2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
57 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
59 #define LOOP_TIMEOUT 100000
61 /* IO virtual address start page frame number */
62 #define IOVA_START_PFN (1)
63 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
64 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
66 /* Reserved IOVA ranges */
67 #define MSI_RANGE_START (0xfee00000)
68 #define MSI_RANGE_END (0xfeefffff)
69 #define HT_RANGE_START (0xfd00000000ULL)
70 #define HT_RANGE_END (0xffffffffffULL)
73 * This bitmap is used to advertise the page sizes our hardware support
74 * to the IOMMU core, which will then use this information to split
75 * physically contiguous memory regions it is mapping into page sizes
78 * 512GB Pages are not supported due to a hardware bug
80 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
82 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
84 /* List of all available dev_data structures */
85 static LIST_HEAD(dev_data_list
);
86 static DEFINE_SPINLOCK(dev_data_list_lock
);
88 LIST_HEAD(ioapic_map
);
90 LIST_HEAD(acpihid_map
);
92 #define FLUSH_QUEUE_SIZE 256
94 struct flush_queue_entry
{
95 unsigned long iova_pfn
;
97 struct dma_ops_domain
*dma_dom
;
103 struct flush_queue_entry
*entries
;
106 static DEFINE_PER_CPU(struct flush_queue
, flush_queue
);
108 static atomic_t queue_timer_on
;
109 static struct timer_list queue_timer
;
112 * Domain for untranslated devices - only allocated
113 * if iommu=pt passed on kernel cmd line.
115 static const struct iommu_ops amd_iommu_ops
;
117 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
118 int amd_iommu_max_glx_val
= -1;
120 static struct dma_map_ops amd_iommu_dma_ops
;
123 * This struct contains device specific data for the IOMMU
125 struct iommu_dev_data
{
126 struct list_head list
; /* For domain->dev_list */
127 struct list_head dev_data_list
; /* For global dev_data_list */
128 struct protection_domain
*domain
; /* Domain the device is bound to */
129 u16 devid
; /* PCI Device ID */
130 u16 alias
; /* Alias Device ID */
131 bool iommu_v2
; /* Device can make use of IOMMUv2 */
132 bool passthrough
; /* Device is identity mapped */
136 } ats
; /* ATS state */
137 bool pri_tlp
; /* PASID TLB required for
139 u32 errata
; /* Bitmap for errata to apply */
140 bool use_vapic
; /* Enable device to use vapic mode */
144 * general struct to manage commands send to an IOMMU
150 struct kmem_cache
*amd_iommu_irq_cache
;
152 static void update_domain(struct protection_domain
*domain
);
153 static int protection_domain_init(struct protection_domain
*domain
);
154 static void detach_device(struct device
*dev
);
157 * Data container for a dma_ops specific protection domain
159 struct dma_ops_domain
{
160 /* generic protection domain information */
161 struct protection_domain domain
;
164 struct iova_domain iovad
;
167 static struct iova_domain reserved_iova_ranges
;
168 static struct lock_class_key reserved_rbtree_key
;
170 /****************************************************************************
174 ****************************************************************************/
176 static inline int match_hid_uid(struct device
*dev
,
177 struct acpihid_map_entry
*entry
)
179 const char *hid
, *uid
;
181 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
182 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
188 return strcmp(hid
, entry
->hid
);
191 return strcmp(hid
, entry
->hid
);
193 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
196 static inline u16
get_pci_device_id(struct device
*dev
)
198 struct pci_dev
*pdev
= to_pci_dev(dev
);
200 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
203 static inline int get_acpihid_device_id(struct device
*dev
,
204 struct acpihid_map_entry
**entry
)
206 struct acpihid_map_entry
*p
;
208 list_for_each_entry(p
, &acpihid_map
, list
) {
209 if (!match_hid_uid(dev
, p
)) {
218 static inline int get_device_id(struct device
*dev
)
223 devid
= get_pci_device_id(dev
);
225 devid
= get_acpihid_device_id(dev
, NULL
);
230 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
232 return container_of(dom
, struct protection_domain
, domain
);
235 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
237 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
238 return container_of(domain
, struct dma_ops_domain
, domain
);
241 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
243 struct iommu_dev_data
*dev_data
;
246 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
250 dev_data
->devid
= devid
;
252 spin_lock_irqsave(&dev_data_list_lock
, flags
);
253 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
254 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
259 static struct iommu_dev_data
*search_dev_data(u16 devid
)
261 struct iommu_dev_data
*dev_data
;
264 spin_lock_irqsave(&dev_data_list_lock
, flags
);
265 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
266 if (dev_data
->devid
== devid
)
273 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
278 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
280 *(u16
*)data
= alias
;
284 static u16
get_alias(struct device
*dev
)
286 struct pci_dev
*pdev
= to_pci_dev(dev
);
287 u16 devid
, ivrs_alias
, pci_alias
;
289 /* The callers make sure that get_device_id() does not fail here */
290 devid
= get_device_id(dev
);
291 ivrs_alias
= amd_iommu_alias_table
[devid
];
292 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
294 if (ivrs_alias
== pci_alias
)
300 * The IVRS is fairly reliable in telling us about aliases, but it
301 * can't know about every screwy device. If we don't have an IVRS
302 * reported alias, use the PCI reported alias. In that case we may
303 * still need to initialize the rlookup and dev_table entries if the
304 * alias is to a non-existent device.
306 if (ivrs_alias
== devid
) {
307 if (!amd_iommu_rlookup_table
[pci_alias
]) {
308 amd_iommu_rlookup_table
[pci_alias
] =
309 amd_iommu_rlookup_table
[devid
];
310 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
311 amd_iommu_dev_table
[devid
].data
,
312 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
318 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
319 "for device %s[%04x:%04x], kernel reported alias "
320 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
321 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
322 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
323 PCI_FUNC(pci_alias
));
326 * If we don't have a PCI DMA alias and the IVRS alias is on the same
327 * bus, then the IVRS table may know about a quirk that we don't.
329 if (pci_alias
== devid
&&
330 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
331 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
332 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
333 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
340 static struct iommu_dev_data
*find_dev_data(u16 devid
)
342 struct iommu_dev_data
*dev_data
;
344 dev_data
= search_dev_data(devid
);
346 if (dev_data
== NULL
)
347 dev_data
= alloc_dev_data(devid
);
352 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
354 return dev
->archdata
.iommu
;
358 * Find or create an IOMMU group for a acpihid device.
360 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
362 struct acpihid_map_entry
*p
, *entry
= NULL
;
365 devid
= get_acpihid_device_id(dev
, &entry
);
367 return ERR_PTR(devid
);
369 list_for_each_entry(p
, &acpihid_map
, list
) {
370 if ((devid
== p
->devid
) && p
->group
)
371 entry
->group
= p
->group
;
375 entry
->group
= generic_device_group(dev
);
380 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
382 static const int caps
[] = {
385 PCI_EXT_CAP_ID_PASID
,
389 for (i
= 0; i
< 3; ++i
) {
390 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
398 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
400 struct iommu_dev_data
*dev_data
;
402 dev_data
= get_dev_data(&pdev
->dev
);
404 return dev_data
->errata
& (1 << erratum
) ? true : false;
408 * This function checks if the driver got a valid device from the caller to
409 * avoid dereferencing invalid pointers.
411 static bool check_device(struct device
*dev
)
415 if (!dev
|| !dev
->dma_mask
)
418 devid
= get_device_id(dev
);
422 /* Out of our scope? */
423 if (devid
> amd_iommu_last_bdf
)
426 if (amd_iommu_rlookup_table
[devid
] == NULL
)
432 static void init_iommu_group(struct device
*dev
)
434 struct iommu_group
*group
;
436 group
= iommu_group_get_for_dev(dev
);
440 iommu_group_put(group
);
443 static int iommu_init_device(struct device
*dev
)
445 struct iommu_dev_data
*dev_data
;
448 if (dev
->archdata
.iommu
)
451 devid
= get_device_id(dev
);
455 dev_data
= find_dev_data(devid
);
459 dev_data
->alias
= get_alias(dev
);
461 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
462 struct amd_iommu
*iommu
;
464 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
465 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
468 dev
->archdata
.iommu
= dev_data
;
470 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
476 static void iommu_ignore_device(struct device
*dev
)
481 devid
= get_device_id(dev
);
485 alias
= get_alias(dev
);
487 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
488 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
490 amd_iommu_rlookup_table
[devid
] = NULL
;
491 amd_iommu_rlookup_table
[alias
] = NULL
;
494 static void iommu_uninit_device(struct device
*dev
)
497 struct iommu_dev_data
*dev_data
;
499 devid
= get_device_id(dev
);
503 dev_data
= search_dev_data(devid
);
507 if (dev_data
->domain
)
510 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
513 iommu_group_remove_device(dev
);
516 dev
->archdata
.dma_ops
= NULL
;
519 * We keep dev_data around for unplugged devices and reuse it when the
520 * device is re-plugged - not doing so would introduce a ton of races.
