2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY
, /* metadata may not be changed */
204 PM_FAIL
, /* all I/O fails */
207 struct pool_features
{
210 bool zero_new_blocks
:1;
211 bool discard_enabled
:1;
212 bool discard_passdown
:1;
213 bool error_if_no_space
:1;
217 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
218 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
219 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
221 #define CELL_SORT_ARRAY_SIZE 8192
224 struct list_head list
;
225 struct dm_target
*ti
; /* Only set if a pool target is bound */
227 struct mapped_device
*pool_md
;
228 struct block_device
*md_dev
;
229 struct dm_pool_metadata
*pmd
;
231 dm_block_t low_water_blocks
;
232 uint32_t sectors_per_block
;
233 int sectors_per_block_shift
;
235 struct pool_features pf
;
236 bool low_water_triggered
:1; /* A dm event has been sent */
238 bool out_of_data_space
:1;
240 struct dm_bio_prison
*prison
;
241 struct dm_kcopyd_client
*copier
;
243 struct workqueue_struct
*wq
;
244 struct throttle throttle
;
245 struct work_struct worker
;
246 struct delayed_work waker
;
247 struct delayed_work no_space_timeout
;
249 unsigned long last_commit_jiffies
;
253 struct bio_list deferred_flush_bios
;
254 struct list_head prepared_mappings
;
255 struct list_head prepared_discards
;
256 struct list_head prepared_discards_pt2
;
257 struct list_head active_thins
;
259 struct dm_deferred_set
*shared_read_ds
;
260 struct dm_deferred_set
*all_io_ds
;
262 struct dm_thin_new_mapping
*next_mapping
;
263 mempool_t
*mapping_pool
;
265 process_bio_fn process_bio
;
266 process_bio_fn process_discard
;
268 process_cell_fn process_cell
;
269 process_cell_fn process_discard_cell
;
271 process_mapping_fn process_prepared_mapping
;
272 process_mapping_fn process_prepared_discard
;
273 process_mapping_fn process_prepared_discard_pt2
;
275 struct dm_bio_prison_cell
**cell_sort_array
;
278 static enum pool_mode
get_pool_mode(struct pool
*pool
);
279 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
282 * Target context for a pool.
285 struct dm_target
*ti
;
287 struct dm_dev
*data_dev
;
288 struct dm_dev
*metadata_dev
;
289 struct dm_target_callbacks callbacks
;
291 dm_block_t low_water_blocks
;
292 struct pool_features requested_pf
; /* Features requested during table load */
293 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
297 * Target context for a thin.
300 struct list_head list
;
301 struct dm_dev
*pool_dev
;
302 struct dm_dev
*origin_dev
;
303 sector_t origin_size
;
307 struct dm_thin_device
*td
;
308 struct mapped_device
*thin_md
;
312 struct list_head deferred_cells
;
313 struct bio_list deferred_bio_list
;
314 struct bio_list retry_on_resume_list
;
315 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
318 * Ensures the thin is not destroyed until the worker has finished
319 * iterating the active_thins list.
322 struct completion can_destroy
;
325 /*----------------------------------------------------------------*/
327 static bool block_size_is_power_of_two(struct pool
*pool
)
329 return pool
->sectors_per_block_shift
>= 0;
332 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
334 return block_size_is_power_of_two(pool
) ?
335 (b
<< pool
->sectors_per_block_shift
) :
336 (b
* pool
->sectors_per_block
);
339 /*----------------------------------------------------------------*/
343 struct blk_plug plug
;
344 struct bio
*parent_bio
;
348 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
353 blk_start_plug(&op
->plug
);
354 op
->parent_bio
= parent
;
358 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
360 struct thin_c
*tc
= op
->tc
;
361 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
362 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
364 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
365 GFP_NOWAIT
, 0, &op
->bio
);
368 static void end_discard(struct discard_op
*op
, int r
)
372 * Even if one of the calls to issue_discard failed, we
373 * need to wait for the chain to complete.
375 bio_chain(op
->bio
, op
->parent_bio
);
376 bio_set_op_attrs(op
->bio
, REQ_OP_DISCARD
, 0);
380 blk_finish_plug(&op
->plug
);
383 * Even if r is set, there could be sub discards in flight that we
386 if (r
&& !op
->parent_bio
->bi_error
)
387 op
->parent_bio
->bi_error
= r
;
388 bio_endio(op
->parent_bio
);
391 /*----------------------------------------------------------------*/
394 * wake_worker() is used when new work is queued and when pool_resume is
395 * ready to continue deferred IO processing.
397 static void wake_worker(struct pool
*pool
)
399 queue_work(pool
->wq
, &pool
->worker
);
402 /*----------------------------------------------------------------*/
404 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
405 struct dm_bio_prison_cell
**cell_result
)
408 struct dm_bio_prison_cell
*cell_prealloc
;
411 * Allocate a cell from the prison's mempool.
412 * This might block but it can't fail.
414 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
416 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
419 * We reused an old cell; we can get rid of
422 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
427 static void cell_release(struct pool
*pool
,
428 struct dm_bio_prison_cell
*cell
,
429 struct bio_list
*bios
)
431 dm_cell_release(pool
->prison
, cell
, bios
);
432 dm_bio_prison_free_cell(pool
->prison
, cell
);
435 static void cell_visit_release(struct pool
*pool
,
436 void (*fn
)(void *, struct dm_bio_prison_cell
*),
438 struct dm_bio_prison_cell
*cell
)
440 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
441 dm_bio_prison_free_cell(pool
->prison
, cell
);
444 static void cell_release_no_holder(struct pool
*pool
,
445 struct dm_bio_prison_cell
*cell
,
446 struct bio_list
*bios
)
448 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
449 dm_bio_prison_free_cell(pool
->prison
, cell
);
452 static void cell_error_with_code(struct pool
*pool
,
453 struct dm_bio_prison_cell
*cell
, int error_code
)
455 dm_cell_error(pool
->prison
, cell
, error_code
);
456 dm_bio_prison_free_cell(pool
->prison
, cell
);
459 static int get_pool_io_error_code(struct pool
*pool
)
461 return pool
->out_of_data_space
? -ENOSPC
: -EIO
;
464 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
466 int error
= get_pool_io_error_code(pool
);
468 cell_error_with_code(pool
, cell
, error
);
471 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
473 cell_error_with_code(pool
, cell
, 0);
476 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
478 cell_error_with_code(pool
, cell
, DM_ENDIO_REQUEUE
);
481 /*----------------------------------------------------------------*/
484 * A global list of pools that uses a struct mapped_device as a key.
486 static struct dm_thin_pool_table
{
488 struct list_head pools
;
489 } dm_thin_pool_table
;
491 static void pool_table_init(void)
493 mutex_init(&dm_thin_pool_table
.mutex
);
494 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
497 static void __pool_table_insert(struct pool
*pool
)
499 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
500 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
503 static void __pool_table_remove(struct pool
*pool
)
505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
506 list_del(&pool
->list
);
509 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
511 struct pool
*pool
= NULL
, *tmp
;
513 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
515 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
516 if (tmp
->pool_md
== md
) {
525 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
527 struct pool
*pool
= NULL
, *tmp
;
529 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
531 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
532 if (tmp
->md_dev
== md_dev
) {
541 /*----------------------------------------------------------------*/
543 struct dm_thin_endio_hook
{
545 struct dm_deferred_entry
*shared_read_entry
;
546 struct dm_deferred_entry
*all_io_entry
;
547 struct dm_thin_new_mapping
*overwrite_mapping
;
548 struct rb_node rb_node
;
549 struct dm_bio_prison_cell
*cell
;
552 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
554 bio_list_merge(bios
, master
);
555 bio_list_init(master
);
558 static void error_bio_list(struct bio_list
*bios
, int error
)
562 while ((bio
= bio_list_pop(bios
))) {
563 bio
->bi_error
= error
;
568 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
, int error
)
570 struct bio_list bios
;
573 bio_list_init(&bios
);
575 spin_lock_irqsave(&tc
->lock
, flags
);
576 __merge_bio_list(&bios
, master
);
577 spin_unlock_irqrestore(&tc
->lock
, flags
);
579 error_bio_list(&bios
, error
);
582 static void requeue_deferred_cells(struct thin_c
*tc
)
584 struct pool
*pool
= tc
->pool
;
586 struct list_head cells
;
587 struct dm_bio_prison_cell
*cell
, *tmp
;
589 INIT_LIST_HEAD(&cells
);
591 spin_lock_irqsave(&tc
->lock
, flags
);
592 list_splice_init(&tc
->deferred_cells
, &cells
);
593 spin_unlock_irqrestore(&tc
->lock
, flags
);
595 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
596 cell_requeue(pool
, cell
);
599 static void requeue_io(struct thin_c
*tc
)
601 struct bio_list bios
;
604 bio_list_init(&bios
);
606 spin_lock_irqsave(&tc
->lock
, flags
);
607 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
608 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
609 spin_unlock_irqrestore(&tc
->lock
, flags
);
611 error_bio_list(&bios
, DM_ENDIO_REQUEUE
);
612 requeue_deferred_cells(tc
);
615 static void error_retry_list_with_code(struct pool
*pool
, int error
)
620 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
621 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
625 static void error_retry_list(struct pool
*pool
)
627 int error
= get_pool_io_error_code(pool
);
629 error_retry_list_with_code(pool
, error
);
633 * This section of code contains the logic for processing a thin device's IO.
