 'pending' is at the beginning of the array of
1207 * async_chunk's, freeing it ensures the whole array has been freed.
1209 if (atomic_dec_and_test(async_chunk
->pending
))
1210 kvfree(async_chunk
->pending
);
1213 static int cow_file_range_async(struct inode
*inode
,
1214 struct writeback_control
*wbc
,
1215 struct page
*locked_page
,
1216 u64 start
, u64 end
, int *page_started
,
1217 unsigned long *nr_written
)
1219 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1220 struct cgroup_subsys_state
*blkcg_css
= wbc_blkcg_css(wbc
);
1221 struct async_cow
*ctx
;
1222 struct async_chunk
*async_chunk
;
1223 unsigned long nr_pages
;
1225 u64 num_chunks
= DIV_ROUND_UP(end
- start
, SZ_512K
);
1227 bool should_compress
;
1229 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
1231 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1233 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1234 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
)) {
1236 should_compress
= false;
1238 should_compress
= true;
1241 nofs_flag
= memalloc_nofs_save();
1242 ctx
= kvmalloc(struct_size(ctx
, chunks
, num_chunks
), GFP_KERNEL
);
1243 memalloc_nofs_restore(nofs_flag
);
1246 unsigned clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
|
1247 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1248 EXTENT_DO_ACCOUNTING
;
1249 unsigned long page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1250 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
1253 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1254 clear_bits
, page_ops
);
1258 async_chunk
= ctx
->chunks
;
1259 atomic_set(&ctx
->num_chunks
, num_chunks
);
1261 for (i
= 0; i
< num_chunks
; i
++) {
1262 if (should_compress
)
1263 cur_end
= min(end
, start
+ SZ_512K
- 1);
1268 * igrab is called higher up in the call chain, take only the
1269 * lightweight reference for the callback lifetime
1272 async_chunk
[i
].pending
= &ctx
->num_chunks
;
1273 async_chunk
[i
].inode
= inode
;
1274 async_chunk
[i
].start
= start
;
1275 async_chunk
[i
].end
= cur_end
;
1276 async_chunk
[i
].write_flags
= write_flags
;
1277 INIT_LIST_HEAD(&async_chunk
[i
].extents
);
1280 * The locked_page comes all the way from writepage and its
1281 * the original page we were actually given. As we spread
1282 * this large delalloc region across multiple async_chunk
1283 * structs, only the first struct needs a pointer to locked_page
1285 * This way we don't need racey decisions about who is supposed
1290 * Depending on the compressibility, the pages might or
1291 * might not go through async. We want all of them to
1292 * be accounted against wbc once. Let's do it here
1293 * before the paths diverge. wbc accounting is used
1294 * only for foreign writeback detection and doesn't
1295 * need full accuracy. Just account the whole thing
1296 * against the first page.
1298 wbc_account_cgroup_owner(wbc
, locked_page
,
1300 async_chunk
[i
].locked_page
= locked_page
;
1303 async_chunk
[i
].locked_page
= NULL
;
1306 if (blkcg_css
!= blkcg_root_css
) {
1308 async_chunk
[i
].blkcg_css
= blkcg_css
;
1310 async_chunk
[i
].blkcg_css
= NULL
;
1313 btrfs_init_work(&async_chunk
[i
].work
, async_cow_start
,
1314 async_cow_submit
, async_cow_free
);
1316 nr_pages
= DIV_ROUND_UP(cur_end
- start
, PAGE_SIZE
);
1317 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1319 btrfs_queue_work(fs_info
->delalloc_workers
, &async_chunk
[i
].work
);
1321 *nr_written
+= nr_pages
;
1322 start
= cur_end
+ 1;
1328 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1329 u64 bytenr
, u64 num_bytes
)
1332 struct btrfs_ordered_sum
*sums
;
1335 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1336 bytenr
+ num_bytes
- 1, &list
, 0);
1337 if (ret
== 0 && list_empty(&list
))
1340 while (!list_empty(&list
)) {
1341 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1342 list_del(&sums
->list
);
1351 * when nowcow writeback call back. This checks for snapshots or COW copies
1352 * of the extents that exist in the file, and COWs the file as required.
1354 * If no cow copies or snapshots exist, we write directly to the existing
1357 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1358 struct page
*locked_page
,
1359 const u64 start
, const u64 end
,
1360 int *page_started
, int force
,
1361 unsigned long *nr_written
)
1363 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1364 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1365 struct btrfs_path
*path
;
1366 u64 cow_start
= (u64
)-1;
1367 u64 cur_offset
= start
;
1369 bool check_prev
= true;
1370 const bool freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1371 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1373 u64 disk_bytenr
= 0;
1375 path
= btrfs_alloc_path();
1377 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1378 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1379 EXTENT_DO_ACCOUNTING
|
1380 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1382 PAGE_SET_WRITEBACK
|
1383 PAGE_END_WRITEBACK
);
1388 struct btrfs_key found_key
;
1389 struct btrfs_file_extent_item
*fi
;
1390 struct extent_buffer
*leaf
;
1400 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1406 * If there is no extent for our range when doing the initial
1407 * search, then go back to the previous slot as it will be the
1408 * one containing the search offset
1410 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1411 leaf
= path
->nodes
[0];
1412 btrfs_item_key_to_cpu(leaf
, &found_key
,
1413 path
->slots
[0] - 1);
1414 if (found_key
.objectid
== ino
&&
1415 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1420 /* Go to next leaf if we have exhausted the current one */
1421 leaf
= path
->nodes
[0];
1422 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1423 ret
= btrfs_next_leaf(root
, path
);
1425 if (cow_start
!= (u64
)-1)
1426 cur_offset
= cow_start
;
1431 leaf
= path
->nodes
[0];
1434 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1436 /* Didn't find anything for our INO */
1437 if (found_key
.objectid
> ino
)
1440 * Keep searching until we find an EXTENT_ITEM or there are no
1441 * more extents for this inode
1443 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1444 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1449 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1450 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1451 found_key
.offset
> end
)
1455 * If the found extent starts after requested offset, then
1456 * adjust extent_end to be right before this extent begins
1458 if (found_key
.offset
> cur_offset
) {
1459 extent_end
= found_key
.offset
;
1465 * Found extent which begins before our range and potentially
1468 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1469 struct btrfs_file_extent_item
);
1470 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1472 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1473 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1474 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1475 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1476 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1477 extent_end
= found_key
.offset
+
1478 btrfs_file_extent_num_bytes(leaf
, fi
);
1480 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1482 * If the extent we got ends before our current offset,
1483 * skip to the next extent.
1485 if (extent_end
<= cur_offset
) {
1490 if (disk_bytenr
== 0)
1492 /* Skip compressed/encrypted/encoded extents */
1493 if (btrfs_file_extent_compression(leaf
, fi
) ||
1494 btrfs_file_extent_encryption(leaf
, fi
) ||
1495 btrfs_file_extent_other_encoding(leaf
, fi
))
1498 * If extent is created before the last volume's snapshot
1499 * this implies the extent is shared, hence we can't do
1500 * nocow. This is the same check as in
1501 * btrfs_cross_ref_exist but without calling
1502 * btrfs_search_slot.
1504 if (!freespace_inode
&&
1505 btrfs_file_extent_generation(leaf
, fi
) <=
1506 btrfs_root_last_snapshot(&root
->root_item
))
1508 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1510 /* If extent is RO, we must COW it */
1511 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1513 ret
= btrfs_cross_ref_exist(root
, ino
,
1515 extent_offset
, disk_bytenr
);
1518 * ret could be -EIO if the above fails to read
1522 if (cow_start
!= (u64
)-1)
1523 cur_offset
= cow_start
;
1527 WARN_ON_ONCE(freespace_inode
);
1530 disk_bytenr
+= extent_offset
;
1531 disk_bytenr
+= cur_offset
- found_key
.offset
;
1532 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1534 * If there are pending snapshots for this root, we
1535 * fall into common COW way
1537 if (!freespace_inode
&& atomic_read(&root
->snapshot_force_cow
))
1540 * force cow if csum exists in the range.
1541 * this ensure that csum for a given extent are
1542 * either valid or do not exist.
1544 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1548 * ret could be -EIO if the above fails to read
1552 if (cow_start
!= (u64
)-1)
1553 cur_offset
= cow_start
;
1556 WARN_ON_ONCE(freespace_inode
);
1559 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1562 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1563 extent_end
= found_key
.offset
+ ram_bytes
;
1564 extent_end
= ALIGN(extent_end
, fs_info
->sectorsize
);
1565 /* Skip extents outside of our requested range */
1566 if (extent_end
<= start
) {
1571 /* If this triggers then we have a memory corruption */
1576 * If nocow is false then record the beginning of the range
1577 * that needs to be COWed
1580 if (cow_start
== (u64
)-1)
1581 cow_start
= cur_offset
;
1582 cur_offset
= extent_end
;
1583 if (cur_offset
> end
)
1589 btrfs_release_path(path
);
1592 * COW range from cow_start to found_key.offset - 1. As the key
1593 * will contain the beginning of the first extent that can be
1594 * NOCOW, following one which needs to be COW'ed
1596 if (cow_start
!= (u64
)-1) {
1597 ret
= cow_file_range(inode
, locked_page
,
1598 cow_start
, found_key
.offset
- 1,
1599 page_started
, nr_written
, 1);
1602 btrfs_dec_nocow_writers(fs_info
,
1606 cow_start
= (u64
)-1;
1609 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1610 u64 orig_start
= found_key
.offset
- extent_offset
;
1611 struct extent_map
*em
;
1613 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1615 disk_bytenr
, /* block_start */
1616 num_bytes
, /* block_len */
1617 disk_num_bytes
, /* orig_block_len */
1618 ram_bytes
, BTRFS_COMPRESS_NONE
,
1619 BTRFS_ORDERED_PREALLOC
);
1622 btrfs_dec_nocow_writers(fs_info
,
1627 free_extent_map(em
);
1628 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1629 disk_bytenr
, num_bytes
,
1631 BTRFS_ORDERED_PREALLOC
);
1633 btrfs_drop_extent_cache(BTRFS_I(inode
),
1635 cur_offset
+ num_bytes
- 1,
1640 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1641 disk_bytenr
, num_bytes
,
1643 BTRFS_ORDERED_NOCOW
);
1649 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1652 if (root
->root_key
.objectid
==
1653 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1655 * Error handled later, as we must prevent
1656 * extent_clear_unlock_delalloc() in error handler
1657 * from freeing metadata of created ordered extent.
1659 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1662 extent_clear_unlock_delalloc(inode
, cur_offset
,
1663 cur_offset
+ num_bytes
- 1,
1664 locked_page
, EXTENT_LOCKED
|
1666 EXTENT_CLEAR_DATA_RESV
,
1667 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1669 cur_offset
= extent_end
;
1672 * btrfs_reloc_clone_csums() error, now we're OK to call error
1673 * handler, as metadata for created ordered extent will only
1674 * be freed by btrfs_finish_ordered_io().
1678 if (cur_offset
> end
)
1681 btrfs_release_path(path
);
1683 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1684 cow_start
= cur_offset
;
1686 if (cow_start
!= (u64
)-1) {
1688 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1689 page_started
, nr_written
, 1);
1696 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1698 if (ret
&& cur_offset
< end
)
1699 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1700 locked_page
, EXTENT_LOCKED
|
1701 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1702 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1704 PAGE_SET_WRITEBACK
|
1705 PAGE_END_WRITEBACK
);
1706 btrfs_free_path(path
);
1710 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1713 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1714 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1718 * @defrag_bytes is a hint value, no spinlock held here,
1719 * if is not zero, it means the file is defragging.
1720 * Force cow if given extent needs to be defragged.
1722 if (BTRFS_I(inode
)->defrag_bytes
&&
1723 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1724 EXTENT_DEFRAG
, 0, NULL
))
1731 * Function to process delayed allocation (create CoW) for ranges which are
1732 * being touched for the first time.
1734 int btrfs_run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1735 u64 start
, u64 end
, int *page_started
, unsigned long *nr_written
,
1736 struct writeback_control
*wbc
)
1739 int force_cow
= need_force_cow(inode
, start
, end
);
1741 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1742 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1743 page_started
, 1, nr_written
);
1744 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1745 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1746 page_started
, 0, nr_written
);
1747 } else if (!inode_can_compress(inode
) ||
1748 !inode_need_compress(inode
, start
, end
)) {
1749 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1750 page_started
, nr_written
, 1);
1752 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1753 &BTRFS_I(inode
)->runtime_flags
);
1754 ret
= cow_file_range_async(inode
, wbc
, locked_page
, start
, end
,
1755 page_started
, nr_written
);
1758 btrfs_cleanup_ordered_extents(inode
, locked_page
, start
,
1763 void btrfs_split_delalloc_extent(struct inode
*inode
,
1764 struct extent_state
*orig
, u64 split
)
1768 /* not delalloc, ignore it */
1769 if (!(orig
->state
& EXTENT_DELALLOC
))
1772 size
= orig
->end
- orig
->start
+ 1;
1773 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1778 * See the explanation in btrfs_merge_delalloc_extent, the same
1779 * applies here, just in reverse.
1781 new_size
= orig
->end
- split
+ 1;
1782 num_extents
= count_max_extents(new_size
);
1783 new_size
= split
- orig
->start
;
1784 num_extents
+= count_max_extents(new_size
);
1785 if (count_max_extents(size
) >= num_extents
)
1789 spin_lock(&BTRFS_I(inode
)->lock
);
1790 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1791 spin_unlock(&BTRFS_I(inode
)->lock
);
1795 * Handle merged delayed allocation extents so we can keep track of new extents
1796 * that are just merged onto old extents, such as when we are doing sequential
1797 * writes, so we can properly account for the metadata space we'll need.
1799 void btrfs_merge_delalloc_extent(struct inode
*inode
, struct extent_state
*new,
1800 struct extent_state
*other
)
1802 u64 new_size
, old_size
;
1805 /* not delalloc, ignore it */
1806 if (!(other
->state
& EXTENT_DELALLOC
))
1809 if (new->start
> other
->start
)
1810 new_size
= new->end
- other
->start
+ 1;
1812 new_size
= other
->end
- new->start
+ 1;
1814 /* we're not bigger than the max, unreserve the space and go */
1815 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1816 spin_lock(&BTRFS_I(inode
)->lock
);
1817 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1818 spin_unlock(&BTRFS_I(inode
)->lock
);
1823 * We have to add up either side to figure out how many extents were
1824 * accounted for before we merged into one big extent. If the number of
1825 * extents we accounted for is <= the amount we need for the new range
1826 * then we can return, otherwise drop. Think of it like this
1830 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1831 * need 2 outstanding extents, on one side we have 1 and the other side
1832 * we have 1 so they are == and we can return. But in this case
1834 * [MAX_SIZE+4k][MAX_SIZE+4k]
1836 * Each range on their own accounts for 2 extents, but merged together
1837 * they are only 3 extents worth of accounting, so we need to drop in
1840 old_size
= other
->end
- other
->start
+ 1;
1841 num_extents
= count_max_extents(old_size
);
1842 old_size
= new->end
- new->start
+ 1;
1843 num_extents
+= count_max_extents(old_size
);
1844 if (count_max_extents(new_size
) >= num_extents
)
1847 spin_lock(&BTRFS_I(inode
)->lock
);
1848 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1849 spin_unlock(&BTRFS_I(inode
)->lock
);
1852 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1853 struct inode
*inode
)
1855 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1857 spin_lock(&root
->delalloc_lock
);
1858 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1859 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1860 &root
->delalloc_inodes
);
1861 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1862 &BTRFS_I(inode
)->runtime_flags
);
1863 root
->nr_delalloc_inodes
++;
1864 if (root
->nr_delalloc_inodes
== 1) {
1865 spin_lock(&fs_info
->delalloc_root_lock
);
1866 BUG_ON(!list_empty(&root
->delalloc_root
));
1867 list_add_tail(&root
->delalloc_root
,
1868 &fs_info
->delalloc_roots
);
1869 spin_unlock(&fs_info
->delalloc_root_lock
);
1872 spin_unlock(&root
->delalloc_lock
);
1876 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1877 struct btrfs_inode
*inode
)
1879 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1881 if (!list_empty(&inode
->delalloc_inodes
)) {
1882 list_del_init(&inode
->delalloc_inodes
);
1883 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1884 &inode
->runtime_flags
);
1885 root
->nr_delalloc_inodes
--;
1886 if (!root
->nr_delalloc_inodes
) {
1887 ASSERT(list_empty(&root
->delalloc_inodes
));
1888 spin_lock(&fs_info
->delalloc_root_lock
);
1889 BUG_ON(list_empty(&root
->delalloc_root
));
1890 list_del_init(&root
->delalloc_root
);
1891 spin_unlock(&fs_info
->delalloc_root_lock
);
1896 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1897 struct btrfs_inode
*inode
)
1899 spin_lock(&root
->delalloc_lock
);
1900 __btrfs_del_delalloc_inode(root
, inode
);
1901 spin_unlock(&root
->delalloc_lock
);
1905 * Properly track delayed allocation bytes in the inode and to maintain the
1906 * list of inodes that have pending delalloc work to be done.
1908 void btrfs_set_delalloc_extent(struct inode
*inode
, struct extent_state
*state
,
1911 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1913 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1916 * set_bit and clear bit hooks normally require _irqsave/restore
1917 * but in this case, we are only testing for the DELALLOC
1918 * bit, which is only set or cleared with irqs on
1920 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1921 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1922 u64 len
= state
->end
+ 1 - state
->start
;
1923 u32 num_extents
= count_max_extents(len
);
1924 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1926 spin_lock(&BTRFS_I(inode
)->lock
);
1927 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1928 spin_unlock(&BTRFS_I(inode
)->lock
);
1930 /* For sanity tests */
1931 if (btrfs_is_testing(fs_info
))
1934 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1935 fs_info
->delalloc_batch
);
1936 spin_lock(&BTRFS_I(inode
)->lock
);
1937 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1938 if (*bits
& EXTENT_DEFRAG
)
1939 BTRFS_I(inode
)->defrag_bytes
+= len
;
1940 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1941 &BTRFS_I(inode
)->runtime_flags
))
1942 btrfs_add_delalloc_inodes(root
, inode
);
1943 spin_unlock(&BTRFS_I(inode
)->lock
);
1946 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1947 (*bits
& EXTENT_DELALLOC_NEW
)) {
1948 spin_lock(&BTRFS_I(inode
)->lock
);
1949 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1951 spin_unlock(&BTRFS_I(inode
)->lock
);
1956 * Once a range is no longer delalloc this function ensures that proper
1957 * accounting happens.
1959 void btrfs_clear_delalloc_extent(struct inode
*vfs_inode
,
1960 struct extent_state
*state
, unsigned *bits
)
1962 struct btrfs_inode
*inode
= BTRFS_I(vfs_inode
);
1963 struct btrfs_fs_info
*fs_info
= btrfs_sb(vfs_inode
->i_sb
);
1964 u64 len
= state
->end
+ 1 - state
->start
;
1965 u32 num_extents
= count_max_extents(len
);
1967 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1968 spin_lock(&inode
->lock
);
1969 inode
->defrag_bytes
-= len
;
1970 spin_unlock(&inode
->lock
);
1974 * set_bit and clear bit hooks normally require _irqsave/restore
1975 * but in this case, we are only testing for the DELALLOC
1976 * bit, which is only set or cleared with irqs on
1978 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1979 struct btrfs_root
*root
= inode
->root
;
1980 bool do_list
= !btrfs_is_free_space_inode(inode
);
1982 spin_lock(&inode
->lock
);
1983 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1984 spin_unlock(&inode
->lock
);
1987 * We don't reserve metadata space for space cache inodes so we
1988 * don't need to call delalloc_release_metadata if there is an
1991 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1992 root
!= fs_info
->tree_root
)
1993 btrfs_delalloc_release_metadata(inode
, len
, false);
1995 /* For sanity tests. */
1996 if (btrfs_is_testing(fs_info
))
1999 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2000 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
2001 (*bits
& EXTENT_CLEAR_DATA_RESV
))
2002 btrfs_free_reserved_data_space_noquota(
2006 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
2007 fs_info
->delalloc_batch
);
2008 spin_lock(&inode
->lock
);
2009 inode
->delalloc_bytes
-= len
;
2010 if (do_list
&& inode
->delalloc_bytes
== 0 &&
2011 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2012 &inode
->runtime_flags
))
2013 btrfs_del_delalloc_inode(root
, inode
);
2014 spin_unlock(&inode
->lock
);
2017 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
2018 (*bits
& EXTENT_DELALLOC_NEW
)) {
2019 spin_lock(&inode
->lock
);
2020 ASSERT(inode
->new_delalloc_bytes
>= len
);
2021 inode
->new_delalloc_bytes
-= len
;
2022 spin_unlock(&inode
->lock
);
2027 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2028 * in a chunk's stripe. This function ensures that bios do not span a
2031 * @page - The page we are about to add to the bio
2032 * @size - size we want to add to the bio
2033 * @bio - bio we want to ensure is smaller than a stripe
2034 * @bio_flags - flags of the bio
2036 * return 1 if page cannot be added to the bio
2037 * return 0 if page can be added to the bio
2038 * return error otherwise
2040 int btrfs_bio_fits_in_stripe(struct page
*page
, size_t size
, struct bio
*bio
,
2041 unsigned long bio_flags
)
2043 struct inode
*inode
= page
->mapping
->host
;
2044 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2045 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
2049 struct btrfs_io_geometry geom
;
2051 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
2054 length
= bio
->bi_iter
.bi_size
;
2055 map_length
= length
;
2056 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(bio
), logical
, map_length
,
2061 if (geom
.len
< length
+ size
)
2067 * in order to insert checksums into the metadata in large chunks,
2068 * we wait until bio submission time. All the pages in the bio are
2069 * checksummed and sums are attached onto the ordered extent record.
2071 * At IO completion time the cums attached on the ordered extent record
2072 * are inserted into the btree
2074 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
2077 struct inode
*inode
= private_data
;
2078 blk_status_t ret
= 0;
2080 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2081 BUG_ON(ret
); /* -ENOMEM */
2086 * extent_io.c submission hook. This does the right thing for csum calculation
2087 * on write, or reading the csums from the tree before a read.
2089 * Rules about async/sync submit,
2090 * a) read: sync submit
2092 * b) write without checksum: sync submit
2094 * c) write with checksum:
2095 * c-1) if bio is issued by fsync: sync submit
2096 * (sync_writers != 0)
2098 * c-2) if root is reloc root: sync submit
2099 * (only in case of buffered IO)
2101 * c-3) otherwise: async submit
2103 static blk_status_t
btrfs_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
2105 unsigned long bio_flags
)
2108 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2109 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2110 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
2111 blk_status_t ret
= 0;
2113 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
2115 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
2117 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2118 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2120 if (bio_op(bio
) != REQ_OP_WRITE
) {
2121 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2125 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2126 ret
= btrfs_submit_compressed_read(inode
, bio
,
2130 } else if (!skip_sum
) {
2131 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2136 } else if (async
&& !skip_sum
) {
2137 /* csum items have already been cloned */
2138 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2140 /* we're doing a write, do the async checksumming */
2141 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2142 0, inode
, btrfs_submit_bio_start
);
2144 } else if (!skip_sum
) {
2145 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2151 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
2155 bio
->bi_status
= ret
;
2162 * given a list of ordered sums record them in the inode. This happens
2163 * at IO completion time based on sums calculated at bio submission time.
2165 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2166 struct inode
*inode
, struct list_head
*list
)
2168 struct btrfs_ordered_sum
*sum
;
2171 list_for_each_entry(sum
, list
, list
) {
2172 trans
->adding_csums
= true;
2173 ret
= btrfs_csum_file_blocks(trans
,
2174 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2175 trans
->adding_csums
= false;
2182 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2183 unsigned int extra_bits
,
2184 struct extent_state
**cached_state
)
2186 WARN_ON(PAGE_ALIGNED(end
));
2187 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2188 extra_bits
, cached_state
);
2191 /* see btrfs_writepage_start_hook for details on why this is required */
2192 struct btrfs_writepage_fixup
{
2194 struct btrfs_work work
;
2197 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2199 struct btrfs_writepage_fixup
*fixup
;
2200 struct btrfs_ordered_extent
*ordered
;
2201 struct extent_state
*cached_state
= NULL
;
2202 struct extent_changeset
*data_reserved
= NULL
;
2204 struct inode
*inode
;
2209 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2213 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2214 ClearPageChecked(page
);
2218 inode
= page
->mapping
->host
;
2219 page_start
= page_offset(page
);
2220 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2222 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2225 /* already ordered? We're done */
2226 if (PagePrivate2(page
))
2229 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2232 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2233 page_end
, &cached_state
);
2235 btrfs_start_ordered_extent(inode
, ordered
, 1);
2236 btrfs_put_ordered_extent(ordered
);
2240 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2243 mapping_set_error(page
->mapping
, ret
);
2244 end_extent_writepage(page
, ret
, page_start
, page_end
);
2245 ClearPageChecked(page
);
2249 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2252 mapping_set_error(page
->mapping
, ret
);
2253 end_extent_writepage(page
, ret
, page_start
, page_end
);
2254 ClearPageChecked(page
);
2258 ClearPageChecked(page
);
2259 set_page_dirty(page
);
2261 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2263 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
2266 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2272 extent_changeset_free(data_reserved
);
2276 * There are a few paths in the higher layers of the kernel that directly
2277 * set the page dirty bit without asking the filesystem if it is a
2278 * good idea. This causes problems because we want to make sure COW
2279 * properly happens and the data=ordered rules are followed.
2281 * In our case any range that doesn't have the ORDERED bit set
2282 * hasn't been properly setup for IO. We kick off an async process
2283 * to fix it up. The async helper will wait for ordered extents, set
2284 * the delalloc bit and make it safe to write the page.
2286 int btrfs_writepage_cow_fixup(struct page
*page
, u64 start
, u64 end
)
2288 struct inode
*inode
= page
->mapping
->host
;
2289 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2290 struct btrfs_writepage_fixup
*fixup
;
2292 /* this page is properly in the ordered list */
2293 if (TestClearPagePrivate2(page
))
2296 if (PageChecked(page
))
2299 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2303 SetPageChecked(page
);
2305 btrfs_init_work(&fixup
->work
, btrfs_writepage_fixup_worker
, NULL
, NULL
);
2307 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2311 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2312 struct inode
*inode
, u64 file_pos
,
2313 u64 disk_bytenr
, u64 disk_num_bytes
,
2314 u64 num_bytes
, u64 ram_bytes
,
2315 u8 compression
, u8 encryption
,
2316 u16 other_encoding
, int extent_type
)
2318 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2319 struct btrfs_file_extent_item
*fi
;
2320 struct btrfs_path
*path
;
2321 struct extent_buffer
*leaf
;
2322 struct btrfs_key ins
;
2324 int extent_inserted
= 0;
2327 path
= btrfs_alloc_path();
2332 * we may be replacing one extent in the tree with another.
2333 * The new extent is pinned in the extent map, and we don't want
2334 * to drop it from the cache until it is completely in the btree.
2336 * So, tell btrfs_drop_extents to leave this extent in the cache.