524 /****************************************************************************
526 * Interrupt handling functions
528 ****************************************************************************/
530 static void dump_dte_entry(u16 devid
)
534 for (i
= 0; i
< 4; ++i
)
535 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
536 amd_iommu_dev_table
[devid
].data
[i
]);
539 static void dump_command(unsigned long phys_addr
)
541 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
544 for (i
= 0; i
< 4; ++i
)
545 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
548 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
550 int type
, devid
, domid
, flags
;
551 volatile u32
*event
= __evt
;
556 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
557 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
558 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
559 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
560 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
563 /* Did we hit the erratum? */
564 if (++count
== LOOP_TIMEOUT
) {
565 pr_err("AMD-Vi: No event written to event log\n");
572 printk(KERN_ERR
"AMD-Vi: Event logged [");
575 case EVENT_TYPE_ILL_DEV
:
576 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
577 "address=0x%016llx flags=0x%04x]\n",
578 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
580 dump_dte_entry(devid
);
582 case EVENT_TYPE_IO_FAULT
:
583 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
584 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
585 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
586 domid
, address
, flags
);
588 case EVENT_TYPE_DEV_TAB_ERR
:
589 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
590 "address=0x%016llx flags=0x%04x]\n",
591 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
594 case EVENT_TYPE_PAGE_TAB_ERR
:
595 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
596 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
598 domid
, address
, flags
);
600 case EVENT_TYPE_ILL_CMD
:
601 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
602 dump_command(address
);
604 case EVENT_TYPE_CMD_HARD_ERR
:
605 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
606 "flags=0x%04x]\n", address
, flags
);
608 case EVENT_TYPE_IOTLB_INV_TO
:
609 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
610 "address=0x%016llx]\n",
611 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
614 case EVENT_TYPE_INV_DEV_REQ
:
615 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
616 "address=0x%016llx flags=0x%04x]\n",
617 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
621 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
624 memset(__evt
, 0, 4 * sizeof(u32
));
627 static void iommu_poll_events(struct amd_iommu
*iommu
)
631 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
632 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
634 while (head
!= tail
) {
635 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
636 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
639 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
642 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
644 struct amd_iommu_fault fault
;
646 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
647 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
651 fault
.address
= raw
[1];
652 fault
.pasid
= PPR_PASID(raw
[0]);
653 fault
.device_id
= PPR_DEVID(raw
[0]);
654 fault
.tag
= PPR_TAG(raw
[0]);
655 fault
.flags
= PPR_FLAGS(raw
[0]);
657 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
660 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
664 if (iommu
->ppr_log
== NULL
)
667 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
668 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
670 while (head
!= tail
) {
675 raw
= (u64
*)(iommu
->ppr_log
+ head
);
678 * Hardware bug: Interrupt may arrive before the entry is
679 * written to memory. If this happens we need to wait for the
682 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
683 if (PPR_REQ_TYPE(raw
[0]) != 0)
688 /* Avoid memcpy function-call overhead */
693 * To detect the hardware bug we need to clear the entry
696 raw
[0] = raw
[1] = 0UL;
698 /* Update head pointer of hardware ring-buffer */
699 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
700 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
702 /* Handle PPR entry */
703 iommu_handle_ppr_entry(iommu
, entry
);
705 /* Refresh ring-buffer information */
706 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
707 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
711 #ifdef CONFIG_IRQ_REMAP
712 static int (*iommu_ga_log_notifier
)(u32
);
714 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
716 iommu_ga_log_notifier
= notifier
;
720 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
722 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
724 u32 head
, tail
, cnt
= 0;
726 if (iommu
->ga_log
== NULL
)
729 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
730 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
732 while (head
!= tail
) {
736 raw
= (u64
*)(iommu
->ga_log
+ head
);
739 /* Avoid memcpy function-call overhead */
742 /* Update head pointer of hardware ring-buffer */
743 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
744 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
746 /* Handle GA entry */
747 switch (GA_REQ_TYPE(log_entry
)) {
749 if (!iommu_ga_log_notifier
)
752 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
753 __func__
, GA_DEVID(log_entry
),
756 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
757 pr_err("AMD-Vi: GA log notifier failed.\n");
764 #endif /* CONFIG_IRQ_REMAP */
766 #define AMD_IOMMU_INT_MASK \
767 (MMIO_STATUS_EVT_INT_MASK | \
768 MMIO_STATUS_PPR_INT_MASK | \
769 MMIO_STATUS_GALOG_INT_MASK)
771 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
773 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
774 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
776 while (status
& AMD_IOMMU_INT_MASK
) {
777 /* Enable EVT and PPR and GA interrupts again */
778 writel(AMD_IOMMU_INT_MASK
,
779 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
781 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
782 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
783 iommu_poll_events(iommu
);
786 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
787 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
788 iommu_poll_ppr_log(iommu
);
791 #ifdef CONFIG_IRQ_REMAP
792 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
793 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
794 iommu_poll_ga_log(iommu
);
799 * Hardware bug: ERBT1312
800 * When re-enabling interrupt (by writing 1
801 * to clear the bit), the hardware might also try to set
802 * the interrupt bit in the event status register.
803 * In this scenario, the bit will be set, and disable
804 * subsequent interrupts.
806 * Workaround: The IOMMU driver should read back the
807 * status register and check if the interrupt bits are cleared.
808 * If not, driver will need to go through the interrupt handler
809 * again and re-clear the bits
811 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
816 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
818 return IRQ_WAKE_THREAD
;
821 /****************************************************************************
823 * IOMMU command queuing functions
825 ****************************************************************************/
827 static int wait_on_sem(volatile u64
*sem
)
831 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
836 if (i
== LOOP_TIMEOUT
) {
837 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
844 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
845 struct iommu_cmd
*cmd
,
850 target
= iommu
->cmd_buf
+ tail
;
851 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
853 /* Copy command to buffer */
854 memcpy(target
, cmd
, sizeof(*cmd
));
856 /* Tell the IOMMU about it */
857 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
860 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
862 WARN_ON(address
& 0x7ULL
);
864 memset(cmd
, 0, sizeof(*cmd
));
865 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
866 cmd
->data
[1] = upper_32_bits(__pa(address
));
868 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
871 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
873 memset(cmd
, 0, sizeof(*cmd
));
874 cmd
->data
[0] = devid
;
875 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
878 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
879 size_t size
, u16 domid
, int pde
)
884 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
889 * If we have to flush more than one page, flush all
890 * TLB entries for this domain
892 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
896 address
&= PAGE_MASK
;
898 memset(cmd
, 0, sizeof(*cmd
));
899 cmd
->data
[1] |= domid
;
900 cmd
->data
[2] = lower_32_bits(address
);
901 cmd
->data
[3] = upper_32_bits(address
);
902 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
903 if (s
) /* size bit - we flush more than one 4kb page */
904 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
905 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
906 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
909 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
910 u64 address
, size_t size
)
915 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
920 * If we have to flush more than one page, flush all
921 * TLB entries for this domain
923 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
927 address
&= PAGE_MASK
;
929 memset(cmd
, 0, sizeof(*cmd
));
930 cmd
->data
[0] = devid
;
931 cmd
->data
[0] |= (qdep
& 0xff) << 24;
932 cmd
->data
[1] = devid
;
933 cmd
->data
[2] = lower_32_bits(address
);
934 cmd
->data
[3] = upper_32_bits(address
);
935 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
937 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
940 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
941 u64 address
, bool size
)
943 memset(cmd
, 0, sizeof(*cmd
));
945 address
&= ~(0xfffULL
);
947 cmd
->data
[0] = pasid
;
948 cmd
->data
[1] = domid
;
949 cmd
->data
[2] = lower_32_bits(address
);
950 cmd
->data
[3] = upper_32_bits(address
);
951 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
952 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
954 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
955 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
958 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
959 int qdep
, u64 address
, bool size
)
961 memset(cmd
, 0, sizeof(*cmd
));
963 address
&= ~(0xfffULL
);
965 cmd
->data
[0] = devid
;
966 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
967 cmd
->data
[0] |= (qdep
& 0xff) << 24;
968 cmd
->data
[1] = devid
;
969 cmd
->data
[1] |= (pasid
& 0xff) << 16;
970 cmd
->data
[2] = lower_32_bits(address
);
971 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
972 cmd
->data
[3] = upper_32_bits(address
);
974 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
975 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
978 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
979 int status
, int tag
, bool gn
)
981 memset(cmd
, 0, sizeof(*cmd
));
983 cmd
->data
[0] = devid
;
985 cmd
->data
[1] = pasid
;
986 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
988 cmd
->data
[3] = tag
& 0x1ff;
989 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
991 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
994 static void build_inv_all(struct iommu_cmd
*cmd
)
996 memset(cmd
, 0, sizeof(*cmd
));
997 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1000 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1002 memset(cmd
, 0, sizeof(*cmd
));
1003 cmd
->data
[0] = devid
;
1004 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1008 * Writes the command to the IOMMUs command buffer and informs the
1009 * hardware about the new command.
1011 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1012 struct iommu_cmd
*cmd
,
1015 u32 left
, tail
, head
, next_tail
;
1019 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
1020 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
1021 next_tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1022 left
= (head
- next_tail
) % CMD_BUFFER_SIZE
;
1025 struct iommu_cmd sync_cmd
;
1030 build_completion_wait(&sync_cmd
, (u64
)&iommu
->cmd_sem
);
1031 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
1033 if ((ret
= wait_on_sem(&iommu
->cmd_sem
)) != 0)
1039 copy_cmd_to_buffer(iommu
, cmd
, tail
);
1041 /* We need to sync now to make sure all commands are processed */
1042 iommu
->need_sync
= sync
;
1047 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1048 struct iommu_cmd
*cmd
,
1051 unsigned long flags
;
1054 spin_lock_irqsave(&iommu
->lock
, flags
);
1055 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1056 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1061 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1063 return iommu_queue_command_sync(iommu
, cmd
, true);
1067 * This function queues a completion wait command into the command
1068 * buffer of an IOMMU
1070 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1072 struct iommu_cmd cmd
;
1073 unsigned long flags
;
1076 if (!iommu
->need_sync
)
1080 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1082 spin_lock_irqsave(&iommu
->lock
, flags
);
1086 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1090 ret
= wait_on_sem(&iommu
->cmd_sem
);
1093 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1098 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1100 struct iommu_cmd cmd
;
1102 build_inv_dte(&cmd
, devid
);
1104 return iommu_queue_command(iommu
, &cmd
);
1107 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1111 for (devid
= 0; devid
<= 0xffff; ++devid
)
1112 iommu_flush_dte(iommu
, devid
);
1114 iommu_completion_wait(iommu
);
1118 * This function uses heavy locking and may disable irqs for some time. But
1119 * this is no issue because it is only called during resume.
1121 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1125 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1126 struct iommu_cmd cmd
;
1127 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1129 iommu_queue_command(iommu
, &cmd
);
1132 iommu_completion_wait(iommu
);
1135 static void iommu_flush_all(struct amd_iommu
*iommu
)
1137 struct iommu_cmd cmd
;
1139 build_inv_all(&cmd
);
1141 iommu_queue_command(iommu
, &cmd
);
1142 iommu_completion_wait(iommu
);
1145 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1147 struct iommu_cmd cmd
;
1149 build_inv_irt(&cmd
, devid
);
1151 iommu_queue_command(iommu
, &cmd
);
1154 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1158 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1159 iommu_flush_irt(iommu
, devid
);
1161 iommu_completion_wait(iommu
);
1164 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1166 if (iommu_feature(iommu
, FEATURE_IA
)) {
1167 iommu_flush_all(iommu
);
1169 iommu_flush_dte_all(iommu
);
1170 iommu_flush_irt_all(iommu
);
1171 iommu_flush_tlb_all(iommu
);
1176 * Command send function for flushing on-device TLB
1178 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1179 u64 address
, size_t size
)
1181 struct amd_iommu
*iommu
;
1182 struct iommu_cmd cmd
;
1185 qdep
= dev_data
->ats
.qdep
;
1186 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1188 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1190 return iommu_queue_command(iommu
, &cmd
);
1194 * Command send function for invalidating a device table entry
1196 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1198 struct amd_iommu
*iommu
;
1202 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1203 alias
= dev_data
->alias
;
1205 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1206 if (!ret
&& alias
!= dev_data
->devid
)
1207 ret
= iommu_flush_dte(iommu
, alias
);
1211 if (dev_data
->ats
.enabled
)
1212 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1218 * TLB invalidation function which is called from the mapping functions.
1219 * It invalidates a single PTE if the range to flush is within a single
1220 * page. Otherwise it flushes the whole TLB of the IOMMU.