634 * Much of the code depends on pool object resources (lists, workqueues, etc)
635 * but most is exclusively called from the thin target rather than the thin-pool
639 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
641 struct pool
*pool
= tc
->pool
;
642 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
644 if (block_size_is_power_of_two(pool
))
645 block_nr
>>= pool
->sectors_per_block_shift
;
647 (void) sector_div(block_nr
, pool
->sectors_per_block
);
653 * Returns the _complete_ blocks that this bio covers.
655 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
656 dm_block_t
*begin
, dm_block_t
*end
)
658 struct pool
*pool
= tc
->pool
;
659 sector_t b
= bio
->bi_iter
.bi_sector
;
660 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
662 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
664 if (block_size_is_power_of_two(pool
)) {
665 b
>>= pool
->sectors_per_block_shift
;
666 e
>>= pool
->sectors_per_block_shift
;
668 (void) sector_div(b
, pool
->sectors_per_block
);
669 (void) sector_div(e
, pool
->sectors_per_block
);
673 /* Can happen if the bio is within a single block. */
680 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
682 struct pool
*pool
= tc
->pool
;
683 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
685 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
686 if (block_size_is_power_of_two(pool
))
687 bio
->bi_iter
.bi_sector
=
688 (block
<< pool
->sectors_per_block_shift
) |
689 (bi_sector
& (pool
->sectors_per_block
- 1));
691 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
692 sector_div(bi_sector
, pool
->sectors_per_block
);
695 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
697 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
700 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
702 return (bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
)) &&
703 dm_thin_changed_this_transaction(tc
->td
);
706 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
708 struct dm_thin_endio_hook
*h
;
710 if (bio_op(bio
) == REQ_OP_DISCARD
)
713 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
714 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
717 static void issue(struct thin_c
*tc
, struct bio
*bio
)
719 struct pool
*pool
= tc
->pool
;
722 if (!bio_triggers_commit(tc
, bio
)) {
723 generic_make_request(bio
);
728 * Complete bio with an error if earlier I/O caused changes to
729 * the metadata that can't be committed e.g, due to I/O errors
730 * on the metadata device.
732 if (dm_thin_aborted_changes(tc
->td
)) {
738 * Batch together any bios that trigger commits and then issue a
739 * single commit for them in process_deferred_bios().
741 spin_lock_irqsave(&pool
->lock
, flags
);
742 bio_list_add(&pool
->deferred_flush_bios
, bio
);
743 spin_unlock_irqrestore(&pool
->lock
, flags
);
746 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
748 remap_to_origin(tc
, bio
);
752 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
755 remap(tc
, bio
, block
);
759 /*----------------------------------------------------------------*/
762 * Bio endio functions.
764 struct dm_thin_new_mapping
{
765 struct list_head list
;
771 * Track quiescing, copying and zeroing preparation actions. When this
772 * counter hits zero the block is prepared and can be inserted into the
775 atomic_t prepare_actions
;
779 dm_block_t virt_begin
, virt_end
;
780 dm_block_t data_block
;
781 struct dm_bio_prison_cell
*cell
;
784 * If the bio covers the whole area of a block then we can avoid
785 * zeroing or copying. Instead this bio is hooked. The bio will
786 * still be in the cell, so care has to be taken to avoid issuing
790 bio_end_io_t
*saved_bi_end_io
;
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
795 struct pool
*pool
= m
->tc
->pool
;
797 if (atomic_dec_and_test(&m
->prepare_actions
)) {
798 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
803 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
806 struct pool
*pool
= m
->tc
->pool
;
808 spin_lock_irqsave(&pool
->lock
, flags
);
809 __complete_mapping_preparation(m
);
810 spin_unlock_irqrestore(&pool
->lock
, flags
);
813 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
815 struct dm_thin_new_mapping
*m
= context
;
817 m
->err
= read_err
|| write_err
? -EIO
: 0;
818 complete_mapping_preparation(m
);
821 static void overwrite_endio(struct bio
*bio
)
823 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
824 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
826 bio
->bi_end_io
= m
->saved_bi_end_io
;
828 m
->err
= bio
->bi_error
;
829 complete_mapping_preparation(m
);
832 /*----------------------------------------------------------------*/
839 * Prepared mapping jobs.
843 * This sends the bios in the cell, except the original holder, back
844 * to the deferred_bios list.
846 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
848 struct pool
*pool
= tc
->pool
;
851 spin_lock_irqsave(&tc
->lock
, flags
);
852 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
853 spin_unlock_irqrestore(&tc
->lock
, flags
);
858 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
862 struct bio_list defer_bios
;
863 struct bio_list issue_bios
;
866 static void __inc_remap_and_issue_cell(void *context
,
867 struct dm_bio_prison_cell
*cell
)
869 struct remap_info
*info
= context
;
872 while ((bio
= bio_list_pop(&cell
->bios
))) {
873 if (bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
) ||
874 bio_op(bio
) == REQ_OP_DISCARD
)
875 bio_list_add(&info
->defer_bios
, bio
);
877 inc_all_io_entry(info
->tc
->pool
, bio
);
880 * We can't issue the bios with the bio prison lock
881 * held, so we add them to a list to issue on
882 * return from this function.
884 bio_list_add(&info
->issue_bios
, bio
);
889 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
890 struct dm_bio_prison_cell
*cell
,
894 struct remap_info info
;
897 bio_list_init(&info
.defer_bios
);
898 bio_list_init(&info
.issue_bios
);
901 * We have to be careful to inc any bios we're about to issue
902 * before the cell is released, and avoid a race with new bios
903 * being added to the cell.
905 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
908 while ((bio
= bio_list_pop(&info
.defer_bios
)))
909 thin_defer_bio(tc
, bio
);
911 while ((bio
= bio_list_pop(&info
.issue_bios
)))
912 remap_and_issue(info
.tc
, bio
, block
);
915 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
917 cell_error(m
->tc
->pool
, m
->cell
);
919 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
922 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
924 struct thin_c
*tc
= m
->tc
;
925 struct pool
*pool
= tc
->pool
;
926 struct bio
*bio
= m
->bio
;
930 cell_error(pool
, m
->cell
);
935 * Commit the prepared block into the mapping btree.
936 * Any I/O for this block arriving after this point will get
937 * remapped to it directly.
939 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
941 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
942 cell_error(pool
, m
->cell
);
947 * Release any bios held while the block was being provisioned.
948 * If we are processing a write bio that completely covers the block,
949 * we already processed it so can ignore it now when processing
950 * the bios in the cell.
953 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
956 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
957 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
958 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
963 mempool_free(m
, pool
->mapping_pool
);
966 /*----------------------------------------------------------------*/
968 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
970 struct thin_c
*tc
= m
->tc
;
972 cell_defer_no_holder(tc
, m
->cell
);
973 mempool_free(m
, tc
->pool
->mapping_pool
);
976 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
978 bio_io_error(m
->bio
);
979 free_discard_mapping(m
);
982 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
985 free_discard_mapping(m
);
988 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
991 struct thin_c
*tc
= m
->tc
;
993 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
995 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
996 bio_io_error(m
->bio
);
1000 cell_defer_no_holder(tc
, m
->cell
);
1001 mempool_free(m
, tc
->pool
->mapping_pool
);
1004 /*----------------------------------------------------------------*/
1006 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1007 struct bio
*discard_parent
)
1010 * We've already unmapped this range of blocks, but before we
1011 * passdown we have to check that these blocks are now unused.
1015 struct thin_c
*tc
= m
->tc
;
1016 struct pool
*pool
= tc
->pool
;
1017 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1018 struct discard_op op
;
1020 begin_discard(&op
, tc
, discard_parent
);
1022 /* find start of unmapped run */
1023 for (; b
< end
; b
++) {
1024 r
= dm_pool_block_is_used(pool
->pmd
, b
, &used
);
1035 /* find end of run */
1036 for (e
= b
+ 1; e
!= end
; e
++) {
1037 r
= dm_pool_block_is_used(pool
->pmd
, e
, &used
);
1045 r
= issue_discard(&op
, b
, e
);
1052 end_discard(&op
, r
);
1055 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1057 unsigned long flags
;
1058 struct pool
*pool
= m
->tc
->pool
;
1060 spin_lock_irqsave(&pool
->lock
, flags
);
1061 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1062 spin_unlock_irqrestore(&pool
->lock
, flags
);
1066 static void passdown_endio(struct bio
*bio
)
1069 * It doesn't matter if the passdown discard failed, we still want
1070 * to unmap (we ignore err).
1072 queue_passdown_pt2(bio
->bi_private
);
1075 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1078 struct thin_c
*tc
= m
->tc
;
1079 struct pool
*pool
= tc
->pool
;
1080 struct bio
*discard_parent
;
1081 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1084 * Only this thread allocates blocks, so we can be sure that the
1085 * newly unmapped blocks will not be allocated before the end of
1088 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1090 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1091 bio_io_error(m
->bio
);
1092 cell_defer_no_holder(tc
, m
->cell
);
1093 mempool_free(m
, pool
->mapping_pool
);
1097 discard_parent
= bio_alloc(GFP_NOIO
, 1);
1098 if (!discard_parent
) {
1099 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100 dm_device_name(tc
->pool
->pool_md
));
1101 queue_passdown_pt2(m
);
1104 discard_parent
->bi_end_io
= passdown_endio
;
1105 discard_parent
->bi_private
= m
;
1107 if (m
->maybe_shared
)
1108 passdown_double_checking_shared_status(m
, discard_parent
);
1110 struct discard_op op
;
1112 begin_discard(&op
, tc
, discard_parent
);
1113 r
= issue_discard(&op
, m
->data_block
, data_end
);
1114 end_discard(&op
, r
);
1119 * Increment the unmapped blocks. This prevents a race between the
1120 * passdown io and reallocation of freed blocks.