2337 * the caller is expected to unpin it and allow it to be merged
2340 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2341 file_pos
+ num_bytes
, NULL
, 0,
2342 1, sizeof(*fi
), &extent_inserted
);
2346 if (!extent_inserted
) {
2347 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2348 ins
.offset
= file_pos
;
2349 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2351 path
->leave_spinning
= 1;
2352 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2357 leaf
= path
->nodes
[0];
2358 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2359 struct btrfs_file_extent_item
);
2360 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2361 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2362 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2363 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2364 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2365 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2366 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2367 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2368 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2369 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2371 btrfs_mark_buffer_dirty(leaf
);
2372 btrfs_release_path(path
);
2374 inode_add_bytes(inode
, num_bytes
);
2376 ins
.objectid
= disk_bytenr
;
2377 ins
.offset
= disk_num_bytes
;
2378 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2381 * Release the reserved range from inode dirty range map, as it is
2382 * already moved into delayed_ref_head
2384 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2388 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2389 btrfs_ino(BTRFS_I(inode
)),
2390 file_pos
, qg_released
, &ins
);
2392 btrfs_free_path(path
);
2397 /* snapshot-aware defrag */
2398 struct sa_defrag_extent_backref
{
2399 struct rb_node node
;
2400 struct old_sa_defrag_extent
*old
;
2409 struct old_sa_defrag_extent
{
2410 struct list_head list
;
2411 struct new_sa_defrag_extent
*new;
2420 struct new_sa_defrag_extent
{
2421 struct rb_root root
;
2422 struct list_head head
;
2423 struct btrfs_path
*path
;
2424 struct inode
*inode
;
2432 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2433 struct sa_defrag_extent_backref
*b2
)
2435 if (b1
->root_id
< b2
->root_id
)
2437 else if (b1
->root_id
> b2
->root_id
)
2440 if (b1
->inum
< b2
->inum
)
2442 else if (b1
->inum
> b2
->inum
)
2445 if (b1
->file_pos
< b2
->file_pos
)
2447 else if (b1
->file_pos
> b2
->file_pos
)
2451 * [------------------------------] ===> (a range of space)
2452 * |<--->| |<---->| =============> (fs/file tree A)
2453 * |<---------------------------->| ===> (fs/file tree B)
2455 * A range of space can refer to two file extents in one tree while
2456 * refer to only one file extent in another tree.
2458 * So we may process a disk offset more than one time(two extents in A)
2459 * and locate at the same extent(one extent in B), then insert two same
2460 * backrefs(both refer to the extent in B).
2465 static void backref_insert(struct rb_root
*root
,
2466 struct sa_defrag_extent_backref
*backref
)
2468 struct rb_node
**p
= &root
->rb_node
;
2469 struct rb_node
*parent
= NULL
;
2470 struct sa_defrag_extent_backref
*entry
;
2475 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2477 ret
= backref_comp(backref
, entry
);
2481 p
= &(*p
)->rb_right
;
2484 rb_link_node(&backref
->node
, parent
, p
);
2485 rb_insert_color(&backref
->node
, root
);
2489 * Note the backref might has changed, and in this case we just return 0.
2491 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2494 struct btrfs_file_extent_item
*extent
;
2495 struct old_sa_defrag_extent
*old
= ctx
;
2496 struct new_sa_defrag_extent
*new = old
->new;
2497 struct btrfs_path
*path
= new->path
;
2498 struct btrfs_key key
;
2499 struct btrfs_root
*root
;
2500 struct sa_defrag_extent_backref
*backref
;
2501 struct extent_buffer
*leaf
;
2502 struct inode
*inode
= new->inode
;
2503 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2509 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2510 inum
== btrfs_ino(BTRFS_I(inode
)))
2513 key
.objectid
= root_id
;
2514 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2515 key
.offset
= (u64
)-1;
2517 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2519 if (PTR_ERR(root
) == -ENOENT
)
2522 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2523 inum
, offset
, root_id
);
2524 return PTR_ERR(root
);
2527 key
.objectid
= inum
;
2528 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2529 if (offset
> (u64
)-1 << 32)
2532 key
.offset
= offset
;
2534 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2535 if (WARN_ON(ret
< 0))
2542 leaf
= path
->nodes
[0];
2543 slot
= path
->slots
[0];
2545 if (slot
>= btrfs_header_nritems(leaf
)) {
2546 ret
= btrfs_next_leaf(root
, path
);
2549 } else if (ret
> 0) {
2558 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2560 if (key
.objectid
> inum
)
2563 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2566 extent
= btrfs_item_ptr(leaf
, slot
,
2567 struct btrfs_file_extent_item
);
2569 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2573 * 'offset' refers to the exact key.offset,
2574 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2575 * (key.offset - extent_offset).
2577 if (key
.offset
!= offset
)
2580 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2581 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2583 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2584 old
->len
|| extent_offset
+ num_bytes
<=
2585 old
->extent_offset
+ old
->offset
)
2590 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2596 backref
->root_id
= root_id
;
2597 backref
->inum
= inum
;
2598 backref
->file_pos
= offset
;
2599 backref
->num_bytes
= num_bytes
;
2600 backref
->extent_offset
= extent_offset
;
2601 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2603 backref_insert(&new->root
, backref
);
2606 btrfs_release_path(path
);
2611 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2612 struct new_sa_defrag_extent
*new)
2614 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2615 struct old_sa_defrag_extent
*old
, *tmp
;
2620 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2621 ret
= iterate_inodes_from_logical(old
->bytenr
+
2622 old
->extent_offset
, fs_info
,
2623 path
, record_one_backref
,
2625 if (ret
< 0 && ret
!= -ENOENT
)
2628 /* no backref to be processed for this extent */
2630 list_del(&old
->list
);
2635 if (list_empty(&new->head
))
2641 static int relink_is_mergable(struct extent_buffer
*leaf
,
2642 struct btrfs_file_extent_item
*fi
,
2643 struct new_sa_defrag_extent
*new)
2645 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2648 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2651 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2654 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2655 btrfs_file_extent_other_encoding(leaf
, fi
))
2662 * Note the backref might has changed, and in this case we just return 0.
2664 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2665 struct sa_defrag_extent_backref
*prev
,
2666 struct sa_defrag_extent_backref
*backref
)
2668 struct btrfs_file_extent_item
*extent
;
2669 struct btrfs_file_extent_item
*item
;
2670 struct btrfs_ordered_extent
*ordered
;
2671 struct btrfs_trans_handle
*trans
;
2672 struct btrfs_ref ref
= { 0 };
2673 struct btrfs_root
*root
;
2674 struct btrfs_key key
;
2675 struct extent_buffer
*leaf
;
2676 struct old_sa_defrag_extent
*old
= backref
->old
;
2677 struct new_sa_defrag_extent
*new = old
->new;
2678 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2679 struct inode
*inode
;
2680 struct extent_state
*cached
= NULL
;
2689 if (prev
&& prev
->root_id
== backref
->root_id
&&
2690 prev
->inum
== backref
->inum
&&
2691 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2694 /* step 1: get root */
2695 key
.objectid
= backref
->root_id
;
2696 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2697 key
.offset
= (u64
)-1;
2699 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2701 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2703 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2704 if (PTR_ERR(root
) == -ENOENT
)
2706 return PTR_ERR(root
);
2709 if (btrfs_root_readonly(root
)) {
2710 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2714 /* step 2: get inode */
2715 key
.objectid
= backref
->inum
;
2716 key
.type
= BTRFS_INODE_ITEM_KEY
;
2719 inode
= btrfs_iget(fs_info
->sb
, &key
, root
);
2720 if (IS_ERR(inode
)) {
2721 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2725 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2727 /* step 3: relink backref */
2728 lock_start
= backref
->file_pos
;
2729 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2730 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2733 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2735 btrfs_put_ordered_extent(ordered
);
2739 trans
= btrfs_join_transaction(root
);
2740 if (IS_ERR(trans
)) {
2741 ret
= PTR_ERR(trans
);
2745 key
.objectid
= backref
->inum
;
2746 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2747 key
.offset
= backref
->file_pos
;
2749 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2752 } else if (ret
> 0) {
2757 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2758 struct btrfs_file_extent_item
);
2760 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2761 backref
->generation
)
2764 btrfs_release_path(path
);
2766 start
= backref
->file_pos
;
2767 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2768 start
+= old
->extent_offset
+ old
->offset
-
2769 backref
->extent_offset
;
2771 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2772 old
->extent_offset
+ old
->offset
+ old
->len
);
2773 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2775 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2780 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2781 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2784 path
->leave_spinning
= 1;
2786 struct btrfs_file_extent_item
*fi
;
2788 struct btrfs_key found_key
;
2790 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2795 leaf
= path
->nodes
[0];
2796 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2798 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2799 struct btrfs_file_extent_item
);
2800 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2802 if (extent_len
+ found_key
.offset
== start
&&
2803 relink_is_mergable(leaf
, fi
, new)) {
2804 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2806 btrfs_mark_buffer_dirty(leaf
);
2807 inode_add_bytes(inode
, len
);
2813 btrfs_release_path(path
);
2818 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2821 btrfs_abort_transaction(trans
, ret
);
2825 leaf
= path
->nodes
[0];
2826 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2827 struct btrfs_file_extent_item
);
2828 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2829 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2830 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2831 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2832 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2833 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2834 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2835 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2836 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2837 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2839 btrfs_mark_buffer_dirty(leaf
);
2840 inode_add_bytes(inode
, len
);
2841 btrfs_release_path(path
);
2843 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new->bytenr
,
2845 btrfs_init_data_ref(&ref
, backref
->root_id
, backref
->inum
,
2846 new->file_pos
); /* start - extent_offset */
2847 ret
= btrfs_inc_extent_ref(trans
, &ref
);
2849 btrfs_abort_transaction(trans
, ret
);
2855 btrfs_release_path(path
);
2856 path
->leave_spinning
= 0;
2857 btrfs_end_transaction(trans
);
2859 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2865 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2867 struct old_sa_defrag_extent
*old
, *tmp
;
2872 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2878 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2880 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2881 struct btrfs_path
*path
;
2882 struct sa_defrag_extent_backref
*backref
;
2883 struct sa_defrag_extent_backref
*prev
= NULL
;
2884 struct rb_node
*node
;
2887 path
= btrfs_alloc_path();
2891 if (!record_extent_backrefs(path
, new)) {
2892 btrfs_free_path(path
);
2895 btrfs_release_path(path
);
2898 node
= rb_first(&new->root
);
2901 rb_erase(node
, &new->root
);
2903 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2905 ret
= relink_extent_backref(path
, prev
, backref
);
2918 btrfs_free_path(path
);
2920 free_sa_defrag_extent(new);
2922 atomic_dec(&fs_info
->defrag_running
);
2923 wake_up(&fs_info
->transaction_wait
);
2926 static struct new_sa_defrag_extent
*
2927 record_old_file_extents(struct inode
*inode
,
2928 struct btrfs_ordered_extent
*ordered
)
2930 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2931 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2932 struct btrfs_path
*path
;
2933 struct btrfs_key key
;
2934 struct old_sa_defrag_extent
*old
;
2935 struct new_sa_defrag_extent
*new;
2938 new = kmalloc(sizeof(*new), GFP_NOFS
);
2943 new->file_pos
= ordered
->file_offset
;
2944 new->len
= ordered
->len
;
2945 new->bytenr
= ordered
->start
;
2946 new->disk_len
= ordered
->disk_len
;
2947 new->compress_type
= ordered
->compress_type
;
2948 new->root
= RB_ROOT
;
2949 INIT_LIST_HEAD(&new->head
);
2951 path
= btrfs_alloc_path();
2955 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2956 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2957 key
.offset
= new->file_pos
;
2959 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2962 if (ret
> 0 && path
->slots
[0] > 0)
2965 /* find out all the old extents for the file range */
2967 struct btrfs_file_extent_item
*extent
;
2968 struct extent_buffer
*l
;
2977 slot
= path
->slots
[0];
2979 if (slot
>= btrfs_header_nritems(l
)) {
2980 ret
= btrfs_next_leaf(root
, path
);
2988 btrfs_item_key_to_cpu(l
, &key
, slot
);
2990 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2992 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2994 if (key
.offset
>= new->file_pos
+ new->len
)
2997 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2999 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
3000 if (key
.offset
+ num_bytes
< new->file_pos
)
3003 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
3007 extent_offset
= btrfs_file_extent_offset(l
, extent
);
3009 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
3013 offset
= max(new->file_pos
, key
.offset
);
3014 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
3016 old
->bytenr
= disk_bytenr
;
3017 old
->extent_offset
= extent_offset
;
3018 old
->offset
= offset
- key
.offset
;
3019 old
->len
= end
- offset
;
3022 list_add_tail(&old
->list
, &new->head
);
3028 btrfs_free_path(path
);
3029 atomic_inc(&fs_info
->defrag_running
);
3034 btrfs_free_path(path
);
3036 free_sa_defrag_extent(new);
3040 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
3043 struct btrfs_block_group
*cache
;
3045 cache
= btrfs_lookup_block_group(fs_info
, start
);
3048 spin_lock(&cache
->lock
);
3049 cache
->delalloc_bytes
-= len
;
3050 spin_unlock(&cache
->lock
);
3052 btrfs_put_block_group(cache
);
3055 /* as ordered data IO finishes, this gets called so we can finish
3056 * an ordered extent if the range of bytes in the file it covers are
3059 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
3061 struct inode
*inode
= ordered_extent
->inode
;
3062 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3063 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3064 struct btrfs_trans_handle
*trans
= NULL
;
3065 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3066 struct extent_state
*cached_state
= NULL
;
3067 struct new_sa_defrag_extent
*new = NULL
;
3068 int compress_type
= 0;
3070 u64 logical_len
= ordered_extent
->len
;
3071 bool freespace_inode
;
3072 bool truncated
= false;
3073 bool range_locked
= false;
3074 bool clear_new_delalloc_bytes
= false;
3075 bool clear_reserved_extent
= true;
3077 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3078 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
3079 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
3080 clear_new_delalloc_bytes
= true;
3082 freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
3084 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
3089 btrfs_free_io_failure_record(BTRFS_I(inode
),
3090 ordered_extent
->file_offset
,
3091 ordered_extent
->file_offset
+
3092 ordered_extent
->len
- 1);
3094 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
3096 logical_len
= ordered_extent
->truncated_len
;
3097 /* Truncated the entire extent, don't bother adding */
3102 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
3103 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
3106 * For mwrite(mmap + memset to write) case, we still reserve
3107 * space for NOCOW range.
3108 * As NOCOW won't cause a new delayed ref, just free the space
3110 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3111 ordered_extent
->len
);
3112 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3113 if (freespace_inode
)
3114 trans
= btrfs_join_transaction_spacecache(root
);
3116 trans
= btrfs_join_transaction(root
);
3117 if (IS_ERR(trans
)) {
3118 ret
= PTR_ERR(trans
);
3122 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3123 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3124 if (ret
) /* -ENOMEM or corruption */
3125 btrfs_abort_transaction(trans
, ret
);
3129 range_locked
= true;
3130 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
3131 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3134 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
3135 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3136 EXTENT_DEFRAG
, 0, cached_state
);
3138 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
3139 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
3140 /* the inode is shared */
3141 new = record_old_file_extents(inode
, ordered_extent
);
3143 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
3144 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3145 EXTENT_DEFRAG
, 0, 0, &cached_state
);
3148 if (freespace_inode
)
3149 trans
= btrfs_join_transaction_spacecache(root
);
3151 trans
= btrfs_join_transaction(root
);
3152 if (IS_ERR(trans
)) {
3153 ret
= PTR_ERR(trans
);
3158 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3160 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3161 compress_type
= ordered_extent
->compress_type
;
3162 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3163 BUG_ON(compress_type
);
3164 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3165 ordered_extent
->len
);
3166 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3167 ordered_extent
->file_offset
,
3168 ordered_extent
->file_offset
+
3171 BUG_ON(root
== fs_info
->tree_root
);
3172 ret
= insert_reserved_file_extent(trans
, inode
,
3173 ordered_extent
->file_offset
,
3174 ordered_extent
->start
,
3175 ordered_extent
->disk_len
,
3176 logical_len
, logical_len
,
3177 compress_type
, 0, 0,
3178 BTRFS_FILE_EXTENT_REG
);
3180 clear_reserved_extent
= false;
3181 btrfs_release_delalloc_bytes(fs_info
,
3182 ordered_extent
->start
,
3183 ordered_extent
->disk_len
);
3186 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3187 ordered_extent
->file_offset
, ordered_extent
->len
,
3190 btrfs_abort_transaction(trans
, ret
);
3194 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3196 btrfs_abort_transaction(trans
, ret
);
3200 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3201 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3202 if (ret
) { /* -ENOMEM or corruption */
3203 btrfs_abort_transaction(trans
, ret
);
3208 if (range_locked
|| clear_new_delalloc_bytes
) {
3209 unsigned int clear_bits
= 0;
3212 clear_bits
|= EXTENT_LOCKED
;
3213 if (clear_new_delalloc_bytes
)
3214 clear_bits
|= EXTENT_DELALLOC_NEW
;
3215 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3216 ordered_extent
->file_offset
,
3217 ordered_extent
->file_offset
+
3218 ordered_extent
->len
- 1,
3220 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3225 btrfs_end_transaction(trans
);
3227 if (ret
|| truncated
) {
3231 start
= ordered_extent
->file_offset
+ logical_len
;
3233 start
= ordered_extent
->file_offset
;
3234 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3235 clear_extent_uptodate(io_tree
, start
, end
, NULL
);
3237 /* Drop the cache for the part of the extent we didn't write. */
3238 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3241 * If the ordered extent had an IOERR or something else went
3242 * wrong we need to return the space for this ordered extent
3243 * back to the allocator. We only free the extent in the
3244 * truncated case if we didn't write out the extent at all.
3246 * If we made it past insert_reserved_file_extent before we
3247 * errored out then we don't need to do this as the accounting
3248 * has already been done.
3250 if ((ret
|| !logical_len
) &&
3251 clear_reserved_extent
&&
3252 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3253 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3254 btrfs_free_reserved_extent(fs_info
,
3255 ordered_extent
->start
,
3256 ordered_extent
->disk_len
, 1);
3261 * This needs to be done to make sure anybody waiting knows we are done
3262 * updating everything for this ordered extent.
3264 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3266 /* for snapshot-aware defrag */
3269 free_sa_defrag_extent(new);
3270 atomic_dec(&fs_info
->defrag_running
);
3272 relink_file_extents(new);
3277 btrfs_put_ordered_extent(ordered_extent
);
3278 /* once for the tree */
3279 btrfs_put_ordered_extent(ordered_extent
);
3284 static void finish_ordered_fn(struct btrfs_work
*work
)
3286 struct btrfs_ordered_extent
*ordered_extent
;
3287 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3288 btrfs_finish_ordered_io(ordered_extent
);
3291 void btrfs_writepage_endio_finish_ordered(struct page
*page
, u64 start
,
3292 u64 end
, int uptodate
)
3294 struct inode
*inode
= page
->mapping
->host
;
3295 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3296 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3297 struct btrfs_workqueue
*wq
;
3299 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3301 ClearPagePrivate2(page
);
3302 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3303 end
- start
+ 1, uptodate
))
3306 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
3307 wq
= fs_info
->endio_freespace_worker
;
3309 wq
= fs_info
->endio_write_workers
;
3311 btrfs_init_work(&ordered_extent
->work
, finish_ordered_fn
, NULL
, NULL
);
3312 btrfs_queue_work(wq
, &ordered_extent
->work
);
3315 static int __readpage_endio_check(struct inode
*inode
,
3316 struct btrfs_io_bio
*io_bio
,
3317 int icsum
, struct page
*page
,
3318 int pgoff
, u64 start
, size_t len
)
3320 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3321 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
3323 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
3325 u8 csum
[BTRFS_CSUM_SIZE
];
3327 csum_expected
= ((u8
*)io_bio
->csum
) + icsum
* csum_size
;
3329 kaddr
= kmap_atomic(page
);
3330 shash
->tfm
= fs_info
->csum_shash
;
3332 crypto_shash_init(shash
);
3333 crypto_shash_update(shash
, kaddr
+ pgoff
, len
);
3334 crypto_shash_final(shash
, csum
);
3336 if (memcmp(csum
, csum_expected
, csum_size
))
3339 kunmap_atomic(kaddr
);
3342 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3343 io_bio
->mirror_num
);
3344 memset(kaddr
+ pgoff
, 1, len
);
3345 flush_dcache_page(page
);
3346 kunmap_atomic(kaddr
);
3351 * when reads are done, we need to check csums to verify the data is correct
3352 * if there's a match, we allow the bio to finish. If not, the code in
3353 * extent_io.c will try to find good copies for us.
3355 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3356 u64 phy_offset
, struct page
*page
,
3357 u64 start
, u64 end
, int mirror
)
3359 size_t offset
= start
- page_offset(page
);
3360 struct inode
*inode
= page
->mapping
->host
;
3361 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3362 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3364 if (PageChecked(page
)) {
3365 ClearPageChecked(page
);
3369 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3372 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3373 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3374 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3378 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3379 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3380 start
, (size_t)(end
- start
+ 1));
3384 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3386 * @inode: The inode we want to perform iput on
3388 * This function uses the generic vfs_inode::i_count to track whether we should
3389 * just decrement it (in case it's > 1) or if this is the last iput then link
3390 * the inode to the delayed iput machinery. Delayed iputs are processed at
3391 * transaction commit time/superblock commit/cleaner kthread.
3393 void btrfs_add_delayed_iput(struct inode
*inode
)
3395 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3396 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3398 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3401 atomic_inc(&fs_info
->nr_delayed_iputs
);
3402 spin_lock(&fs_info
->delayed_iput_lock
);
3403 ASSERT(list_empty(&binode
->delayed_iput
));
3404 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3405 spin_unlock(&fs_info
->delayed_iput_lock
);
3406 if (!test_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
))
3407 wake_up_process(fs_info
->cleaner_kthread
);
3410 static void run_delayed_iput_locked(struct btrfs_fs_info
*fs_info
,
3411 struct btrfs_inode
*inode
)
3413 list_del_init(&inode
->delayed_iput
);
3414 spin_unlock(&fs_info
->delayed_iput_lock
);
3415 iput(&inode
->vfs_inode
);
3416 if (atomic_dec_and_test(&fs_info
->nr_delayed_iputs
))
3417 wake_up(&fs_info
->delayed_iputs_wait
);
3418 spin_lock(&fs_info
->delayed_iput_lock
);
3421 static void btrfs_run_delayed_iput(struct btrfs_fs_info
*fs_info
,
3422 struct btrfs_inode
*inode
)
3424 if (!list_empty(&inode
->delayed_iput
)) {
3425 spin_lock(&fs_info
->delayed_iput_lock
);
3426 if (!list_empty(&inode
->delayed_iput
))
3427 run_delayed_iput_locked(fs_info
, inode
);
3428 spin_unlock(&fs_info
->delayed_iput_lock
);
3432 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3435 spin_lock(&fs_info
->delayed_iput_lock
);
3436 while (!list_empty(&fs_info
->delayed_iputs
)) {
3437 struct btrfs_inode
*inode
;
3439 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3440 struct btrfs_inode
, delayed_iput
);
3441 run_delayed_iput_locked(fs_info
, inode
);
3443 spin_unlock(&fs_info
->delayed_iput_lock
);
3447 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3448 * @fs_info - the fs_info for this fs
3449 * @return - EINTR if we were killed, 0 if nothing's pending
3451 * This will wait on any delayed iputs that are currently running with KILLABLE
3452 * set. Once they are all done running we will return, unless we are killed in
3453 * which case we return EINTR. This helps in user operations like fallocate etc
3454 * that might get blocked on the iputs.
3456 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3458 int ret
= wait_event_killable(fs_info
->delayed_iputs_wait
,
3459 atomic_read(&fs_info
->nr_delayed_iputs
) == 0);
3466 * This creates an orphan entry for the given inode in case something goes wrong
3467 * in the middle of an unlink.
3469 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3470 struct btrfs_inode
*inode
)
3474 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3475 if (ret
&& ret
!= -EEXIST
) {
3476 btrfs_abort_transaction(trans
, ret
);
3484 * We have done the delete so we can go ahead and remove the orphan item for
3485 * this particular inode.
3487 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3488 struct btrfs_inode
*inode
)
3490 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3494 * this cleans up any orphans that may be left on the list from the last use
3497 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3499 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3500 struct btrfs_path
*path
;
3501 struct extent_buffer
*leaf
;
3502 struct btrfs_key key
, found_key
;
3503 struct btrfs_trans_handle
*trans
;
3504 struct inode
*inode
;
3505 u64 last_objectid
= 0;
3506 int ret
= 0, nr_unlink
= 0;
3508 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3511 path
= btrfs_alloc_path();
3516 path
->reada
= READA_BACK
;
3518 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3519 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3520 key
.offset
= (u64
)-1;
3523 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3528 * if ret == 0 means we found what we were searching for, which
3529 * is weird, but possible, so only screw with path if we didn't
3530 * find the key and see if we have stuff that matches
3534 if (path
->slots
[0] == 0)
3539 /* pull out the item */
3540 leaf
= path
->nodes
[0];
3541 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3543 /* make sure the item matches what we want */
3544 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3546 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3549 /* release the path since we're done with it */
3550 btrfs_release_path(path
);
3553 * this is where we are basically btrfs_lookup, without the
3554 * crossing root thing. we store the inode number in the
3555 * offset of the orphan item.
3558 if (found_key
.offset
== last_objectid
) {
3560 "Error removing orphan entry, stopping orphan cleanup");
3565 last_objectid
= found_key
.offset
;
3567 found_key
.objectid
= found_key
.offset
;
3568 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3569 found_key
.offset
= 0;
3570 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
);
3571 ret
= PTR_ERR_OR_ZERO(inode
);
3572 if (ret
&& ret
!= -ENOENT
)
3575 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3576 struct btrfs_root
*dead_root
;
3577 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3578 int is_dead_root
= 0;
3581 * this is an orphan in the tree root. Currently these
3582 * could come from 2 sources:
3583 * a) a snapshot deletion in progress
3584 * b) a free space cache inode
3585 * We need to distinguish those two, as the snapshot
3586 * orphan must not get deleted.
3587 * find_dead_roots already ran before us, so if this
3588 * is a snapshot deletion, we should find the root
3589 * in the dead_roots list
3591 spin_lock(&fs_info
->trans_lock
);
3592 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3594 if (dead_root
->root_key
.objectid
==
3595 found_key
.objectid
) {
3600 spin_unlock(&fs_info
->trans_lock
);
3602 /* prevent this orphan from being found again */
3603 key
.offset
= found_key
.objectid
- 1;
3610 * If we have an inode with links, there are a couple of
3611 * possibilities. Old kernels (before v3.12) used to create an
3612 * orphan item for truncate indicating that there were possibly
3613 * extent items past i_size that needed to be deleted. In v3.12,
3614 * truncate was changed to update i_size in sync with the extent
3615 * items, but the (useless) orphan item was still created. Since
3616 * v4.18, we don't create the orphan item for truncate at all.
3618 * So, this item could mean that we need to do a truncate, but
3619 * only if this filesystem was last used on a pre-v3.12 kernel
3620 * and was not cleanly unmounted. The odds of that are quite
3621 * slim, and it's a pain to do the truncate now, so just delete
3624 * It's also possible that this orphan item was supposed to be
3625 * deleted but wasn't. The inode number may have been reused,
3626 * but either way, we can delete the orphan item.