1222 static void __domain_flush_pages(struct protection_domain
*domain
,
1223 u64 address
, size_t size
, int pde
)
1225 struct iommu_dev_data
*dev_data
;
1226 struct iommu_cmd cmd
;
1229 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1231 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1232 if (!domain
->dev_iommu
[i
])
1236 * Devices of this domain are behind this IOMMU
1237 * We need a TLB flush
1239 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1242 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1244 if (!dev_data
->ats
.enabled
)
1247 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1253 static void domain_flush_pages(struct protection_domain
*domain
,
1254 u64 address
, size_t size
)
1256 __domain_flush_pages(domain
, address
, size
, 0);
1259 /* Flush the whole IO/TLB for a given protection domain */
1260 static void domain_flush_tlb(struct protection_domain
*domain
)
1262 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1265 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1266 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1268 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1271 static void domain_flush_complete(struct protection_domain
*domain
)
1275 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1276 if (domain
&& !domain
->dev_iommu
[i
])
1280 * Devices of this domain are behind this IOMMU
1281 * We need to wait for completion of all commands.
1283 iommu_completion_wait(amd_iommus
[i
]);
1289 * This function flushes the DTEs for all devices in domain
1291 static void domain_flush_devices(struct protection_domain
*domain
)
1293 struct iommu_dev_data
*dev_data
;
1295 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1296 device_flush_dte(dev_data
);
1299 /****************************************************************************
1301 * The functions below are used the create the page table mappings for
1302 * unity mapped regions.
1304 ****************************************************************************/
1307 * This function is used to add another level to an IO page table. Adding
1308 * another level increases the size of the address space by 9 bits to a size up
1311 static bool increase_address_space(struct protection_domain
*domain
,
1316 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1317 /* address space already 64 bit large */
1320 pte
= (void *)get_zeroed_page(gfp
);
1324 *pte
= PM_LEVEL_PDE(domain
->mode
,
1325 virt_to_phys(domain
->pt_root
));
1326 domain
->pt_root
= pte
;
1328 domain
->updated
= true;
1333 static u64
*alloc_pte(struct protection_domain
*domain
,
1334 unsigned long address
,
1335 unsigned long page_size
,
1342 BUG_ON(!is_power_of_2(page_size
));
1344 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1345 increase_address_space(domain
, gfp
);
1347 level
= domain
->mode
- 1;
1348 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1349 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1350 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1352 while (level
> end_lvl
) {
1357 if (!IOMMU_PTE_PRESENT(__pte
)) {
1358 page
= (u64
*)get_zeroed_page(gfp
);
1362 __npte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1364 /* pte could have been changed somewhere. */
1365 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1366 free_page((unsigned long)page
);
1371 /* No level skipping support yet */
1372 if (PM_PTE_LEVEL(*pte
) != level
)
1377 pte
= IOMMU_PTE_PAGE(*pte
);
1379 if (pte_page
&& level
== end_lvl
)
1382 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1389 * This function checks if there is a PTE for a given dma address. If
1390 * there is one, it returns the pointer to it.
1392 static u64
*fetch_pte(struct protection_domain
*domain
,
1393 unsigned long address
,
1394 unsigned long *page_size
)
1399 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1402 level
= domain
->mode
- 1;
1403 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1404 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1409 if (!IOMMU_PTE_PRESENT(*pte
))
1413 if (PM_PTE_LEVEL(*pte
) == 7 ||
1414 PM_PTE_LEVEL(*pte
) == 0)
1417 /* No level skipping support yet */
1418 if (PM_PTE_LEVEL(*pte
) != level
)
1423 /* Walk to the next level */
1424 pte
= IOMMU_PTE_PAGE(*pte
);
1425 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1426 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1429 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1430 unsigned long pte_mask
;
1433 * If we have a series of large PTEs, make
1434 * sure to return a pointer to the first one.
1436 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1437 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1438 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1445 * Generic mapping functions. It maps a physical address into a DMA
1446 * address space. It allocates the page table pages if necessary.
1447 * In the future it can be extended to a generic mapping function
1448 * supporting all features of AMD IOMMU page tables like level skipping
1449 * and full 64 bit address spaces.
1451 static int iommu_map_page(struct protection_domain
*dom
,
1452 unsigned long bus_addr
,
1453 unsigned long phys_addr
,
1454 unsigned long page_size
,
1461 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1462 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1464 if (!(prot
& IOMMU_PROT_MASK
))
1467 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1468 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1473 for (i
= 0; i
< count
; ++i
)
1474 if (IOMMU_PTE_PRESENT(pte
[i
]))
1478 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1479 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1481 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1483 if (prot
& IOMMU_PROT_IR
)
1484 __pte
|= IOMMU_PTE_IR
;
1485 if (prot
& IOMMU_PROT_IW
)
1486 __pte
|= IOMMU_PTE_IW
;
1488 for (i
= 0; i
< count
; ++i
)
1496 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1497 unsigned long bus_addr
,
1498 unsigned long page_size
)
1500 unsigned long long unmapped
;
1501 unsigned long unmap_size
;
1504 BUG_ON(!is_power_of_2(page_size
));
1508 while (unmapped
< page_size
) {
1510 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1515 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1516 for (i
= 0; i
< count
; i
++)
1520 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1521 unmapped
+= unmap_size
;
1524 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1529 /****************************************************************************
1531 * The next functions belong to the address allocator for the dma_ops
1532 * interface functions.
1534 ****************************************************************************/
1537 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1538 struct dma_ops_domain
*dma_dom
,
1539 unsigned int pages
, u64 dma_mask
)
1541 unsigned long pfn
= 0;
1543 pages
= __roundup_pow_of_two(pages
);
1545 if (dma_mask
> DMA_BIT_MASK(32))
1546 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1547 IOVA_PFN(DMA_BIT_MASK(32)));
1550 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
, IOVA_PFN(dma_mask
));
1552 return (pfn
<< PAGE_SHIFT
);
1555 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1556 unsigned long address
,
1559 pages
= __roundup_pow_of_two(pages
);
1560 address
>>= PAGE_SHIFT
;
1562 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1565 /****************************************************************************
1567 * The next functions belong to the domain allocation. A domain is
1568 * allocated for every IOMMU as the default domain. If device isolation
1569 * is enabled, every device get its own domain. The most important thing
1570 * about domains is the page table mapping the DMA address space they
1573 ****************************************************************************/
1576 * This function adds a protection domain to the global protection domain list
1578 static void add_domain_to_list(struct protection_domain
*domain
)
1580 unsigned long flags
;
1582 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1583 list_add(&domain
->list
, &amd_iommu_pd_list
);
1584 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1588 * This function removes a protection domain to the global
1589 * protection domain list
1591 static void del_domain_from_list(struct protection_domain
*domain
)
1593 unsigned long flags
;
1595 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1596 list_del(&domain
->list
);
1597 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1600 static u16
domain_id_alloc(void)
1602 unsigned long flags
;
1605 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1606 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1608 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1609 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1612 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1617 static void domain_id_free(int id
)
1619 unsigned long flags
;
1621 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1622 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1623 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1624 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1627 #define DEFINE_FREE_PT_FN(LVL, FN) \
1628 static void free_pt_##LVL (unsigned long __pt) \
1636 for (i = 0; i < 512; ++i) { \
1637 /* PTE present? */ \
1638 if (!IOMMU_PTE_PRESENT(pt[i])) \
1642 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1643 PM_PTE_LEVEL(pt[i]) == 7) \
1646 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1649 free_page((unsigned long)pt); \
1652 DEFINE_FREE_PT_FN(l2
, free_page
)
1653 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1654 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1655 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1656 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1658 static void free_pagetable(struct protection_domain
*domain
)
1660 unsigned long root
= (unsigned long)domain
->pt_root
;
1662 switch (domain
->mode
) {
1663 case PAGE_MODE_NONE
:
1665 case PAGE_MODE_1_LEVEL
:
1668 case PAGE_MODE_2_LEVEL
:
1671 case PAGE_MODE_3_LEVEL
:
1674 case PAGE_MODE_4_LEVEL
:
1677 case PAGE_MODE_5_LEVEL
:
1680 case PAGE_MODE_6_LEVEL
:
1688 static void free_gcr3_tbl_level1(u64
*tbl
)
1693 for (i
= 0; i
< 512; ++i
) {
1694 if (!(tbl
[i
] & GCR3_VALID
))
1697 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1699 free_page((unsigned long)ptr
);
1703 static void free_gcr3_tbl_level2(u64
*tbl
)
1708 for (i
= 0; i
< 512; ++i
) {
1709 if (!(tbl
[i
] & GCR3_VALID
))
1712 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1714 free_gcr3_tbl_level1(ptr
);
1718 static void free_gcr3_table(struct protection_domain
*domain
)
1720 if (domain
->glx
== 2)
1721 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1722 else if (domain
->glx
== 1)
1723 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1725 BUG_ON(domain
->glx
!= 0);
1727 free_page((unsigned long)domain
->gcr3_tbl
);
1731 * Free a domain, only used if something went wrong in the
1732 * allocation path and we need to free an already allocated page table
1734 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1739 del_domain_from_list(&dom
->domain
);
1741 put_iova_domain(&dom
->iovad
);
1743 free_pagetable(&dom
->domain
);
1746 domain_id_free(dom
->domain
.id
);
1752 * Allocates a new protection domain usable for the dma_ops functions.
1753 * It also initializes the page table and the address allocator data
1754 * structures required for the dma_ops interface
1756 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1758 struct dma_ops_domain
*dma_dom
;
1760 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1764 if (protection_domain_init(&dma_dom
->domain
))
1767 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1768 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1769 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1770 if (!dma_dom
->domain
.pt_root
)
1773 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
,
1774 IOVA_START_PFN
, DMA_32BIT_PFN
);
1776 /* Initialize reserved ranges */
1777 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1779 add_domain_to_list(&dma_dom
->domain
);
1784 dma_ops_domain_free(dma_dom
);
1790 * little helper function to check whether a given protection domain is a
1793 static bool dma_ops_domain(struct protection_domain
*domain
)
1795 return domain
->flags
& PD_DMA_OPS_MASK
;
1798 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
1803 if (domain
->mode
!= PAGE_MODE_NONE
)
1804 pte_root
= virt_to_phys(domain
->pt_root
);
1806 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1807 << DEV_ENTRY_MODE_SHIFT
;
1808 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
1810 flags
= amd_iommu_dev_table
[devid
].data
[1];
1813 flags
|= DTE_FLAG_IOTLB
;
1815 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1816 u64 gcr3
= __pa(domain
->gcr3_tbl
);
1817 u64 glx
= domain
->glx
;
1820 pte_root
|= DTE_FLAG_GV
;
1821 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1823 /* First mask out possible old values for GCR3 table */
1824 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1827 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1830 /* Encode GCR3 table into DTE */
1831 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1834 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1837 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1841 flags
&= ~(0xffffUL
);
1842 flags
|= domain
->id
;
1844 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1845 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1848 static void clear_dte_entry(u16 devid
)
1850 /* remove entry from the device table seen by the hardware */
1851 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
1852 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1854 amd_iommu_apply_erratum_63(devid
);
1857 static void do_attach(struct iommu_dev_data
*dev_data
,
1858 struct protection_domain
*domain
)
1860 struct amd_iommu
*iommu
;
1864 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1865 alias
= dev_data
->alias
;
1866 ats
= dev_data
->ats
.enabled
;
1868 /* Update data structures */
1869 dev_data
->domain
= domain
;
1870 list_add(&dev_data
->list
, &domain
->dev_list
);
1872 /* Do reference counting */
1873 domain
->dev_iommu
[iommu
->index
] += 1;
1874 domain
->dev_cnt
+= 1;
1876 /* Update device table */
1877 set_dte_entry(dev_data
->devid
, domain
, ats
);
1878 if (alias
!= dev_data
->devid
)
1879 set_dte_entry(alias
, domain
, ats
);
1881 device_flush_dte(dev_data
);
1884 static void do_detach(struct iommu_dev_data
*dev_data
)
1886 struct amd_iommu
*iommu
;
1890 * First check if the device is still attached. It might already
1891 * be detached from its domain because the generic
1892 * iommu_detach_group code detached it and we try again here in
1893 * our alias handling.