1122 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1124 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1125 bio_io_error(m
->bio
);
1126 cell_defer_no_holder(tc
, m
->cell
);
1127 mempool_free(m
, pool
->mapping_pool
);
1132 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1135 struct thin_c
*tc
= m
->tc
;
1136 struct pool
*pool
= tc
->pool
;
1139 * The passdown has completed, so now we can decrement all those
1142 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1143 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1145 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1146 bio_io_error(m
->bio
);
1150 cell_defer_no_holder(tc
, m
->cell
);
1151 mempool_free(m
, pool
->mapping_pool
);
1154 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1155 process_mapping_fn
*fn
)
1157 unsigned long flags
;
1158 struct list_head maps
;
1159 struct dm_thin_new_mapping
*m
, *tmp
;
1161 INIT_LIST_HEAD(&maps
);
1162 spin_lock_irqsave(&pool
->lock
, flags
);
1163 list_splice_init(head
, &maps
);
1164 spin_unlock_irqrestore(&pool
->lock
, flags
);
1166 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1171 * Deferred bio jobs.
1173 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1175 return bio
->bi_iter
.bi_size
==
1176 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1179 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1181 return (bio_data_dir(bio
) == WRITE
) &&
1182 io_overlaps_block(pool
, bio
);
1185 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1188 *save
= bio
->bi_end_io
;
1189 bio
->bi_end_io
= fn
;
1192 static int ensure_next_mapping(struct pool
*pool
)
1194 if (pool
->next_mapping
)
1197 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
1199 return pool
->next_mapping
? 0 : -ENOMEM
;
1202 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1204 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1206 BUG_ON(!pool
->next_mapping
);
1208 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1209 INIT_LIST_HEAD(&m
->list
);
1212 pool
->next_mapping
= NULL
;
1217 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1218 sector_t begin
, sector_t end
)
1221 struct dm_io_region to
;
1223 to
.bdev
= tc
->pool_dev
->bdev
;
1225 to
.count
= end
- begin
;
1227 r
= dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1229 DMERR_LIMIT("dm_kcopyd_zero() failed");
1230 copy_complete(1, 1, m
);
1234 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1235 dm_block_t data_begin
,
1236 struct dm_thin_new_mapping
*m
)
1238 struct pool
*pool
= tc
->pool
;
1239 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1241 h
->overwrite_mapping
= m
;
1243 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1244 inc_all_io_entry(pool
, bio
);
1245 remap_and_issue(tc
, bio
, data_begin
);
1249 * A partial copy also needs to zero the uncopied region.
1251 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1252 struct dm_dev
*origin
, dm_block_t data_origin
,
1253 dm_block_t data_dest
,
1254 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1258 struct pool
*pool
= tc
->pool
;
1259 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1262 m
->virt_begin
= virt_block
;
1263 m
->virt_end
= virt_block
+ 1u;
1264 m
->data_block
= data_dest
;
1268 * quiesce action + copy action + an extra reference held for the
1269 * duration of this function (we may need to inc later for a
1272 atomic_set(&m
->prepare_actions
, 3);
1274 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1275 complete_mapping_preparation(m
); /* already quiesced */
1278 * IO to pool_dev remaps to the pool target's data_dev.
1280 * If the whole block of data is being overwritten, we can issue the
1281 * bio immediately. Otherwise we use kcopyd to clone the data first.
1283 if (io_overwrites_block(pool
, bio
))
1284 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1286 struct dm_io_region from
, to
;
1288 from
.bdev
= origin
->bdev
;
1289 from
.sector
= data_origin
* pool
->sectors_per_block
;
1292 to
.bdev
= tc
->pool_dev
->bdev
;
1293 to
.sector
= data_dest
* pool
->sectors_per_block
;
1296 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1297 0, copy_complete
, m
);
1299 DMERR_LIMIT("dm_kcopyd_copy() failed");
1300 copy_complete(1, 1, m
);
1303 * We allow the zero to be issued, to simplify the
1304 * error path. Otherwise we'd need to start
1305 * worrying about decrementing the prepare_actions
1311 * Do we need to zero a tail region?
1313 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1314 atomic_inc(&m
->prepare_actions
);
1316 data_dest
* pool
->sectors_per_block
+ len
,
1317 (data_dest
+ 1) * pool
->sectors_per_block
);
1321 complete_mapping_preparation(m
); /* drop our ref */
1324 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1325 dm_block_t data_origin
, dm_block_t data_dest
,
1326 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1328 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1329 data_origin
, data_dest
, cell
, bio
,
1330 tc
->pool
->sectors_per_block
);
1333 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1334 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1337 struct pool
*pool
= tc
->pool
;
1338 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1340 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1342 m
->virt_begin
= virt_block
;
1343 m
->virt_end
= virt_block
+ 1u;
1344 m
->data_block
= data_block
;
1348 * If the whole block of data is being overwritten or we are not
1349 * zeroing pre-existing data, we can issue the bio immediately.
1350 * Otherwise we use kcopyd to zero the data first.
1352 if (pool
->pf
.zero_new_blocks
) {
1353 if (io_overwrites_block(pool
, bio
))
1354 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1356 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1357 (data_block
+ 1) * pool
->sectors_per_block
);
1359 process_prepared_mapping(m
);
1362 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1363 dm_block_t data_dest
,
1364 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1366 struct pool
*pool
= tc
->pool
;
1367 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1368 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1370 if (virt_block_end
<= tc
->origin_size
)
1371 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1372 virt_block
, data_dest
, cell
, bio
,
1373 pool
->sectors_per_block
);
1375 else if (virt_block_begin
< tc
->origin_size
)
1376 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1377 virt_block
, data_dest
, cell
, bio
,
1378 tc
->origin_size
- virt_block_begin
);
1381 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1384 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1386 static void check_for_space(struct pool
*pool
)
1391 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1394 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1399 set_pool_mode(pool
, PM_WRITE
);
1403 * A non-zero return indicates read_only or fail_io mode.
1404 * Many callers don't care about the return value.
1406 static int commit(struct pool
*pool
)
1410 if (get_pool_mode(pool
) >= PM_READ_ONLY
)
1413 r
= dm_pool_commit_metadata(pool
->pmd
);
1415 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1417 check_for_space(pool
);
1422 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1424 unsigned long flags
;
1426 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1427 DMWARN("%s: reached low water mark for data device: sending event.",
1428 dm_device_name(pool
->pool_md
));
1429 spin_lock_irqsave(&pool
->lock
, flags
);
1430 pool
->low_water_triggered
= true;
1431 spin_unlock_irqrestore(&pool
->lock
, flags
);
1432 dm_table_event(pool
->ti
->table
);
1436 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1439 dm_block_t free_blocks
;
1440 struct pool
*pool
= tc
->pool
;
1442 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1445 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1447 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1451 check_low_water_mark(pool
, free_blocks
);
1455 * Try to commit to see if that will free up some
1462 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1464 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1469 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1474 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1476 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1484 * If we have run out of space, queue bios until the device is
1485 * resumed, presumably after having been reloaded with more space.
1487 static void retry_on_resume(struct bio
*bio
)
1489 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1490 struct thin_c
*tc
= h
->tc
;
1491 unsigned long flags
;
1493 spin_lock_irqsave(&tc
->lock
, flags
);
1494 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1495 spin_unlock_irqrestore(&tc
->lock
, flags
);
1498 static int should_error_unserviceable_bio(struct pool
*pool
)
1500 enum pool_mode m
= get_pool_mode(pool
);
1504 /* Shouldn't get here */
1505 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508 case PM_OUT_OF_DATA_SPACE
:
1509 return pool
->pf
.error_if_no_space
? -ENOSPC
: 0;
1515 /* Shouldn't get here */
1516 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1521 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1523 int error
= should_error_unserviceable_bio(pool
);
1526 bio
->bi_error
= error
;
1529 retry_on_resume(bio
);
1532 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1535 struct bio_list bios
;
1538 error
= should_error_unserviceable_bio(pool
);
1540 cell_error_with_code(pool
, cell
, error
);
1544 bio_list_init(&bios
);
1545 cell_release(pool
, cell
, &bios
);
1547 while ((bio
= bio_list_pop(&bios
)))
1548 retry_on_resume(bio
);
1551 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1552 struct dm_bio_prison_cell
*virt_cell
)
1554 struct pool
*pool
= tc
->pool
;
1555 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1558 * We don't need to lock the data blocks, since there's no
1559 * passdown. We only lock data blocks for allocation and breaking sharing.