3628 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3631 trans
= btrfs_start_transaction(root
, 1);
3632 if (IS_ERR(trans
)) {
3633 ret
= PTR_ERR(trans
);
3636 btrfs_debug(fs_info
, "auto deleting %Lu",
3637 found_key
.objectid
);
3638 ret
= btrfs_del_orphan_item(trans
, root
,
3639 found_key
.objectid
);
3640 btrfs_end_transaction(trans
);
3648 /* this will do delete_inode and everything for us */
3651 /* release the path since we're done with it */
3652 btrfs_release_path(path
);
3654 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3656 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3657 trans
= btrfs_join_transaction(root
);
3659 btrfs_end_transaction(trans
);
3663 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3667 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3668 btrfs_free_path(path
);
3673 * very simple check to peek ahead in the leaf looking for xattrs. If we
3674 * don't find any xattrs, we know there can't be any acls.
3676 * slot is the slot the inode is in, objectid is the objectid of the inode
3678 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3679 int slot
, u64 objectid
,
3680 int *first_xattr_slot
)
3682 u32 nritems
= btrfs_header_nritems(leaf
);
3683 struct btrfs_key found_key
;
3684 static u64 xattr_access
= 0;
3685 static u64 xattr_default
= 0;
3688 if (!xattr_access
) {
3689 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3690 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3691 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3692 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3696 *first_xattr_slot
= -1;
3697 while (slot
< nritems
) {
3698 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3700 /* we found a different objectid, there must not be acls */
3701 if (found_key
.objectid
!= objectid
)
3704 /* we found an xattr, assume we've got an acl */
3705 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3706 if (*first_xattr_slot
== -1)
3707 *first_xattr_slot
= slot
;
3708 if (found_key
.offset
== xattr_access
||
3709 found_key
.offset
== xattr_default
)
3714 * we found a key greater than an xattr key, there can't
3715 * be any acls later on
3717 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3724 * it goes inode, inode backrefs, xattrs, extents,
3725 * so if there are a ton of hard links to an inode there can
3726 * be a lot of backrefs. Don't waste time searching too hard,
3727 * this is just an optimization
3732 /* we hit the end of the leaf before we found an xattr or
3733 * something larger than an xattr. We have to assume the inode
3736 if (*first_xattr_slot
== -1)
3737 *first_xattr_slot
= slot
;
3742 * read an inode from the btree into the in-memory inode
3744 static int btrfs_read_locked_inode(struct inode
*inode
,
3745 struct btrfs_path
*in_path
)
3747 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3748 struct btrfs_path
*path
= in_path
;
3749 struct extent_buffer
*leaf
;
3750 struct btrfs_inode_item
*inode_item
;
3751 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3752 struct btrfs_key location
;
3757 bool filled
= false;
3758 int first_xattr_slot
;
3760 ret
= btrfs_fill_inode(inode
, &rdev
);
3765 path
= btrfs_alloc_path();
3770 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3772 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3774 if (path
!= in_path
)
3775 btrfs_free_path(path
);
3779 leaf
= path
->nodes
[0];
3784 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3785 struct btrfs_inode_item
);
3786 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3787 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3788 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3789 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3790 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3792 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3793 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3795 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3796 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3798 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3799 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3801 BTRFS_I(inode
)->i_otime
.tv_sec
=
3802 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3803 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3804 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3806 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3807 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3808 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3810 inode_set_iversion_queried(inode
,
3811 btrfs_inode_sequence(leaf
, inode_item
));
3812 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3814 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3816 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3817 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3821 * If we were modified in the current generation and evicted from memory
3822 * and then re-read we need to do a full sync since we don't have any
3823 * idea about which extents were modified before we were evicted from
3826 * This is required for both inode re-read from disk and delayed inode
3827 * in delayed_nodes_tree.
3829 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3830 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3831 &BTRFS_I(inode
)->runtime_flags
);
3834 * We don't persist the id of the transaction where an unlink operation
3835 * against the inode was last made. So here we assume the inode might
3836 * have been evicted, and therefore the exact value of last_unlink_trans
3837 * lost, and set it to last_trans to avoid metadata inconsistencies
3838 * between the inode and its parent if the inode is fsync'ed and the log
3839 * replayed. For example, in the scenario:
3842 * ln mydir/foo mydir/bar
3845 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3846 * xfs_io -c fsync mydir/foo
3848 * mount fs, triggers fsync log replay
3850 * We must make sure that when we fsync our inode foo we also log its
3851 * parent inode, otherwise after log replay the parent still has the
3852 * dentry with the "bar" name but our inode foo has a link count of 1
3853 * and doesn't have an inode ref with the name "bar" anymore.
3855 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3856 * but it guarantees correctness at the expense of occasional full
3857 * transaction commits on fsync if our inode is a directory, or if our
3858 * inode is not a directory, logging its parent unnecessarily.
3860 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3863 if (inode
->i_nlink
!= 1 ||
3864 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3867 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3868 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3871 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3872 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3873 struct btrfs_inode_ref
*ref
;
3875 ref
= (struct btrfs_inode_ref
*)ptr
;
3876 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3877 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3878 struct btrfs_inode_extref
*extref
;
3880 extref
= (struct btrfs_inode_extref
*)ptr
;
3881 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3886 * try to precache a NULL acl entry for files that don't have
3887 * any xattrs or acls
3889 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3890 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3891 if (first_xattr_slot
!= -1) {
3892 path
->slots
[0] = first_xattr_slot
;
3893 ret
= btrfs_load_inode_props(inode
, path
);
3896 "error loading props for ino %llu (root %llu): %d",
3897 btrfs_ino(BTRFS_I(inode
)),
3898 root
->root_key
.objectid
, ret
);
3900 if (path
!= in_path
)
3901 btrfs_free_path(path
);
3904 cache_no_acl(inode
);
3906 switch (inode
->i_mode
& S_IFMT
) {
3908 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3909 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3910 inode
->i_fop
= &btrfs_file_operations
;
3911 inode
->i_op
= &btrfs_file_inode_operations
;
3914 inode
->i_fop
= &btrfs_dir_file_operations
;
3915 inode
->i_op
= &btrfs_dir_inode_operations
;
3918 inode
->i_op
= &btrfs_symlink_inode_operations
;
3919 inode_nohighmem(inode
);
3920 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3923 inode
->i_op
= &btrfs_special_inode_operations
;
3924 init_special_inode(inode
, inode
->i_mode
, rdev
);
3928 btrfs_sync_inode_flags_to_i_flags(inode
);
3933 * given a leaf and an inode, copy the inode fields into the leaf
3935 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3936 struct extent_buffer
*leaf
,
3937 struct btrfs_inode_item
*item
,
3938 struct inode
*inode
)
3940 struct btrfs_map_token token
;
3942 btrfs_init_map_token(&token
, leaf
);
3944 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3945 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3946 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3948 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3949 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3951 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3952 inode
->i_atime
.tv_sec
, &token
);
3953 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3954 inode
->i_atime
.tv_nsec
, &token
);
3956 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3957 inode
->i_mtime
.tv_sec
, &token
);
3958 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3959 inode
->i_mtime
.tv_nsec
, &token
);
3961 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3962 inode
->i_ctime
.tv_sec
, &token
);
3963 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3964 inode
->i_ctime
.tv_nsec
, &token
);
3966 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3967 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3968 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3969 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3971 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3973 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3975 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3977 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3978 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3979 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3980 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3984 * copy everything in the in-memory inode into the btree.
3986 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3987 struct btrfs_root
*root
, struct inode
*inode
)
3989 struct btrfs_inode_item
*inode_item
;
3990 struct btrfs_path
*path
;
3991 struct extent_buffer
*leaf
;
3994 path
= btrfs_alloc_path();
3998 path
->leave_spinning
= 1;
3999 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
4007 leaf
= path
->nodes
[0];
4008 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4009 struct btrfs_inode_item
);
4011 fill_inode_item(trans
, leaf
, inode_item
, inode
);
4012 btrfs_mark_buffer_dirty(leaf
);
4013 btrfs_set_inode_last_trans(trans
, inode
);
4016 btrfs_free_path(path
);
4021 * copy everything in the in-memory inode into the btree.
4023 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
4024 struct btrfs_root
*root
, struct inode
*inode
)
4026 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4030 * If the inode is a free space inode, we can deadlock during commit
4031 * if we put it into the delayed code.
4033 * The data relocation inode should also be directly updated
4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
4037 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
4038 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
4039 btrfs_update_root_times(trans
, root
);
4041 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
4043 btrfs_set_inode_last_trans(trans
, inode
);
4047 return btrfs_update_inode_item(trans
, root
, inode
);
4050 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
4051 struct btrfs_root
*root
,
4052 struct inode
*inode
)
4056 ret
= btrfs_update_inode(trans
, root
, inode
);
4058 return btrfs_update_inode_item(trans
, root
, inode
);
4063 * unlink helper that gets used here in inode.c and in the tree logging
4064 * recovery code. It remove a link in a directory with a given name, and
4065 * also drops the back refs in the inode to the directory
4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4068 struct btrfs_root
*root
,
4069 struct btrfs_inode
*dir
,
4070 struct btrfs_inode
*inode
,
4071 const char *name
, int name_len
)
4073 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4074 struct btrfs_path
*path
;
4076 struct btrfs_dir_item
*di
;
4078 u64 ino
= btrfs_ino(inode
);
4079 u64 dir_ino
= btrfs_ino(dir
);
4081 path
= btrfs_alloc_path();
4087 path
->leave_spinning
= 1;
4088 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4089 name
, name_len
, -1);
4090 if (IS_ERR_OR_NULL(di
)) {
4091 ret
= di
? PTR_ERR(di
) : -ENOENT
;
4094 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4097 btrfs_release_path(path
);
4100 * If we don't have dir index, we have to get it by looking up
4101 * the inode ref, since we get the inode ref, remove it directly,
4102 * it is unnecessary to do delayed deletion.
4104 * But if we have dir index, needn't search inode ref to get it.
4105 * Since the inode ref is close to the inode item, it is better
4106 * that we delay to delete it, and just do this deletion when
4107 * we update the inode item.
4109 if (inode
->dir_index
) {
4110 ret
= btrfs_delayed_delete_inode_ref(inode
);
4112 index
= inode
->dir_index
;
4117 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4121 "failed to delete reference to %.*s, inode %llu parent %llu",
4122 name_len
, name
, ino
, dir_ino
);
4123 btrfs_abort_transaction(trans
, ret
);
4127 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
4129 btrfs_abort_transaction(trans
, ret
);
4133 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
4135 if (ret
!= 0 && ret
!= -ENOENT
) {
4136 btrfs_abort_transaction(trans
, ret
);
4140 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4145 btrfs_abort_transaction(trans
, ret
);
4148 * If we have a pending delayed iput we could end up with the final iput
4149 * being run in btrfs-cleaner context. If we have enough of these built
4150 * up we can end up burning a lot of time in btrfs-cleaner without any
4151 * way to throttle the unlinks. Since we're currently holding a ref on
4152 * the inode we can run the delayed iput here without any issues as the
4153 * final iput won't be done until after we drop the ref we're currently
4156 btrfs_run_delayed_iput(fs_info
, inode
);
4158 btrfs_free_path(path
);
4162 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4163 inode_inc_iversion(&inode
->vfs_inode
);
4164 inode_inc_iversion(&dir
->vfs_inode
);
4165 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4166 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4167 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4172 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4173 struct btrfs_root
*root
,
4174 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4175 const char *name
, int name_len
)
4178 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4180 drop_nlink(&inode
->vfs_inode
);
4181 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4187 * helper to start transaction for unlink and rmdir.
4189 * unlink and rmdir are special in btrfs, they do not always free space, so
4190 * if we cannot make our reservations the normal way try and see if there is
4191 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4192 * allow the unlink to occur.
4194 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4196 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4199 * 1 for the possible orphan item
4200 * 1 for the dir item
4201 * 1 for the dir index
4202 * 1 for the inode ref
4205 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4208 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4210 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4211 struct btrfs_trans_handle
*trans
;
4212 struct inode
*inode
= d_inode(dentry
);
4215 trans
= __unlink_start_trans(dir
);
4217 return PTR_ERR(trans
);
4219 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4222 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4223 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4224 dentry
->d_name
.len
);
4228 if (inode
->i_nlink
== 0) {
4229 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4235 btrfs_end_transaction(trans
);
4236 btrfs_btree_balance_dirty(root
->fs_info
);
4240 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4241 struct inode
*dir
, struct dentry
*dentry
)
4243 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4244 struct btrfs_inode
*inode
= BTRFS_I(d_inode(dentry
));
4245 struct btrfs_path
*path
;
4246 struct extent_buffer
*leaf
;
4247 struct btrfs_dir_item
*di
;
4248 struct btrfs_key key
;
4249 const char *name
= dentry
->d_name
.name
;
4250 int name_len
= dentry
->d_name
.len
;
4254 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4256 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
) {
4257 objectid
= inode
->root
->root_key
.objectid
;
4258 } else if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
4259 objectid
= inode
->location
.objectid
;
4265 path
= btrfs_alloc_path();
4269 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4270 name
, name_len
, -1);
4271 if (IS_ERR_OR_NULL(di
)) {
4272 ret
= di
? PTR_ERR(di
) : -ENOENT
;
4276 leaf
= path
->nodes
[0];
4277 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4278 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4279 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4281 btrfs_abort_transaction(trans
, ret
);
4284 btrfs_release_path(path
);
4287 * This is a placeholder inode for a subvolume we didn't have a
4288 * reference to at the time of the snapshot creation. In the meantime
4289 * we could have renamed the real subvol link into our snapshot, so
4290 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4291 * Instead simply lookup the dir_index_item for this entry so we can
4292 * remove it. Otherwise we know we have a ref to the root and we can
4293 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4295 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
4296 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4298 if (IS_ERR_OR_NULL(di
)) {
4303 btrfs_abort_transaction(trans
, ret
);
4307 leaf
= path
->nodes
[0];
4308 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4310 btrfs_release_path(path
);
4312 ret
= btrfs_del_root_ref(trans
, objectid
,
4313 root
->root_key
.objectid
, dir_ino
,
4314 &index
, name
, name_len
);
4316 btrfs_abort_transaction(trans
, ret
);
4321 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
4323 btrfs_abort_transaction(trans
, ret
);
4327 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4328 inode_inc_iversion(dir
);
4329 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4330 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4332 btrfs_abort_transaction(trans
, ret
);
4334 btrfs_free_path(path
);
4339 * Helper to check if the subvolume references other subvolumes or if it's
4342 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
4344 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4345 struct btrfs_path
*path
;
4346 struct btrfs_dir_item
*di
;
4347 struct btrfs_key key
;
4351 path
= btrfs_alloc_path();
4355 /* Make sure this root isn't set as the default subvol */
4356 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4357 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
4358 dir_id
, "default", 7, 0);
4359 if (di
&& !IS_ERR(di
)) {
4360 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
4361 if (key
.objectid
== root
->root_key
.objectid
) {
4364 "deleting default subvolume %llu is not allowed",
4368 btrfs_release_path(path
);
4371 key
.objectid
= root
->root_key
.objectid
;
4372 key
.type
= BTRFS_ROOT_REF_KEY
;
4373 key
.offset
= (u64
)-1;
4375 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4381 if (path
->slots
[0] > 0) {
4383 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
4384 if (key
.objectid
== root
->root_key
.objectid
&&
4385 key
.type
== BTRFS_ROOT_REF_KEY
)
4389 btrfs_free_path(path
);
4393 /* Delete all dentries for inodes belonging to the root */
4394 static void btrfs_prune_dentries(struct btrfs_root
*root
)
4396 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4397 struct rb_node
*node
;
4398 struct rb_node
*prev
;
4399 struct btrfs_inode
*entry
;
4400 struct inode
*inode
;
4403 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4404 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4406 spin_lock(&root
->inode_lock
);
4408 node
= root
->inode_tree
.rb_node
;
4412 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4414 if (objectid
< btrfs_ino(entry
))
4415 node
= node
->rb_left
;
4416 else if (objectid
> btrfs_ino(entry
))
4417 node
= node
->rb_right
;
4423 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4424 if (objectid
<= btrfs_ino(entry
)) {
4428 prev
= rb_next(prev
);
4432 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4433 objectid
= btrfs_ino(entry
) + 1;
4434 inode
= igrab(&entry
->vfs_inode
);
4436 spin_unlock(&root
->inode_lock
);
4437 if (atomic_read(&inode
->i_count
) > 1)
4438 d_prune_aliases(inode
);
4440 * btrfs_drop_inode will have it removed from the inode
4441 * cache when its usage count hits zero.
4445 spin_lock(&root
->inode_lock
);
4449 if (cond_resched_lock(&root
->inode_lock
))
4452 node
= rb_next(node
);
4454 spin_unlock(&root
->inode_lock
);
4457 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
4459 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
4460 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4461 struct inode
*inode
= d_inode(dentry
);
4462 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
4463 struct btrfs_trans_handle
*trans
;
4464 struct btrfs_block_rsv block_rsv
;
4470 * Don't allow to delete a subvolume with send in progress. This is
4471 * inside the inode lock so the error handling that has to drop the bit
4472 * again is not run concurrently.
4474 spin_lock(&dest
->root_item_lock
);
4475 if (dest
->send_in_progress
) {
4476 spin_unlock(&dest
->root_item_lock
);
4478 "attempt to delete subvolume %llu during send",
4479 dest
->root_key
.objectid
);
4482 root_flags
= btrfs_root_flags(&dest
->root_item
);
4483 btrfs_set_root_flags(&dest
->root_item
,
4484 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
4485 spin_unlock(&dest
->root_item_lock
);
4487 down_write(&fs_info
->subvol_sem
);
4489 err
= may_destroy_subvol(dest
);
4493 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
4495 * One for dir inode,
4496 * two for dir entries,
4497 * two for root ref/backref.
4499 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
4503 trans
= btrfs_start_transaction(root
, 0);
4504 if (IS_ERR(trans
)) {
4505 err
= PTR_ERR(trans
);
4508 trans
->block_rsv
= &block_rsv
;
4509 trans
->bytes_reserved
= block_rsv
.size
;
4511 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
4513 ret
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4516 btrfs_abort_transaction(trans
, ret
);
4520 btrfs_record_root_in_trans(trans
, dest
);
4522 memset(&dest
->root_item
.drop_progress
, 0,
4523 sizeof(dest
->root_item
.drop_progress
));
4524 dest
->root_item
.drop_level
= 0;
4525 btrfs_set_root_refs(&dest
->root_item
, 0);
4527 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
4528 ret
= btrfs_insert_orphan_item(trans
,
4530 dest
->root_key
.objectid
);
4532 btrfs_abort_transaction(trans
, ret
);
4538 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
4539 BTRFS_UUID_KEY_SUBVOL
,
4540 dest
->root_key
.objectid
);
4541 if (ret
&& ret
!= -ENOENT
) {
4542 btrfs_abort_transaction(trans
, ret
);
4546 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
4547 ret
= btrfs_uuid_tree_remove(trans
,
4548 dest
->root_item
.received_uuid
,
4549 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4550 dest
->root_key
.objectid
);
4551 if (ret
&& ret
!= -ENOENT
) {
4552 btrfs_abort_transaction(trans
, ret
);
4559 trans
->block_rsv
= NULL
;
4560 trans
->bytes_reserved
= 0;
4561 ret
= btrfs_end_transaction(trans
);
4564 inode
->i_flags
|= S_DEAD
;
4566 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
4568 up_write(&fs_info
->subvol_sem
);
4570 spin_lock(&dest
->root_item_lock
);
4571 root_flags
= btrfs_root_flags(&dest
->root_item
);
4572 btrfs_set_root_flags(&dest
->root_item
,
4573 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
4574 spin_unlock(&dest
->root_item_lock
);
4576 d_invalidate(dentry
);
4577 btrfs_prune_dentries(dest
);
4578 ASSERT(dest
->send_in_progress
== 0);
4581 if (dest
->ino_cache_inode
) {
4582 iput(dest
->ino_cache_inode
);
4583 dest
->ino_cache_inode
= NULL
;
4590 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4592 struct inode
*inode
= d_inode(dentry
);
4594 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4595 struct btrfs_trans_handle
*trans
;
4596 u64 last_unlink_trans
;
4598 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4600 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4601 return btrfs_delete_subvolume(dir
, dentry
);
4603 trans
= __unlink_start_trans(dir
);
4605 return PTR_ERR(trans
);
4607 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4608 err
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4612 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4616 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4618 /* now the directory is empty */
4619 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4620 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4621 dentry
->d_name
.len
);
4623 btrfs_i_size_write(BTRFS_I(inode
), 0);
4625 * Propagate the last_unlink_trans value of the deleted dir to
4626 * its parent directory. This is to prevent an unrecoverable
4627 * log tree in the case we do something like this:
4629 * 2) create snapshot under dir foo
4630 * 3) delete the snapshot
4633 * 6) fsync foo or some file inside foo
4635 if (last_unlink_trans
>= trans
->transid
)
4636 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4639 btrfs_end_transaction(trans
);
4640 btrfs_btree_balance_dirty(root
->fs_info
);
4646 * Return this if we need to call truncate_block for the last bit of the
4649 #define NEED_TRUNCATE_BLOCK 1
4652 * this can truncate away extent items, csum items and directory items.
4653 * It starts at a high offset and removes keys until it can't find
4654 * any higher than new_size
4656 * csum items that cross the new i_size are truncated to the new size
4659 * min_type is the minimum key type to truncate down to. If set to 0, this
4660 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4662 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4663 struct btrfs_root
*root
,
4664 struct inode
*inode
,
4665 u64 new_size
, u32 min_type
)
4667 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4668 struct btrfs_path
*path
;
4669 struct extent_buffer
*leaf
;
4670 struct btrfs_file_extent_item
*fi
;
4671 struct btrfs_key key
;
4672 struct btrfs_key found_key
;
4673 u64 extent_start
= 0;
4674 u64 extent_num_bytes
= 0;
4675 u64 extent_offset
= 0;
4677 u64 last_size
= new_size
;
4678 u32 found_type
= (u8
)-1;
4681 int pending_del_nr
= 0;
4682 int pending_del_slot
= 0;
4683 int extent_type
= -1;
4685 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4686 u64 bytes_deleted
= 0;
4687 bool be_nice
= false;
4688 bool should_throttle
= false;
4690 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4693 * for non-free space inodes and ref cows, we want to back off from
4696 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4697 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4700 path
= btrfs_alloc_path();
4703 path
->reada
= READA_BACK
;
4706 * We want to drop from the next block forward in case this new size is
4707 * not block aligned since we will be keeping the last block of the
4708 * extent just the way it is.
4710 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4711 root
== fs_info
->tree_root
)
4712 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4713 fs_info
->sectorsize
),
4717 * This function is also used to drop the items in the log tree before
4718 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4719 * it is used to drop the logged items. So we shouldn't kill the delayed
4722 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4723 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4726 key
.offset
= (u64
)-1;
4731 * with a 16K leaf size and 128MB extents, you can actually queue
4732 * up a huge file in a single leaf. Most of the time that
4733 * bytes_deleted is > 0, it will be huge by the time we get here
4735 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4736 btrfs_should_end_transaction(trans
)) {
4741 path
->leave_spinning
= 1;
4742 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4748 /* there are no items in the tree for us to truncate, we're
4751 if (path
->slots
[0] == 0)
4758 leaf
= path
->nodes
[0];
4759 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4760 found_type
= found_key
.type
;
4762 if (found_key
.objectid
!= ino
)
4765 if (found_type
< min_type
)
4768 item_end
= found_key
.offset
;
4769 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4770 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4771 struct btrfs_file_extent_item
);
4772 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4773 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4775 btrfs_file_extent_num_bytes(leaf
, fi
);
4777 trace_btrfs_truncate_show_fi_regular(
4778 BTRFS_I(inode
), leaf
, fi
,
4780 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4781 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4784 trace_btrfs_truncate_show_fi_inline(
4785 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4790 if (found_type
> min_type
) {
4793 if (item_end
< new_size
)
4795 if (found_key
.offset
>= new_size
)
4801 /* FIXME, shrink the extent if the ref count is only 1 */
4802 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4805 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4807 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4809 u64 orig_num_bytes
=
4810 btrfs_file_extent_num_bytes(leaf
, fi
);
4811 extent_num_bytes
= ALIGN(new_size
-
4813 fs_info
->sectorsize
);
4814 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4816 num_dec
= (orig_num_bytes
-
4818 if (test_bit(BTRFS_ROOT_REF_COWS
,
4821 inode_sub_bytes(inode
, num_dec
);
4822 btrfs_mark_buffer_dirty(leaf
);
4825 btrfs_file_extent_disk_num_bytes(leaf
,
4827 extent_offset
= found_key
.offset
-
4828 btrfs_file_extent_offset(leaf
, fi
);
4830 /* FIXME blocksize != 4096 */
4831 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4832 if (extent_start
!= 0) {
4834 if (test_bit(BTRFS_ROOT_REF_COWS
,
4836 inode_sub_bytes(inode
, num_dec
);
4839 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4841 * we can't truncate inline items that have had
4845 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4846 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4847 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4848 u32 size
= (u32
)(new_size
- found_key
.offset
);
4850 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4851 size
= btrfs_file_extent_calc_inline_size(size
);
4852 btrfs_truncate_item(path
, size
, 1);
4853 } else if (!del_item
) {
4855 * We have to bail so the last_size is set to
4856 * just before this extent.
4858 ret
= NEED_TRUNCATE_BLOCK
;
4862 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4863 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4867 last_size
= found_key
.offset
;
4869 last_size
= new_size
;
4871 if (!pending_del_nr
) {
4872 /* no pending yet, add ourselves */
4873 pending_del_slot
= path
->slots
[0];
4875 } else if (pending_del_nr
&&
4876 path
->slots
[0] + 1 == pending_del_slot
) {
4877 /* hop on the pending chunk */
4879 pending_del_slot
= path
->slots
[0];
4886 should_throttle
= false;
4889 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4890 root
== fs_info
->tree_root
)) {
4891 struct btrfs_ref ref
= { 0 };
4893 btrfs_set_path_blocking(path
);
4894 bytes_deleted
+= extent_num_bytes
;
4896 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
,
4897 extent_start
, extent_num_bytes
, 0);
4898 ref
.real_root
= root
->root_key
.objectid
;
4899 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
4900 ino
, extent_offset
);
4901 ret
= btrfs_free_extent(trans
, &ref
);
4903 btrfs_abort_transaction(trans
, ret
);
4907 if (btrfs_should_throttle_delayed_refs(trans
))
4908 should_throttle
= true;
4912 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4915 if (path
->slots
[0] == 0 ||
4916 path
->slots
[0] != pending_del_slot
||
4918 if (pending_del_nr
) {
4919 ret
= btrfs_del_items(trans
, root
, path
,
4923 btrfs_abort_transaction(trans
, ret
);
4928 btrfs_release_path(path
);
4931 * We can generate a lot of delayed refs, so we need to
4932 * throttle every once and a while and make sure we're
4933 * adding enough space to keep up with the work we are
4934 * generating. Since we hold a transaction here we
4935 * can't flush, and we don't want to FLUSH_LIMIT because
4936 * we could have generated too many delayed refs to
4937 * actually allocate, so just bail if we're short and
4938 * let the normal reservation dance happen higher up.