1895 if (!dev_data
->domain
)
1898 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1899 alias
= dev_data
->alias
;
1901 /* decrease reference counters */
1902 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1903 dev_data
->domain
->dev_cnt
-= 1;
1905 /* Update data structures */
1906 dev_data
->domain
= NULL
;
1907 list_del(&dev_data
->list
);
1908 clear_dte_entry(dev_data
->devid
);
1909 if (alias
!= dev_data
->devid
)
1910 clear_dte_entry(alias
);
1912 /* Flush the DTE entry */
1913 device_flush_dte(dev_data
);
1917 * If a device is not yet associated with a domain, this function does
1918 * assigns it visible for the hardware
1920 static int __attach_device(struct iommu_dev_data
*dev_data
,
1921 struct protection_domain
*domain
)
1926 * Must be called with IRQs disabled. Warn here to detect early
1929 WARN_ON(!irqs_disabled());
1932 spin_lock(&domain
->lock
);
1935 if (dev_data
->domain
!= NULL
)
1938 /* Attach alias group root */
1939 do_attach(dev_data
, domain
);
1946 spin_unlock(&domain
->lock
);
1952 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1954 pci_disable_ats(pdev
);
1955 pci_disable_pri(pdev
);
1956 pci_disable_pasid(pdev
);
1959 /* FIXME: Change generic reset-function to do the same */
1960 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1965 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1969 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1970 control
|= PCI_PRI_CTRL_RESET
;
1971 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
1976 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
1981 /* FIXME: Hardcode number of outstanding requests for now */
1983 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
1985 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
1987 /* Only allow access to user-accessible pages */
1988 ret
= pci_enable_pasid(pdev
, 0);
1992 /* First reset the PRI state of the device */
1993 ret
= pci_reset_pri(pdev
);
1998 ret
= pci_enable_pri(pdev
, reqs
);
2003 ret
= pri_reset_while_enabled(pdev
);
2008 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2015 pci_disable_pri(pdev
);
2016 pci_disable_pasid(pdev
);
2021 /* FIXME: Move this to PCI code */
2022 #define PCI_PRI_TLP_OFF (1 << 15)
2024 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2029 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2033 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2035 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2039 * If a device is not yet associated with a domain, this function
2040 * assigns it visible for the hardware
2042 static int attach_device(struct device
*dev
,
2043 struct protection_domain
*domain
)
2045 struct pci_dev
*pdev
;
2046 struct iommu_dev_data
*dev_data
;
2047 unsigned long flags
;
2050 dev_data
= get_dev_data(dev
);
2052 if (!dev_is_pci(dev
))
2053 goto skip_ats_check
;
2055 pdev
= to_pci_dev(dev
);
2056 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2057 if (!dev_data
->passthrough
)
2060 if (dev_data
->iommu_v2
) {
2061 if (pdev_iommuv2_enable(pdev
) != 0)
2064 dev_data
->ats
.enabled
= true;
2065 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2066 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2068 } else if (amd_iommu_iotlb_sup
&&
2069 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2070 dev_data
->ats
.enabled
= true;
2071 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2075 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2076 ret
= __attach_device(dev_data
, domain
);
2077 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2080 * We might boot into a crash-kernel here. The crashed kernel
2081 * left the caches in the IOMMU dirty. So we have to flush
2082 * here to evict all dirty stuff.
2084 domain_flush_tlb_pde(domain
);
2090 * Removes a device from a protection domain (unlocked)
2092 static void __detach_device(struct iommu_dev_data
*dev_data
)
2094 struct protection_domain
*domain
;
2097 * Must be called with IRQs disabled. Warn here to detect early
2100 WARN_ON(!irqs_disabled());
2102 if (WARN_ON(!dev_data
->domain
))
2105 domain
= dev_data
->domain
;
2107 spin_lock(&domain
->lock
);
2109 do_detach(dev_data
);
2111 spin_unlock(&domain
->lock
);
2115 * Removes a device from a protection domain (with devtable_lock held)
2117 static void detach_device(struct device
*dev
)
2119 struct protection_domain
*domain
;
2120 struct iommu_dev_data
*dev_data
;
2121 unsigned long flags
;
2123 dev_data
= get_dev_data(dev
);
2124 domain
= dev_data
->domain
;
2126 /* lock device table */
2127 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2128 __detach_device(dev_data
);
2129 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2131 if (!dev_is_pci(dev
))
2134 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2135 pdev_iommuv2_disable(to_pci_dev(dev
));
2136 else if (dev_data
->ats
.enabled
)
2137 pci_disable_ats(to_pci_dev(dev
));
2139 dev_data
->ats
.enabled
= false;
2142 static int amd_iommu_add_device(struct device
*dev
)
2144 struct iommu_dev_data
*dev_data
;
2145 struct iommu_domain
*domain
;
2146 struct amd_iommu
*iommu
;
2149 if (!check_device(dev
) || get_dev_data(dev
))
2152 devid
= get_device_id(dev
);
2156 iommu
= amd_iommu_rlookup_table
[devid
];
2158 ret
= iommu_init_device(dev
);
2160 if (ret
!= -ENOTSUPP
)
2161 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2164 iommu_ignore_device(dev
);
2165 dev
->archdata
.dma_ops
= &nommu_dma_ops
;
2168 init_iommu_group(dev
);
2170 dev_data
= get_dev_data(dev
);
2174 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2175 iommu_request_dm_for_dev(dev
);
2177 /* Domains are initialized for this device - have a look what we ended up with */
2178 domain
= iommu_get_domain_for_dev(dev
);
2179 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2180 dev_data
->passthrough
= true;
2182 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2185 iommu_completion_wait(iommu
);
2190 static void amd_iommu_remove_device(struct device
*dev
)
2192 struct amd_iommu
*iommu
;
2195 if (!check_device(dev
))
2198 devid
= get_device_id(dev
);
2202 iommu
= amd_iommu_rlookup_table
[devid
];
2204 iommu_uninit_device(dev
);
2205 iommu_completion_wait(iommu
);
2208 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2210 if (dev_is_pci(dev
))
2211 return pci_device_group(dev
);
2213 return acpihid_device_group(dev
);
2216 /*****************************************************************************
2218 * The next functions belong to the dma_ops mapping/unmapping code.
2220 *****************************************************************************/
2222 static void __queue_flush(struct flush_queue
*queue
)
2224 struct protection_domain
*domain
;
2225 unsigned long flags
;
2228 /* First flush TLB of all known domains */
2229 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
2230 list_for_each_entry(domain
, &amd_iommu_pd_list
, list
)
2231 domain_flush_tlb(domain
);
2232 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
2234 /* Wait until flushes have completed */
2235 domain_flush_complete(NULL
);
2237 for (idx
= 0; idx
< queue
->next
; ++idx
) {
2238 struct flush_queue_entry
*entry
;
2240 entry
= queue
->entries
+ idx
;
2242 free_iova_fast(&entry
->dma_dom
->iovad
,
2246 /* Not really necessary, just to make sure we catch any bugs */
2247 entry
->dma_dom
= NULL
;
2253 static void queue_flush_all(void)
2257 for_each_possible_cpu(cpu
) {
2258 struct flush_queue
*queue
;
2259 unsigned long flags
;
2261 queue
= per_cpu_ptr(&flush_queue
, cpu
);
2262 spin_lock_irqsave(&queue
->lock
, flags
);
2263 if (queue
->next
> 0)
2264 __queue_flush(queue
);
2265 spin_unlock_irqrestore(&queue
->lock
, flags
);
2269 static void queue_flush_timeout(unsigned long unsused
)
2271 atomic_set(&queue_timer_on
, 0);
2275 static void queue_add(struct dma_ops_domain
*dma_dom
,
2276 unsigned long address
, unsigned long pages
)
2278 struct flush_queue_entry
*entry
;
2279 struct flush_queue
*queue
;
2280 unsigned long flags
;
2283 pages
= __roundup_pow_of_two(pages
);
2284 address
>>= PAGE_SHIFT
;
2286 queue
= get_cpu_ptr(&flush_queue
);
2287 spin_lock_irqsave(&queue
->lock
, flags
);
2289 if (queue
->next
== FLUSH_QUEUE_SIZE
)
2290 __queue_flush(queue
);
2292 idx
= queue
->next
++;
2293 entry
= queue
->entries
+ idx
;
2295 entry
->iova_pfn
= address
;
2296 entry
->pages
= pages
;
2297 entry
->dma_dom
= dma_dom
;
2299 spin_unlock_irqrestore(&queue
->lock
, flags
);
2301 if (atomic_cmpxchg(&queue_timer_on
, 0, 1) == 0)
2302 mod_timer(&queue_timer
, jiffies
+ msecs_to_jiffies(10));
2304 put_cpu_ptr(&flush_queue
);
2309 * In the dma_ops path we only have the struct device. This function
2310 * finds the corresponding IOMMU, the protection domain and the
2311 * requestor id for a given device.