1562 m
->virt_begin
= virt_cell
->key
.block_begin
;
1563 m
->virt_end
= virt_cell
->key
.block_end
;
1564 m
->cell
= virt_cell
;
1565 m
->bio
= virt_cell
->holder
;
1567 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1568 pool
->process_prepared_discard(m
);
1571 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1574 struct pool
*pool
= tc
->pool
;
1578 struct dm_cell_key data_key
;
1579 struct dm_bio_prison_cell
*data_cell
;
1580 struct dm_thin_new_mapping
*m
;
1581 dm_block_t virt_begin
, virt_end
, data_begin
;
1583 while (begin
!= end
) {
1584 r
= ensure_next_mapping(pool
);
1586 /* we did our best */
1589 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1590 &data_begin
, &maybe_shared
);
1593 * Silently fail, letting any mappings we've
1598 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1599 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1600 /* contention, we'll give up with this range */
1606 * IO may still be going to the destination block. We must
1607 * quiesce before we can do the removal.
1609 m
= get_next_mapping(pool
);
1611 m
->maybe_shared
= maybe_shared
;
1612 m
->virt_begin
= virt_begin
;
1613 m
->virt_end
= virt_end
;
1614 m
->data_block
= data_begin
;
1615 m
->cell
= data_cell
;
1619 * The parent bio must not complete before sub discard bios are
1620 * chained to it (see end_discard's bio_chain)!
1622 * This per-mapping bi_remaining increment is paired with
1623 * the implicit decrement that occurs via bio_endio() in
1626 bio_inc_remaining(bio
);
1627 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1628 pool
->process_prepared_discard(m
);
1634 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1636 struct bio
*bio
= virt_cell
->holder
;
1637 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1640 * The virt_cell will only get freed once the origin bio completes.
1641 * This means it will remain locked while all the individual
1642 * passdown bios are in flight.
1644 h
->cell
= virt_cell
;
1645 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1648 * We complete the bio now, knowing that the bi_remaining field
1649 * will prevent completion until the sub range discards have
1655 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1657 dm_block_t begin
, end
;
1658 struct dm_cell_key virt_key
;
1659 struct dm_bio_prison_cell
*virt_cell
;
1661 get_bio_block_range(tc
, bio
, &begin
, &end
);
1664 * The discard covers less than a block.
1670 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1671 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1673 * Potential starvation issue: We're relying on the
1674 * fs/application being well behaved, and not trying to
1675 * send IO to a region at the same time as discarding it.
1676 * If they do this persistently then it's possible this
1677 * cell will never be granted.
1681 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1684 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1685 struct dm_cell_key
*key
,
1686 struct dm_thin_lookup_result
*lookup_result
,
1687 struct dm_bio_prison_cell
*cell
)
1690 dm_block_t data_block
;
1691 struct pool
*pool
= tc
->pool
;
1693 r
= alloc_data_block(tc
, &data_block
);
1696 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1697 data_block
, cell
, bio
);
1701 retry_bios_on_resume(pool
, cell
);
1705 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1707 cell_error(pool
, cell
);
1712 static void __remap_and_issue_shared_cell(void *context
,
1713 struct dm_bio_prison_cell
*cell
)
1715 struct remap_info
*info
= context
;
1718 while ((bio
= bio_list_pop(&cell
->bios
))) {
1719 if ((bio_data_dir(bio
) == WRITE
) ||
1720 (bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
) ||
1721 bio_op(bio
) == REQ_OP_DISCARD
))
1722 bio_list_add(&info
->defer_bios
, bio
);
1724 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));;
1726 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1727 inc_all_io_entry(info
->tc
->pool
, bio
);
1728 bio_list_add(&info
->issue_bios
, bio
);
1733 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1734 struct dm_bio_prison_cell
*cell
,
1738 struct remap_info info
;
1741 bio_list_init(&info
.defer_bios
);
1742 bio_list_init(&info
.issue_bios
);
1744 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1747 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1748 thin_defer_bio(tc
, bio
);
1750 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1751 remap_and_issue(tc
, bio
, block
);
1754 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1756 struct dm_thin_lookup_result
*lookup_result
,
1757 struct dm_bio_prison_cell
*virt_cell
)
1759 struct dm_bio_prison_cell
*data_cell
;
1760 struct pool
*pool
= tc
->pool
;
1761 struct dm_cell_key key
;
1764 * If cell is already occupied, then sharing is already in the process
1765 * of being broken so we have nothing further to do here.
1767 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1768 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1769 cell_defer_no_holder(tc
, virt_cell
);
1773 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1774 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1775 cell_defer_no_holder(tc
, virt_cell
);
1777 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1779 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1780 inc_all_io_entry(pool
, bio
);
1781 remap_and_issue(tc
, bio
, lookup_result
->block
);
1783 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1784 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1788 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1789 struct dm_bio_prison_cell
*cell
)
1792 dm_block_t data_block
;
1793 struct pool
*pool
= tc
->pool
;
1796 * Remap empty bios (flushes) immediately, without provisioning.
1798 if (!bio
->bi_iter
.bi_size
) {
1799 inc_all_io_entry(pool
, bio
);
1800 cell_defer_no_holder(tc
, cell
);
1802 remap_and_issue(tc
, bio
, 0);
1807 * Fill read bios with zeroes and complete them immediately.
1809 if (bio_data_dir(bio
) == READ
) {
1811 cell_defer_no_holder(tc
, cell
);
1816 r
= alloc_data_block(tc
, &data_block
);
1820 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1822 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1826 retry_bios_on_resume(pool
, cell
);
1830 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832 cell_error(pool
, cell
);
1837 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1840 struct pool
*pool
= tc
->pool
;
1841 struct bio
*bio
= cell
->holder
;
1842 dm_block_t block
= get_bio_block(tc
, bio
);
1843 struct dm_thin_lookup_result lookup_result
;
1845 if (tc
->requeue_mode
) {
1846 cell_requeue(pool
, cell
);
1850 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1853 if (lookup_result
.shared
)
1854 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1856 inc_all_io_entry(pool
, bio
);
1857 remap_and_issue(tc
, bio
, lookup_result
.block
);
1858 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1863 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1864 inc_all_io_entry(pool
, bio
);
1865 cell_defer_no_holder(tc
, cell
);
1867 if (bio_end_sector(bio
) <= tc
->origin_size
)
1868 remap_to_origin_and_issue(tc
, bio
);
1870 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1872 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1873 remap_to_origin_and_issue(tc
, bio
);
1880 provision_block(tc
, bio
, block
, cell
);
1884 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886 cell_defer_no_holder(tc
, cell
);
1892 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1894 struct pool
*pool
= tc
->pool
;
1895 dm_block_t block
= get_bio_block(tc
, bio
);
1896 struct dm_bio_prison_cell
*cell
;
1897 struct dm_cell_key key
;
1900 * If cell is already occupied, then the block is already
1901 * being provisioned so we have nothing further to do here.
1903 build_virtual_key(tc
->td
, block
, &key
);
1904 if (bio_detain(pool
, &key
, bio
, &cell
))
1907 process_cell(tc
, cell
);
1910 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
1911 struct dm_bio_prison_cell
*cell
)
1914 int rw
= bio_data_dir(bio
);
1915 dm_block_t block
= get_bio_block(tc
, bio
);
1916 struct dm_thin_lookup_result lookup_result
;
1918 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1921 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
1922 handle_unserviceable_bio(tc
->pool
, bio
);
1924 cell_defer_no_holder(tc
, cell
);
1926 inc_all_io_entry(tc
->pool
, bio
);
1927 remap_and_issue(tc
, bio
, lookup_result
.block
);
1929 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1935 cell_defer_no_holder(tc
, cell
);
1937 handle_unserviceable_bio(tc
->pool
, bio
);
1941 if (tc
->origin_dev
) {
1942 inc_all_io_entry(tc
->pool
, bio
);
1943 remap_to_origin_and_issue(tc
, bio
);
1952 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1955 cell_defer_no_holder(tc
, cell
);
1961 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1963 __process_bio_read_only(tc
, bio
, NULL
);
1966 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1968 __process_bio_read_only(tc
, cell
->holder
, cell
);
1971 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
1976 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1981 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1983 cell_success(tc
->pool
, cell
);
1986 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1988 cell_error(tc
->pool
, cell
);
1992 * FIXME: should we also commit due to size of transaction, measured in
1995 static int need_commit_due_to_time(struct pool
*pool
)
1997 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
1998 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2001 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2002 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2006 struct rb_node
**rbp
, *parent
;
2007 struct dm_thin_endio_hook
*pbd
;
2008 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2010 rbp
= &tc
->sort_bio_list
.rb_node
;
2014 pbd
= thin_pbd(parent
);
2016 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2017 rbp
= &(*rbp
)->rb_left
;
2019 rbp
= &(*rbp
)->rb_right
;
2022 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2023 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2024 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2027 static void __extract_sorted_bios(struct thin_c
*tc
)
2029 struct rb_node
*node
;
2030 struct dm_thin_endio_hook
*pbd
;
2033 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2034 pbd
= thin_pbd(node
);
2035 bio
= thin_bio(pbd
);
2037 bio_list_add(&tc
->deferred_bio_list
, bio
);
2038 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2041 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2044 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2047 struct bio_list bios
;
2049 bio_list_init(&bios
);
2050 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2051 bio_list_init(&tc
->deferred_bio_list
);
2053 /* Sort deferred_bio_list using rb-tree */
2054 while ((bio
= bio_list_pop(&bios
)))
2055 __thin_bio_rb_add(tc
, bio
);
2058 * Transfer the sorted bios in sort_bio_list back to
2059 * deferred_bio_list to allow lockless submission of
2062 __extract_sorted_bios(tc
);
2065 static void process_thin_deferred_bios(struct thin_c
*tc
)
2067 struct pool
*pool
= tc
->pool
;
2068 unsigned long flags
;
2070 struct bio_list bios
;
2071 struct blk_plug plug
;
2074 if (tc
->requeue_mode
) {
2075 error_thin_bio_list(tc
, &tc
->deferred_bio_list
, DM_ENDIO_REQUEUE
);
2079 bio_list_init(&bios
);
2081 spin_lock_irqsave(&tc
->lock
, flags
);
2083 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2084 spin_unlock_irqrestore(&tc
->lock
, flags
);
2088 __sort_thin_deferred_bios(tc
);
2090 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2091 bio_list_init(&tc
->deferred_bio_list
);
2093 spin_unlock_irqrestore(&tc
->lock
, flags
);
2095 blk_start_plug(&plug
);
2096 while ((bio
= bio_list_pop(&bios
))) {
2098 * If we've got no free new_mapping structs, and processing
2099 * this bio might require one, we pause until there are some
2100 * prepared mappings to process.