4940 if (should_throttle
) {
4941 ret
= btrfs_delayed_refs_rsv_refill(fs_info
,
4942 BTRFS_RESERVE_NO_FLUSH
);
4954 if (ret
>= 0 && pending_del_nr
) {
4957 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4960 btrfs_abort_transaction(trans
, err
);
4964 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4965 ASSERT(last_size
>= new_size
);
4966 if (!ret
&& last_size
> new_size
)
4967 last_size
= new_size
;
4968 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4971 btrfs_free_path(path
);
4976 * btrfs_truncate_block - read, zero a chunk and write a block
4977 * @inode - inode that we're zeroing
4978 * @from - the offset to start zeroing
4979 * @len - the length to zero, 0 to zero the entire range respective to the
4981 * @front - zero up to the offset instead of from the offset on
4983 * This will find the block for the "from" offset and cow the block and zero the
4984 * part we want to zero. This is used with truncate and hole punching.
4986 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4989 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4990 struct address_space
*mapping
= inode
->i_mapping
;
4991 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4992 struct btrfs_ordered_extent
*ordered
;
4993 struct extent_state
*cached_state
= NULL
;
4994 struct extent_changeset
*data_reserved
= NULL
;
4996 u32 blocksize
= fs_info
->sectorsize
;
4997 pgoff_t index
= from
>> PAGE_SHIFT
;
4998 unsigned offset
= from
& (blocksize
- 1);
5000 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
5005 if (IS_ALIGNED(offset
, blocksize
) &&
5006 (!len
|| IS_ALIGNED(len
, blocksize
)))
5009 block_start
= round_down(from
, blocksize
);
5010 block_end
= block_start
+ blocksize
- 1;
5012 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
5013 block_start
, blocksize
);
5018 page
= find_or_create_page(mapping
, index
, mask
);
5020 btrfs_delalloc_release_space(inode
, data_reserved
,
5021 block_start
, blocksize
, true);
5022 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
5027 if (!PageUptodate(page
)) {
5028 ret
= btrfs_readpage(NULL
, page
);
5030 if (page
->mapping
!= mapping
) {
5035 if (!PageUptodate(page
)) {
5040 wait_on_page_writeback(page
);
5042 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
5043 set_page_extent_mapped(page
);
5045 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
5047 unlock_extent_cached(io_tree
, block_start
, block_end
,
5051 btrfs_start_ordered_extent(inode
, ordered
, 1);
5052 btrfs_put_ordered_extent(ordered
);
5056 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
5057 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
5058 0, 0, &cached_state
);
5060 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
5063 unlock_extent_cached(io_tree
, block_start
, block_end
,
5068 if (offset
!= blocksize
) {
5070 len
= blocksize
- offset
;
5073 memset(kaddr
+ (block_start
- page_offset(page
)),
5076 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
5078 flush_dcache_page(page
);
5081 ClearPageChecked(page
);
5082 set_page_dirty(page
);
5083 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
5087 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
5089 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
5093 extent_changeset_free(data_reserved
);
5097 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
5098 u64 offset
, u64 len
)
5100 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5101 struct btrfs_trans_handle
*trans
;
5105 * Still need to make sure the inode looks like it's been updated so
5106 * that any holes get logged if we fsync.
5108 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
5109 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
5110 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
5111 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
5116 * 1 - for the one we're dropping
5117 * 1 - for the one we're adding
5118 * 1 - for updating the inode.
5120 trans
= btrfs_start_transaction(root
, 3);
5122 return PTR_ERR(trans
);
5124 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
5126 btrfs_abort_transaction(trans
, ret
);
5127 btrfs_end_transaction(trans
);
5131 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
5132 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
5134 btrfs_abort_transaction(trans
, ret
);
5136 btrfs_update_inode(trans
, root
, inode
);
5137 btrfs_end_transaction(trans
);
5142 * This function puts in dummy file extents for the area we're creating a hole
5143 * for. So if we are truncating this file to a larger size we need to insert
5144 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5145 * the range between oldsize and size
5147 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
5149 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5151 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5152 struct extent_map
*em
= NULL
;
5153 struct extent_state
*cached_state
= NULL
;
5154 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5155 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
5156 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
5163 * If our size started in the middle of a block we need to zero out the
5164 * rest of the block before we expand the i_size, otherwise we could
5165 * expose stale data.
5167 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
5171 if (size
<= hole_start
)
5174 btrfs_lock_and_flush_ordered_range(io_tree
, BTRFS_I(inode
), hole_start
,
5175 block_end
- 1, &cached_state
);
5176 cur_offset
= hole_start
;
5178 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
5179 block_end
- cur_offset
, 0);
5185 last_byte
= min(extent_map_end(em
), block_end
);
5186 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
5187 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
5188 struct extent_map
*hole_em
;
5189 hole_size
= last_byte
- cur_offset
;
5191 err
= maybe_insert_hole(root
, inode
, cur_offset
,
5195 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
5196 cur_offset
+ hole_size
- 1, 0);
5197 hole_em
= alloc_extent_map();
5199 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5200 &BTRFS_I(inode
)->runtime_flags
);
5203 hole_em
->start
= cur_offset
;
5204 hole_em
->len
= hole_size
;
5205 hole_em
->orig_start
= cur_offset
;
5207 hole_em
->block_start
= EXTENT_MAP_HOLE
;
5208 hole_em
->block_len
= 0;
5209 hole_em
->orig_block_len
= 0;
5210 hole_em
->ram_bytes
= hole_size
;
5211 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
5212 hole_em
->generation
= fs_info
->generation
;
5215 write_lock(&em_tree
->lock
);
5216 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5217 write_unlock(&em_tree
->lock
);
5220 btrfs_drop_extent_cache(BTRFS_I(inode
),
5225 free_extent_map(hole_em
);
5228 free_extent_map(em
);
5230 cur_offset
= last_byte
;
5231 if (cur_offset
>= block_end
)
5234 free_extent_map(em
);
5235 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
5239 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5241 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5242 struct btrfs_trans_handle
*trans
;
5243 loff_t oldsize
= i_size_read(inode
);
5244 loff_t newsize
= attr
->ia_size
;
5245 int mask
= attr
->ia_valid
;
5249 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5250 * special case where we need to update the times despite not having
5251 * these flags set. For all other operations the VFS set these flags
5252 * explicitly if it wants a timestamp update.
5254 if (newsize
!= oldsize
) {
5255 inode_inc_iversion(inode
);
5256 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5257 inode
->i_ctime
= inode
->i_mtime
=
5258 current_time(inode
);
5261 if (newsize
> oldsize
) {
5263 * Don't do an expanding truncate while snapshotting is ongoing.
5264 * This is to ensure the snapshot captures a fully consistent
5265 * state of this file - if the snapshot captures this expanding
5266 * truncation, it must capture all writes that happened before
5269 btrfs_wait_for_snapshot_creation(root
);
5270 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5272 btrfs_end_write_no_snapshotting(root
);
5276 trans
= btrfs_start_transaction(root
, 1);
5277 if (IS_ERR(trans
)) {
5278 btrfs_end_write_no_snapshotting(root
);
5279 return PTR_ERR(trans
);
5282 i_size_write(inode
, newsize
);
5283 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5284 pagecache_isize_extended(inode
, oldsize
, newsize
);
5285 ret
= btrfs_update_inode(trans
, root
, inode
);
5286 btrfs_end_write_no_snapshotting(root
);
5287 btrfs_end_transaction(trans
);
5291 * We're truncating a file that used to have good data down to
5292 * zero. Make sure it gets into the ordered flush list so that
5293 * any new writes get down to disk quickly.
5296 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5297 &BTRFS_I(inode
)->runtime_flags
);
5299 truncate_setsize(inode
, newsize
);
5301 /* Disable nonlocked read DIO to avoid the endless truncate */
5302 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5303 inode_dio_wait(inode
);
5304 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5306 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
5307 if (ret
&& inode
->i_nlink
) {
5311 * Truncate failed, so fix up the in-memory size. We
5312 * adjusted disk_i_size down as we removed extents, so
5313 * wait for disk_i_size to be stable and then update the
5314 * in-memory size to match.
5316 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5319 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5326 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5328 struct inode
*inode
= d_inode(dentry
);
5329 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5332 if (btrfs_root_readonly(root
))
5335 err
= setattr_prepare(dentry
, attr
);
5339 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5340 err
= btrfs_setsize(inode
, attr
);
5345 if (attr
->ia_valid
) {
5346 setattr_copy(inode
, attr
);
5347 inode_inc_iversion(inode
);
5348 err
= btrfs_dirty_inode(inode
);
5350 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5351 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5358 * While truncating the inode pages during eviction, we get the VFS calling
5359 * btrfs_invalidatepage() against each page of the inode. This is slow because
5360 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5361 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5362 * extent_state structures over and over, wasting lots of time.
5364 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5365 * those expensive operations on a per page basis and do only the ordered io
5366 * finishing, while we release here the extent_map and extent_state structures,
5367 * without the excessive merging and splitting.
5369 static void evict_inode_truncate_pages(struct inode
*inode
)
5371 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5372 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5373 struct rb_node
*node
;
5375 ASSERT(inode
->i_state
& I_FREEING
);
5376 truncate_inode_pages_final(&inode
->i_data
);
5378 write_lock(&map_tree
->lock
);
5379 while (!RB_EMPTY_ROOT(&map_tree
->map
.rb_root
)) {
5380 struct extent_map
*em
;
5382 node
= rb_first_cached(&map_tree
->map
);
5383 em
= rb_entry(node
, struct extent_map
, rb_node
);
5384 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5385 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5386 remove_extent_mapping(map_tree
, em
);
5387 free_extent_map(em
);
5388 if (need_resched()) {
5389 write_unlock(&map_tree
->lock
);
5391 write_lock(&map_tree
->lock
);
5394 write_unlock(&map_tree
->lock
);
5397 * Keep looping until we have no more ranges in the io tree.
5398 * We can have ongoing bios started by readpages (called from readahead)
5399 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5400 * still in progress (unlocked the pages in the bio but did not yet
5401 * unlocked the ranges in the io tree). Therefore this means some
5402 * ranges can still be locked and eviction started because before
5403 * submitting those bios, which are executed by a separate task (work
5404 * queue kthread), inode references (inode->i_count) were not taken
5405 * (which would be dropped in the end io callback of each bio).
5406 * Therefore here we effectively end up waiting for those bios and
5407 * anyone else holding locked ranges without having bumped the inode's
5408 * reference count - if we don't do it, when they access the inode's
5409 * io_tree to unlock a range it may be too late, leading to an
5410 * use-after-free issue.
5412 spin_lock(&io_tree
->lock
);
5413 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5414 struct extent_state
*state
;
5415 struct extent_state
*cached_state
= NULL
;
5418 unsigned state_flags
;
5420 node
= rb_first(&io_tree
->state
);
5421 state
= rb_entry(node
, struct extent_state
, rb_node
);
5422 start
= state
->start
;
5424 state_flags
= state
->state
;
5425 spin_unlock(&io_tree
->lock
);
5427 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5430 * If still has DELALLOC flag, the extent didn't reach disk,
5431 * and its reserved space won't be freed by delayed_ref.
5432 * So we need to free its reserved space here.
5433 * (Refer to comment in btrfs_invalidatepage, case 2)
5435 * Note, end is the bytenr of last byte, so we need + 1 here.
5437 if (state_flags
& EXTENT_DELALLOC
)
5438 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5440 clear_extent_bit(io_tree
, start
, end
,
5441 EXTENT_LOCKED
| EXTENT_DELALLOC
|
5442 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
5446 spin_lock(&io_tree
->lock
);
5448 spin_unlock(&io_tree
->lock
);
5451 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
5452 struct btrfs_block_rsv
*rsv
)
5454 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5455 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5456 struct btrfs_trans_handle
*trans
;
5457 u64 delayed_refs_extra
= btrfs_calc_insert_metadata_size(fs_info
, 1);
5461 * Eviction should be taking place at some place safe because of our
5462 * delayed iputs. However the normal flushing code will run delayed
5463 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5465 * We reserve the delayed_refs_extra here again because we can't use
5466 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5467 * above. We reserve our extra bit here because we generate a ton of
5468 * delayed refs activity by truncating.
5470 * If we cannot make our reservation we'll attempt to steal from the
5471 * global reserve, because we really want to be able to free up space.
5473 ret
= btrfs_block_rsv_refill(root
, rsv
, rsv
->size
+ delayed_refs_extra
,
5474 BTRFS_RESERVE_FLUSH_EVICT
);
5477 * Try to steal from the global reserve if there is space for
5480 if (btrfs_check_space_for_delayed_refs(fs_info
) ||
5481 btrfs_block_rsv_migrate(global_rsv
, rsv
, rsv
->size
, 0)) {
5483 "could not allocate space for delete; will truncate on mount");
5484 return ERR_PTR(-ENOSPC
);
5486 delayed_refs_extra
= 0;
5489 trans
= btrfs_join_transaction(root
);
5493 if (delayed_refs_extra
) {
5494 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5495 trans
->bytes_reserved
= delayed_refs_extra
;
5496 btrfs_block_rsv_migrate(rsv
, trans
->block_rsv
,
5497 delayed_refs_extra
, 1);
5502 void btrfs_evict_inode(struct inode
*inode
)
5504 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5505 struct btrfs_trans_handle
*trans
;
5506 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5507 struct btrfs_block_rsv
*rsv
;
5510 trace_btrfs_inode_evict(inode
);
5517 evict_inode_truncate_pages(inode
);
5519 if (inode
->i_nlink
&&
5520 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5521 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5522 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5525 if (is_bad_inode(inode
))
5528 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5530 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
5533 if (inode
->i_nlink
> 0) {
5534 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5535 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5539 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5543 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5546 rsv
->size
= btrfs_calc_metadata_size(fs_info
, 1);
5549 btrfs_i_size_write(BTRFS_I(inode
), 0);
5552 trans
= evict_refill_and_join(root
, rsv
);
5556 trans
->block_rsv
= rsv
;
5558 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5559 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5560 btrfs_end_transaction(trans
);
5561 btrfs_btree_balance_dirty(fs_info
);
5562 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5569 * Errors here aren't a big deal, it just means we leave orphan items in
5570 * the tree. They will be cleaned up on the next mount. If the inode
5571 * number gets reused, cleanup deletes the orphan item without doing
5572 * anything, and unlink reuses the existing orphan item.
5574 * If it turns out that we are dropping too many of these, we might want
5575 * to add a mechanism for retrying these after a commit.
5577 trans
= evict_refill_and_join(root
, rsv
);
5578 if (!IS_ERR(trans
)) {
5579 trans
->block_rsv
= rsv
;
5580 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5581 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5582 btrfs_end_transaction(trans
);
5585 if (!(root
== fs_info
->tree_root
||
5586 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5587 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5590 btrfs_free_block_rsv(fs_info
, rsv
);
5593 * If we didn't successfully delete, the orphan item will still be in
5594 * the tree and we'll retry on the next mount. Again, we might also want
5595 * to retry these periodically in the future.
5597 btrfs_remove_delayed_node(BTRFS_I(inode
));
5602 * Return the key found in the dir entry in the location pointer, fill @type
5603 * with BTRFS_FT_*, and return 0.
5605 * If no dir entries were found, returns -ENOENT.
5606 * If found a corrupted location in dir entry, returns -EUCLEAN.
5608 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5609 struct btrfs_key
*location
, u8
*type
)
5611 const char *name
= dentry
->d_name
.name
;
5612 int namelen
= dentry
->d_name
.len
;
5613 struct btrfs_dir_item
*di
;
5614 struct btrfs_path
*path
;
5615 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5618 path
= btrfs_alloc_path();
5622 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5624 if (IS_ERR_OR_NULL(di
)) {
5625 ret
= di
? PTR_ERR(di
) : -ENOENT
;
5629 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5630 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5631 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5633 btrfs_warn(root
->fs_info
,
5634 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5635 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5636 location
->objectid
, location
->type
, location
->offset
);
5639 *type
= btrfs_dir_type(path
->nodes
[0], di
);
5641 btrfs_free_path(path
);
5646 * when we hit a tree root in a directory, the btrfs part of the inode
5647 * needs to be changed to reflect the root directory of the tree root. This
5648 * is kind of like crossing a mount point.
5650 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5652 struct dentry
*dentry
,
5653 struct btrfs_key
*location
,
5654 struct btrfs_root
**sub_root
)
5656 struct btrfs_path
*path
;
5657 struct btrfs_root
*new_root
;
5658 struct btrfs_root_ref
*ref
;
5659 struct extent_buffer
*leaf
;
5660 struct btrfs_key key
;
5664 path
= btrfs_alloc_path();
5671 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5672 key
.type
= BTRFS_ROOT_REF_KEY
;
5673 key
.offset
= location
->objectid
;
5675 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5682 leaf
= path
->nodes
[0];
5683 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5684 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5685 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5688 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5689 (unsigned long)(ref
+ 1),
5690 dentry
->d_name
.len
);
5694 btrfs_release_path(path
);
5696 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5697 if (IS_ERR(new_root
)) {
5698 err
= PTR_ERR(new_root
);
5702 *sub_root
= new_root
;
5703 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5704 location
->type
= BTRFS_INODE_ITEM_KEY
;
5705 location
->offset
= 0;
5708 btrfs_free_path(path
);
5712 static void inode_tree_add(struct inode
*inode
)
5714 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5715 struct btrfs_inode
*entry
;
5717 struct rb_node
*parent
;
5718 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5719 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5721 if (inode_unhashed(inode
))
5724 spin_lock(&root
->inode_lock
);
5725 p
= &root
->inode_tree
.rb_node
;
5728 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5730 if (ino
< btrfs_ino(entry
))
5731 p
= &parent
->rb_left
;
5732 else if (ino
> btrfs_ino(entry
))
5733 p
= &parent
->rb_right
;
5735 WARN_ON(!(entry
->vfs_inode
.i_state
&
5736 (I_WILL_FREE
| I_FREEING
)));
5737 rb_replace_node(parent
, new, &root
->inode_tree
);
5738 RB_CLEAR_NODE(parent
);
5739 spin_unlock(&root
->inode_lock
);
5743 rb_link_node(new, parent
, p
);
5744 rb_insert_color(new, &root
->inode_tree
);
5745 spin_unlock(&root
->inode_lock
);
5748 static void inode_tree_del(struct inode
*inode
)
5750 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5753 spin_lock(&root
->inode_lock
);
5754 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5755 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5756 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5757 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5759 spin_unlock(&root
->inode_lock
);
5761 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5762 spin_lock(&root
->inode_lock
);
5763 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5764 spin_unlock(&root
->inode_lock
);
5766 btrfs_add_dead_root(root
);
5771 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5773 struct btrfs_iget_args
*args
= p
;
5774 inode
->i_ino
= args
->location
->objectid
;
5775 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5776 sizeof(*args
->location
));
5777 BTRFS_I(inode
)->root
= args
->root
;
5781 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5783 struct btrfs_iget_args
*args
= opaque
;
5784 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5785 args
->root
== BTRFS_I(inode
)->root
;
5788 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5789 struct btrfs_key
*location
,
5790 struct btrfs_root
*root
)
5792 struct inode
*inode
;
5793 struct btrfs_iget_args args
;
5794 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5796 args
.location
= location
;
5799 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5800 btrfs_init_locked_inode
,
5806 * Get an inode object given its location and corresponding root.
5807 * Path can be preallocated to prevent recursing back to iget through
5808 * allocator. NULL is also valid but may require an additional allocation
5811 struct inode
*btrfs_iget_path(struct super_block
*s
, struct btrfs_key
*location
,
5812 struct btrfs_root
*root
, struct btrfs_path
*path
)
5814 struct inode
*inode
;
5816 inode
= btrfs_iget_locked(s
, location
, root
);
5818 return ERR_PTR(-ENOMEM
);
5820 if (inode
->i_state
& I_NEW
) {
5823 ret
= btrfs_read_locked_inode(inode
, path
);
5825 inode_tree_add(inode
);
5826 unlock_new_inode(inode
);
5830 * ret > 0 can come from btrfs_search_slot called by
5831 * btrfs_read_locked_inode, this means the inode item
5836 inode
= ERR_PTR(ret
);
5843 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5844 struct btrfs_root
*root
)
5846 return btrfs_iget_path(s
, location
, root
, NULL
);
5849 static struct inode
*new_simple_dir(struct super_block
*s
,
5850 struct btrfs_key
*key
,
5851 struct btrfs_root
*root
)
5853 struct inode
*inode
= new_inode(s
);
5856 return ERR_PTR(-ENOMEM
);
5858 BTRFS_I(inode
)->root
= root
;
5859 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5860 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5862 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5863 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5864 inode
->i_opflags
&= ~IOP_XATTR
;
5865 inode
->i_fop
= &simple_dir_operations
;
5866 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5867 inode
->i_mtime
= current_time(inode
);
5868 inode
->i_atime
= inode
->i_mtime
;
5869 inode
->i_ctime
= inode
->i_mtime
;
5870 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5875 static inline u8
btrfs_inode_type(struct inode
*inode
)
5878 * Compile-time asserts that generic FT_* types still match
5881 BUILD_BUG_ON(BTRFS_FT_UNKNOWN
!= FT_UNKNOWN
);
5882 BUILD_BUG_ON(BTRFS_FT_REG_FILE
!= FT_REG_FILE
);
5883 BUILD_BUG_ON(BTRFS_FT_DIR
!= FT_DIR
);
5884 BUILD_BUG_ON(BTRFS_FT_CHRDEV
!= FT_CHRDEV
);
5885 BUILD_BUG_ON(BTRFS_FT_BLKDEV
!= FT_BLKDEV
);
5886 BUILD_BUG_ON(BTRFS_FT_FIFO
!= FT_FIFO
);
5887 BUILD_BUG_ON(BTRFS_FT_SOCK
!= FT_SOCK
);
5888 BUILD_BUG_ON(BTRFS_FT_SYMLINK
!= FT_SYMLINK
);
5890 return fs_umode_to_ftype(inode
->i_mode
);
5893 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5895 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5896 struct inode
*inode
;
5897 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5898 struct btrfs_root
*sub_root
= root
;
5899 struct btrfs_key location
;
5904 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5905 return ERR_PTR(-ENAMETOOLONG
);
5907 ret
= btrfs_inode_by_name(dir
, dentry
, &location
, &di_type
);
5909 return ERR_PTR(ret
);
5911 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5912 inode
= btrfs_iget(dir
->i_sb
, &location
, root
);
5916 /* Do extra check against inode mode with di_type */
5917 if (btrfs_inode_type(inode
) != di_type
) {
5919 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5920 inode
->i_mode
, btrfs_inode_type(inode
),
5923 return ERR_PTR(-EUCLEAN
);
5928 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5929 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5930 &location
, &sub_root
);
5933 inode
= ERR_PTR(ret
);
5935 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5937 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
5939 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5941 if (!IS_ERR(inode
) && root
!= sub_root
) {
5942 down_read(&fs_info
->cleanup_work_sem
);
5943 if (!sb_rdonly(inode
->i_sb
))
5944 ret
= btrfs_orphan_cleanup(sub_root
);
5945 up_read(&fs_info
->cleanup_work_sem
);
5948 inode
= ERR_PTR(ret
);
5955 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5957 struct btrfs_root
*root
;
5958 struct inode
*inode
= d_inode(dentry
);
5960 if (!inode
&& !IS_ROOT(dentry
))
5961 inode
= d_inode(dentry
->d_parent
);
5964 root
= BTRFS_I(inode
)->root
;
5965 if (btrfs_root_refs(&root
->root_item
) == 0)
5968 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5974 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5977 struct inode
*inode
= btrfs_lookup_dentry(dir
, dentry
);
5979 if (inode
== ERR_PTR(-ENOENT
))
5981 return d_splice_alias(inode
, dentry
);
5985 * All this infrastructure exists because dir_emit can fault, and we are holding
5986 * the tree lock when doing readdir. For now just allocate a buffer and copy
5987 * our information into that, and then dir_emit from the buffer. This is
5988 * similar to what NFS does, only we don't keep the buffer around in pagecache
5989 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5990 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5993 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5995 struct btrfs_file_private
*private;
5997 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
6000 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
6001 if (!private->filldir_buf
) {
6005 file
->private_data
= private;
6016 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
6019 struct dir_entry
*entry
= addr
;
6020 char *name
= (char *)(entry
+ 1);
6022 ctx
->pos
= get_unaligned(&entry
->offset
);
6023 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
6024 get_unaligned(&entry
->ino
),
6025 get_unaligned(&entry
->type
)))
6027 addr
+= sizeof(struct dir_entry
) +
6028 get_unaligned(&entry
->name_len
);
6034 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
6036 struct inode
*inode
= file_inode(file
);
6037 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6038 struct btrfs_file_private
*private = file
->private_data
;
6039 struct btrfs_dir_item
*di
;
6040 struct btrfs_key key
;
6041 struct btrfs_key found_key
;
6042 struct btrfs_path
*path
;
6044 struct list_head ins_list
;
6045 struct list_head del_list
;
6047 struct extent_buffer
*leaf
;
6054 struct btrfs_key location
;
6056 if (!dir_emit_dots(file
, ctx
))
6059 path
= btrfs_alloc_path();
6063 addr
= private->filldir_buf
;
6064 path
->reada
= READA_FORWARD
;
6066 INIT_LIST_HEAD(&ins_list
);
6067 INIT_LIST_HEAD(&del_list
);
6068 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
6071 key
.type
= BTRFS_DIR_INDEX_KEY
;
6072 key
.offset
= ctx
->pos
;
6073 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
6075 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6080 struct dir_entry
*entry
;
6082 leaf
= path
->nodes
[0];
6083 slot
= path
->slots
[0];
6084 if (slot
>= btrfs_header_nritems(leaf
)) {
6085 ret
= btrfs_next_leaf(root
, path
);
6093 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6095 if (found_key
.objectid
!= key
.objectid
)
6097 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
6099 if (found_key
.offset
< ctx
->pos
)
6101 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
6103 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
6104 name_len
= btrfs_dir_name_len(leaf
, di
);
6105 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
6107 btrfs_release_path(path
);
6108 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
6111 addr
= private->filldir_buf
;
6118 put_unaligned(name_len
, &entry
->name_len
);
6119 name_ptr
= (char *)(entry
+ 1);
6120 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
6122 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf
, di
)),
6124 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
6125 put_unaligned(location
.objectid
, &entry
->ino
);
6126 put_unaligned(found_key
.offset
, &entry
->offset
);
6128 addr
+= sizeof(struct dir_entry
) + name_len
;
6129 total_len
+= sizeof(struct dir_entry
) + name_len
;
6133 btrfs_release_path(path
);
6135 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
6139 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
6144 * Stop new entries from being returned after we return the last
6147 * New directory entries are assigned a strictly increasing
6148 * offset. This means that new entries created during readdir
6149 * are *guaranteed* to be seen in the future by that readdir.
6150 * This has broken buggy programs which operate on names as
6151 * they're returned by readdir. Until we re-use freed offsets
6152 * we have this hack to stop new entries from being returned
6153 * under the assumption that they'll never reach this huge
6156 * This is being careful not to overflow 32bit loff_t unless the
6157 * last entry requires it because doing so has broken 32bit apps
6160 if (ctx
->pos
>= INT_MAX
)
6161 ctx
->pos
= LLONG_MAX
;
6168 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6169 btrfs_free_path(path
);
6174 * This is somewhat expensive, updating the tree every time the
6175 * inode changes. But, it is most likely to find the inode in cache.
6176 * FIXME, needs more benchmarking...there are no reasons other than performance
6177 * to keep or drop this code.