2312 * If the device is not yet associated with a domain this is also done
2315 static struct protection_domain
*get_domain(struct device
*dev
)
2317 struct protection_domain
*domain
;
2319 if (!check_device(dev
))
2320 return ERR_PTR(-EINVAL
);
2322 domain
= get_dev_data(dev
)->domain
;
2323 if (!dma_ops_domain(domain
))
2324 return ERR_PTR(-EBUSY
);
2329 static void update_device_table(struct protection_domain
*domain
)
2331 struct iommu_dev_data
*dev_data
;
2333 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2334 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2336 if (dev_data
->devid
== dev_data
->alias
)
2339 /* There is an alias, update device table entry for it */
2340 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
);
2344 static void update_domain(struct protection_domain
*domain
)
2346 if (!domain
->updated
)
2349 update_device_table(domain
);
2351 domain_flush_devices(domain
);
2352 domain_flush_tlb_pde(domain
);
2354 domain
->updated
= false;
2357 static int dir2prot(enum dma_data_direction direction
)
2359 if (direction
== DMA_TO_DEVICE
)
2360 return IOMMU_PROT_IR
;
2361 else if (direction
== DMA_FROM_DEVICE
)
2362 return IOMMU_PROT_IW
;
2363 else if (direction
== DMA_BIDIRECTIONAL
)
2364 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2369 * This function contains common code for mapping of a physically
2370 * contiguous memory region into DMA address space. It is used by all
2371 * mapping functions provided with this IOMMU driver.
2372 * Must be called with the domain lock held.
2374 static dma_addr_t
__map_single(struct device
*dev
,
2375 struct dma_ops_domain
*dma_dom
,
2378 enum dma_data_direction direction
,
2381 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2382 dma_addr_t address
, start
, ret
;
2387 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2390 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2391 if (address
== DMA_ERROR_CODE
)
2394 prot
= dir2prot(direction
);
2397 for (i
= 0; i
< pages
; ++i
) {
2398 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2399 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2408 if (unlikely(amd_iommu_np_cache
)) {
2409 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2410 domain_flush_complete(&dma_dom
->domain
);
2418 for (--i
; i
>= 0; --i
) {
2420 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2423 domain_flush_tlb(&dma_dom
->domain
);
2424 domain_flush_complete(&dma_dom
->domain
);
2426 dma_ops_free_iova(dma_dom
, address
, pages
);
2428 return DMA_ERROR_CODE
;
2432 * Does the reverse of the __map_single function. Must be called with
2433 * the domain lock held too
2435 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2436 dma_addr_t dma_addr
,
2440 dma_addr_t flush_addr
;
2441 dma_addr_t i
, start
;
2444 flush_addr
= dma_addr
;
2445 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2446 dma_addr
&= PAGE_MASK
;
2449 for (i
= 0; i
< pages
; ++i
) {
2450 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2454 if (amd_iommu_unmap_flush
) {
2455 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2456 domain_flush_tlb(&dma_dom
->domain
);
2457 domain_flush_complete(&dma_dom
->domain
);
2459 queue_add(dma_dom
, dma_addr
, pages
);
2464 * The exported map_single function for dma_ops.
2466 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2467 unsigned long offset
, size_t size
,
2468 enum dma_data_direction dir
,
2469 unsigned long attrs
)
2471 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2472 struct protection_domain
*domain
;
2473 struct dma_ops_domain
*dma_dom
;
2476 domain
= get_domain(dev
);
2477 if (PTR_ERR(domain
) == -EINVAL
)
2478 return (dma_addr_t
)paddr
;
2479 else if (IS_ERR(domain
))
2480 return DMA_ERROR_CODE
;
2482 dma_mask
= *dev
->dma_mask
;
2483 dma_dom
= to_dma_ops_domain(domain
);
2485 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2489 * The exported unmap_single function for dma_ops.
2491 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2492 enum dma_data_direction dir
, unsigned long attrs
)
2494 struct protection_domain
*domain
;
2495 struct dma_ops_domain
*dma_dom
;
2497 domain
= get_domain(dev
);
2501 dma_dom
= to_dma_ops_domain(domain
);
2503 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2506 static int sg_num_pages(struct device
*dev
,
2507 struct scatterlist
*sglist
,
2510 unsigned long mask
, boundary_size
;
2511 struct scatterlist
*s
;
2514 mask
= dma_get_seg_boundary(dev
);
2515 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2516 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2518 for_each_sg(sglist
, s
, nelems
, i
) {
2521 s
->dma_address
= npages
<< PAGE_SHIFT
;
2522 p
= npages
% boundary_size
;
2523 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2524 if (p
+ n
> boundary_size
)
2525 npages
+= boundary_size
- p
;
2533 * The exported map_sg function for dma_ops (handles scatter-gather
2536 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2537 int nelems
, enum dma_data_direction direction
,
2538 unsigned long attrs
)
2540 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2541 struct protection_domain
*domain
;
2542 struct dma_ops_domain
*dma_dom
;
2543 struct scatterlist
*s
;
2544 unsigned long address
;
2547 domain
= get_domain(dev
);
2551 dma_dom
= to_dma_ops_domain(domain
);
2552 dma_mask
= *dev
->dma_mask
;
2554 npages
= sg_num_pages(dev
, sglist
, nelems
);
2556 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2557 if (address
== DMA_ERROR_CODE
)
2560 prot
= dir2prot(direction
);
2562 /* Map all sg entries */
2563 for_each_sg(sglist
, s
, nelems
, i
) {
2564 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2566 for (j
= 0; j
< pages
; ++j
) {
2567 unsigned long bus_addr
, phys_addr
;
2570 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2571 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2572 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2580 /* Everything is mapped - write the right values into s->dma_address */
2581 for_each_sg(sglist
, s
, nelems
, i
) {
2582 s
->dma_address
+= address
+ s
->offset
;
2583 s
->dma_length
= s
->length
;
2589 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2590 dev_name(dev
), npages
);
2592 for_each_sg(sglist
, s
, nelems
, i
) {
2593 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2595 for (j
= 0; j
< pages
; ++j
) {
2596 unsigned long bus_addr
;
2598 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2599 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2607 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2614 * The exported map_sg function for dma_ops (handles scatter-gather
2617 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2618 int nelems
, enum dma_data_direction dir
,
2619 unsigned long attrs
)
2621 struct protection_domain
*domain
;
2622 struct dma_ops_domain
*dma_dom
;
2623 unsigned long startaddr
;
2626 domain
= get_domain(dev
);
2630 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2631 dma_dom
= to_dma_ops_domain(domain
);
2632 npages
= sg_num_pages(dev
, sglist
, nelems
);
2634 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2638 * The exported alloc_coherent function for dma_ops.
2640 static void *alloc_coherent(struct device
*dev
, size_t size
,
2641 dma_addr_t
*dma_addr
, gfp_t flag
,
2642 unsigned long attrs
)
2644 u64 dma_mask
= dev
->coherent_dma_mask
;
2645 struct protection_domain
*domain
;
2646 struct dma_ops_domain
*dma_dom
;
2649 domain
= get_domain(dev
);
2650 if (PTR_ERR(domain
) == -EINVAL
) {
2651 page
= alloc_pages(flag
, get_order(size
));
2652 *dma_addr
= page_to_phys(page
);
2653 return page_address(page
);
2654 } else if (IS_ERR(domain
))
2657 dma_dom
= to_dma_ops_domain(domain
);
2658 size
= PAGE_ALIGN(size
);
2659 dma_mask
= dev
->coherent_dma_mask
;
2660 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2663 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2665 if (!gfpflags_allow_blocking(flag
))
2668 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2675 dma_mask
= *dev
->dma_mask
;
2677 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2678 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2680 if (*dma_addr
== DMA_ERROR_CODE
)
2683 return page_address(page
);
2687 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2688 __free_pages(page
, get_order(size
));
2694 * The exported free_coherent function for dma_ops.
2696 static void free_coherent(struct device
*dev
, size_t size
,
2697 void *virt_addr
, dma_addr_t dma_addr
,
2698 unsigned long attrs
)
2700 struct protection_domain
*domain
;
2701 struct dma_ops_domain
*dma_dom
;
2704 page
= virt_to_page(virt_addr
);
2705 size
= PAGE_ALIGN(size
);
2707 domain
= get_domain(dev
);
2711 dma_dom
= to_dma_ops_domain(domain
);
2713 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2716 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2717 __free_pages(page
, get_order(size
));
2721 * This function is called by the DMA layer to find out if we can handle a
2722 * particular device. It is part of the dma_ops.
2724 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2726 return check_device(dev
);
2729 static struct dma_map_ops amd_iommu_dma_ops
= {
2730 .alloc
= alloc_coherent
,
2731 .free
= free_coherent
,
2732 .map_page
= map_page
,
2733 .unmap_page
= unmap_page
,
2735 .unmap_sg
= unmap_sg
,
2736 .dma_supported
= amd_iommu_dma_supported
,
2739 static int init_reserved_iova_ranges(void)
2741 struct pci_dev
*pdev
= NULL
;
2744 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
,
2745 IOVA_START_PFN
, DMA_32BIT_PFN
);
2747 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2748 &reserved_rbtree_key
);
2750 /* MSI memory range */
2751 val
= reserve_iova(&reserved_iova_ranges
,
2752 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2754 pr_err("Reserving MSI range failed\n");
2758 /* HT memory range */
2759 val
= reserve_iova(&reserved_iova_ranges
,
2760 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2762 pr_err("Reserving HT range failed\n");
2767 * Memory used for PCI resources
2768 * FIXME: Check whether we can reserve the PCI-hole completly
2770 for_each_pci_dev(pdev
) {
2773 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2774 struct resource
*r
= &pdev
->resource
[i
];
2776 if (!(r
->flags
& IORESOURCE_MEM
))
2779 val
= reserve_iova(&reserved_iova_ranges
,
2783 pr_err("Reserve pci-resource range failed\n");
2792 int __init
amd_iommu_init_api(void)
2794 int ret
, cpu
, err
= 0;
2796 ret
= iova_cache_get();
2800 ret
= init_reserved_iova_ranges();
2804 for_each_possible_cpu(cpu
) {
2805 struct flush_queue
*queue
= per_cpu_ptr(&flush_queue
, cpu
);
2807 queue
->entries
= kzalloc(FLUSH_QUEUE_SIZE
*
2808 sizeof(*queue
->entries
),
2810 if (!queue
->entries
)
2813 spin_lock_init(&queue
->lock
);
2816 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2819 #ifdef CONFIG_ARM_AMBA
2820 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2824 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2830 for_each_possible_cpu(cpu
) {
2831 struct flush_queue
*queue
= per_cpu_ptr(&flush_queue
, cpu
);
2833 kfree(queue
->entries
);
2839 int __init
amd_iommu_init_dma_ops(void)
2841 setup_timer(&queue_timer
, queue_flush_timeout
, 0);
2842 atomic_set(&queue_timer_on
, 0);
2844 swiotlb
= iommu_pass_through
? 1 : 0;
2848 * In case we don't initialize SWIOTLB (actually the common case
2849 * when AMD IOMMU is enabled), make sure there are global
2850 * dma_ops set as a fall-back for devices not handled by this
2851 * driver (for example non-PCI devices).
2854 dma_ops
= &nommu_dma_ops
;
2856 if (amd_iommu_unmap_flush
)
2857 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2859 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2865 /*****************************************************************************
2867 * The following functions belong to the exported interface of AMD IOMMU
2869 * This interface allows access to lower level functions of the IOMMU
2870 * like protection domain handling and assignement of devices to domains
2871 * which is not possible with the dma_ops interface.