2102 if (ensure_next_mapping(pool
)) {
2103 spin_lock_irqsave(&tc
->lock
, flags
);
2104 bio_list_add(&tc
->deferred_bio_list
, bio
);
2105 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2106 spin_unlock_irqrestore(&tc
->lock
, flags
);
2110 if (bio_op(bio
) == REQ_OP_DISCARD
)
2111 pool
->process_discard(tc
, bio
);
2113 pool
->process_bio(tc
, bio
);
2115 if ((count
++ & 127) == 0) {
2116 throttle_work_update(&pool
->throttle
);
2117 dm_pool_issue_prefetches(pool
->pmd
);
2120 blk_finish_plug(&plug
);
2123 static int cmp_cells(const void *lhs
, const void *rhs
)
2125 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2126 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2128 BUG_ON(!lhs_cell
->holder
);
2129 BUG_ON(!rhs_cell
->holder
);
2131 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2134 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2140 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2143 struct dm_bio_prison_cell
*cell
, *tmp
;
2145 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2146 if (count
>= CELL_SORT_ARRAY_SIZE
)
2149 pool
->cell_sort_array
[count
++] = cell
;
2150 list_del(&cell
->user_list
);
2153 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2158 static void process_thin_deferred_cells(struct thin_c
*tc
)
2160 struct pool
*pool
= tc
->pool
;
2161 unsigned long flags
;
2162 struct list_head cells
;
2163 struct dm_bio_prison_cell
*cell
;
2164 unsigned i
, j
, count
;
2166 INIT_LIST_HEAD(&cells
);
2168 spin_lock_irqsave(&tc
->lock
, flags
);
2169 list_splice_init(&tc
->deferred_cells
, &cells
);
2170 spin_unlock_irqrestore(&tc
->lock
, flags
);
2172 if (list_empty(&cells
))
2176 count
= sort_cells(tc
->pool
, &cells
);
2178 for (i
= 0; i
< count
; i
++) {
2179 cell
= pool
->cell_sort_array
[i
];
2180 BUG_ON(!cell
->holder
);
2183 * If we've got no free new_mapping structs, and processing
2184 * this bio might require one, we pause until there are some
2185 * prepared mappings to process.
2187 if (ensure_next_mapping(pool
)) {
2188 for (j
= i
; j
< count
; j
++)
2189 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2191 spin_lock_irqsave(&tc
->lock
, flags
);
2192 list_splice(&cells
, &tc
->deferred_cells
);
2193 spin_unlock_irqrestore(&tc
->lock
, flags
);
2197 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2198 pool
->process_discard_cell(tc
, cell
);
2200 pool
->process_cell(tc
, cell
);
2202 } while (!list_empty(&cells
));
2205 static void thin_get(struct thin_c
*tc
);
2206 static void thin_put(struct thin_c
*tc
);
2209 * We can't hold rcu_read_lock() around code that can block. So we
2210 * find a thin with the rcu lock held; bump a refcount; then drop
2213 static struct thin_c
*get_first_thin(struct pool
*pool
)
2215 struct thin_c
*tc
= NULL
;
2218 if (!list_empty(&pool
->active_thins
)) {
2219 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2227 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2229 struct thin_c
*old_tc
= tc
;
2232 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2244 static void process_deferred_bios(struct pool
*pool
)
2246 unsigned long flags
;
2248 struct bio_list bios
;
2251 tc
= get_first_thin(pool
);
2253 process_thin_deferred_cells(tc
);
2254 process_thin_deferred_bios(tc
);
2255 tc
= get_next_thin(pool
, tc
);
2259 * If there are any deferred flush bios, we must commit
2260 * the metadata before issuing them.
2262 bio_list_init(&bios
);
2263 spin_lock_irqsave(&pool
->lock
, flags
);
2264 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2265 bio_list_init(&pool
->deferred_flush_bios
);
2266 spin_unlock_irqrestore(&pool
->lock
, flags
);
2268 if (bio_list_empty(&bios
) &&
2269 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2273 while ((bio
= bio_list_pop(&bios
)))
2277 pool
->last_commit_jiffies
= jiffies
;
2279 while ((bio
= bio_list_pop(&bios
)))
2280 generic_make_request(bio
);
2283 static void do_worker(struct work_struct
*ws
)
2285 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2287 throttle_work_start(&pool
->throttle
);
2288 dm_pool_issue_prefetches(pool
->pmd
);
2289 throttle_work_update(&pool
->throttle
);
2290 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2291 throttle_work_update(&pool
->throttle
);
2292 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2293 throttle_work_update(&pool
->throttle
);
2294 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2295 throttle_work_update(&pool
->throttle
);
2296 process_deferred_bios(pool
);
2297 throttle_work_complete(&pool
->throttle
);
2301 * We want to commit periodically so that not too much
2302 * unwritten data builds up.
2304 static void do_waker(struct work_struct
*ws
)
2306 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2308 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2311 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
);
2314 * We're holding onto IO to allow userland time to react. After the
2315 * timeout either the pool will have been resized (and thus back in
2316 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2318 static void do_no_space_timeout(struct work_struct
*ws
)
2320 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2323 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2324 pool
->pf
.error_if_no_space
= true;
2325 notify_of_pool_mode_change_to_oods(pool
);
2326 error_retry_list_with_code(pool
, -ENOSPC
);
2330 /*----------------------------------------------------------------*/
2333 struct work_struct worker
;
2334 struct completion complete
;
2337 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2339 return container_of(ws
, struct pool_work
, worker
);
2342 static void pool_work_complete(struct pool_work
*pw
)
2344 complete(&pw
->complete
);
2347 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2348 void (*fn
)(struct work_struct
*))
2350 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2351 init_completion(&pw
->complete
);
2352 queue_work(pool
->wq
, &pw
->worker
);
2353 wait_for_completion(&pw
->complete
);
2356 /*----------------------------------------------------------------*/
2358 struct noflush_work
{
2359 struct pool_work pw
;
2363 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2365 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2368 static void do_noflush_start(struct work_struct
*ws
)
2370 struct noflush_work
*w
= to_noflush(ws
);
2371 w
->tc
->requeue_mode
= true;
2373 pool_work_complete(&w
->pw
);
2376 static void do_noflush_stop(struct work_struct
*ws
)
2378 struct noflush_work
*w
= to_noflush(ws
);
2379 w
->tc
->requeue_mode
= false;
2380 pool_work_complete(&w
->pw
);
2383 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2385 struct noflush_work w
;
2388 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2391 /*----------------------------------------------------------------*/
2393 static enum pool_mode
get_pool_mode(struct pool
*pool
)
2395 return pool
->pf
.mode
;
2398 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
2400 dm_table_event(pool
->ti
->table
);
2401 DMINFO("%s: switching pool to %s mode",
2402 dm_device_name(pool
->pool_md
), new_mode
);
2405 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
)
2407 if (!pool
->pf
.error_if_no_space
)
2408 notify_of_pool_mode_change(pool
, "out-of-data-space (queue IO)");
2410 notify_of_pool_mode_change(pool
, "out-of-data-space (error IO)");
2413 static bool passdown_enabled(struct pool_c
*pt
)
2415 return pt
->adjusted_pf
.discard_passdown
;
2418 static void set_discard_callbacks(struct pool
*pool
)
2420 struct pool_c
*pt
= pool
->ti
->private;
2422 if (passdown_enabled(pt
)) {
2423 pool
->process_discard_cell
= process_discard_cell_passdown
;
2424 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2425 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2427 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2428 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2432 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2434 struct pool_c
*pt
= pool
->ti
->private;
2435 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2436 enum pool_mode old_mode
= get_pool_mode(pool
);
2437 unsigned long no_space_timeout
= ACCESS_ONCE(no_space_timeout_secs
) * HZ
;
2440 * Never allow the pool to transition to PM_WRITE mode if user
2441 * intervention is required to verify metadata and data consistency.
2443 if (new_mode
== PM_WRITE
&& needs_check
) {
2444 DMERR("%s: unable to switch pool to write mode until repaired.",
2445 dm_device_name(pool
->pool_md
));
2446 if (old_mode
!= new_mode
)
2447 new_mode
= old_mode
;
2449 new_mode
= PM_READ_ONLY
;
2452 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2453 * not going to recover without a thin_repair. So we never let the
2454 * pool move out of the old mode.