6179 static int btrfs_dirty_inode(struct inode
*inode
)
6181 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6182 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6183 struct btrfs_trans_handle
*trans
;
6186 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6189 trans
= btrfs_join_transaction(root
);
6191 return PTR_ERR(trans
);
6193 ret
= btrfs_update_inode(trans
, root
, inode
);
6194 if (ret
&& ret
== -ENOSPC
) {
6195 /* whoops, lets try again with the full transaction */
6196 btrfs_end_transaction(trans
);
6197 trans
= btrfs_start_transaction(root
, 1);
6199 return PTR_ERR(trans
);
6201 ret
= btrfs_update_inode(trans
, root
, inode
);
6203 btrfs_end_transaction(trans
);
6204 if (BTRFS_I(inode
)->delayed_node
)
6205 btrfs_balance_delayed_items(fs_info
);
6211 * This is a copy of file_update_time. We need this so we can return error on
6212 * ENOSPC for updating the inode in the case of file write and mmap writes.
6214 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
6217 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6218 bool dirty
= flags
& ~S_VERSION
;
6220 if (btrfs_root_readonly(root
))
6223 if (flags
& S_VERSION
)
6224 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
6225 if (flags
& S_CTIME
)
6226 inode
->i_ctime
= *now
;
6227 if (flags
& S_MTIME
)
6228 inode
->i_mtime
= *now
;
6229 if (flags
& S_ATIME
)
6230 inode
->i_atime
= *now
;
6231 return dirty
? btrfs_dirty_inode(inode
) : 0;
6235 * find the highest existing sequence number in a directory
6236 * and then set the in-memory index_cnt variable to reflect
6237 * free sequence numbers
6239 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6241 struct btrfs_root
*root
= inode
->root
;
6242 struct btrfs_key key
, found_key
;
6243 struct btrfs_path
*path
;
6244 struct extent_buffer
*leaf
;
6247 key
.objectid
= btrfs_ino(inode
);
6248 key
.type
= BTRFS_DIR_INDEX_KEY
;
6249 key
.offset
= (u64
)-1;
6251 path
= btrfs_alloc_path();
6255 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6258 /* FIXME: we should be able to handle this */
6264 * MAGIC NUMBER EXPLANATION:
6265 * since we search a directory based on f_pos we have to start at 2
6266 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6267 * else has to start at 2
6269 if (path
->slots
[0] == 0) {
6270 inode
->index_cnt
= 2;
6276 leaf
= path
->nodes
[0];
6277 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6279 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6280 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6281 inode
->index_cnt
= 2;
6285 inode
->index_cnt
= found_key
.offset
+ 1;
6287 btrfs_free_path(path
);
6292 * helper to find a free sequence number in a given directory. This current
6293 * code is very simple, later versions will do smarter things in the btree
6295 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6299 if (dir
->index_cnt
== (u64
)-1) {
6300 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6302 ret
= btrfs_set_inode_index_count(dir
);
6308 *index
= dir
->index_cnt
;
6314 static int btrfs_insert_inode_locked(struct inode
*inode
)
6316 struct btrfs_iget_args args
;
6317 args
.location
= &BTRFS_I(inode
)->location
;
6318 args
.root
= BTRFS_I(inode
)->root
;
6320 return insert_inode_locked4(inode
,
6321 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6322 btrfs_find_actor
, &args
);
6326 * Inherit flags from the parent inode.
6328 * Currently only the compression flags and the cow flags are inherited.
6330 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6337 flags
= BTRFS_I(dir
)->flags
;
6339 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6340 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6341 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6342 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6343 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6344 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6347 if (flags
& BTRFS_INODE_NODATACOW
) {
6348 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6349 if (S_ISREG(inode
->i_mode
))
6350 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6353 btrfs_sync_inode_flags_to_i_flags(inode
);
6356 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6357 struct btrfs_root
*root
,
6359 const char *name
, int name_len
,
6360 u64 ref_objectid
, u64 objectid
,
6361 umode_t mode
, u64
*index
)
6363 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6364 struct inode
*inode
;
6365 struct btrfs_inode_item
*inode_item
;
6366 struct btrfs_key
*location
;
6367 struct btrfs_path
*path
;
6368 struct btrfs_inode_ref
*ref
;
6369 struct btrfs_key key
[2];
6371 int nitems
= name
? 2 : 1;
6373 unsigned int nofs_flag
;
6376 path
= btrfs_alloc_path();
6378 return ERR_PTR(-ENOMEM
);
6380 nofs_flag
= memalloc_nofs_save();
6381 inode
= new_inode(fs_info
->sb
);
6382 memalloc_nofs_restore(nofs_flag
);
6384 btrfs_free_path(path
);
6385 return ERR_PTR(-ENOMEM
);
6389 * O_TMPFILE, set link count to 0, so that after this point,
6390 * we fill in an inode item with the correct link count.
6393 set_nlink(inode
, 0);
6396 * we have to initialize this early, so we can reclaim the inode
6397 * number if we fail afterwards in this function.
6399 inode
->i_ino
= objectid
;
6402 trace_btrfs_inode_request(dir
);
6404 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6406 btrfs_free_path(path
);
6408 return ERR_PTR(ret
);
6414 * index_cnt is ignored for everything but a dir,
6415 * btrfs_set_inode_index_count has an explanation for the magic
6418 BTRFS_I(inode
)->index_cnt
= 2;
6419 BTRFS_I(inode
)->dir_index
= *index
;
6420 BTRFS_I(inode
)->root
= root
;
6421 BTRFS_I(inode
)->generation
= trans
->transid
;
6422 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6425 * We could have gotten an inode number from somebody who was fsynced
6426 * and then removed in this same transaction, so let's just set full
6427 * sync since it will be a full sync anyway and this will blow away the
6428 * old info in the log.
6430 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6432 key
[0].objectid
= objectid
;
6433 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6436 sizes
[0] = sizeof(struct btrfs_inode_item
);
6440 * Start new inodes with an inode_ref. This is slightly more
6441 * efficient for small numbers of hard links since they will
6442 * be packed into one item. Extended refs will kick in if we
6443 * add more hard links than can fit in the ref item.
6445 key
[1].objectid
= objectid
;
6446 key
[1].type
= BTRFS_INODE_REF_KEY
;
6447 key
[1].offset
= ref_objectid
;
6449 sizes
[1] = name_len
+ sizeof(*ref
);
6452 location
= &BTRFS_I(inode
)->location
;
6453 location
->objectid
= objectid
;
6454 location
->offset
= 0;
6455 location
->type
= BTRFS_INODE_ITEM_KEY
;
6457 ret
= btrfs_insert_inode_locked(inode
);
6463 path
->leave_spinning
= 1;
6464 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6468 inode_init_owner(inode
, dir
, mode
);
6469 inode_set_bytes(inode
, 0);
6471 inode
->i_mtime
= current_time(inode
);
6472 inode
->i_atime
= inode
->i_mtime
;
6473 inode
->i_ctime
= inode
->i_mtime
;
6474 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6476 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6477 struct btrfs_inode_item
);
6478 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6479 sizeof(*inode_item
));
6480 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6483 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6484 struct btrfs_inode_ref
);
6485 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6486 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6487 ptr
= (unsigned long)(ref
+ 1);
6488 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6491 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6492 btrfs_free_path(path
);
6494 btrfs_inherit_iflags(inode
, dir
);
6496 if (S_ISREG(mode
)) {
6497 if (btrfs_test_opt(fs_info
, NODATASUM
))
6498 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6499 if (btrfs_test_opt(fs_info
, NODATACOW
))
6500 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6501 BTRFS_INODE_NODATASUM
;
6504 inode_tree_add(inode
);
6506 trace_btrfs_inode_new(inode
);
6507 btrfs_set_inode_last_trans(trans
, inode
);
6509 btrfs_update_root_times(trans
, root
);
6511 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6514 "error inheriting props for ino %llu (root %llu): %d",
6515 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6520 discard_new_inode(inode
);
6523 BTRFS_I(dir
)->index_cnt
--;
6524 btrfs_free_path(path
);
6525 return ERR_PTR(ret
);
6529 * utility function to add 'inode' into 'parent_inode' with
6530 * a give name and a given sequence number.
6531 * if 'add_backref' is true, also insert a backref from the
6532 * inode to the parent directory.
6534 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6535 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6536 const char *name
, int name_len
, int add_backref
, u64 index
)
6539 struct btrfs_key key
;
6540 struct btrfs_root
*root
= parent_inode
->root
;
6541 u64 ino
= btrfs_ino(inode
);
6542 u64 parent_ino
= btrfs_ino(parent_inode
);
6544 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6545 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6548 key
.type
= BTRFS_INODE_ITEM_KEY
;
6552 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6553 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
6554 root
->root_key
.objectid
, parent_ino
,
6555 index
, name
, name_len
);
6556 } else if (add_backref
) {
6557 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6561 /* Nothing to clean up yet */
6565 ret
= btrfs_insert_dir_item(trans
, name
, name_len
, parent_inode
, &key
,
6566 btrfs_inode_type(&inode
->vfs_inode
), index
);
6567 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6570 btrfs_abort_transaction(trans
, ret
);
6574 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6576 inode_inc_iversion(&parent_inode
->vfs_inode
);
6578 * If we are replaying a log tree, we do not want to update the mtime
6579 * and ctime of the parent directory with the current time, since the
6580 * log replay procedure is responsible for setting them to their correct
6581 * values (the ones it had when the fsync was done).
6583 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
)) {
6584 struct timespec64 now
= current_time(&parent_inode
->vfs_inode
);
6586 parent_inode
->vfs_inode
.i_mtime
= now
;
6587 parent_inode
->vfs_inode
.i_ctime
= now
;
6589 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6591 btrfs_abort_transaction(trans
, ret
);
6595 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6598 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6599 root
->root_key
.objectid
, parent_ino
,
6600 &local_index
, name
, name_len
);
6602 btrfs_abort_transaction(trans
, err
);
6603 } else if (add_backref
) {
6607 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6608 ino
, parent_ino
, &local_index
);
6610 btrfs_abort_transaction(trans
, err
);
6613 /* Return the original error code */
6617 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6618 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6619 struct btrfs_inode
*inode
, int backref
, u64 index
)
6621 int err
= btrfs_add_link(trans
, dir
, inode
,
6622 dentry
->d_name
.name
, dentry
->d_name
.len
,
6629 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6630 umode_t mode
, dev_t rdev
)
6632 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6633 struct btrfs_trans_handle
*trans
;
6634 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6635 struct inode
*inode
= NULL
;
6641 * 2 for inode item and ref
6643 * 1 for xattr if selinux is on
6645 trans
= btrfs_start_transaction(root
, 5);
6647 return PTR_ERR(trans
);
6649 err
= btrfs_find_free_ino(root
, &objectid
);
6653 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6654 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6656 if (IS_ERR(inode
)) {
6657 err
= PTR_ERR(inode
);
6663 * If the active LSM wants to access the inode during
6664 * d_instantiate it needs these. Smack checks to see
6665 * if the filesystem supports xattrs by looking at the
6668 inode
->i_op
= &btrfs_special_inode_operations
;
6669 init_special_inode(inode
, inode
->i_mode
, rdev
);
6671 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6675 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6680 btrfs_update_inode(trans
, root
, inode
);
6681 d_instantiate_new(dentry
, inode
);
6684 btrfs_end_transaction(trans
);
6685 btrfs_btree_balance_dirty(fs_info
);
6687 inode_dec_link_count(inode
);
6688 discard_new_inode(inode
);
6693 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6694 umode_t mode
, bool excl
)
6696 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6697 struct btrfs_trans_handle
*trans
;
6698 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6699 struct inode
*inode
= NULL
;
6705 * 2 for inode item and ref
6707 * 1 for xattr if selinux is on
6709 trans
= btrfs_start_transaction(root
, 5);
6711 return PTR_ERR(trans
);
6713 err
= btrfs_find_free_ino(root
, &objectid
);
6717 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6718 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6720 if (IS_ERR(inode
)) {
6721 err
= PTR_ERR(inode
);
6726 * If the active LSM wants to access the inode during
6727 * d_instantiate it needs these. Smack checks to see
6728 * if the filesystem supports xattrs by looking at the
6731 inode
->i_fop
= &btrfs_file_operations
;
6732 inode
->i_op
= &btrfs_file_inode_operations
;
6733 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6735 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6739 err
= btrfs_update_inode(trans
, root
, inode
);
6743 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6748 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6749 d_instantiate_new(dentry
, inode
);
6752 btrfs_end_transaction(trans
);
6754 inode_dec_link_count(inode
);
6755 discard_new_inode(inode
);
6757 btrfs_btree_balance_dirty(fs_info
);
6761 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6762 struct dentry
*dentry
)
6764 struct btrfs_trans_handle
*trans
= NULL
;
6765 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6766 struct inode
*inode
= d_inode(old_dentry
);
6767 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6772 /* do not allow sys_link's with other subvols of the same device */
6773 if (root
->root_key
.objectid
!= BTRFS_I(inode
)->root
->root_key
.objectid
)
6776 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6779 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6784 * 2 items for inode and inode ref
6785 * 2 items for dir items
6786 * 1 item for parent inode
6787 * 1 item for orphan item deletion if O_TMPFILE
6789 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6790 if (IS_ERR(trans
)) {
6791 err
= PTR_ERR(trans
);
6796 /* There are several dir indexes for this inode, clear the cache. */
6797 BTRFS_I(inode
)->dir_index
= 0ULL;
6799 inode_inc_iversion(inode
);
6800 inode
->i_ctime
= current_time(inode
);
6802 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6804 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6810 struct dentry
*parent
= dentry
->d_parent
;
6813 err
= btrfs_update_inode(trans
, root
, inode
);
6816 if (inode
->i_nlink
== 1) {
6818 * If new hard link count is 1, it's a file created
6819 * with open(2) O_TMPFILE flag.
6821 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6825 d_instantiate(dentry
, inode
);
6826 ret
= btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
,
6828 if (ret
== BTRFS_NEED_TRANS_COMMIT
) {
6829 err
= btrfs_commit_transaction(trans
);
6836 btrfs_end_transaction(trans
);
6838 inode_dec_link_count(inode
);
6841 btrfs_btree_balance_dirty(fs_info
);
6845 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6847 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6848 struct inode
*inode
= NULL
;
6849 struct btrfs_trans_handle
*trans
;
6850 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6856 * 2 items for inode and ref
6857 * 2 items for dir items
6858 * 1 for xattr if selinux is on
6860 trans
= btrfs_start_transaction(root
, 5);
6862 return PTR_ERR(trans
);
6864 err
= btrfs_find_free_ino(root
, &objectid
);
6868 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6869 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6870 S_IFDIR
| mode
, &index
);
6871 if (IS_ERR(inode
)) {
6872 err
= PTR_ERR(inode
);
6877 /* these must be set before we unlock the inode */
6878 inode
->i_op
= &btrfs_dir_inode_operations
;
6879 inode
->i_fop
= &btrfs_dir_file_operations
;
6881 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6885 btrfs_i_size_write(BTRFS_I(inode
), 0);
6886 err
= btrfs_update_inode(trans
, root
, inode
);
6890 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6891 dentry
->d_name
.name
,
6892 dentry
->d_name
.len
, 0, index
);
6896 d_instantiate_new(dentry
, inode
);
6899 btrfs_end_transaction(trans
);
6901 inode_dec_link_count(inode
);
6902 discard_new_inode(inode
);
6904 btrfs_btree_balance_dirty(fs_info
);
6908 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6910 size_t pg_offset
, u64 extent_offset
,
6911 struct btrfs_file_extent_item
*item
)
6914 struct extent_buffer
*leaf
= path
->nodes
[0];
6917 unsigned long inline_size
;
6921 WARN_ON(pg_offset
!= 0);
6922 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6923 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6924 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6925 btrfs_item_nr(path
->slots
[0]));
6926 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6929 ptr
= btrfs_file_extent_inline_start(item
);
6931 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6933 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6934 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6935 extent_offset
, inline_size
, max_size
);
6938 * decompression code contains a memset to fill in any space between the end
6939 * of the uncompressed data and the end of max_size in case the decompressed
6940 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6941 * the end of an inline extent and the beginning of the next block, so we
6942 * cover that region here.
6945 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6946 char *map
= kmap(page
);
6947 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6955 * a bit scary, this does extent mapping from logical file offset to the disk.
6956 * the ugly parts come from merging extents from the disk with the in-ram
6957 * representation. This gets more complex because of the data=ordered code,
6958 * where the in-ram extents might be locked pending data=ordered completion.
6960 * This also copies inline extents directly into the page.
6962 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6964 size_t pg_offset
, u64 start
, u64 len
,
6967 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6970 u64 extent_start
= 0;
6972 u64 objectid
= btrfs_ino(inode
);
6973 int extent_type
= -1;
6974 struct btrfs_path
*path
= NULL
;
6975 struct btrfs_root
*root
= inode
->root
;
6976 struct btrfs_file_extent_item
*item
;
6977 struct extent_buffer
*leaf
;
6978 struct btrfs_key found_key
;
6979 struct extent_map
*em
= NULL
;
6980 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6981 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6982 const bool new_inline
= !page
|| create
;
6984 read_lock(&em_tree
->lock
);
6985 em
= lookup_extent_mapping(em_tree
, start
, len
);
6986 read_unlock(&em_tree
->lock
);
6989 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6990 free_extent_map(em
);
6991 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6992 free_extent_map(em
);
6996 em
= alloc_extent_map();
7001 em
->start
= EXTENT_MAP_HOLE
;
7002 em
->orig_start
= EXTENT_MAP_HOLE
;
7004 em
->block_len
= (u64
)-1;
7006 path
= btrfs_alloc_path();
7012 /* Chances are we'll be called again, so go ahead and do readahead */
7013 path
->reada
= READA_FORWARD
;
7016 * Unless we're going to uncompress the inline extent, no sleep would
7019 path
->leave_spinning
= 1;
7021 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
7025 } else if (ret
> 0) {
7026 if (path
->slots
[0] == 0)
7031 leaf
= path
->nodes
[0];
7032 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7033 struct btrfs_file_extent_item
);
7034 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7035 if (found_key
.objectid
!= objectid
||
7036 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7038 * If we backup past the first extent we want to move forward
7039 * and see if there is an extent in front of us, otherwise we'll
7040 * say there is a hole for our whole search range which can
7047 extent_type
= btrfs_file_extent_type(leaf
, item
);
7048 extent_start
= found_key
.offset
;
7049 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
7050 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7051 /* Only regular file could have regular/prealloc extent */
7052 if (!S_ISREG(inode
->vfs_inode
.i_mode
)) {
7055 "regular/prealloc extent found for non-regular inode %llu",
7059 extent_end
= extent_start
+
7060 btrfs_file_extent_num_bytes(leaf
, item
);
7062 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
7064 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
7067 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
7068 extent_end
= ALIGN(extent_start
+ size
,
7069 fs_info
->sectorsize
);
7071 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
7076 if (start
>= extent_end
) {
7078 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
7079 ret
= btrfs_next_leaf(root
, path
);
7083 } else if (ret
> 0) {
7086 leaf
= path
->nodes
[0];
7088 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7089 if (found_key
.objectid
!= objectid
||
7090 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7092 if (start
+ len
<= found_key
.offset
)
7094 if (start
> found_key
.offset
)
7097 /* New extent overlaps with existing one */
7099 em
->orig_start
= start
;
7100 em
->len
= found_key
.offset
- start
;
7101 em
->block_start
= EXTENT_MAP_HOLE
;
7105 btrfs_extent_item_to_extent_map(inode
, path
, item
,
7108 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
7109 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7111 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
7115 size_t extent_offset
;
7121 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
7122 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
7123 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
7124 size
- extent_offset
);
7125 em
->start
= extent_start
+ extent_offset
;
7126 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
7127 em
->orig_block_len
= em
->len
;
7128 em
->orig_start
= em
->start
;
7129 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
7131 btrfs_set_path_blocking(path
);
7132 if (!PageUptodate(page
)) {
7133 if (btrfs_file_extent_compression(leaf
, item
) !=
7134 BTRFS_COMPRESS_NONE
) {
7135 ret
= uncompress_inline(path
, page
, pg_offset
,
7136 extent_offset
, item
);
7143 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7145 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
7146 memset(map
+ pg_offset
+ copy_size
, 0,
7147 PAGE_SIZE
- pg_offset
-
7152 flush_dcache_page(page
);
7154 set_extent_uptodate(io_tree
, em
->start
,
7155 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7160 em
->orig_start
= start
;
7162 em
->block_start
= EXTENT_MAP_HOLE
;
7164 btrfs_release_path(path
);
7165 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7167 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7168 em
->start
, em
->len
, start
, len
);
7174 write_lock(&em_tree
->lock
);
7175 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
7176 write_unlock(&em_tree
->lock
);
7178 btrfs_free_path(path
);
7180 trace_btrfs_get_extent(root
, inode
, em
);
7183 free_extent_map(em
);
7184 return ERR_PTR(err
);
7186 BUG_ON(!em
); /* Error is always set */
7190 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7193 struct extent_map
*em
;
7194 struct extent_map
*hole_em
= NULL
;
7195 u64 delalloc_start
= start
;
7201 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
7205 * If our em maps to:
7207 * - a pre-alloc extent,
7208 * there might actually be delalloc bytes behind it.
7210 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7211 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7216 /* check to see if we've wrapped (len == -1 or similar) */
7225 /* ok, we didn't find anything, lets look for delalloc */
7226 delalloc_len
= count_range_bits(&inode
->io_tree
, &delalloc_start
,
7227 end
, len
, EXTENT_DELALLOC
, 1);
7228 delalloc_end
= delalloc_start
+ delalloc_len
;
7229 if (delalloc_end
< delalloc_start
)
7230 delalloc_end
= (u64
)-1;
7233 * We didn't find anything useful, return the original results from
7236 if (delalloc_start
> end
|| delalloc_end
<= start
) {
7243 * Adjust the delalloc_start to make sure it doesn't go backwards from
7244 * the start they passed in
7246 delalloc_start
= max(start
, delalloc_start
);
7247 delalloc_len
= delalloc_end
- delalloc_start
;
7249 if (delalloc_len
> 0) {
7252 const u64 hole_end
= extent_map_end(hole_em
);
7254 em
= alloc_extent_map();
7262 * When btrfs_get_extent can't find anything it returns one
7265 * Make sure what it found really fits our range, and adjust to
7266 * make sure it is based on the start from the caller
7268 if (hole_end
<= start
|| hole_em
->start
> end
) {
7269 free_extent_map(hole_em
);
7272 hole_start
= max(hole_em
->start
, start
);
7273 hole_len
= hole_end
- hole_start
;
7276 if (hole_em
&& delalloc_start
> hole_start
) {
7278 * Our hole starts before our delalloc, so we have to
7279 * return just the parts of the hole that go until the
7282 em
->len
= min(hole_len
, delalloc_start
- hole_start
);
7283 em
->start
= hole_start
;
7284 em
->orig_start
= hole_start
;
7286 * Don't adjust block start at all, it is fixed at
7289 em
->block_start
= hole_em
->block_start
;
7290 em
->block_len
= hole_len
;
7291 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7292 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7295 * Hole is out of passed range or it starts after
7298 em
->start
= delalloc_start
;
7299 em
->len
= delalloc_len
;
7300 em
->orig_start
= delalloc_start
;
7301 em
->block_start
= EXTENT_MAP_DELALLOC
;
7302 em
->block_len
= delalloc_len
;
7309 free_extent_map(hole_em
);
7311 free_extent_map(em
);
7312 return ERR_PTR(err
);
7317 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7320 const u64 orig_start
,
7321 const u64 block_start
,
7322 const u64 block_len
,
7323 const u64 orig_block_len
,
7324 const u64 ram_bytes
,
7327 struct extent_map
*em
= NULL
;
7330 if (type
!= BTRFS_ORDERED_NOCOW
) {
7331 em
= create_io_em(inode
, start
, len
, orig_start
,
7332 block_start
, block_len
, orig_block_len
,
7334 BTRFS_COMPRESS_NONE
, /* compress_type */
7339 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7340 len
, block_len
, type
);
7343 free_extent_map(em
);
7344 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7345 start
+ len
- 1, 0);
7354 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7357 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7358 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7359 struct extent_map
*em
;
7360 struct btrfs_key ins
;
7364 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7365 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7366 0, alloc_hint
, &ins
, 1, 1);
7368 return ERR_PTR(ret
);
7370 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7371 ins
.objectid
, ins
.offset
, ins
.offset
,
7372 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7373 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7375 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7382 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7383 * block must be cow'd
7385 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7386 u64
*orig_start
, u64
*orig_block_len
,
7389 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7390 struct btrfs_path
*path
;
7392 struct extent_buffer
*leaf
;
7393 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7394 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7395 struct btrfs_file_extent_item
*fi
;
7396 struct btrfs_key key
;
7403 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7405 path
= btrfs_alloc_path();
7409 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7410 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7414 slot
= path
->slots
[0];
7417 /* can't find the item, must cow */
7424 leaf
= path
->nodes
[0];
7425 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7426 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7427 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7428 /* not our file or wrong item type, must cow */
7432 if (key
.offset
> offset
) {
7433 /* Wrong offset, must cow */
7437 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7438 found_type
= btrfs_file_extent_type(leaf
, fi
);
7439 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7440 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7441 /* not a regular extent, must cow */
7445 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7448 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7449 if (extent_end
<= offset
)
7452 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7453 if (disk_bytenr
== 0)
7456 if (btrfs_file_extent_compression(leaf
, fi
) ||
7457 btrfs_file_extent_encryption(leaf
, fi
) ||
7458 btrfs_file_extent_other_encoding(leaf
, fi
))
7462 * Do the same check as in btrfs_cross_ref_exist but without the
7463 * unnecessary search.
7465 if (btrfs_file_extent_generation(leaf
, fi
) <=
7466 btrfs_root_last_snapshot(&root
->root_item
))
7469 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7472 *orig_start
= key
.offset
- backref_offset
;
7473 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7474 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7477 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7480 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7481 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7484 range_end
= round_up(offset
+ num_bytes
,
7485 root
->fs_info
->sectorsize
) - 1;
7486 ret
= test_range_bit(io_tree
, offset
, range_end
,
7487 EXTENT_DELALLOC
, 0, NULL
);
7494 btrfs_release_path(path
);
7497 * look for other files referencing this extent, if we
7498 * find any we must cow
7501 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7502 key
.offset
- backref_offset
, disk_bytenr
);
7509 * adjust disk_bytenr and num_bytes to cover just the bytes
7510 * in this extent we are about to write. If there
7511 * are any csums in that range we have to cow in order
7512 * to keep the csums correct
7514 disk_bytenr
+= backref_offset
;
7515 disk_bytenr
+= offset
- key
.offset
;
7516 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7519 * all of the above have passed, it is safe to overwrite this extent
7525 btrfs_free_path(path
);
7529 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7530 struct extent_state
**cached_state
, int writing
)
7532 struct btrfs_ordered_extent
*ordered
;
7536 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7539 * We're concerned with the entire range that we're going to be
7540 * doing DIO to, so we need to make sure there's no ordered
7541 * extents in this range.