2873 *****************************************************************************/
2875 static void cleanup_domain(struct protection_domain
*domain
)
2877 struct iommu_dev_data
*entry
;
2878 unsigned long flags
;
2880 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2882 while (!list_empty(&domain
->dev_list
)) {
2883 entry
= list_first_entry(&domain
->dev_list
,
2884 struct iommu_dev_data
, list
);
2885 __detach_device(entry
);
2888 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2891 static void protection_domain_free(struct protection_domain
*domain
)
2896 del_domain_from_list(domain
);
2899 domain_id_free(domain
->id
);
2904 static int protection_domain_init(struct protection_domain
*domain
)
2906 spin_lock_init(&domain
->lock
);
2907 mutex_init(&domain
->api_lock
);
2908 domain
->id
= domain_id_alloc();
2911 INIT_LIST_HEAD(&domain
->dev_list
);
2916 static struct protection_domain
*protection_domain_alloc(void)
2918 struct protection_domain
*domain
;
2920 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2924 if (protection_domain_init(domain
))
2927 add_domain_to_list(domain
);
2937 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2939 struct protection_domain
*pdomain
;
2940 struct dma_ops_domain
*dma_domain
;
2943 case IOMMU_DOMAIN_UNMANAGED
:
2944 pdomain
= protection_domain_alloc();
2948 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2949 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2950 if (!pdomain
->pt_root
) {
2951 protection_domain_free(pdomain
);
2955 pdomain
->domain
.geometry
.aperture_start
= 0;
2956 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2957 pdomain
->domain
.geometry
.force_aperture
= true;
2960 case IOMMU_DOMAIN_DMA
:
2961 dma_domain
= dma_ops_domain_alloc();
2963 pr_err("AMD-Vi: Failed to allocate\n");
2966 pdomain
= &dma_domain
->domain
;
2968 case IOMMU_DOMAIN_IDENTITY
:
2969 pdomain
= protection_domain_alloc();
2973 pdomain
->mode
= PAGE_MODE_NONE
;
2979 return &pdomain
->domain
;
2982 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2984 struct protection_domain
*domain
;
2985 struct dma_ops_domain
*dma_dom
;
2987 domain
= to_pdomain(dom
);
2989 if (domain
->dev_cnt
> 0)
2990 cleanup_domain(domain
);
2992 BUG_ON(domain
->dev_cnt
!= 0);
2997 switch (dom
->type
) {
2998 case IOMMU_DOMAIN_DMA
:
3000 * First make sure the domain is no longer referenced from the
3005 /* Now release the domain */
3006 dma_dom
= to_dma_ops_domain(domain
);
3007 dma_ops_domain_free(dma_dom
);
3010 if (domain
->mode
!= PAGE_MODE_NONE
)
3011 free_pagetable(domain
);
3013 if (domain
->flags
& PD_IOMMUV2_MASK
)
3014 free_gcr3_table(domain
);
3016 protection_domain_free(domain
);
3021 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3024 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3025 struct amd_iommu
*iommu
;
3028 if (!check_device(dev
))
3031 devid
= get_device_id(dev
);
3035 if (dev_data
->domain
!= NULL
)
3038 iommu
= amd_iommu_rlookup_table
[devid
];
3042 #ifdef CONFIG_IRQ_REMAP
3043 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
3044 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
3045 dev_data
->use_vapic
= 0;
3048 iommu_completion_wait(iommu
);
3051 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3054 struct protection_domain
*domain
= to_pdomain(dom
);
3055 struct iommu_dev_data
*dev_data
;
3056 struct amd_iommu
*iommu
;
3059 if (!check_device(dev
))
3062 dev_data
= dev
->archdata
.iommu
;
3064 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3068 if (dev_data
->domain
)
3071 ret
= attach_device(dev
, domain
);
3073 #ifdef CONFIG_IRQ_REMAP
3074 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3075 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3076 dev_data
->use_vapic
= 1;
3078 dev_data
->use_vapic
= 0;
3082 iommu_completion_wait(iommu
);
3087 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3088 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3090 struct protection_domain
*domain
= to_pdomain(dom
);
3094 if (domain
->mode
== PAGE_MODE_NONE
)
3097 if (iommu_prot
& IOMMU_READ
)
3098 prot
|= IOMMU_PROT_IR
;
3099 if (iommu_prot
& IOMMU_WRITE
)
3100 prot
|= IOMMU_PROT_IW
;
3102 mutex_lock(&domain
->api_lock
);
3103 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3104 mutex_unlock(&domain
->api_lock
);
3109 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3112 struct protection_domain
*domain
= to_pdomain(dom
);
3115 if (domain
->mode
== PAGE_MODE_NONE
)
3118 mutex_lock(&domain
->api_lock
);
3119 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3120 mutex_unlock(&domain
->api_lock
);
3122 domain_flush_tlb_pde(domain
);
3127 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3130 struct protection_domain
*domain
= to_pdomain(dom
);
3131 unsigned long offset_mask
, pte_pgsize
;
3134 if (domain
->mode
== PAGE_MODE_NONE
)
3137 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3139 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3142 offset_mask
= pte_pgsize
- 1;
3143 __pte
= *pte
& PM_ADDR_MASK
;
3145 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3148 static bool amd_iommu_capable(enum iommu_cap cap
)
3151 case IOMMU_CAP_CACHE_COHERENCY
:
3153 case IOMMU_CAP_INTR_REMAP
:
3154 return (irq_remapping_enabled
== 1);
3155 case IOMMU_CAP_NOEXEC
:
3162 static void amd_iommu_get_dm_regions(struct device
*dev
,
3163 struct list_head
*head
)
3165 struct unity_map_entry
*entry
;
3168 devid
= get_device_id(dev
);
3172 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3173 struct iommu_dm_region
*region
;
3175 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3178 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
3180 pr_err("Out of memory allocating dm-regions for %s\n",
3185 region
->start
= entry
->address_start
;
3186 region
->length
= entry
->address_end
- entry
->address_start
;
3187 if (entry
->prot
& IOMMU_PROT_IR
)
3188 region
->prot
|= IOMMU_READ
;
3189 if (entry
->prot
& IOMMU_PROT_IW
)
3190 region
->prot
|= IOMMU_WRITE
;
3192 list_add_tail(®ion
->list
, head
);
3196 static void amd_iommu_put_dm_regions(struct device
*dev
,
3197 struct list_head
*head
)
3199 struct iommu_dm_region
*entry
, *next
;
3201 list_for_each_entry_safe(entry
, next
, head
, list
)
3205 static void amd_iommu_apply_dm_region(struct device
*dev
,
3206 struct iommu_domain
*domain
,
3207 struct iommu_dm_region
*region
)
3209 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3210 unsigned long start
, end
;
3212 start
= IOVA_PFN(region
->start
);
3213 end
= IOVA_PFN(region
->start
+ region
->length
);
3215 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3218 static const struct iommu_ops amd_iommu_ops
= {
3219 .capable
= amd_iommu_capable
,
3220 .domain_alloc
= amd_iommu_domain_alloc
,
3221 .domain_free
= amd_iommu_domain_free
,
3222 .attach_dev
= amd_iommu_attach_device
,
3223 .detach_dev
= amd_iommu_detach_device
,
3224 .map
= amd_iommu_map
,
3225 .unmap
= amd_iommu_unmap
,
3226 .map_sg
= default_iommu_map_sg
,
3227 .iova_to_phys
= amd_iommu_iova_to_phys
,
3228 .add_device
= amd_iommu_add_device
,
3229 .remove_device
= amd_iommu_remove_device
,
3230 .device_group
= amd_iommu_device_group
,
3231 .get_dm_regions
= amd_iommu_get_dm_regions
,
3232 .put_dm_regions
= amd_iommu_put_dm_regions
,
3233 .apply_dm_region
= amd_iommu_apply_dm_region
,
3234 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3237 /*****************************************************************************
3239 * The next functions do a basic initialization of IOMMU for pass through
3242 * In passthrough mode the IOMMU is initialized and enabled but not used for
3243 * DMA-API translation.
3245 *****************************************************************************/
3247 /* IOMMUv2 specific functions */
3248 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3250 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3252 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3254 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3256 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3258 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3260 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3262 struct protection_domain
*domain
= to_pdomain(dom
);
3263 unsigned long flags
;
3265 spin_lock_irqsave(&domain
->lock
, flags
);
3267 /* Update data structure */
3268 domain
->mode
= PAGE_MODE_NONE
;
3269 domain
->updated
= true;
3271 /* Make changes visible to IOMMUs */
3272 update_domain(domain
);
3274 /* Page-table is not visible to IOMMU anymore, so free it */
3275 free_pagetable(domain
);
3277 spin_unlock_irqrestore(&domain
->lock
, flags
);
3279 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3281 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3283 struct protection_domain
*domain
= to_pdomain(dom
);
3284 unsigned long flags
;
3287 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3290 /* Number of GCR3 table levels required */
3291 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3294 if (levels
> amd_iommu_max_glx_val
)
3297 spin_lock_irqsave(&domain
->lock
, flags
);
3300 * Save us all sanity checks whether devices already in the
3301 * domain support IOMMUv2. Just force that the domain has no
3302 * devices attached when it is switched into IOMMUv2 mode.