2456 if (old_mode
== PM_FAIL
)
2457 new_mode
= old_mode
;
2461 if (old_mode
!= new_mode
)
2462 notify_of_pool_mode_change(pool
, "failure");
2463 dm_pool_metadata_read_only(pool
->pmd
);
2464 pool
->process_bio
= process_bio_fail
;
2465 pool
->process_discard
= process_bio_fail
;
2466 pool
->process_cell
= process_cell_fail
;
2467 pool
->process_discard_cell
= process_cell_fail
;
2468 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2469 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2471 error_retry_list(pool
);
2475 if (old_mode
!= new_mode
)
2476 notify_of_pool_mode_change(pool
, "read-only");
2477 dm_pool_metadata_read_only(pool
->pmd
);
2478 pool
->process_bio
= process_bio_read_only
;
2479 pool
->process_discard
= process_bio_success
;
2480 pool
->process_cell
= process_cell_read_only
;
2481 pool
->process_discard_cell
= process_cell_success
;
2482 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2483 pool
->process_prepared_discard
= process_prepared_discard_success
;
2485 error_retry_list(pool
);
2488 case PM_OUT_OF_DATA_SPACE
:
2490 * Ideally we'd never hit this state; the low water mark
2491 * would trigger userland to extend the pool before we
2492 * completely run out of data space. However, many small
2493 * IOs to unprovisioned space can consume data space at an
2494 * alarming rate. Adjust your low water mark if you're
2495 * frequently seeing this mode.
2497 if (old_mode
!= new_mode
)
2498 notify_of_pool_mode_change_to_oods(pool
);
2499 pool
->out_of_data_space
= true;
2500 pool
->process_bio
= process_bio_read_only
;
2501 pool
->process_discard
= process_discard_bio
;
2502 pool
->process_cell
= process_cell_read_only
;
2503 pool
->process_prepared_mapping
= process_prepared_mapping
;
2504 set_discard_callbacks(pool
);
2506 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2507 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2511 if (old_mode
!= new_mode
)
2512 notify_of_pool_mode_change(pool
, "write");
2513 pool
->out_of_data_space
= false;
2514 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2515 dm_pool_metadata_read_write(pool
->pmd
);
2516 pool
->process_bio
= process_bio
;
2517 pool
->process_discard
= process_discard_bio
;
2518 pool
->process_cell
= process_cell
;
2519 pool
->process_prepared_mapping
= process_prepared_mapping
;
2520 set_discard_callbacks(pool
);
2524 pool
->pf
.mode
= new_mode
;
2526 * The pool mode may have changed, sync it so bind_control_target()
2527 * doesn't cause an unexpected mode transition on resume.
2529 pt
->adjusted_pf
.mode
= new_mode
;
2532 static void abort_transaction(struct pool
*pool
)
2534 const char *dev_name
= dm_device_name(pool
->pool_md
);
2536 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2537 if (dm_pool_abort_metadata(pool
->pmd
)) {
2538 DMERR("%s: failed to abort metadata transaction", dev_name
);
2539 set_pool_mode(pool
, PM_FAIL
);
2542 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2543 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2544 set_pool_mode(pool
, PM_FAIL
);
2548 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2550 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2551 dm_device_name(pool
->pool_md
), op
, r
);
2553 abort_transaction(pool
);
2554 set_pool_mode(pool
, PM_READ_ONLY
);
2557 /*----------------------------------------------------------------*/
2560 * Mapping functions.
2564 * Called only while mapping a thin bio to hand it over to the workqueue.
2566 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2568 unsigned long flags
;
2569 struct pool
*pool
= tc
->pool
;
2571 spin_lock_irqsave(&tc
->lock
, flags
);
2572 bio_list_add(&tc
->deferred_bio_list
, bio
);
2573 spin_unlock_irqrestore(&tc
->lock
, flags
);
2578 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2580 struct pool
*pool
= tc
->pool
;
2582 throttle_lock(&pool
->throttle
);
2583 thin_defer_bio(tc
, bio
);
2584 throttle_unlock(&pool
->throttle
);
2587 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2589 unsigned long flags
;
2590 struct pool
*pool
= tc
->pool
;
2592 throttle_lock(&pool
->throttle
);
2593 spin_lock_irqsave(&tc
->lock
, flags
);
2594 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2595 spin_unlock_irqrestore(&tc
->lock
, flags
);
2596 throttle_unlock(&pool
->throttle
);
2601 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2603 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2606 h
->shared_read_entry
= NULL
;
2607 h
->all_io_entry
= NULL
;
2608 h
->overwrite_mapping
= NULL
;
2613 * Non-blocking function called from the thin target's map function.
2615 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2618 struct thin_c
*tc
= ti
->private;
2619 dm_block_t block
= get_bio_block(tc
, bio
);
2620 struct dm_thin_device
*td
= tc
->td
;
2621 struct dm_thin_lookup_result result
;
2622 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2623 struct dm_cell_key key
;
2625 thin_hook_bio(tc
, bio
);
2627 if (tc
->requeue_mode
) {
2628 bio
->bi_error
= DM_ENDIO_REQUEUE
;
2630 return DM_MAPIO_SUBMITTED
;
2633 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2635 return DM_MAPIO_SUBMITTED
;
2638 if (bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
) ||
2639 bio_op(bio
) == REQ_OP_DISCARD
) {
2640 thin_defer_bio_with_throttle(tc
, bio
);
2641 return DM_MAPIO_SUBMITTED
;
2645 * We must hold the virtual cell before doing the lookup, otherwise
2646 * there's a race with discard.
2648 build_virtual_key(tc
->td
, block
, &key
);
2649 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2650 return DM_MAPIO_SUBMITTED
;
2652 r
= dm_thin_find_block(td
, block
, 0, &result
);
2655 * Note that we defer readahead too.
2659 if (unlikely(result
.shared
)) {
2661 * We have a race condition here between the
2662 * result.shared value returned by the lookup and
2663 * snapshot creation, which may cause new
2666 * To avoid this always quiesce the origin before
2667 * taking the snap. You want to do this anyway to
2668 * ensure a consistent application view
2671 * More distant ancestors are irrelevant. The
2672 * shared flag will be set in their case.
2674 thin_defer_cell(tc
, virt_cell
);
2675 return DM_MAPIO_SUBMITTED
;
2678 build_data_key(tc
->td
, result
.block
, &key
);
2679 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2680 cell_defer_no_holder(tc
, virt_cell
);
2681 return DM_MAPIO_SUBMITTED
;
2684 inc_all_io_entry(tc
->pool
, bio
);
2685 cell_defer_no_holder(tc
, data_cell
);
2686 cell_defer_no_holder(tc
, virt_cell
);
2688 remap(tc
, bio
, result
.block
);
2689 return DM_MAPIO_REMAPPED
;
2693 thin_defer_cell(tc
, virt_cell
);
2694 return DM_MAPIO_SUBMITTED
;
2698 * Must always call bio_io_error on failure.
2699 * dm_thin_find_block can fail with -EINVAL if the
2700 * pool is switched to fail-io mode.
2703 cell_defer_no_holder(tc
, virt_cell
);
2704 return DM_MAPIO_SUBMITTED
;
2708 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2710 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2711 struct request_queue
*q
;
2713 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2716 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2717 return bdi_congested(&q
->backing_dev_info
, bdi_bits
);
2720 static void requeue_bios(struct pool
*pool
)
2722 unsigned long flags
;
2726 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2727 spin_lock_irqsave(&tc
->lock
, flags
);
2728 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2729 bio_list_init(&tc
->retry_on_resume_list
);
2730 spin_unlock_irqrestore(&tc
->lock
, flags
);
2735 /*----------------------------------------------------------------
2736 * Binding of control targets to a pool object
2737 *--------------------------------------------------------------*/
2738 static bool data_dev_supports_discard(struct pool_c
*pt
)
2740 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2742 return q
&& blk_queue_discard(q
);
2745 static bool is_factor(sector_t block_size
, uint32_t n
)
2747 return !sector_div(block_size
, n
);
2751 * If discard_passdown was enabled verify that the data device
2752 * supports discards. Disable discard_passdown if not.
2754 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2756 struct pool
*pool
= pt
->pool
;
2757 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2758 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2759 const char *reason
= NULL
;
2760 char buf
[BDEVNAME_SIZE
];
2762 if (!pt
->adjusted_pf
.discard_passdown
)
2765 if (!data_dev_supports_discard(pt
))
2766 reason
= "discard unsupported";
2768 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2769 reason
= "max discard sectors smaller than a block";
2772 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2773 pt
->adjusted_pf
.discard_passdown
= false;
2777 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2779 struct pool_c
*pt
= ti
->private;
2782 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784 enum pool_mode old_mode
= get_pool_mode(pool
);
2785 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2788 * Don't change the pool's mode until set_pool_mode() below.
2789 * Otherwise the pool's process_* function pointers may
2790 * not match the desired pool mode.