7543 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7544 lockend
- lockstart
+ 1);
7547 * We need to make sure there are no buffered pages in this
7548 * range either, we could have raced between the invalidate in
7549 * generic_file_direct_write and locking the extent. The
7550 * invalidate needs to happen so that reads after a write do not
7554 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7555 lockstart
, lockend
)))
7558 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7563 * If we are doing a DIO read and the ordered extent we
7564 * found is for a buffered write, we can not wait for it
7565 * to complete and retry, because if we do so we can
7566 * deadlock with concurrent buffered writes on page
7567 * locks. This happens only if our DIO read covers more
7568 * than one extent map, if at this point has already
7569 * created an ordered extent for a previous extent map
7570 * and locked its range in the inode's io tree, and a
7571 * concurrent write against that previous extent map's
7572 * range and this range started (we unlock the ranges
7573 * in the io tree only when the bios complete and
7574 * buffered writes always lock pages before attempting
7575 * to lock range in the io tree).
7578 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7579 btrfs_start_ordered_extent(inode
, ordered
, 1);
7582 btrfs_put_ordered_extent(ordered
);
7585 * We could trigger writeback for this range (and wait
7586 * for it to complete) and then invalidate the pages for
7587 * this range (through invalidate_inode_pages2_range()),
7588 * but that can lead us to a deadlock with a concurrent
7589 * call to readpages() (a buffered read or a defrag call
7590 * triggered a readahead) on a page lock due to an
7591 * ordered dio extent we created before but did not have
7592 * yet a corresponding bio submitted (whence it can not
7593 * complete), which makes readpages() wait for that
7594 * ordered extent to complete while holding a lock on
7609 /* The callers of this must take lock_extent() */
7610 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7611 u64 orig_start
, u64 block_start
,
7612 u64 block_len
, u64 orig_block_len
,
7613 u64 ram_bytes
, int compress_type
,
7616 struct extent_map_tree
*em_tree
;
7617 struct extent_map
*em
;
7620 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7621 type
== BTRFS_ORDERED_COMPRESSED
||
7622 type
== BTRFS_ORDERED_NOCOW
||
7623 type
== BTRFS_ORDERED_REGULAR
);
7625 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7626 em
= alloc_extent_map();
7628 return ERR_PTR(-ENOMEM
);
7631 em
->orig_start
= orig_start
;
7633 em
->block_len
= block_len
;
7634 em
->block_start
= block_start
;
7635 em
->orig_block_len
= orig_block_len
;
7636 em
->ram_bytes
= ram_bytes
;
7637 em
->generation
= -1;
7638 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7639 if (type
== BTRFS_ORDERED_PREALLOC
) {
7640 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7641 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7642 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7643 em
->compress_type
= compress_type
;
7647 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7648 em
->start
+ em
->len
- 1, 0);
7649 write_lock(&em_tree
->lock
);
7650 ret
= add_extent_mapping(em_tree
, em
, 1);
7651 write_unlock(&em_tree
->lock
);
7653 * The caller has taken lock_extent(), who could race with us
7656 } while (ret
== -EEXIST
);
7659 free_extent_map(em
);
7660 return ERR_PTR(ret
);
7663 /* em got 2 refs now, callers needs to do free_extent_map once. */
7668 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7669 struct buffer_head
*bh_result
,
7670 struct inode
*inode
,
7673 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7675 if (em
->block_start
== EXTENT_MAP_HOLE
||
7676 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7679 len
= min(len
, em
->len
- (start
- em
->start
));
7681 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7683 bh_result
->b_size
= len
;
7684 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7685 set_buffer_mapped(bh_result
);
7690 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7691 struct buffer_head
*bh_result
,
7692 struct inode
*inode
,
7693 struct btrfs_dio_data
*dio_data
,
7696 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7697 struct extent_map
*em
= *map
;
7701 * We don't allocate a new extent in the following cases
7703 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7705 * 2) The extent is marked as PREALLOC. We're good to go here and can
7706 * just use the extent.
7709 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7710 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7711 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7713 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7715 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7716 type
= BTRFS_ORDERED_PREALLOC
;
7718 type
= BTRFS_ORDERED_NOCOW
;
7719 len
= min(len
, em
->len
- (start
- em
->start
));
7720 block_start
= em
->block_start
+ (start
- em
->start
);
7722 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7723 &orig_block_len
, &ram_bytes
) == 1 &&
7724 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7725 struct extent_map
*em2
;
7727 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7728 orig_start
, block_start
,
7729 len
, orig_block_len
,
7731 btrfs_dec_nocow_writers(fs_info
, block_start
);
7732 if (type
== BTRFS_ORDERED_PREALLOC
) {
7733 free_extent_map(em
);
7737 if (em2
&& IS_ERR(em2
)) {
7742 * For inode marked NODATACOW or extent marked PREALLOC,
7743 * use the existing or preallocated extent, so does not
7744 * need to adjust btrfs_space_info's bytes_may_use.
7746 btrfs_free_reserved_data_space_noquota(inode
, start
,
7752 /* this will cow the extent */
7753 len
= bh_result
->b_size
;
7754 free_extent_map(em
);
7755 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7761 len
= min(len
, em
->len
- (start
- em
->start
));
7764 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7766 bh_result
->b_size
= len
;
7767 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7768 set_buffer_mapped(bh_result
);
7770 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7771 set_buffer_new(bh_result
);
7774 * Need to update the i_size under the extent lock so buffered
7775 * readers will get the updated i_size when we unlock.
7777 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7778 i_size_write(inode
, start
+ len
);
7780 WARN_ON(dio_data
->reserve
< len
);
7781 dio_data
->reserve
-= len
;
7782 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7783 current
->journal_info
= dio_data
;
7788 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7789 struct buffer_head
*bh_result
, int create
)
7791 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7792 struct extent_map
*em
;
7793 struct extent_state
*cached_state
= NULL
;
7794 struct btrfs_dio_data
*dio_data
= NULL
;
7795 u64 start
= iblock
<< inode
->i_blkbits
;
7796 u64 lockstart
, lockend
;
7797 u64 len
= bh_result
->b_size
;
7801 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7804 lockend
= start
+ len
- 1;
7806 if (current
->journal_info
) {
7808 * Need to pull our outstanding extents and set journal_info to NULL so
7809 * that anything that needs to check if there's a transaction doesn't get
7812 dio_data
= current
->journal_info
;
7813 current
->journal_info
= NULL
;
7817 * If this errors out it's because we couldn't invalidate pagecache for
7818 * this range and we need to fallback to buffered.
7820 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7826 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7833 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7834 * io. INLINE is special, and we could probably kludge it in here, but
7835 * it's still buffered so for safety lets just fall back to the generic
7838 * For COMPRESSED we _have_ to read the entire extent in so we can
7839 * decompress it, so there will be buffering required no matter what we
7840 * do, so go ahead and fallback to buffered.
7842 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7843 * to buffered IO. Don't blame me, this is the price we pay for using
7846 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7847 em
->block_start
== EXTENT_MAP_INLINE
) {
7848 free_extent_map(em
);
7854 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7855 dio_data
, start
, len
);
7859 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
7860 lockend
, &cached_state
);
7862 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7864 /* Can be negative only if we read from a hole */
7867 free_extent_map(em
);
7871 * We need to unlock only the end area that we aren't using.
7872 * The rest is going to be unlocked by the endio routine.
7874 lockstart
= start
+ bh_result
->b_size
;
7875 if (lockstart
< lockend
) {
7876 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
7877 lockstart
, lockend
, &cached_state
);
7879 free_extent_state(cached_state
);
7883 free_extent_map(em
);
7888 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7892 current
->journal_info
= dio_data
;
7896 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7900 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7903 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7905 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7909 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
7914 static int btrfs_check_dio_repairable(struct inode
*inode
,
7915 struct bio
*failed_bio
,
7916 struct io_failure_record
*failrec
,
7919 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7922 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7923 if (num_copies
== 1) {
7925 * we only have a single copy of the data, so don't bother with
7926 * all the retry and error correction code that follows. no
7927 * matter what the error is, it is very likely to persist.
7929 btrfs_debug(fs_info
,
7930 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7931 num_copies
, failrec
->this_mirror
, failed_mirror
);
7935 failrec
->failed_mirror
= failed_mirror
;
7936 failrec
->this_mirror
++;
7937 if (failrec
->this_mirror
== failed_mirror
)
7938 failrec
->this_mirror
++;
7940 if (failrec
->this_mirror
> num_copies
) {
7941 btrfs_debug(fs_info
,
7942 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7943 num_copies
, failrec
->this_mirror
, failed_mirror
);
7950 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7951 struct page
*page
, unsigned int pgoff
,
7952 u64 start
, u64 end
, int failed_mirror
,
7953 bio_end_io_t
*repair_endio
, void *repair_arg
)
7955 struct io_failure_record
*failrec
;
7956 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7957 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7960 unsigned int read_mode
= 0;
7963 blk_status_t status
;
7964 struct bio_vec bvec
;
7966 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7968 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7970 return errno_to_blk_status(ret
);
7972 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7975 free_io_failure(failure_tree
, io_tree
, failrec
);
7976 return BLK_STS_IOERR
;
7979 segs
= bio_segments(failed_bio
);
7980 bio_get_first_bvec(failed_bio
, &bvec
);
7982 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7983 read_mode
|= REQ_FAILFAST_DEV
;
7985 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7986 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7987 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7988 pgoff
, isector
, repair_endio
, repair_arg
);
7989 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
7991 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7992 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7993 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7995 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7997 free_io_failure(failure_tree
, io_tree
, failrec
);
8004 struct btrfs_retry_complete
{
8005 struct completion done
;
8006 struct inode
*inode
;
8011 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
8013 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8014 struct inode
*inode
= done
->inode
;
8015 struct bio_vec
*bvec
;
8016 struct extent_io_tree
*io_tree
, *failure_tree
;
8017 struct bvec_iter_all iter_all
;
8022 ASSERT(bio
->bi_vcnt
== 1);
8023 io_tree
= &BTRFS_I(inode
)->io_tree
;
8024 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8025 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
8028 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8029 bio_for_each_segment_all(bvec
, bio
, iter_all
)
8030 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
8031 io_tree
, done
->start
, bvec
->bv_page
,
8032 btrfs_ino(BTRFS_I(inode
)), 0);
8034 complete(&done
->done
);
8038 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
8039 struct btrfs_io_bio
*io_bio
)
8041 struct btrfs_fs_info
*fs_info
;
8042 struct bio_vec bvec
;
8043 struct bvec_iter iter
;
8044 struct btrfs_retry_complete done
;
8050 blk_status_t err
= BLK_STS_OK
;
8052 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8053 sectorsize
= fs_info
->sectorsize
;
8055 start
= io_bio
->logical
;
8057 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8059 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8060 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8061 pgoff
= bvec
.bv_offset
;
8063 next_block_or_try_again
:
8066 init_completion(&done
.done
);
8068 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8069 pgoff
, start
, start
+ sectorsize
- 1,
8071 btrfs_retry_endio_nocsum
, &done
);
8077 wait_for_completion_io(&done
.done
);
8079 if (!done
.uptodate
) {
8080 /* We might have another mirror, so try again */
8081 goto next_block_or_try_again
;
8085 start
+= sectorsize
;
8089 pgoff
+= sectorsize
;
8090 ASSERT(pgoff
< PAGE_SIZE
);
8091 goto next_block_or_try_again
;
8098 static void btrfs_retry_endio(struct bio
*bio
)
8100 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8101 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8102 struct extent_io_tree
*io_tree
, *failure_tree
;
8103 struct inode
*inode
= done
->inode
;
8104 struct bio_vec
*bvec
;
8108 struct bvec_iter_all iter_all
;
8115 ASSERT(bio
->bi_vcnt
== 1);
8116 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
8118 io_tree
= &BTRFS_I(inode
)->io_tree
;
8119 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8121 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8122 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
8123 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
8124 bvec
->bv_offset
, done
->start
,
8127 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
8128 failure_tree
, io_tree
, done
->start
,
8130 btrfs_ino(BTRFS_I(inode
)),
8137 done
->uptodate
= uptodate
;
8139 complete(&done
->done
);
8143 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
8144 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8146 struct btrfs_fs_info
*fs_info
;
8147 struct bio_vec bvec
;
8148 struct bvec_iter iter
;
8149 struct btrfs_retry_complete done
;
8156 bool uptodate
= (err
== 0);
8158 blk_status_t status
;
8160 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8161 sectorsize
= fs_info
->sectorsize
;
8164 start
= io_bio
->logical
;
8166 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8168 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8169 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8171 pgoff
= bvec
.bv_offset
;
8174 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8175 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8176 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8183 init_completion(&done
.done
);
8185 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8186 pgoff
, start
, start
+ sectorsize
- 1,
8187 io_bio
->mirror_num
, btrfs_retry_endio
,
8194 wait_for_completion_io(&done
.done
);
8196 if (!done
.uptodate
) {
8197 /* We might have another mirror, so try again */
8201 offset
+= sectorsize
;
8202 start
+= sectorsize
;
8208 pgoff
+= sectorsize
;
8209 ASSERT(pgoff
< PAGE_SIZE
);
8217 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8218 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8220 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8224 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8228 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8232 static void btrfs_endio_direct_read(struct bio
*bio
)
8234 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8235 struct inode
*inode
= dip
->inode
;
8236 struct bio
*dio_bio
;
8237 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8238 blk_status_t err
= bio
->bi_status
;
8240 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8241 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8243 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8244 dip
->logical_offset
+ dip
->bytes
- 1);
8245 dio_bio
= dip
->dio_bio
;
8249 dio_bio
->bi_status
= err
;
8250 dio_end_io(dio_bio
);
8251 btrfs_io_bio_free_csum(io_bio
);
8255 static void __endio_write_update_ordered(struct inode
*inode
,
8256 const u64 offset
, const u64 bytes
,
8257 const bool uptodate
)
8259 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8260 struct btrfs_ordered_extent
*ordered
= NULL
;
8261 struct btrfs_workqueue
*wq
;
8262 u64 ordered_offset
= offset
;
8263 u64 ordered_bytes
= bytes
;
8266 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
8267 wq
= fs_info
->endio_freespace_worker
;
8269 wq
= fs_info
->endio_write_workers
;
8271 while (ordered_offset
< offset
+ bytes
) {
8272 last_offset
= ordered_offset
;
8273 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8277 btrfs_init_work(&ordered
->work
, finish_ordered_fn
, NULL
,
8279 btrfs_queue_work(wq
, &ordered
->work
);
8282 * If btrfs_dec_test_ordered_pending does not find any ordered
8283 * extent in the range, we can exit.
8285 if (ordered_offset
== last_offset
)
8288 * Our bio might span multiple ordered extents. In this case
8289 * we keep going until we have accounted the whole dio.
8291 if (ordered_offset
< offset
+ bytes
) {
8292 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8298 static void btrfs_endio_direct_write(struct bio
*bio
)
8300 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8301 struct bio
*dio_bio
= dip
->dio_bio
;
8303 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8304 dip
->bytes
, !bio
->bi_status
);
8308 dio_bio
->bi_status
= bio
->bi_status
;
8309 dio_end_io(dio_bio
);
8313 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
8314 struct bio
*bio
, u64 offset
)
8316 struct inode
*inode
= private_data
;
8318 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8319 BUG_ON(ret
); /* -ENOMEM */
8323 static void btrfs_end_dio_bio(struct bio
*bio
)
8325 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8326 blk_status_t err
= bio
->bi_status
;
8329 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8330 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8331 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8333 (unsigned long long)bio
->bi_iter
.bi_sector
,
8334 bio
->bi_iter
.bi_size
, err
);
8336 if (dip
->subio_endio
)
8337 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8341 * We want to perceive the errors flag being set before
8342 * decrementing the reference count. We don't need a barrier
8343 * since atomic operations with a return value are fully
8344 * ordered as per atomic_t.txt
8349 /* if there are more bios still pending for this dio, just exit */
8350 if (!atomic_dec_and_test(&dip
->pending_bios
))
8354 bio_io_error(dip
->orig_bio
);
8356 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8357 bio_endio(dip
->orig_bio
);
8363 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8364 struct btrfs_dio_private
*dip
,
8368 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8369 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8373 * We load all the csum data we need when we submit
8374 * the first bio to reduce the csum tree search and
8377 if (dip
->logical_offset
== file_offset
) {
8378 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8384 if (bio
== dip
->orig_bio
)
8387 file_offset
-= dip
->logical_offset
;
8388 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8389 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8394 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
8395 struct inode
*inode
, u64 file_offset
, int async_submit
)
8397 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8398 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8399 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8402 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8404 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8407 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8412 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8415 if (write
&& async_submit
) {
8416 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8418 btrfs_submit_bio_start_direct_io
);
8422 * If we aren't doing async submit, calculate the csum of the
8425 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8429 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8435 ret
= btrfs_map_bio(fs_info
, bio
, 0);
8440 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8442 struct inode
*inode
= dip
->inode
;
8443 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8445 struct bio
*orig_bio
= dip
->orig_bio
;
8446 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8447 u64 file_offset
= dip
->logical_offset
;
8448 int async_submit
= 0;
8450 int clone_offset
= 0;
8453 blk_status_t status
;
8454 struct btrfs_io_geometry geom
;
8456 submit_len
= orig_bio
->bi_iter
.bi_size
;
8457 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(orig_bio
),
8458 start_sector
<< 9, submit_len
, &geom
);
8462 if (geom
.len
>= submit_len
) {
8464 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8468 /* async crcs make it difficult to collect full stripe writes. */
8469 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8475 ASSERT(geom
.len
<= INT_MAX
);
8476 atomic_inc(&dip
->pending_bios
);
8478 clone_len
= min_t(int, submit_len
, geom
.len
);
8481 * This will never fail as it's passing GPF_NOFS and
8482 * the allocation is backed by btrfs_bioset.
8484 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8486 bio
->bi_private
= dip
;
8487 bio
->bi_end_io
= btrfs_end_dio_bio
;
8488 btrfs_io_bio(bio
)->logical
= file_offset
;
8490 ASSERT(submit_len
>= clone_len
);
8491 submit_len
-= clone_len
;
8492 if (submit_len
== 0)
8496 * Increase the count before we submit the bio so we know
8497 * the end IO handler won't happen before we increase the
8498 * count. Otherwise, the dip might get freed before we're
8499 * done setting it up.
8501 atomic_inc(&dip
->pending_bios
);
8503 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8507 atomic_dec(&dip
->pending_bios
);
8511 clone_offset
+= clone_len
;
8512 start_sector
+= clone_len
>> 9;
8513 file_offset
+= clone_len
;
8515 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(orig_bio
),
8516 start_sector
<< 9, submit_len
, &geom
);
8519 } while (submit_len
> 0);
8522 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8530 * Before atomic variable goto zero, we must make sure dip->errors is
8531 * perceived to be set. This ordering is ensured by the fact that an
8532 * atomic operations with a return value are fully ordered as per
8535 if (atomic_dec_and_test(&dip
->pending_bios
))
8536 bio_io_error(dip
->orig_bio
);
8538 /* bio_end_io() will handle error, so we needn't return it */
8542 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8545 struct btrfs_dio_private
*dip
= NULL
;
8546 struct bio
*bio
= NULL
;
8547 struct btrfs_io_bio
*io_bio
;
8548 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8551 bio
= btrfs_bio_clone(dio_bio
);
8553 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8559 dip
->private = dio_bio
->bi_private
;
8561 dip
->logical_offset
= file_offset
;
8562 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8563 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8564 bio
->bi_private
= dip
;
8565 dip
->orig_bio
= bio
;
8566 dip
->dio_bio
= dio_bio
;
8567 atomic_set(&dip
->pending_bios
, 0);
8568 io_bio
= btrfs_io_bio(bio
);
8569 io_bio
->logical
= file_offset
;
8572 bio
->bi_end_io
= btrfs_endio_direct_write
;
8574 bio
->bi_end_io
= btrfs_endio_direct_read
;
8575 dip
->subio_endio
= btrfs_subio_endio_read
;
8579 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8580 * even if we fail to submit a bio, because in such case we do the
8581 * corresponding error handling below and it must not be done a second
8582 * time by btrfs_direct_IO().
8585 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8587 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8589 dio_data
->unsubmitted_oe_range_start
=
8590 dio_data
->unsubmitted_oe_range_end
;
8593 ret
= btrfs_submit_direct_hook(dip
);
8597 btrfs_io_bio_free_csum(io_bio
);
8601 * If we arrived here it means either we failed to submit the dip
8602 * or we either failed to clone the dio_bio or failed to allocate the
8603 * dip. If we cloned the dio_bio and allocated the dip, we can just
8604 * call bio_endio against our io_bio so that we get proper resource
8605 * cleanup if we fail to submit the dip, otherwise, we must do the
8606 * same as btrfs_endio_direct_[write|read] because we can't call these
8607 * callbacks - they require an allocated dip and a clone of dio_bio.
8612 * The end io callbacks free our dip, do the final put on bio
8613 * and all the cleanup and final put for dio_bio (through
8620 __endio_write_update_ordered(inode
,
8622 dio_bio
->bi_iter
.bi_size
,
8625 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8626 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8628 dio_bio
->bi_status
= BLK_STS_IOERR
;
8630 * Releases and cleans up our dio_bio, no need to bio_put()
8631 * nor bio_endio()/bio_io_error() against dio_bio.
8633 dio_end_io(dio_bio
);
8640 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8641 const struct iov_iter
*iter
, loff_t offset
)
8645 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8646 ssize_t retval
= -EINVAL
;
8648 if (offset
& blocksize_mask
)
8651 if (iov_iter_alignment(iter
) & blocksize_mask
)
8654 /* If this is a write we don't need to check anymore */
8655 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8658 * Check to make sure we don't have duplicate iov_base's in this
8659 * iovec, if so return EINVAL, otherwise we'll get csum errors
8660 * when reading back.
8662 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8663 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8664 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8673 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8675 struct file
*file
= iocb
->ki_filp
;
8676 struct inode
*inode
= file
->f_mapping
->host
;
8677 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8678 struct btrfs_dio_data dio_data
= { 0 };
8679 struct extent_changeset
*data_reserved
= NULL
;
8680 loff_t offset
= iocb
->ki_pos
;
8684 bool relock
= false;
8687 if (check_direct_IO(fs_info
, iter
, offset
))
8690 inode_dio_begin(inode
);
8693 * The generic stuff only does filemap_write_and_wait_range, which
8694 * isn't enough if we've written compressed pages to this area, so
8695 * we need to flush the dirty pages again to make absolutely sure
8696 * that any outstanding dirty pages are on disk.
8698 count
= iov_iter_count(iter
);
8699 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8700 &BTRFS_I(inode
)->runtime_flags
))
8701 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8702 offset
+ count
- 1);
8704 if (iov_iter_rw(iter
) == WRITE
) {
8706 * If the write DIO is beyond the EOF, we need update
8707 * the isize, but it is protected by i_mutex. So we can
8708 * not unlock the i_mutex at this case.
8710 if (offset
+ count
<= inode
->i_size
) {
8711 dio_data
.overwrite
= 1;
8712 inode_unlock(inode
);
8714 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8718 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8724 * We need to know how many extents we reserved so that we can
8725 * do the accounting properly if we go over the number we
8726 * originally calculated. Abuse current->journal_info for this.
8728 dio_data
.reserve
= round_up(count
,
8729 fs_info
->sectorsize
);
8730 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8731 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8732 current
->journal_info
= &dio_data
;
8733 down_read(&BTRFS_I(inode
)->dio_sem
);
8734 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8735 &BTRFS_I(inode
)->runtime_flags
)) {
8736 inode_dio_end(inode
);
8737 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8741 ret
= __blockdev_direct_IO(iocb
, inode
,
8742 fs_info
->fs_devices
->latest_bdev
,
8743 iter
, btrfs_get_blocks_direct
, NULL
,
8744 btrfs_submit_direct
, flags
);
8745 if (iov_iter_rw(iter
) == WRITE
) {
8746 up_read(&BTRFS_I(inode
)->dio_sem
);
8747 current
->journal_info
= NULL
;
8748 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8749 if (dio_data
.reserve
)
8750 btrfs_delalloc_release_space(inode
, data_reserved
,
8751 offset
, dio_data
.reserve
, true);
8753 * On error we might have left some ordered extents
8754 * without submitting corresponding bios for them, so
8755 * cleanup them up to avoid other tasks getting them
8756 * and waiting for them to complete forever.
8758 if (dio_data
.unsubmitted_oe_range_start
<
8759 dio_data
.unsubmitted_oe_range_end
)
8760 __endio_write_update_ordered(inode
,
8761 dio_data
.unsubmitted_oe_range_start
,
8762 dio_data
.unsubmitted_oe_range_end
-
8763 dio_data
.unsubmitted_oe_range_start
,
8765 } else if (ret
>= 0 && (size_t)ret
< count
)
8766 btrfs_delalloc_release_space(inode
, data_reserved
,
8767 offset
, count
- (size_t)ret
, true);
8768 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
8772 inode_dio_end(inode
);
8776 extent_changeset_free(data_reserved
);
8780 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8782 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8783 __u64 start
, __u64 len
)
8787 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8791 return extent_fiemap(inode
, fieinfo
, start
, len
);
8794 int btrfs_readpage(struct file
*file
, struct page
*page
)
8796 struct extent_io_tree
*tree
;
8797 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8798 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8801 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8803 struct inode
*inode
= page
->mapping
->host
;
8806 if (current
->flags
& PF_MEMALLOC
) {
8807 redirty_page_for_writepage(wbc
, page
);
8813 * If we are under memory pressure we will call this directly from the
8814 * VM, we need to make sure we have the inode referenced for the ordered
8815 * extent. If not just return like we didn't do anything.
8817 if (!igrab(inode
)) {
8818 redirty_page_for_writepage(wbc
, page
);
8819 return AOP_WRITEPAGE_ACTIVATE
;
8821 ret
= extent_write_full_page(page
, wbc
);
8822 btrfs_add_delayed_iput(inode
);
8826 static int btrfs_writepages(struct address_space
*mapping
,
8827 struct writeback_control
*wbc
)
8829 return extent_writepages(mapping
, wbc
);
8833 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8834 struct list_head
*pages
, unsigned nr_pages
)
8836 return extent_readpages(mapping
, pages
, nr_pages
);
8839 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8841 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8843 ClearPagePrivate(page
);
8844 set_page_private(page
, 0);
8850 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8852 if (PageWriteback(page
) || PageDirty(page
))
8854 return __btrfs_releasepage(page
, gfp_flags
);
8857 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8858 unsigned int length
)
8860 struct inode
*inode
= page
->mapping
->host
;
8861 struct extent_io_tree
*tree
;
8862 struct btrfs_ordered_extent
*ordered
;
8863 struct extent_state
*cached_state
= NULL
;
8864 u64 page_start
= page_offset(page
);
8865 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8868 int inode_evicting
= inode
->i_state
& I_FREEING
;
8871 * we have the page locked, so new writeback can't start,
8872 * and the dirty bit won't be cleared while we are here.
8874 * Wait for IO on this page so that we can safely clear
8875 * the PagePrivate2 bit and do ordered accounting
8877 wait_on_page_writeback(page
);
8879 tree
= &BTRFS_I(inode
)->io_tree
;
8881 btrfs_releasepage(page
, GFP_NOFS
);
8885 if (!inode_evicting
)
8886 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8889 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8890 page_end
- start
+ 1);
8892 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8894 * IO on this page will never be started, so we need
8895 * to account for any ordered extents now
8897 if (!inode_evicting
)
8898 clear_extent_bit(tree
, start
, end
,
8899 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8900 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8901 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8903 * whoever cleared the private bit is responsible
8904 * for the finish_ordered_io
8906 if (TestClearPagePrivate2(page
)) {
8907 struct btrfs_ordered_inode_tree
*tree
;
8910 tree
= &BTRFS_I(inode
)->ordered_tree
;
8912 spin_lock_irq(&tree
->lock
);
8913 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8914 new_len
= start
- ordered
->file_offset
;
8915 if (new_len
< ordered
->truncated_len
)
8916 ordered
->truncated_len
= new_len
;
8917 spin_unlock_irq(&tree
->lock
);
8919 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8921 end
- start
+ 1, 1))
8922 btrfs_finish_ordered_io(ordered
);
8924 btrfs_put_ordered_extent(ordered
);
8925 if (!inode_evicting
) {
8926 cached_state
= NULL
;
8927 lock_extent_bits(tree
, start
, end
,
8932 if (start
< page_end
)
8937 * Qgroup reserved space handler
8938 * Page here will be either
8939 * 1) Already written to disk
8940 * In this case, its reserved space is released from data rsv map
8941 * and will be freed by delayed_ref handler finally.