3305 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3309 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3310 if (domain
->gcr3_tbl
== NULL
)
3313 domain
->glx
= levels
;
3314 domain
->flags
|= PD_IOMMUV2_MASK
;
3315 domain
->updated
= true;
3317 update_domain(domain
);
3322 spin_unlock_irqrestore(&domain
->lock
, flags
);
3326 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3328 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3329 u64 address
, bool size
)
3331 struct iommu_dev_data
*dev_data
;
3332 struct iommu_cmd cmd
;
3335 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3338 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3341 * IOMMU TLB needs to be flushed before Device TLB to
3342 * prevent device TLB refill from IOMMU TLB
3344 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3345 if (domain
->dev_iommu
[i
] == 0)
3348 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3353 /* Wait until IOMMU TLB flushes are complete */
3354 domain_flush_complete(domain
);
3356 /* Now flush device TLBs */
3357 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3358 struct amd_iommu
*iommu
;
3362 There might be non-IOMMUv2 capable devices in an IOMMUv2
3365 if (!dev_data
->ats
.enabled
)
3368 qdep
= dev_data
->ats
.qdep
;
3369 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3371 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3372 qdep
, address
, size
);
3374 ret
= iommu_queue_command(iommu
, &cmd
);
3379 /* Wait until all device TLBs are flushed */
3380 domain_flush_complete(domain
);
3389 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3392 return __flush_pasid(domain
, pasid
, address
, false);
3395 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3398 struct protection_domain
*domain
= to_pdomain(dom
);
3399 unsigned long flags
;
3402 spin_lock_irqsave(&domain
->lock
, flags
);
3403 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3404 spin_unlock_irqrestore(&domain
->lock
, flags
);
3408 EXPORT_SYMBOL(amd_iommu_flush_page
);
3410 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3412 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3416 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3418 struct protection_domain
*domain
= to_pdomain(dom
);
3419 unsigned long flags
;
3422 spin_lock_irqsave(&domain
->lock
, flags
);
3423 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3424 spin_unlock_irqrestore(&domain
->lock
, flags
);
3428 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3430 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3437 index
= (pasid
>> (9 * level
)) & 0x1ff;
3443 if (!(*pte
& GCR3_VALID
)) {
3447 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3451 *pte
= __pa(root
) | GCR3_VALID
;
3454 root
= __va(*pte
& PAGE_MASK
);
3462 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3467 if (domain
->mode
!= PAGE_MODE_NONE
)
3470 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3474 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3476 return __amd_iommu_flush_tlb(domain
, pasid
);
3479 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3483 if (domain
->mode
!= PAGE_MODE_NONE
)
3486 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3492 return __amd_iommu_flush_tlb(domain
, pasid
);
3495 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3498 struct protection_domain
*domain
= to_pdomain(dom
);
3499 unsigned long flags
;
3502 spin_lock_irqsave(&domain
->lock
, flags
);
3503 ret
= __set_gcr3(domain
, pasid
, cr3
);
3504 spin_unlock_irqrestore(&domain
->lock
, flags
);
3508 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3510 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3512 struct protection_domain
*domain
= to_pdomain(dom
);
3513 unsigned long flags
;
3516 spin_lock_irqsave(&domain
->lock
, flags
);
3517 ret
= __clear_gcr3(domain
, pasid
);
3518 spin_unlock_irqrestore(&domain
->lock
, flags
);
3522 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3524 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3525 int status
, int tag
)
3527 struct iommu_dev_data
*dev_data
;
3528 struct amd_iommu
*iommu
;
3529 struct iommu_cmd cmd
;
3531 dev_data
= get_dev_data(&pdev
->dev
);
3532 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3534 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3535 tag
, dev_data
->pri_tlp
);
3537 return iommu_queue_command(iommu
, &cmd
);
3539 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3541 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3543 struct protection_domain
*pdomain
;
3545 pdomain
= get_domain(&pdev
->dev
);
3546 if (IS_ERR(pdomain
))
3549 /* Only return IOMMUv2 domains */
3550 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3553 return &pdomain
->domain
;
3555 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3557 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3559 struct iommu_dev_data
*dev_data
;
3561 if (!amd_iommu_v2_supported())
3564 dev_data
= get_dev_data(&pdev
->dev
);
3565 dev_data
->errata
|= (1 << erratum
);
3567 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3569 int amd_iommu_device_info(struct pci_dev
*pdev
,
3570 struct amd_iommu_device_info
*info
)
3575 if (pdev
== NULL
|| info
== NULL
)
3578 if (!amd_iommu_v2_supported())
3581 memset(info
, 0, sizeof(*info
));
3583 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3585 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3587 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3589 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3591 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3595 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3596 max_pasids
= min(max_pasids
, (1 << 20));
3598 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3599 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3601 features
= pci_pasid_features(pdev
);
3602 if (features
& PCI_PASID_CAP_EXEC
)
3603 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3604 if (features
& PCI_PASID_CAP_PRIV
)
3605 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3610 EXPORT_SYMBOL(amd_iommu_device_info
);
3612 #ifdef CONFIG_IRQ_REMAP
3614 /*****************************************************************************
3616 * Interrupt Remapping Implementation
3618 *****************************************************************************/
3620 static struct irq_chip amd_ir_chip
;
3622 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3623 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3624 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3625 #define DTE_IRQ_REMAP_ENABLE 1ULL
3627 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3631 dte
= amd_iommu_dev_table
[devid
].data
[2];
3632 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3633 dte
|= virt_to_phys(table
->table
);
3634 dte
|= DTE_IRQ_REMAP_INTCTL
;
3635 dte
|= DTE_IRQ_TABLE_LEN
;
3636 dte
|= DTE_IRQ_REMAP_ENABLE
;
3638 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3641 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3643 struct irq_remap_table
*table
= NULL
;
3644 struct amd_iommu
*iommu
;
3645 unsigned long flags
;
3648 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3650 iommu
= amd_iommu_rlookup_table
[devid
];
3654 table
= irq_lookup_table
[devid
];
3658 alias
= amd_iommu_alias_table
[devid
];
3659 table
= irq_lookup_table
[alias
];
3661 irq_lookup_table
[devid
] = table
;
3662 set_dte_irq_entry(devid
, table
);
3663 iommu_flush_dte(iommu
, devid
);
3667 /* Nothing there yet, allocate new irq remapping table */
3668 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3672 /* Initialize table spin-lock */
3673 spin_lock_init(&table
->lock
);
3676 /* Keep the first 32 indexes free for IOAPIC interrupts */
3677 table
->min_index
= 32;
3679 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3680 if (!table
->table
) {
3686 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3687 memset(table
->table
, 0,
3688 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3690 memset(table
->table
, 0,
3691 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3696 for (i
= 0; i
< 32; ++i
)
3697 iommu
->irte_ops
->set_allocated(table
, i
);
3700 irq_lookup_table
[devid
] = table
;
3701 set_dte_irq_entry(devid
, table
);
3702 iommu_flush_dte(iommu
, devid
);
3703 if (devid
!= alias
) {
3704 irq_lookup_table
[alias
] = table
;
3705 set_dte_irq_entry(alias
, table
);
3706 iommu_flush_dte(iommu
, alias
);
3710 iommu_completion_wait(iommu
);
3713 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3718 static int alloc_irq_index(u16 devid
, int count
)
3720 struct irq_remap_table
*table
;
3721 unsigned long flags
;
3723 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3728 table
= get_irq_table(devid
, false);
3732 spin_lock_irqsave(&table
->lock
, flags
);
3734 /* Scan table for free entries */
3735 for (c
= 0, index
= table
->min_index
;
3736 index
< MAX_IRQS_PER_TABLE
;
3738 if (!iommu
->irte_ops
->is_allocated(table
, index
))
3745 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3755 spin_unlock_irqrestore(&table
->lock
, flags
);
3760 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3761 struct amd_ir_data
*data
)
3763 struct irq_remap_table
*table
;
3764 struct amd_iommu
*iommu
;
3765 unsigned long flags
;
3766 struct irte_ga
*entry
;
3768 iommu
= amd_iommu_rlookup_table
[devid
];
3772 table
= get_irq_table(devid
, false);
3776 spin_lock_irqsave(&table
->lock
, flags
);
3778 entry
= (struct irte_ga
*)table
->table
;
3779 entry
= &entry
[index
];
3780 entry
->lo
.fields_remap
.valid
= 0;
3781 entry
->hi
.val
= irte
->hi
.val
;
3782 entry
->lo
.val
= irte
->lo
.val
;
3783 entry
->lo
.fields_remap
.valid
= 1;
3787 spin_unlock_irqrestore(&table
->lock
, flags
);
3789 iommu_flush_irt(iommu
, devid
);
3790 iommu_completion_wait(iommu
);
3795 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3797 struct irq_remap_table
*table
;
3798 struct amd_iommu
*iommu
;
3799 unsigned long flags
;
3801 iommu
= amd_iommu_rlookup_table
[devid
];
3805 table
= get_irq_table(devid
, false);
3809 spin_lock_irqsave(&table
->lock
, flags
);
3810 table
->table
[index
] = irte
->val
;
3811 spin_unlock_irqrestore(&table
->lock
, flags
);
3813 iommu_flush_irt(iommu
, devid
);
3814 iommu_completion_wait(iommu
);
3819 static void free_irte(u16 devid
, int index
)
3821 struct irq_remap_table
*table
;
3822 struct amd_iommu
*iommu
;
3823 unsigned long flags
;
3825 iommu
= amd_iommu_rlookup_table
[devid
];
3829 table
= get_irq_table(devid
, false);
3833 spin_lock_irqsave(&table
->lock
, flags
);
3834 iommu
->irte_ops
->clear_allocated(table
, index
);
3835 spin_unlock_irqrestore(&table
->lock
, flags
);
3837 iommu_flush_irt(iommu
, devid
);
3838 iommu_completion_wait(iommu
);
3841 static void irte_prepare(void *entry
,
3842 u32 delivery_mode
, u32 dest_mode
,
3843 u8 vector
, u32 dest_apicid
, int devid
)
3845 union irte
*irte
= (union irte
*) entry
;
3848 irte
->fields
.vector
= vector
;
3849 irte
->fields
.int_type
= delivery_mode
;
3850 irte
->fields
.destination
= dest_apicid
;
3851 irte
->fields
.dm
= dest_mode
;
3852 irte
->fields
.valid
= 1;
3855 static void irte_ga_prepare(void *entry
,
3856 u32 delivery_mode
, u32 dest_mode
,
3857 u8 vector
, u32 dest_apicid
, int devid
)
3859 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3860 struct iommu_dev_data
*dev_data
= search_dev_data(devid
);
3864 irte
->lo
.fields_remap
.guest_mode
= dev_data
? dev_data
->use_vapic
: 0;
3865 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3866 irte
->lo
.fields_remap
.dm
= dest_mode
;
3867 irte
->hi
.fields
.vector
= vector
;
3868 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3869 irte
->lo
.fields_remap
.valid
= 1;
3872 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3874 union irte
*irte
= (union irte
*) entry
;
3876 irte
->fields
.valid
= 1;
3877 modify_irte(devid
, index
, irte
);
3880 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3882 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3884 irte
->lo
.fields_remap
.valid
= 1;
3885 modify_irte_ga(devid
, index
, irte
, NULL
);
3888 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3890 union irte
*irte
= (union irte
*) entry
;
3892 irte
->fields
.valid
= 0;
3893 modify_irte(devid
, index
, irte
);
3896 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3898 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3900 irte
->lo
.fields_remap
.valid
= 0;
3901 modify_irte_ga(devid
, index
, irte
, NULL
);
3904 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3905 u8 vector
, u32 dest_apicid
)
3907 union irte
*irte
= (union irte
*) entry