2792 pt
->adjusted_pf
.mode
= old_mode
;
2795 pool
->pf
= pt
->adjusted_pf
;
2796 pool
->low_water_blocks
= pt
->low_water_blocks
;
2798 set_pool_mode(pool
, new_mode
);
2803 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2809 /*----------------------------------------------------------------
2811 *--------------------------------------------------------------*/
2812 /* Initialize pool features. */
2813 static void pool_features_init(struct pool_features
*pf
)
2815 pf
->mode
= PM_WRITE
;
2816 pf
->zero_new_blocks
= true;
2817 pf
->discard_enabled
= true;
2818 pf
->discard_passdown
= true;
2819 pf
->error_if_no_space
= false;
2822 static void __pool_destroy(struct pool
*pool
)
2824 __pool_table_remove(pool
);
2826 vfree(pool
->cell_sort_array
);
2827 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2828 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2830 dm_bio_prison_destroy(pool
->prison
);
2831 dm_kcopyd_client_destroy(pool
->copier
);
2834 destroy_workqueue(pool
->wq
);
2836 if (pool
->next_mapping
)
2837 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
2838 mempool_destroy(pool
->mapping_pool
);
2839 dm_deferred_set_destroy(pool
->shared_read_ds
);
2840 dm_deferred_set_destroy(pool
->all_io_ds
);
2844 static struct kmem_cache
*_new_mapping_cache
;
2846 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2847 struct block_device
*metadata_dev
,
2848 unsigned long block_size
,
2849 int read_only
, char **error
)
2854 struct dm_pool_metadata
*pmd
;
2855 bool format_device
= read_only
? false : true;
2857 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2859 *error
= "Error creating metadata object";
2860 return (struct pool
*)pmd
;
2863 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
2865 *error
= "Error allocating memory for pool";
2866 err_p
= ERR_PTR(-ENOMEM
);
2871 pool
->sectors_per_block
= block_size
;
2872 if (block_size
& (block_size
- 1))
2873 pool
->sectors_per_block_shift
= -1;
2875 pool
->sectors_per_block_shift
= __ffs(block_size
);
2876 pool
->low_water_blocks
= 0;
2877 pool_features_init(&pool
->pf
);
2878 pool
->prison
= dm_bio_prison_create();
2879 if (!pool
->prison
) {
2880 *error
= "Error creating pool's bio prison";
2881 err_p
= ERR_PTR(-ENOMEM
);
2885 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2886 if (IS_ERR(pool
->copier
)) {
2887 r
= PTR_ERR(pool
->copier
);
2888 *error
= "Error creating pool's kcopyd client";
2890 goto bad_kcopyd_client
;
2894 * Create singlethreaded workqueue that will service all devices
2895 * that use this metadata.
2897 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2899 *error
= "Error creating pool's workqueue";
2900 err_p
= ERR_PTR(-ENOMEM
);
2904 throttle_init(&pool
->throttle
);
2905 INIT_WORK(&pool
->worker
, do_worker
);
2906 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2907 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2908 spin_lock_init(&pool
->lock
);
2909 bio_list_init(&pool
->deferred_flush_bios
);
2910 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2911 INIT_LIST_HEAD(&pool
->prepared_discards
);
2912 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
2913 INIT_LIST_HEAD(&pool
->active_thins
);
2914 pool
->low_water_triggered
= false;
2915 pool
->suspended
= true;
2916 pool
->out_of_data_space
= false;
2918 pool
->shared_read_ds
= dm_deferred_set_create();
2919 if (!pool
->shared_read_ds
) {
2920 *error
= "Error creating pool's shared read deferred set";
2921 err_p
= ERR_PTR(-ENOMEM
);
2922 goto bad_shared_read_ds
;
2925 pool
->all_io_ds
= dm_deferred_set_create();
2926 if (!pool
->all_io_ds
) {
2927 *error
= "Error creating pool's all io deferred set";
2928 err_p
= ERR_PTR(-ENOMEM
);
2932 pool
->next_mapping
= NULL
;
2933 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2934 _new_mapping_cache
);
2935 if (!pool
->mapping_pool
) {
2936 *error
= "Error creating pool's mapping mempool";
2937 err_p
= ERR_PTR(-ENOMEM
);
2938 goto bad_mapping_pool
;
2941 pool
->cell_sort_array
= vmalloc(sizeof(*pool
->cell_sort_array
) * CELL_SORT_ARRAY_SIZE
);
2942 if (!pool
->cell_sort_array
) {
2943 *error
= "Error allocating cell sort array";
2944 err_p
= ERR_PTR(-ENOMEM
);
2945 goto bad_sort_array
;
2948 pool
->ref_count
= 1;
2949 pool
->last_commit_jiffies
= jiffies
;
2950 pool
->pool_md
= pool_md
;
2951 pool
->md_dev
= metadata_dev
;
2952 __pool_table_insert(pool
);
2957 mempool_destroy(pool
->mapping_pool
);
2959 dm_deferred_set_destroy(pool
->all_io_ds
);
2961 dm_deferred_set_destroy(pool
->shared_read_ds
);
2963 destroy_workqueue(pool
->wq
);
2965 dm_kcopyd_client_destroy(pool
->copier
);
2967 dm_bio_prison_destroy(pool
->prison
);
2971 if (dm_pool_metadata_close(pmd
))
2972 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2977 static void __pool_inc(struct pool
*pool
)
2979 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2983 static void __pool_dec(struct pool
*pool
)
2985 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2986 BUG_ON(!pool
->ref_count
);
2987 if (!--pool
->ref_count
)
2988 __pool_destroy(pool
);
2991 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2992 struct block_device
*metadata_dev
,
2993 unsigned long block_size
, int read_only
,
2994 char **error
, int *created
)
2996 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2999 if (pool
->pool_md
!= pool_md
) {
3000 *error
= "metadata device already in use by a pool";
3001 return ERR_PTR(-EBUSY
);
3006 pool
= __pool_table_lookup(pool_md
);
3008 if (pool
->md_dev
!= metadata_dev
) {
3009 *error
= "different pool cannot replace a pool";
3010 return ERR_PTR(-EINVAL
);
3015 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
3023 /*----------------------------------------------------------------
3024 * Pool target methods
3025 *--------------------------------------------------------------*/
3026 static void pool_dtr(struct dm_target
*ti
)
3028 struct pool_c
*pt
= ti
->private;
3030 mutex_lock(&dm_thin_pool_table
.mutex
);
3032 unbind_control_target(pt
->pool
, ti
);
3033 __pool_dec(pt
->pool
);
3034 dm_put_device(ti
, pt
->metadata_dev
);
3035 dm_put_device(ti
, pt
->data_dev
);
3038 mutex_unlock(&dm_thin_pool_table
.mutex
);
3041 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3042 struct dm_target
*ti
)
3046 const char *arg_name
;
3048 static struct dm_arg _args
[] = {
3049 {0, 4, "Invalid number of pool feature arguments"},
3053 * No feature arguments supplied.
3058 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3062 while (argc
&& !r
) {
3063 arg_name
= dm_shift_arg(as
);
3066 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3067 pf
->zero_new_blocks
= false;
3069 else if (!strcasecmp(arg_name
, "ignore_discard"))
3070 pf
->discard_enabled
= false;
3072 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3073 pf
->discard_passdown
= false;
3075 else if (!strcasecmp(arg_name
, "read_only"))
3076 pf
->mode
= PM_READ_ONLY
;
3078 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3079 pf
->error_if_no_space
= true;
3082 ti
->error
= "Unrecognised pool feature requested";
3091 static void metadata_low_callback(void *context
)
3093 struct pool
*pool
= context
;
3095 DMWARN("%s: reached low water mark for metadata device: sending event.",
3096 dm_device_name(pool
->pool_md
));
3098 dm_table_event(pool
->ti
->table
);
3101 static sector_t
get_dev_size(struct block_device
*bdev
)
3103 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3106 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3108 sector_t metadata_dev_size
= get_dev_size(bdev
);
3109 char buffer
[BDEVNAME_SIZE
];
3111 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3112 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3113 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3116 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3118 sector_t metadata_dev_size
= get_dev_size(bdev
);
3120 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3121 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3123 return metadata_dev_size
;
3126 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3128 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3130 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3132 return metadata_dev_size
;
3136 * When a metadata threshold is crossed a dm event is triggered, and
3137 * userland should respond by growing the metadata device. We could let
3138 * userland set the threshold, like we do with the data threshold, but I'm
3139 * not sure they know enough to do this well.
3141 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3144 * 4M is ample for all ops with the possible exception of thin
3145 * device deletion which is harmless if it fails (just retry the
3146 * delete after you've grown the device).
3148 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3149 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3153 * thin-pool <metadata dev> <data dev>
3154 * <data block size (sectors)>
3155 * <low water mark (blocks)>
3156 * [<#feature args> [<arg>]*]
3158 * Optional feature arguments are:
3159 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3160 * ignore_discard: disable discard
3161 * no_discard_passdown: don't pass discards down to the data device
3162 * read_only: Don't allow any changes to be made to the pool metadata.
3163 * error_if_no_space: error IOs, instead of queueing, if no space.
3165 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3167 int r
, pool_created
= 0;
3170 struct pool_features pf
;
3171 struct dm_arg_set as
;
3172 struct dm_dev
*data_dev
;
3173 unsigned long block_size
;
3174 dm_block_t low_water_blocks
;
3175 struct dm_dev
*metadata_dev
;
3176 fmode_t metadata_mode
;
3179 * FIXME Remove validation from scope of lock.