8942 * So even we call qgroup_free_data(), it won't decrease reserved
8944 * 2) Not written to disk
8945 * This means the reserved space should be freed here. However,
8946 * if a truncate invalidates the page (by clearing PageDirty)
8947 * and the page is accounted for while allocating extent
8948 * in btrfs_check_data_free_space() we let delayed_ref to
8949 * free the entire extent.
8951 if (PageDirty(page
))
8952 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8953 if (!inode_evicting
) {
8954 clear_extent_bit(tree
, page_start
, page_end
, EXTENT_LOCKED
|
8955 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8956 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8959 __btrfs_releasepage(page
, GFP_NOFS
);
8962 ClearPageChecked(page
);
8963 if (PagePrivate(page
)) {
8964 ClearPagePrivate(page
);
8965 set_page_private(page
, 0);
8971 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8972 * called from a page fault handler when a page is first dirtied. Hence we must
8973 * be careful to check for EOF conditions here. We set the page up correctly
8974 * for a written page which means we get ENOSPC checking when writing into
8975 * holes and correct delalloc and unwritten extent mapping on filesystems that
8976 * support these features.
8978 * We are not allowed to take the i_mutex here so we have to play games to
8979 * protect against truncate races as the page could now be beyond EOF. Because
8980 * truncate_setsize() writes the inode size before removing pages, once we have
8981 * the page lock we can determine safely if the page is beyond EOF. If it is not
8982 * beyond EOF, then the page is guaranteed safe against truncation until we
8985 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8987 struct page
*page
= vmf
->page
;
8988 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8989 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8990 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8991 struct btrfs_ordered_extent
*ordered
;
8992 struct extent_state
*cached_state
= NULL
;
8993 struct extent_changeset
*data_reserved
= NULL
;
8995 unsigned long zero_start
;
9005 reserved_space
= PAGE_SIZE
;
9007 sb_start_pagefault(inode
->i_sb
);
9008 page_start
= page_offset(page
);
9009 page_end
= page_start
+ PAGE_SIZE
- 1;
9013 * Reserving delalloc space after obtaining the page lock can lead to
9014 * deadlock. For example, if a dirty page is locked by this function
9015 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9016 * dirty page write out, then the btrfs_writepage() function could
9017 * end up waiting indefinitely to get a lock on the page currently
9018 * being processed by btrfs_page_mkwrite() function.
9020 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
9023 ret2
= file_update_time(vmf
->vma
->vm_file
);
9027 ret
= vmf_error(ret2
);
9033 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
9036 size
= i_size_read(inode
);
9038 if ((page
->mapping
!= inode
->i_mapping
) ||
9039 (page_start
>= size
)) {
9040 /* page got truncated out from underneath us */
9043 wait_on_page_writeback(page
);
9045 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9046 set_page_extent_mapped(page
);
9049 * we can't set the delalloc bits if there are pending ordered
9050 * extents. Drop our locks and wait for them to finish
9052 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
9055 unlock_extent_cached(io_tree
, page_start
, page_end
,
9058 btrfs_start_ordered_extent(inode
, ordered
, 1);
9059 btrfs_put_ordered_extent(ordered
);
9063 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9064 reserved_space
= round_up(size
- page_start
,
9065 fs_info
->sectorsize
);
9066 if (reserved_space
< PAGE_SIZE
) {
9067 end
= page_start
+ reserved_space
- 1;
9068 btrfs_delalloc_release_space(inode
, data_reserved
,
9069 page_start
, PAGE_SIZE
- reserved_space
,
9075 * page_mkwrite gets called when the page is firstly dirtied after it's
9076 * faulted in, but write(2) could also dirty a page and set delalloc
9077 * bits, thus in this case for space account reason, we still need to
9078 * clear any delalloc bits within this page range since we have to
9079 * reserve data&meta space before lock_page() (see above comments).
9081 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9082 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
9083 EXTENT_DEFRAG
, 0, 0, &cached_state
);
9085 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
9088 unlock_extent_cached(io_tree
, page_start
, page_end
,
9090 ret
= VM_FAULT_SIGBUS
;
9095 /* page is wholly or partially inside EOF */
9096 if (page_start
+ PAGE_SIZE
> size
)
9097 zero_start
= offset_in_page(size
);
9099 zero_start
= PAGE_SIZE
;
9101 if (zero_start
!= PAGE_SIZE
) {
9103 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9104 flush_dcache_page(page
);
9107 ClearPageChecked(page
);
9108 set_page_dirty(page
);
9109 SetPageUptodate(page
);
9111 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9112 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9113 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9115 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
9118 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9119 sb_end_pagefault(inode
->i_sb
);
9120 extent_changeset_free(data_reserved
);
9121 return VM_FAULT_LOCKED
;
9127 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9128 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
9129 reserved_space
, (ret
!= 0));
9131 sb_end_pagefault(inode
->i_sb
);
9132 extent_changeset_free(data_reserved
);
9136 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
9138 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9139 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9140 struct btrfs_block_rsv
*rsv
;
9142 struct btrfs_trans_handle
*trans
;
9143 u64 mask
= fs_info
->sectorsize
- 1;
9144 u64 min_size
= btrfs_calc_metadata_size(fs_info
, 1);
9146 if (!skip_writeback
) {
9147 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9154 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9155 * things going on here:
9157 * 1) We need to reserve space to update our inode.
9159 * 2) We need to have something to cache all the space that is going to
9160 * be free'd up by the truncate operation, but also have some slack
9161 * space reserved in case it uses space during the truncate (thank you
9162 * very much snapshotting).
9164 * And we need these to be separate. The fact is we can use a lot of
9165 * space doing the truncate, and we have no earthly idea how much space
9166 * we will use, so we need the truncate reservation to be separate so it
9167 * doesn't end up using space reserved for updating the inode. We also
9168 * need to be able to stop the transaction and start a new one, which
9169 * means we need to be able to update the inode several times, and we
9170 * have no idea of knowing how many times that will be, so we can't just
9171 * reserve 1 item for the entirety of the operation, so that has to be
9172 * done separately as well.
9174 * So that leaves us with
9176 * 1) rsv - for the truncate reservation, which we will steal from the
9177 * transaction reservation.
9178 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9179 * updating the inode.
9181 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9184 rsv
->size
= min_size
;
9188 * 1 for the truncate slack space
9189 * 1 for updating the inode.
9191 trans
= btrfs_start_transaction(root
, 2);
9192 if (IS_ERR(trans
)) {
9193 ret
= PTR_ERR(trans
);
9197 /* Migrate the slack space for the truncate to our reserve */
9198 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9203 * So if we truncate and then write and fsync we normally would just
9204 * write the extents that changed, which is a problem if we need to
9205 * first truncate that entire inode. So set this flag so we write out
9206 * all of the extents in the inode to the sync log so we're completely
9209 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9210 trans
->block_rsv
= rsv
;
9213 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9215 BTRFS_EXTENT_DATA_KEY
);
9216 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9217 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
9220 ret
= btrfs_update_inode(trans
, root
, inode
);
9224 btrfs_end_transaction(trans
);
9225 btrfs_btree_balance_dirty(fs_info
);
9227 trans
= btrfs_start_transaction(root
, 2);
9228 if (IS_ERR(trans
)) {
9229 ret
= PTR_ERR(trans
);
9234 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9235 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9236 rsv
, min_size
, false);
9237 BUG_ON(ret
); /* shouldn't happen */
9238 trans
->block_rsv
= rsv
;
9242 * We can't call btrfs_truncate_block inside a trans handle as we could
9243 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9244 * we've truncated everything except the last little bit, and can do
9245 * btrfs_truncate_block and then update the disk_i_size.
9247 if (ret
== NEED_TRUNCATE_BLOCK
) {
9248 btrfs_end_transaction(trans
);
9249 btrfs_btree_balance_dirty(fs_info
);
9251 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9254 trans
= btrfs_start_transaction(root
, 1);
9255 if (IS_ERR(trans
)) {
9256 ret
= PTR_ERR(trans
);
9259 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9265 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9266 ret2
= btrfs_update_inode(trans
, root
, inode
);
9270 ret2
= btrfs_end_transaction(trans
);
9273 btrfs_btree_balance_dirty(fs_info
);
9276 btrfs_free_block_rsv(fs_info
, rsv
);
9282 * create a new subvolume directory/inode (helper for the ioctl).
9284 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9285 struct btrfs_root
*new_root
,
9286 struct btrfs_root
*parent_root
,
9289 struct inode
*inode
;
9293 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9294 new_dirid
, new_dirid
,
9295 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9298 return PTR_ERR(inode
);
9299 inode
->i_op
= &btrfs_dir_inode_operations
;
9300 inode
->i_fop
= &btrfs_dir_file_operations
;
9302 set_nlink(inode
, 1);
9303 btrfs_i_size_write(BTRFS_I(inode
), 0);
9304 unlock_new_inode(inode
);
9306 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9308 btrfs_err(new_root
->fs_info
,
9309 "error inheriting subvolume %llu properties: %d",
9310 new_root
->root_key
.objectid
, err
);
9312 err
= btrfs_update_inode(trans
, new_root
, inode
);
9318 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9320 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9321 struct btrfs_inode
*ei
;
9322 struct inode
*inode
;
9324 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
9331 ei
->last_sub_trans
= 0;
9332 ei
->logged_trans
= 0;
9333 ei
->delalloc_bytes
= 0;
9334 ei
->new_delalloc_bytes
= 0;
9335 ei
->defrag_bytes
= 0;
9336 ei
->disk_i_size
= 0;
9339 ei
->index_cnt
= (u64
)-1;
9341 ei
->last_unlink_trans
= 0;
9342 ei
->last_log_commit
= 0;
9344 spin_lock_init(&ei
->lock
);
9345 ei
->outstanding_extents
= 0;
9346 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9347 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9348 BTRFS_BLOCK_RSV_DELALLOC
);
9349 ei
->runtime_flags
= 0;
9350 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9351 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9353 ei
->delayed_node
= NULL
;
9355 ei
->i_otime
.tv_sec
= 0;
9356 ei
->i_otime
.tv_nsec
= 0;
9358 inode
= &ei
->vfs_inode
;
9359 extent_map_tree_init(&ei
->extent_tree
);
9360 extent_io_tree_init(fs_info
, &ei
->io_tree
, IO_TREE_INODE_IO
, inode
);
9361 extent_io_tree_init(fs_info
, &ei
->io_failure_tree
,
9362 IO_TREE_INODE_IO_FAILURE
, inode
);
9363 ei
->io_tree
.track_uptodate
= true;
9364 ei
->io_failure_tree
.track_uptodate
= true;
9365 atomic_set(&ei
->sync_writers
, 0);
9366 mutex_init(&ei
->log_mutex
);
9367 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9368 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9369 INIT_LIST_HEAD(&ei
->delayed_iput
);
9370 RB_CLEAR_NODE(&ei
->rb_node
);
9371 init_rwsem(&ei
->dio_sem
);
9376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9377 void btrfs_test_destroy_inode(struct inode
*inode
)
9379 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9380 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9384 void btrfs_free_inode(struct inode
*inode
)
9386 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9389 void btrfs_destroy_inode(struct inode
*inode
)
9391 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9392 struct btrfs_ordered_extent
*ordered
;
9393 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9395 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9396 WARN_ON(inode
->i_data
.nrpages
);
9397 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9398 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9399 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9400 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9401 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9402 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9403 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9406 * This can happen where we create an inode, but somebody else also
9407 * created the same inode and we need to destroy the one we already
9414 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9419 "found ordered extent %llu %llu on inode cleanup",
9420 ordered
->file_offset
, ordered
->len
);
9421 btrfs_remove_ordered_extent(inode
, ordered
);
9422 btrfs_put_ordered_extent(ordered
);
9423 btrfs_put_ordered_extent(ordered
);
9426 btrfs_qgroup_check_reserved_leak(inode
);
9427 inode_tree_del(inode
);
9428 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9431 int btrfs_drop_inode(struct inode
*inode
)
9433 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9438 /* the snap/subvol tree is on deleting */
9439 if (btrfs_root_refs(&root
->root_item
) == 0)
9442 return generic_drop_inode(inode
);
9445 static void init_once(void *foo
)
9447 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9449 inode_init_once(&ei
->vfs_inode
);
9452 void __cold
btrfs_destroy_cachep(void)
9455 * Make sure all delayed rcu free inodes are flushed before we
9459 kmem_cache_destroy(btrfs_inode_cachep
);
9460 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9461 kmem_cache_destroy(btrfs_path_cachep
);
9462 kmem_cache_destroy(btrfs_free_space_cachep
);
9463 kmem_cache_destroy(btrfs_free_space_bitmap_cachep
);
9466 int __init
btrfs_init_cachep(void)
9468 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9469 sizeof(struct btrfs_inode
), 0,
9470 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9472 if (!btrfs_inode_cachep
)
9475 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9476 sizeof(struct btrfs_trans_handle
), 0,
9477 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9478 if (!btrfs_trans_handle_cachep
)
9481 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9482 sizeof(struct btrfs_path
), 0,
9483 SLAB_MEM_SPREAD
, NULL
);
9484 if (!btrfs_path_cachep
)
9487 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9488 sizeof(struct btrfs_free_space
), 0,
9489 SLAB_MEM_SPREAD
, NULL
);
9490 if (!btrfs_free_space_cachep
)
9493 btrfs_free_space_bitmap_cachep
= kmem_cache_create("btrfs_free_space_bitmap",
9494 PAGE_SIZE
, PAGE_SIZE
,
9495 SLAB_RED_ZONE
, NULL
);
9496 if (!btrfs_free_space_bitmap_cachep
)
9501 btrfs_destroy_cachep();
9505 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9506 u32 request_mask
, unsigned int flags
)
9509 struct inode
*inode
= d_inode(path
->dentry
);
9510 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9511 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9513 stat
->result_mask
|= STATX_BTIME
;
9514 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9515 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9516 if (bi_flags
& BTRFS_INODE_APPEND
)
9517 stat
->attributes
|= STATX_ATTR_APPEND
;
9518 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9519 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9520 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9521 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9522 if (bi_flags
& BTRFS_INODE_NODUMP
)
9523 stat
->attributes
|= STATX_ATTR_NODUMP
;
9525 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9526 STATX_ATTR_COMPRESSED
|
9527 STATX_ATTR_IMMUTABLE
|
9530 generic_fillattr(inode
, stat
);
9531 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9533 spin_lock(&BTRFS_I(inode
)->lock
);
9534 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9535 spin_unlock(&BTRFS_I(inode
)->lock
);
9536 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9537 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9541 static int btrfs_rename_exchange(struct inode
*old_dir
,
9542 struct dentry
*old_dentry
,
9543 struct inode
*new_dir
,
9544 struct dentry
*new_dentry
)
9546 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9547 struct btrfs_trans_handle
*trans
;
9548 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9549 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9550 struct inode
*new_inode
= new_dentry
->d_inode
;
9551 struct inode
*old_inode
= old_dentry
->d_inode
;
9552 struct timespec64 ctime
= current_time(old_inode
);
9553 struct dentry
*parent
;
9554 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9555 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9559 bool root_log_pinned
= false;
9560 bool dest_log_pinned
= false;
9561 struct btrfs_log_ctx ctx_root
;
9562 struct btrfs_log_ctx ctx_dest
;
9563 bool sync_log_root
= false;
9564 bool sync_log_dest
= false;
9565 bool commit_transaction
= false;
9567 /* we only allow rename subvolume link between subvolumes */
9568 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9571 btrfs_init_log_ctx(&ctx_root
, old_inode
);
9572 btrfs_init_log_ctx(&ctx_dest
, new_inode
);
9574 /* close the race window with snapshot create/destroy ioctl */
9575 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
||
9576 new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9577 down_read(&fs_info
->subvol_sem
);
9580 * We want to reserve the absolute worst case amount of items. So if
9581 * both inodes are subvols and we need to unlink them then that would
9582 * require 4 item modifications, but if they are both normal inodes it
9583 * would require 5 item modifications, so we'll assume their normal
9584 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9585 * should cover the worst case number of items we'll modify.
9587 trans
= btrfs_start_transaction(root
, 12);
9588 if (IS_ERR(trans
)) {
9589 ret
= PTR_ERR(trans
);
9594 btrfs_record_root_in_trans(trans
, dest
);
9597 * We need to find a free sequence number both in the source and
9598 * in the destination directory for the exchange.
9600 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9603 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9607 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9608 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9610 /* Reference for the source. */
9611 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9612 /* force full log commit if subvolume involved. */
9613 btrfs_set_log_full_commit(trans
);
9615 btrfs_pin_log_trans(root
);
9616 root_log_pinned
= true;
9617 ret
= btrfs_insert_inode_ref(trans
, dest
,
9618 new_dentry
->d_name
.name
,
9619 new_dentry
->d_name
.len
,
9621 btrfs_ino(BTRFS_I(new_dir
)),
9627 /* And now for the dest. */
9628 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9629 /* force full log commit if subvolume involved. */
9630 btrfs_set_log_full_commit(trans
);
9632 btrfs_pin_log_trans(dest
);
9633 dest_log_pinned
= true;
9634 ret
= btrfs_insert_inode_ref(trans
, root
,
9635 old_dentry
->d_name
.name
,
9636 old_dentry
->d_name
.len
,
9638 btrfs_ino(BTRFS_I(old_dir
)),
9644 /* Update inode version and ctime/mtime. */
9645 inode_inc_iversion(old_dir
);
9646 inode_inc_iversion(new_dir
);
9647 inode_inc_iversion(old_inode
);
9648 inode_inc_iversion(new_inode
);
9649 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9650 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9651 old_inode
->i_ctime
= ctime
;
9652 new_inode
->i_ctime
= ctime
;
9654 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9655 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9656 BTRFS_I(old_inode
), 1);
9657 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9658 BTRFS_I(new_inode
), 1);
9661 /* src is a subvolume */
9662 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9663 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9664 } else { /* src is an inode */
9665 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9666 BTRFS_I(old_dentry
->d_inode
),
9667 old_dentry
->d_name
.name
,
9668 old_dentry
->d_name
.len
);
9670 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9673 btrfs_abort_transaction(trans
, ret
);
9677 /* dest is a subvolume */
9678 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9679 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9680 } else { /* dest is an inode */
9681 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9682 BTRFS_I(new_dentry
->d_inode
),
9683 new_dentry
->d_name
.name
,
9684 new_dentry
->d_name
.len
);
9686 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9689 btrfs_abort_transaction(trans
, ret
);
9693 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9694 new_dentry
->d_name
.name
,
9695 new_dentry
->d_name
.len
, 0, old_idx
);
9697 btrfs_abort_transaction(trans
, ret
);
9701 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9702 old_dentry
->d_name
.name
,
9703 old_dentry
->d_name
.len
, 0, new_idx
);
9705 btrfs_abort_transaction(trans
, ret
);
9709 if (old_inode
->i_nlink
== 1)
9710 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9711 if (new_inode
->i_nlink
== 1)
9712 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9714 if (root_log_pinned
) {
9715 parent
= new_dentry
->d_parent
;
9716 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9717 BTRFS_I(old_dir
), parent
,
9719 if (ret
== BTRFS_NEED_LOG_SYNC
)
9720 sync_log_root
= true;
9721 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9722 commit_transaction
= true;
9724 btrfs_end_log_trans(root
);
9725 root_log_pinned
= false;
9727 if (dest_log_pinned
) {
9728 if (!commit_transaction
) {
9729 parent
= old_dentry
->d_parent
;
9730 ret
= btrfs_log_new_name(trans
, BTRFS_I(new_inode
),
9731 BTRFS_I(new_dir
), parent
,
9733 if (ret
== BTRFS_NEED_LOG_SYNC
)
9734 sync_log_dest
= true;
9735 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9736 commit_transaction
= true;
9739 btrfs_end_log_trans(dest
);
9740 dest_log_pinned
= false;
9744 * If we have pinned a log and an error happened, we unpin tasks
9745 * trying to sync the log and force them to fallback to a transaction
9746 * commit if the log currently contains any of the inodes involved in
9747 * this rename operation (to ensure we do not persist a log with an
9748 * inconsistent state for any of these inodes or leading to any
9749 * inconsistencies when replayed). If the transaction was aborted, the
9750 * abortion reason is propagated to userspace when attempting to commit
9751 * the transaction. If the log does not contain any of these inodes, we
9752 * allow the tasks to sync it.
9754 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9755 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9756 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9757 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9759 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9760 btrfs_set_log_full_commit(trans
);
9762 if (root_log_pinned
) {
9763 btrfs_end_log_trans(root
);
9764 root_log_pinned
= false;
9766 if (dest_log_pinned
) {
9767 btrfs_end_log_trans(dest
);
9768 dest_log_pinned
= false;
9771 if (!ret
&& sync_log_root
&& !commit_transaction
) {
9772 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
,
9775 commit_transaction
= true;
9777 if (!ret
&& sync_log_dest
&& !commit_transaction
) {
9778 ret
= btrfs_sync_log(trans
, BTRFS_I(new_inode
)->root
,
9781 commit_transaction
= true;
9783 if (commit_transaction
) {
9785 * We may have set commit_transaction when logging the new name
9786 * in the destination root, in which case we left the source
9787 * root context in the list of log contextes. So make sure we
9788 * remove it to avoid invalid memory accesses, since the context
9789 * was allocated in our stack frame.
9791 if (sync_log_root
) {
9792 mutex_lock(&root
->log_mutex
);
9793 list_del_init(&ctx_root
.list
);
9794 mutex_unlock(&root
->log_mutex
);
9796 ret
= btrfs_commit_transaction(trans
);
9800 ret2
= btrfs_end_transaction(trans
);
9801 ret
= ret
? ret
: ret2
;
9804 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
||
9805 old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9806 up_read(&fs_info
->subvol_sem
);
9808 ASSERT(list_empty(&ctx_root
.list
));
9809 ASSERT(list_empty(&ctx_dest
.list
));
9814 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9815 struct btrfs_root
*root
,
9817 struct dentry
*dentry
)
9820 struct inode
*inode
;
9824 ret
= btrfs_find_free_ino(root
, &objectid
);
9828 inode
= btrfs_new_inode(trans
, root
, dir
,
9829 dentry
->d_name
.name
,
9831 btrfs_ino(BTRFS_I(dir
)),
9833 S_IFCHR
| WHITEOUT_MODE
,
9836 if (IS_ERR(inode
)) {
9837 ret
= PTR_ERR(inode
);
9841 inode
->i_op
= &btrfs_special_inode_operations
;
9842 init_special_inode(inode
, inode
->i_mode
,
9845 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9850 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9851 BTRFS_I(inode
), 0, index
);
9855 ret
= btrfs_update_inode(trans
, root
, inode
);
9857 unlock_new_inode(inode
);
9859 inode_dec_link_count(inode
);
9865 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9866 struct inode
*new_dir
, struct dentry
*new_dentry
,
9869 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9870 struct btrfs_trans_handle
*trans
;
9871 unsigned int trans_num_items
;
9872 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9873 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9874 struct inode
*new_inode
= d_inode(new_dentry
);
9875 struct inode
*old_inode
= d_inode(old_dentry
);
9878 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9879 bool log_pinned
= false;
9880 struct btrfs_log_ctx ctx
;
9881 bool sync_log
= false;
9882 bool commit_transaction
= false;
9884 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9887 /* we only allow rename subvolume link between subvolumes */
9888 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9891 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9892 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9895 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9896 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9900 /* check for collisions, even if the name isn't there */
9901 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9902 new_dentry
->d_name
.name
,
9903 new_dentry
->d_name
.len
);
9906 if (ret
== -EEXIST
) {
9908 * eexist without a new_inode */
9909 if (WARN_ON(!new_inode
)) {
9913 /* maybe -EOVERFLOW */
9920 * we're using rename to replace one file with another. Start IO on it
9921 * now so we don't add too much work to the end of the transaction
9923 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9924 filemap_flush(old_inode
->i_mapping
);
9926 /* close the racy window with snapshot create/destroy ioctl */
9927 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9928 down_read(&fs_info
->subvol_sem
);
9930 * We want to reserve the absolute worst case amount of items. So if
9931 * both inodes are subvols and we need to unlink them then that would
9932 * require 4 item modifications, but if they are both normal inodes it
9933 * would require 5 item modifications, so we'll assume they are normal
9934 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9935 * should cover the worst case number of items we'll modify.
9936 * If our rename has the whiteout flag, we need more 5 units for the
9937 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9938 * when selinux is enabled).
9940 trans_num_items
= 11;
9941 if (flags
& RENAME_WHITEOUT
)
9942 trans_num_items
+= 5;
9943 trans
= btrfs_start_transaction(root
, trans_num_items
);
9944 if (IS_ERR(trans
)) {
9945 ret
= PTR_ERR(trans
);
9950 btrfs_record_root_in_trans(trans
, dest
);
9952 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9956 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9957 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9958 /* force full log commit if subvolume involved. */
9959 btrfs_set_log_full_commit(trans
);
9961 btrfs_pin_log_trans(root
);
9963 ret
= btrfs_insert_inode_ref(trans
, dest
,
9964 new_dentry
->d_name
.name
,
9965 new_dentry
->d_name
.len
,
9967 btrfs_ino(BTRFS_I(new_dir
)), index
);
9972 inode_inc_iversion(old_dir
);
9973 inode_inc_iversion(new_dir
);
9974 inode_inc_iversion(old_inode
);
9975 old_dir
->i_ctime
= old_dir
->i_mtime
=
9976 new_dir
->i_ctime
= new_dir
->i_mtime
=
9977 old_inode
->i_ctime
= current_time(old_dir
);
9979 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9980 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9981 BTRFS_I(old_inode
), 1);
9983 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9984 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9986 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9987 BTRFS_I(d_inode(old_dentry
)),
9988 old_dentry
->d_name
.name
,
9989 old_dentry
->d_name
.len
);
9991 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9994 btrfs_abort_transaction(trans
, ret
);
9999 inode_inc_iversion(new_inode
);
10000 new_inode
->i_ctime
= current_time(new_inode
);
10001 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
10002 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
10003 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
10004 BUG_ON(new_inode
->i_nlink
== 0);
10006 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
10007 BTRFS_I(d_inode(new_dentry
)),
10008 new_dentry
->d_name
.name
,
10009 new_dentry
->d_name
.len
);
10011 if (!ret
&& new_inode
->i_nlink
== 0)
10012 ret
= btrfs_orphan_add(trans
,
10013 BTRFS_I(d_inode(new_dentry
)));
10015 btrfs_abort_transaction(trans
, ret
);
10020 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
10021 new_dentry
->d_name
.name
,
10022 new_dentry
->d_name
.len
, 0, index
);
10024 btrfs_abort_transaction(trans
, ret
);
10028 if (old_inode
->i_nlink
== 1)
10029 BTRFS_I(old_inode
)->dir_index
= index
;
10032 struct dentry
*parent
= new_dentry
->d_parent
;
10034 btrfs_init_log_ctx(&ctx
, old_inode
);
10035 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
10036 BTRFS_I(old_dir
), parent
,
10038 if (ret
== BTRFS_NEED_LOG_SYNC
)
10040 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
10041 commit_transaction
= true;
10043 btrfs_end_log_trans(root
);
10044 log_pinned
= false;
10047 if (flags
& RENAME_WHITEOUT
) {
10048 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
10052 btrfs_abort_transaction(trans
, ret
);
10058 * If we have pinned the log and an error happened, we unpin tasks
10059 * trying to sync the log and force them to fallback to a transaction
10060 * commit if the log currently contains any of the inodes involved in
10061 * this rename operation (to ensure we do not persist a log with an
10062 * inconsistent state for any of these inodes or leading to any
10063 * inconsistencies when replayed). If the transaction was aborted, the
10064 * abortion reason is propagated to userspace when attempting to commit
10065 * the transaction. If the log does not contain any of these inodes, we
10066 * allow the tasks to sync it.