;
3909 irte
->fields
.vector
= vector
;
3910 irte
->fields
.destination
= dest_apicid
;
3911 modify_irte(devid
, index
, irte
);
3914 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3915 u8 vector
, u32 dest_apicid
)
3917 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3918 struct iommu_dev_data
*dev_data
= search_dev_data(devid
);
3920 if (!dev_data
|| !dev_data
->use_vapic
) {
3921 irte
->hi
.fields
.vector
= vector
;
3922 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3923 irte
->lo
.fields_remap
.guest_mode
= 0;
3924 modify_irte_ga(devid
, index
, irte
, NULL
);
3928 #define IRTE_ALLOCATED (~1U)
3929 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
3931 table
->table
[index
] = IRTE_ALLOCATED
;
3934 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
3936 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3937 struct irte_ga
*irte
= &ptr
[index
];
3939 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3940 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3941 irte
->hi
.fields
.vector
= 0xff;
3944 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
3946 union irte
*ptr
= (union irte
*)table
->table
;
3947 union irte
*irte
= &ptr
[index
];
3949 return irte
->val
!= 0;
3952 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
3954 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3955 struct irte_ga
*irte
= &ptr
[index
];
3957 return irte
->hi
.fields
.vector
!= 0;
3960 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
3962 table
->table
[index
] = 0;
3965 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
3967 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3968 struct irte_ga
*irte
= &ptr
[index
];
3970 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3971 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3974 static int get_devid(struct irq_alloc_info
*info
)
3978 switch (info
->type
) {
3979 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3980 devid
= get_ioapic_devid(info
->ioapic_id
);
3982 case X86_IRQ_ALLOC_TYPE_HPET
:
3983 devid
= get_hpet_devid(info
->hpet_id
);
3985 case X86_IRQ_ALLOC_TYPE_MSI
:
3986 case X86_IRQ_ALLOC_TYPE_MSIX
:
3987 devid
= get_device_id(&info
->msi_dev
->dev
);
3997 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3999 struct amd_iommu
*iommu
;
4005 devid
= get_devid(info
);
4007 iommu
= amd_iommu_rlookup_table
[devid
];
4009 return iommu
->ir_domain
;
4015 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4017 struct amd_iommu
*iommu
;
4023 switch (info
->type
) {
4024 case X86_IRQ_ALLOC_TYPE_MSI
:
4025 case X86_IRQ_ALLOC_TYPE_MSIX
:
4026 devid
= get_device_id(&info
->msi_dev
->dev
);
4030 iommu
= amd_iommu_rlookup_table
[devid
];
4032 return iommu
->msi_domain
;
4041 struct irq_remap_ops amd_iommu_irq_ops
= {
4042 .prepare
= amd_iommu_prepare
,
4043 .enable
= amd_iommu_enable
,
4044 .disable
= amd_iommu_disable
,
4045 .reenable
= amd_iommu_reenable
,
4046 .enable_faulting
= amd_iommu_enable_faulting
,
4047 .get_ir_irq_domain
= get_ir_irq_domain
,
4048 .get_irq_domain
= get_irq_domain
,
4051 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4052 struct irq_cfg
*irq_cfg
,
4053 struct irq_alloc_info
*info
,
4054 int devid
, int index
, int sub_handle
)
4056 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4057 struct msi_msg
*msg
= &data
->msi_entry
;
4058 struct IO_APIC_route_entry
*entry
;
4059 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4064 data
->irq_2_irte
.devid
= devid
;
4065 data
->irq_2_irte
.index
= index
+ sub_handle
;
4066 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4067 apic
->irq_dest_mode
, irq_cfg
->vector
,
4068 irq_cfg
->dest_apicid
, devid
);
4070 switch (info
->type
) {
4071 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4072 /* Setup IOAPIC entry */
4073 entry
= info
->ioapic_entry
;
4074 info
->ioapic_entry
= NULL
;
4075 memset(entry
, 0, sizeof(*entry
));
4076 entry
->vector
= index
;
4078 entry
->trigger
= info
->ioapic_trigger
;
4079 entry
->polarity
= info
->ioapic_polarity
;
4080 /* Mask level triggered irqs. */
4081 if (info
->ioapic_trigger
)
4085 case X86_IRQ_ALLOC_TYPE_HPET
:
4086 case X86_IRQ_ALLOC_TYPE_MSI
:
4087 case X86_IRQ_ALLOC_TYPE_MSIX
:
4088 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4089 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4090 msg
->data
= irte_info
->index
;
4099 struct amd_irte_ops irte_32_ops
= {
4100 .prepare
= irte_prepare
,
4101 .activate
= irte_activate
,
4102 .deactivate
= irte_deactivate
,
4103 .set_affinity
= irte_set_affinity
,
4104 .set_allocated
= irte_set_allocated
,
4105 .is_allocated
= irte_is_allocated
,
4106 .clear_allocated
= irte_clear_allocated
,
4109 struct amd_irte_ops irte_128_ops
= {
4110 .prepare
= irte_ga_prepare
,
4111 .activate
= irte_ga_activate
,
4112 .deactivate
= irte_ga_deactivate
,
4113 .set_affinity
= irte_ga_set_affinity
,
4114 .set_allocated
= irte_ga_set_allocated
,
4115 .is_allocated
= irte_ga_is_allocated
,
4116 .clear_allocated
= irte_ga_clear_allocated
,
4119 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4120 unsigned int nr_irqs
, void *arg
)
4122 struct irq_alloc_info
*info
= arg
;
4123 struct irq_data
*irq_data
;
4124 struct amd_ir_data
*data
= NULL
;
4125 struct irq_cfg
*cfg
;
4131 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4132 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4136 * With IRQ remapping enabled, don't need contiguous CPU vectors
4137 * to support multiple MSI interrupts.
4139 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4140 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4142 devid
= get_devid(info
);
4146 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4150 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4151 if (get_irq_table(devid
, true))
4152 index
= info
->ioapic_pin
;
4156 index
= alloc_irq_index(devid
, nr_irqs
);
4159 pr_warn("Failed to allocate IRTE\n");
4161 goto out_free_parent
;
4164 for (i
= 0; i
< nr_irqs
; i
++) {
4165 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4166 cfg
= irqd_cfg(irq_data
);
4167 if (!irq_data
|| !cfg
) {
4173 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4177 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4178 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4180 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4187 irq_data
->hwirq
= (devid
<< 16) + i
;
4188 irq_data
->chip_data
= data
;
4189 irq_data
->chip
= &amd_ir_chip
;
4190 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4191 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4197 for (i
--; i
>= 0; i
--) {
4198 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4200 kfree(irq_data
->chip_data
);
4202 for (i
= 0; i
< nr_irqs
; i
++)
4203 free_irte(devid
, index
+ i
);
4205 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4209 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4210 unsigned int nr_irqs
)
4212 struct irq_2_irte
*irte_info
;
4213 struct irq_data
*irq_data
;
4214 struct amd_ir_data
*data
;
4217 for (i
= 0; i
< nr_irqs
; i
++) {
4218 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4219 if (irq_data
&& irq_data
->chip_data
) {
4220 data
= irq_data
->chip_data
;
4221 irte_info
= &data
->irq_2_irte
;
4222 free_irte(irte_info
->devid
, irte_info
->index
);
4227 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4230 static void irq_remapping_activate(struct irq_domain
*domain
,
4231 struct irq_data
*irq_data
)
4233 struct amd_ir_data
*data
= irq_data
->chip_data
;
4234 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4235 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4238 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4242 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4243 struct irq_data
*irq_data
)
4245 struct amd_ir_data
*data
= irq_data
->chip_data
;
4246 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4247 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4250 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4254 static struct irq_domain_ops amd_ir_domain_ops
= {
4255 .alloc
= irq_remapping_alloc
,
4256 .free
= irq_remapping_free
,
4257 .activate
= irq_remapping_activate
,
4258 .deactivate
= irq_remapping_deactivate
,
4261 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4263 struct amd_iommu
*iommu
;
4264 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4265 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4266 struct amd_ir_data
*ir_data
= data
->chip_data
;
4267 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4268 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4269 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4272 * This device has never been set up for guest mode.
4273 * we should not modify the IRTE
4275 if (!dev_data
|| !dev_data
->use_vapic
)
4278 pi_data
->ir_data
= ir_data
;
4281 * SVM tries to set up for VAPIC mode, but we are in
4282 * legacy mode. So, we force legacy mode instead.
4284 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4285 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4287 pi_data
->is_guest_mode
= false;
4290 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4294 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4295 if (pi_data
->is_guest_mode
) {
4297 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4298 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4299 irte
->lo
.fields_vapic
.guest_mode
= 1;
4300 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4302 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4305 struct irq_cfg
*cfg
= irqd_cfg(data
);
4309 irte
->hi
.fields
.vector
= cfg
->vector
;
4310 irte
->lo
.fields_remap
.guest_mode
= 0;
4311 irte
->lo
.fields_remap
.destination
= cfg
->dest_apicid
;
4312 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4313 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4316 * This communicates the ga_tag back to the caller
4317 * so that it can do all the necessary clean up.
4319 ir_data
->cached_ga_tag
= 0;
4322 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4325 static int amd_ir_set_affinity(struct irq_data
*data
,
4326 const struct cpumask
*mask
, bool force
)
4328 struct amd_ir_data
*ir_data
= data
->chip_data
;
4329 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4330 struct irq_cfg
*cfg
= irqd_cfg(data
);
4331 struct irq_data
*parent
= data
->parent_data
;
4332 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4338 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4339 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4343 * Atomically updates the IRTE with the new destination, vector
4344 * and flushes the interrupt entry cache.
4346 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4347 irte_info
->index
, cfg
->vector
, cfg
->dest_apicid
);
4350 * After this point, all the interrupts will start arriving
4351 * at the new destination. So, time to cleanup the previous
4352 * vector allocation.
4354 send_cleanup_vector(cfg
);
4356 return IRQ_SET_MASK_OK_DONE
;
4359 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4361 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4363 *msg
= ir_data
->msi_entry
;
4366 static struct irq_chip amd_ir_chip
= {
4367 .irq_ack
= ir_ack_apic_edge
,
4368 .irq_set_affinity
= amd_ir_set_affinity
,
4369 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4370 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4373 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4375 iommu
->ir_domain
= irq_domain_add_tree(NULL
, &amd_ir_domain_ops
, iommu
);
4376 if (!iommu
->ir_domain
)
4379 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4380 iommu
->msi_domain
= arch_create_msi_irq_domain(iommu
->ir_domain
);
4385 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4387 unsigned long flags
;
4388 struct amd_iommu
*iommu
;
4389 struct irq_remap_table
*irt
;
4390 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4391 int devid
= ir_data
->irq_2_irte
.devid
;
4392 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4393 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4395 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4396 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4399 iommu
= amd_iommu_rlookup_table
[devid
];
4403 irt
= get_irq_table(devid
, false);
4407 spin_lock_irqsave(&irt
->lock
, flags
);
4409 if (ref
->lo
.fields_vapic
.guest_mode
) {
4411 ref
->lo
.fields_vapic
.destination
= cpu
;
4412 ref
->lo
.fields_vapic
.is_run
= is_run
;
4416 spin_unlock_irqrestore(&irt
->lock
, flags
);
4418 iommu_flush_irt(iommu
, devid
);
4419 iommu_completion_wait(iommu
);
4422 EXPORT_SYMBOL(amd_iommu_update_ga
);