10068 if (ret
&& log_pinned
) {
10069 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
10070 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
10071 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
10073 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
10074 btrfs_set_log_full_commit(trans
);
10076 btrfs_end_log_trans(root
);
10077 log_pinned
= false;
10079 if (!ret
&& sync_log
) {
10080 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
, &ctx
);
10082 commit_transaction
= true;
10084 if (commit_transaction
) {
10085 ret
= btrfs_commit_transaction(trans
);
10089 ret2
= btrfs_end_transaction(trans
);
10090 ret
= ret
? ret
: ret2
;
10093 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
10094 up_read(&fs_info
->subvol_sem
);
10099 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
10100 struct inode
*new_dir
, struct dentry
*new_dentry
,
10101 unsigned int flags
)
10103 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
10106 if (flags
& RENAME_EXCHANGE
)
10107 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
10110 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
10113 struct btrfs_delalloc_work
{
10114 struct inode
*inode
;
10115 struct completion completion
;
10116 struct list_head list
;
10117 struct btrfs_work work
;
10120 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
10122 struct btrfs_delalloc_work
*delalloc_work
;
10123 struct inode
*inode
;
10125 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
10127 inode
= delalloc_work
->inode
;
10128 filemap_flush(inode
->i_mapping
);
10129 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
10130 &BTRFS_I(inode
)->runtime_flags
))
10131 filemap_flush(inode
->i_mapping
);
10134 complete(&delalloc_work
->completion
);
10137 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
10139 struct btrfs_delalloc_work
*work
;
10141 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10145 init_completion(&work
->completion
);
10146 INIT_LIST_HEAD(&work
->list
);
10147 work
->inode
= inode
;
10148 btrfs_init_work(&work
->work
, btrfs_run_delalloc_work
, NULL
, NULL
);
10154 * some fairly slow code that needs optimization. This walks the list
10155 * of all the inodes with pending delalloc and forces them to disk.
10157 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
, bool snapshot
)
10159 struct btrfs_inode
*binode
;
10160 struct inode
*inode
;
10161 struct btrfs_delalloc_work
*work
, *next
;
10162 struct list_head works
;
10163 struct list_head splice
;
10166 INIT_LIST_HEAD(&works
);
10167 INIT_LIST_HEAD(&splice
);
10169 mutex_lock(&root
->delalloc_mutex
);
10170 spin_lock(&root
->delalloc_lock
);
10171 list_splice_init(&root
->delalloc_inodes
, &splice
);
10172 while (!list_empty(&splice
)) {
10173 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10176 list_move_tail(&binode
->delalloc_inodes
,
10177 &root
->delalloc_inodes
);
10178 inode
= igrab(&binode
->vfs_inode
);
10180 cond_resched_lock(&root
->delalloc_lock
);
10183 spin_unlock(&root
->delalloc_lock
);
10186 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
10187 &binode
->runtime_flags
);
10188 work
= btrfs_alloc_delalloc_work(inode
);
10194 list_add_tail(&work
->list
, &works
);
10195 btrfs_queue_work(root
->fs_info
->flush_workers
,
10198 if (nr
!= -1 && ret
>= nr
)
10201 spin_lock(&root
->delalloc_lock
);
10203 spin_unlock(&root
->delalloc_lock
);
10206 list_for_each_entry_safe(work
, next
, &works
, list
) {
10207 list_del_init(&work
->list
);
10208 wait_for_completion(&work
->completion
);
10212 if (!list_empty(&splice
)) {
10213 spin_lock(&root
->delalloc_lock
);
10214 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10215 spin_unlock(&root
->delalloc_lock
);
10217 mutex_unlock(&root
->delalloc_mutex
);
10221 int btrfs_start_delalloc_snapshot(struct btrfs_root
*root
)
10223 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10226 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10229 ret
= start_delalloc_inodes(root
, -1, true);
10235 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
10237 struct btrfs_root
*root
;
10238 struct list_head splice
;
10241 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10244 INIT_LIST_HEAD(&splice
);
10246 mutex_lock(&fs_info
->delalloc_root_mutex
);
10247 spin_lock(&fs_info
->delalloc_root_lock
);
10248 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10249 while (!list_empty(&splice
) && nr
) {
10250 root
= list_first_entry(&splice
, struct btrfs_root
,
10252 root
= btrfs_grab_fs_root(root
);
10254 list_move_tail(&root
->delalloc_root
,
10255 &fs_info
->delalloc_roots
);
10256 spin_unlock(&fs_info
->delalloc_root_lock
);
10258 ret
= start_delalloc_inodes(root
, nr
, false);
10259 btrfs_put_fs_root(root
);
10267 spin_lock(&fs_info
->delalloc_root_lock
);
10269 spin_unlock(&fs_info
->delalloc_root_lock
);
10273 if (!list_empty(&splice
)) {
10274 spin_lock(&fs_info
->delalloc_root_lock
);
10275 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10276 spin_unlock(&fs_info
->delalloc_root_lock
);
10278 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10282 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10283 const char *symname
)
10285 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10286 struct btrfs_trans_handle
*trans
;
10287 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10288 struct btrfs_path
*path
;
10289 struct btrfs_key key
;
10290 struct inode
*inode
= NULL
;
10297 struct btrfs_file_extent_item
*ei
;
10298 struct extent_buffer
*leaf
;
10300 name_len
= strlen(symname
);
10301 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10302 return -ENAMETOOLONG
;
10305 * 2 items for inode item and ref
10306 * 2 items for dir items
10307 * 1 item for updating parent inode item
10308 * 1 item for the inline extent item
10309 * 1 item for xattr if selinux is on
10311 trans
= btrfs_start_transaction(root
, 7);
10313 return PTR_ERR(trans
);
10315 err
= btrfs_find_free_ino(root
, &objectid
);
10319 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10320 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10321 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10322 if (IS_ERR(inode
)) {
10323 err
= PTR_ERR(inode
);
10329 * If the active LSM wants to access the inode during
10330 * d_instantiate it needs these. Smack checks to see
10331 * if the filesystem supports xattrs by looking at the
10334 inode
->i_fop
= &btrfs_file_operations
;
10335 inode
->i_op
= &btrfs_file_inode_operations
;
10336 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10337 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10339 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10343 path
= btrfs_alloc_path();
10348 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10350 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10351 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10352 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10355 btrfs_free_path(path
);
10358 leaf
= path
->nodes
[0];
10359 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10360 struct btrfs_file_extent_item
);
10361 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10362 btrfs_set_file_extent_type(leaf
, ei
,
10363 BTRFS_FILE_EXTENT_INLINE
);
10364 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10365 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10366 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10367 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10369 ptr
= btrfs_file_extent_inline_start(ei
);
10370 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10371 btrfs_mark_buffer_dirty(leaf
);
10372 btrfs_free_path(path
);
10374 inode
->i_op
= &btrfs_symlink_inode_operations
;
10375 inode_nohighmem(inode
);
10376 inode_set_bytes(inode
, name_len
);
10377 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10378 err
= btrfs_update_inode(trans
, root
, inode
);
10380 * Last step, add directory indexes for our symlink inode. This is the
10381 * last step to avoid extra cleanup of these indexes if an error happens
10385 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10386 BTRFS_I(inode
), 0, index
);
10390 d_instantiate_new(dentry
, inode
);
10393 btrfs_end_transaction(trans
);
10394 if (err
&& inode
) {
10395 inode_dec_link_count(inode
);
10396 discard_new_inode(inode
);
10398 btrfs_btree_balance_dirty(fs_info
);
10402 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10403 u64 start
, u64 num_bytes
, u64 min_size
,
10404 loff_t actual_len
, u64
*alloc_hint
,
10405 struct btrfs_trans_handle
*trans
)
10407 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10408 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10409 struct extent_map
*em
;
10410 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10411 struct btrfs_key ins
;
10412 u64 cur_offset
= start
;
10415 u64 last_alloc
= (u64
)-1;
10417 bool own_trans
= true;
10418 u64 end
= start
+ num_bytes
- 1;
10422 while (num_bytes
> 0) {
10424 trans
= btrfs_start_transaction(root
, 3);
10425 if (IS_ERR(trans
)) {
10426 ret
= PTR_ERR(trans
);
10431 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10432 cur_bytes
= max(cur_bytes
, min_size
);
10434 * If we are severely fragmented we could end up with really
10435 * small allocations, so if the allocator is returning small
10436 * chunks lets make its job easier by only searching for those
10439 cur_bytes
= min(cur_bytes
, last_alloc
);
10440 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10441 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10444 btrfs_end_transaction(trans
);
10447 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10449 last_alloc
= ins
.offset
;
10450 ret
= insert_reserved_file_extent(trans
, inode
,
10451 cur_offset
, ins
.objectid
,
10452 ins
.offset
, ins
.offset
,
10453 ins
.offset
, 0, 0, 0,
10454 BTRFS_FILE_EXTENT_PREALLOC
);
10456 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10458 btrfs_abort_transaction(trans
, ret
);
10460 btrfs_end_transaction(trans
);
10464 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10465 cur_offset
+ ins
.offset
-1, 0);
10467 em
= alloc_extent_map();
10469 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10470 &BTRFS_I(inode
)->runtime_flags
);
10474 em
->start
= cur_offset
;
10475 em
->orig_start
= cur_offset
;
10476 em
->len
= ins
.offset
;
10477 em
->block_start
= ins
.objectid
;
10478 em
->block_len
= ins
.offset
;
10479 em
->orig_block_len
= ins
.offset
;
10480 em
->ram_bytes
= ins
.offset
;
10481 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10482 em
->generation
= trans
->transid
;
10485 write_lock(&em_tree
->lock
);
10486 ret
= add_extent_mapping(em_tree
, em
, 1);
10487 write_unlock(&em_tree
->lock
);
10488 if (ret
!= -EEXIST
)
10490 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10491 cur_offset
+ ins
.offset
- 1,
10494 free_extent_map(em
);
10496 num_bytes
-= ins
.offset
;
10497 cur_offset
+= ins
.offset
;
10498 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10500 inode_inc_iversion(inode
);
10501 inode
->i_ctime
= current_time(inode
);
10502 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10503 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10504 (actual_len
> inode
->i_size
) &&
10505 (cur_offset
> inode
->i_size
)) {
10506 if (cur_offset
> actual_len
)
10507 i_size
= actual_len
;
10509 i_size
= cur_offset
;
10510 i_size_write(inode
, i_size
);
10511 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10514 ret
= btrfs_update_inode(trans
, root
, inode
);
10517 btrfs_abort_transaction(trans
, ret
);
10519 btrfs_end_transaction(trans
);
10524 btrfs_end_transaction(trans
);
10526 if (cur_offset
< end
)
10527 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10528 end
- cur_offset
+ 1);
10532 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10533 u64 start
, u64 num_bytes
, u64 min_size
,
10534 loff_t actual_len
, u64
*alloc_hint
)
10536 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10537 min_size
, actual_len
, alloc_hint
,
10541 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10542 struct btrfs_trans_handle
*trans
, int mode
,
10543 u64 start
, u64 num_bytes
, u64 min_size
,
10544 loff_t actual_len
, u64
*alloc_hint
)
10546 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10547 min_size
, actual_len
, alloc_hint
, trans
);
10550 static int btrfs_set_page_dirty(struct page
*page
)
10552 return __set_page_dirty_nobuffers(page
);
10555 static int btrfs_permission(struct inode
*inode
, int mask
)
10557 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10558 umode_t mode
= inode
->i_mode
;
10560 if (mask
& MAY_WRITE
&&
10561 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10562 if (btrfs_root_readonly(root
))
10564 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10567 return generic_permission(inode
, mask
);
10570 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10572 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10573 struct btrfs_trans_handle
*trans
;
10574 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10575 struct inode
*inode
= NULL
;
10581 * 5 units required for adding orphan entry
10583 trans
= btrfs_start_transaction(root
, 5);
10585 return PTR_ERR(trans
);
10587 ret
= btrfs_find_free_ino(root
, &objectid
);
10591 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10592 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10593 if (IS_ERR(inode
)) {
10594 ret
= PTR_ERR(inode
);
10599 inode
->i_fop
= &btrfs_file_operations
;
10600 inode
->i_op
= &btrfs_file_inode_operations
;
10602 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10603 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10605 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10609 ret
= btrfs_update_inode(trans
, root
, inode
);
10612 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10617 * We set number of links to 0 in btrfs_new_inode(), and here we set
10618 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10621 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10623 set_nlink(inode
, 1);
10624 d_tmpfile(dentry
, inode
);
10625 unlock_new_inode(inode
);
10626 mark_inode_dirty(inode
);
10628 btrfs_end_transaction(trans
);
10630 discard_new_inode(inode
);
10631 btrfs_btree_balance_dirty(fs_info
);
10635 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
10637 struct inode
*inode
= tree
->private_data
;
10638 unsigned long index
= start
>> PAGE_SHIFT
;
10639 unsigned long end_index
= end
>> PAGE_SHIFT
;
10642 while (index
<= end_index
) {
10643 page
= find_get_page(inode
->i_mapping
, index
);
10644 ASSERT(page
); /* Pages should be in the extent_io_tree */
10645 set_page_writeback(page
);
10653 * Add an entry indicating a block group or device which is pinned by a
10654 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10655 * negative errno on failure.
10657 static int btrfs_add_swapfile_pin(struct inode
*inode
, void *ptr
,
10658 bool is_block_group
)
10660 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10661 struct btrfs_swapfile_pin
*sp
, *entry
;
10662 struct rb_node
**p
;
10663 struct rb_node
*parent
= NULL
;
10665 sp
= kmalloc(sizeof(*sp
), GFP_NOFS
);
10670 sp
->is_block_group
= is_block_group
;
10672 spin_lock(&fs_info
->swapfile_pins_lock
);
10673 p
= &fs_info
->swapfile_pins
.rb_node
;
10676 entry
= rb_entry(parent
, struct btrfs_swapfile_pin
, node
);
10677 if (sp
->ptr
< entry
->ptr
||
10678 (sp
->ptr
== entry
->ptr
&& sp
->inode
< entry
->inode
)) {
10679 p
= &(*p
)->rb_left
;
10680 } else if (sp
->ptr
> entry
->ptr
||
10681 (sp
->ptr
== entry
->ptr
&& sp
->inode
> entry
->inode
)) {
10682 p
= &(*p
)->rb_right
;
10684 spin_unlock(&fs_info
->swapfile_pins_lock
);
10689 rb_link_node(&sp
->node
, parent
, p
);
10690 rb_insert_color(&sp
->node
, &fs_info
->swapfile_pins
);
10691 spin_unlock(&fs_info
->swapfile_pins_lock
);
10695 /* Free all of the entries pinned by this swapfile. */
10696 static void btrfs_free_swapfile_pins(struct inode
*inode
)
10698 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10699 struct btrfs_swapfile_pin
*sp
;
10700 struct rb_node
*node
, *next
;
10702 spin_lock(&fs_info
->swapfile_pins_lock
);
10703 node
= rb_first(&fs_info
->swapfile_pins
);
10705 next
= rb_next(node
);
10706 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
10707 if (sp
->inode
== inode
) {
10708 rb_erase(&sp
->node
, &fs_info
->swapfile_pins
);
10709 if (sp
->is_block_group
)
10710 btrfs_put_block_group(sp
->ptr
);
10715 spin_unlock(&fs_info
->swapfile_pins_lock
);
10718 struct btrfs_swap_info
{
10724 unsigned long nr_pages
;
10728 static int btrfs_add_swap_extent(struct swap_info_struct
*sis
,
10729 struct btrfs_swap_info
*bsi
)
10731 unsigned long nr_pages
;
10732 u64 first_ppage
, first_ppage_reported
, next_ppage
;
10735 first_ppage
= ALIGN(bsi
->block_start
, PAGE_SIZE
) >> PAGE_SHIFT
;
10736 next_ppage
= ALIGN_DOWN(bsi
->block_start
+ bsi
->block_len
,
10737 PAGE_SIZE
) >> PAGE_SHIFT
;
10739 if (first_ppage
>= next_ppage
)
10741 nr_pages
= next_ppage
- first_ppage
;
10743 first_ppage_reported
= first_ppage
;
10744 if (bsi
->start
== 0)
10745 first_ppage_reported
++;
10746 if (bsi
->lowest_ppage
> first_ppage_reported
)
10747 bsi
->lowest_ppage
= first_ppage_reported
;
10748 if (bsi
->highest_ppage
< (next_ppage
- 1))
10749 bsi
->highest_ppage
= next_ppage
- 1;
10751 ret
= add_swap_extent(sis
, bsi
->nr_pages
, nr_pages
, first_ppage
);
10754 bsi
->nr_extents
+= ret
;
10755 bsi
->nr_pages
+= nr_pages
;
10759 static void btrfs_swap_deactivate(struct file
*file
)
10761 struct inode
*inode
= file_inode(file
);
10763 btrfs_free_swapfile_pins(inode
);
10764 atomic_dec(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10767 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10770 struct inode
*inode
= file_inode(file
);
10771 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10772 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
10773 struct extent_state
*cached_state
= NULL
;
10774 struct extent_map
*em
= NULL
;
10775 struct btrfs_device
*device
= NULL
;
10776 struct btrfs_swap_info bsi
= {
10777 .lowest_ppage
= (sector_t
)-1ULL,
10784 * If the swap file was just created, make sure delalloc is done. If the
10785 * file changes again after this, the user is doing something stupid and
10786 * we don't really care.
10788 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
10793 * The inode is locked, so these flags won't change after we check them.
10795 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
) {
10796 btrfs_warn(fs_info
, "swapfile must not be compressed");
10799 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)) {
10800 btrfs_warn(fs_info
, "swapfile must not be copy-on-write");
10803 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
10804 btrfs_warn(fs_info
, "swapfile must not be checksummed");
10809 * Balance or device remove/replace/resize can move stuff around from
10810 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10811 * concurrently while we are mapping the swap extents, and
10812 * fs_info->swapfile_pins prevents them from running while the swap file
10813 * is active and moving the extents. Note that this also prevents a
10814 * concurrent device add which isn't actually necessary, but it's not
10815 * really worth the trouble to allow it.
10817 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
10818 btrfs_warn(fs_info
,
10819 "cannot activate swapfile while exclusive operation is running");
10823 * Snapshots can create extents which require COW even if NODATACOW is
10824 * set. We use this counter to prevent snapshots. We must increment it
10825 * before walking the extents because we don't want a concurrent
10826 * snapshot to run after we've already checked the extents.
10828 atomic_inc(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10830 isize
= ALIGN_DOWN(inode
->i_size
, fs_info
->sectorsize
);
10832 lock_extent_bits(io_tree
, 0, isize
- 1, &cached_state
);
10834 while (start
< isize
) {
10835 u64 logical_block_start
, physical_block_start
;
10836 struct btrfs_block_group
*bg
;
10837 u64 len
= isize
- start
;
10839 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
10845 if (em
->block_start
== EXTENT_MAP_HOLE
) {
10846 btrfs_warn(fs_info
, "swapfile must not have holes");
10850 if (em
->block_start
== EXTENT_MAP_INLINE
) {
10852 * It's unlikely we'll ever actually find ourselves
10853 * here, as a file small enough to fit inline won't be
10854 * big enough to store more than the swap header, but in
10855 * case something changes in the future, let's catch it
10856 * here rather than later.
10858 btrfs_warn(fs_info
, "swapfile must not be inline");
10862 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
10863 btrfs_warn(fs_info
, "swapfile must not be compressed");
10868 logical_block_start
= em
->block_start
+ (start
- em
->start
);
10869 len
= min(len
, em
->len
- (start
- em
->start
));
10870 free_extent_map(em
);
10873 ret
= can_nocow_extent(inode
, start
, &len
, NULL
, NULL
, NULL
);
10879 btrfs_warn(fs_info
,
10880 "swapfile must not be copy-on-write");
10885 em
= btrfs_get_chunk_map(fs_info
, logical_block_start
, len
);
10891 if (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
10892 btrfs_warn(fs_info
,
10893 "swapfile must have single data profile");
10898 if (device
== NULL
) {
10899 device
= em
->map_lookup
->stripes
[0].dev
;
10900 ret
= btrfs_add_swapfile_pin(inode
, device
, false);
10905 } else if (device
!= em
->map_lookup
->stripes
[0].dev
) {
10906 btrfs_warn(fs_info
, "swapfile must be on one device");
10911 physical_block_start
= (em
->map_lookup
->stripes
[0].physical
+
10912 (logical_block_start
- em
->start
));
10913 len
= min(len
, em
->len
- (logical_block_start
- em
->start
));
10914 free_extent_map(em
);
10917 bg
= btrfs_lookup_block_group(fs_info
, logical_block_start
);
10919 btrfs_warn(fs_info
,
10920 "could not find block group containing swapfile");
10925 ret
= btrfs_add_swapfile_pin(inode
, bg
, true);
10927 btrfs_put_block_group(bg
);
10934 if (bsi
.block_len
&&
10935 bsi
.block_start
+ bsi
.block_len
== physical_block_start
) {
10936 bsi
.block_len
+= len
;
10938 if (bsi
.block_len
) {
10939 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10944 bsi
.block_start
= physical_block_start
;
10945 bsi
.block_len
= len
;
10952 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10955 if (!IS_ERR_OR_NULL(em
))
10956 free_extent_map(em
);
10958 unlock_extent_cached(io_tree
, 0, isize
- 1, &cached_state
);
10961 btrfs_swap_deactivate(file
);
10963 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
10969 sis
->bdev
= device
->bdev
;
10970 *span
= bsi
.highest_ppage
- bsi
.lowest_ppage
+ 1;
10971 sis
->max
= bsi
.nr_pages
;
10972 sis
->pages
= bsi
.nr_pages
- 1;
10973 sis
->highest_bit
= bsi
.nr_pages
- 1;
10974 return bsi
.nr_extents
;
10977 static void btrfs_swap_deactivate(struct file
*file
)
10981 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10984 return -EOPNOTSUPP
;
10988 static const struct inode_operations btrfs_dir_inode_operations
= {
10989 .getattr
= btrfs_getattr
,
10990 .lookup
= btrfs_lookup
,
10991 .create
= btrfs_create
,
10992 .unlink
= btrfs_unlink
,
10993 .link
= btrfs_link
,
10994 .mkdir
= btrfs_mkdir
,
10995 .rmdir
= btrfs_rmdir
,
10996 .rename
= btrfs_rename2
,
10997 .symlink
= btrfs_symlink
,
10998 .setattr
= btrfs_setattr
,
10999 .mknod
= btrfs_mknod
,
11000 .listxattr
= btrfs_listxattr
,
11001 .permission
= btrfs_permission
,
11002 .get_acl
= btrfs_get_acl
,
11003 .set_acl
= btrfs_set_acl
,
11004 .update_time
= btrfs_update_time
,
11005 .tmpfile
= btrfs_tmpfile
,
11007 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
11008 .lookup
= btrfs_lookup
,
11009 .permission
= btrfs_permission
,
11010 .update_time
= btrfs_update_time
,
11013 static const struct file_operations btrfs_dir_file_operations
= {
11014 .llseek
= generic_file_llseek
,
11015 .read
= generic_read_dir
,
11016 .iterate_shared
= btrfs_real_readdir
,
11017 .open
= btrfs_opendir
,
11018 .unlocked_ioctl
= btrfs_ioctl
,
11019 #ifdef CONFIG_COMPAT
11020 .compat_ioctl
= btrfs_compat_ioctl
,
11022 .release
= btrfs_release_file
,
11023 .fsync
= btrfs_sync_file
,
11026 static const struct extent_io_ops btrfs_extent_io_ops
= {
11027 /* mandatory callbacks */
11028 .submit_bio_hook
= btrfs_submit_bio_hook
,
11029 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
11033 * btrfs doesn't support the bmap operation because swapfiles
11034 * use bmap to make a mapping of extents in the file. They assume
11035 * these extents won't change over the life of the file and they
11036 * use the bmap result to do IO directly to the drive.
11038 * the btrfs bmap call would return logical addresses that aren't
11039 * suitable for IO and they also will change frequently as COW
11040 * operations happen. So, swapfile + btrfs == corruption.
11042 * For now we're avoiding this by dropping bmap.
11044 static const struct address_space_operations btrfs_aops
= {
11045 .readpage
= btrfs_readpage
,
11046 .writepage
= btrfs_writepage
,
11047 .writepages
= btrfs_writepages
,
11048 .readpages
= btrfs_readpages
,
11049 .direct_IO
= btrfs_direct_IO
,
11050 .invalidatepage
= btrfs_invalidatepage
,
11051 .releasepage
= btrfs_releasepage
,
11052 .set_page_dirty
= btrfs_set_page_dirty
,
11053 .error_remove_page
= generic_error_remove_page
,
11054 .swap_activate
= btrfs_swap_activate
,
11055 .swap_deactivate
= btrfs_swap_deactivate
,
11058 static const struct inode_operations btrfs_file_inode_operations
= {
11059 .getattr
= btrfs_getattr
,
11060 .setattr
= btrfs_setattr
,
11061 .listxattr
= btrfs_listxattr
,
11062 .permission
= btrfs_permission
,
11063 .fiemap
= btrfs_fiemap
,
11064 .get_acl
= btrfs_get_acl
,
11065 .set_acl
= btrfs_set_acl
,
11066 .update_time
= btrfs_update_time
,
11068 static const struct inode_operations btrfs_special_inode_operations
= {
11069 .getattr
= btrfs_getattr
,
11070 .setattr
= btrfs_setattr
,
11071 .permission
= btrfs_permission
,
11072 .listxattr
= btrfs_listxattr
,
11073 .get_acl
= btrfs_get_acl
,
11074 .set_acl
= btrfs_set_acl
,
11075 .update_time
= btrfs_update_time
,
11077 static const struct inode_operations btrfs_symlink_inode_operations
= {
11078 .get_link
= page_get_link
,
11079 .getattr
= btrfs_getattr
,
11080 .setattr
= btrfs_setattr
,
11081 .permission
= btrfs_permission
,
11082 .listxattr
= btrfs_listxattr
,
11083 .update_time
= btrfs_update_time
,
11086 const struct dentry_operations btrfs_dentry_operations
= {
11087 .d_delete
= btrfs_dentry_delete
,