3181 mutex_lock(&dm_thin_pool_table
.mutex
);
3184 ti
->error
= "Invalid argument count";
3193 * Set default pool features.
3195 pool_features_init(&pf
);
3197 dm_consume_args(&as
, 4);
3198 r
= parse_pool_features(&as
, &pf
, ti
);
3202 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3203 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3205 ti
->error
= "Error opening metadata block device";
3208 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3210 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3212 ti
->error
= "Error getting data device";
3216 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3217 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3218 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3219 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3220 ti
->error
= "Invalid block size";
3225 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3226 ti
->error
= "Invalid low water mark";
3231 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3237 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3238 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3245 * 'pool_created' reflects whether this is the first table load.
3246 * Top level discard support is not allowed to be changed after
3247 * initial load. This would require a pool reload to trigger thin
3250 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3251 ti
->error
= "Discard support cannot be disabled once enabled";
3253 goto out_flags_changed
;
3258 pt
->metadata_dev
= metadata_dev
;
3259 pt
->data_dev
= data_dev
;
3260 pt
->low_water_blocks
= low_water_blocks
;
3261 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3262 ti
->num_flush_bios
= 1;
3265 * Only need to enable discards if the pool should pass
3266 * them down to the data device. The thin device's discard
3267 * processing will cause mappings to be removed from the btree.
3269 ti
->discard_zeroes_data_unsupported
= true;
3270 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3271 ti
->num_discard_bios
= 1;
3274 * Setting 'discards_supported' circumvents the normal
3275 * stacking of discard limits (this keeps the pool and
3276 * thin devices' discard limits consistent).
3278 ti
->discards_supported
= true;
3282 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3283 calc_metadata_threshold(pt
),
3284 metadata_low_callback
,
3287 goto out_flags_changed
;
3289 pt
->callbacks
.congested_fn
= pool_is_congested
;
3290 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3292 mutex_unlock(&dm_thin_pool_table
.mutex
);
3301 dm_put_device(ti
, data_dev
);
3303 dm_put_device(ti
, metadata_dev
);
3305 mutex_unlock(&dm_thin_pool_table
.mutex
);
3310 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3313 struct pool_c
*pt
= ti
->private;
3314 struct pool
*pool
= pt
->pool
;
3315 unsigned long flags
;
3318 * As this is a singleton target, ti->begin is always zero.
3320 spin_lock_irqsave(&pool
->lock
, flags
);
3321 bio
->bi_bdev
= pt
->data_dev
->bdev
;
3322 r
= DM_MAPIO_REMAPPED
;
3323 spin_unlock_irqrestore(&pool
->lock
, flags
);
3328 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3331 struct pool_c
*pt
= ti
->private;
3332 struct pool
*pool
= pt
->pool
;
3333 sector_t data_size
= ti
->len
;
3334 dm_block_t sb_data_size
;
3336 *need_commit
= false;
3338 (void) sector_div(data_size
, pool
->sectors_per_block
);
3340 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3342 DMERR("%s: failed to retrieve data device size",
3343 dm_device_name(pool
->pool_md
));
3347 if (data_size
< sb_data_size
) {
3348 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349 dm_device_name(pool
->pool_md
),
3350 (unsigned long long)data_size
, sb_data_size
);
3353 } else if (data_size
> sb_data_size
) {
3354 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3355 DMERR("%s: unable to grow the data device until repaired.",
3356 dm_device_name(pool
->pool_md
));
3361 DMINFO("%s: growing the data device from %llu to %llu blocks",
3362 dm_device_name(pool
->pool_md
),
3363 sb_data_size
, (unsigned long long)data_size
);
3364 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3366 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3370 *need_commit
= true;
3376 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3379 struct pool_c
*pt
= ti
->private;
3380 struct pool
*pool
= pt
->pool
;
3381 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3383 *need_commit
= false;
3385 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3387 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3389 DMERR("%s: failed to retrieve metadata device size",
3390 dm_device_name(pool
->pool_md
));
3394 if (metadata_dev_size
< sb_metadata_dev_size
) {
3395 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396 dm_device_name(pool
->pool_md
),
3397 metadata_dev_size
, sb_metadata_dev_size
);
3400 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3401 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3402 DMERR("%s: unable to grow the metadata device until repaired.",
3403 dm_device_name(pool
->pool_md
));
3407 warn_if_metadata_device_too_big(pool
->md_dev
);
3408 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409 dm_device_name(pool
->pool_md
),
3410 sb_metadata_dev_size
, metadata_dev_size
);
3411 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3413 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3417 *need_commit
= true;
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3434 static int pool_preresume(struct dm_target
*ti
)
3437 bool need_commit1
, need_commit2
;
3438 struct pool_c
*pt
= ti
->private;
3439 struct pool
*pool
= pt
->pool
;
3442 * Take control of the pool object.
3444 r
= bind_control_target(pool
, ti
);
3448 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3452 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3456 if (need_commit1
|| need_commit2
)
3457 (void) commit(pool
);
3462 static void pool_suspend_active_thins(struct pool
*pool
)
3466 /* Suspend all active thin devices */
3467 tc
= get_first_thin(pool
);
3469 dm_internal_suspend_noflush(tc
->thin_md
);
3470 tc
= get_next_thin(pool
, tc
);
3474 static void pool_resume_active_thins(struct pool
*pool
)
3478 /* Resume all active thin devices */
3479 tc
= get_first_thin(pool
);
3481 dm_internal_resume(tc
->thin_md
);
3482 tc
= get_next_thin(pool
, tc
);
3486 static void pool_resume(struct dm_target
*ti
)
3488 struct pool_c
*pt
= ti
->private;
3489 struct pool
*pool
= pt
->pool
;
3490 unsigned long flags
;
3493 * Must requeue active_thins' bios and then resume
3494 * active_thins _before_ clearing 'suspend' flag.
3497 pool_resume_active_thins(pool
);
3499 spin_lock_irqsave(&pool
->lock
, flags
);
3500 pool
->low_water_triggered
= false;
3501 pool
->suspended
= false;
3502 spin_unlock_irqrestore(&pool
->lock
, flags
);
3504 do_waker(&pool
->waker
.work
);
3507 static void pool_presuspend(struct dm_target
*ti
)
3509 struct pool_c
*pt
= ti
->private;
3510 struct pool
*pool
= pt
->pool
;
3511 unsigned long flags
;
3513 spin_lock_irqsave(&pool
->lock
, flags
);
3514 pool
->suspended
= true;
3515 spin_unlock_irqrestore(&pool
->lock
, flags
);
3517 pool_suspend_active_thins(pool
);
3520 static void pool_presuspend_undo(struct dm_target
*ti
)
3522 struct pool_c
*pt
= ti
->private;
3523 struct pool
*pool
= pt
->pool
;
3524 unsigned long flags
;
3526 pool_resume_active_thins(pool
);
3528 spin_lock_irqsave(&pool
->lock
, flags
);
3529 pool
->suspended
= false;
3530 spin_unlock_irqrestore(&pool
->lock
, flags
);
3533 static void pool_postsuspend(struct dm_target
*ti
)
3535 struct pool_c
*pt
= ti
->private;
3536 struct pool
*pool
= pt
->pool
;
3538 cancel_delayed_work_sync(&pool
->waker
);
3539 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3540 flush_workqueue(pool
->wq
);
3541 (void) commit(pool
);
3544 static int check_arg_count(unsigned argc
, unsigned args_required
)
3546 if (argc
!= args_required
) {
3547 DMWARN("Message received with %u arguments instead of %u.",
3548 argc
, args_required
);
3555 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3557 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3558 *dev_id
<= MAX_DEV_ID
)
3562 DMWARN("Message received with invalid device id: %s", arg
);
3567 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3572 r
= check_arg_count(argc
, 2);
3576 r
= read_dev_id(argv
[1], &dev_id
, 1);
3580 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3582 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3590 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3593 dm_thin_id origin_dev_id
;
3596 r
= check_arg_count(argc
, 3);
3600 r
= read_dev_id(argv
[1], &dev_id
, 1);
3604 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3608 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3610 DMWARN("Creation of new snapshot %s of device %s failed.",
3618 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3623 r
= check_arg_count(argc
, 2);
3627 r
= read_dev_id(argv
[1], &dev_id
, 1);
3631 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3633 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3638 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3640 dm_thin_id old_id
, new_id
;
3643 r
= check_arg_count(argc
, 3);
3647 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3648 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3652 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3653 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3657 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3659 DMWARN("Failed to change transaction id from %s to %s.",
3667 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3671 r
= check_arg_count(argc
, 1);
3675 (void) commit(pool
);
3677 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3679 DMWARN("reserve_metadata_snap message failed.");
3684 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3688 r
= check_arg_count(argc
, 1);
3692 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3694 DMWARN("release_metadata_snap message failed.");
3700 * Messages supported:
3701 * create_thin <dev_id>
3702 * create_snap <dev_id> <origin_id>
3704 * set_transaction_id <current_trans_id> <new_trans_id>
3705 * reserve_metadata_snap
3706 * release_metadata_snap
3708 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3711 struct pool_c
*pt
= ti
->private;
3712 struct pool
*pool
= pt
->pool
;
3714 if (get_pool_mode(pool
) >= PM_READ_ONLY
) {
3715 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716 dm_device_name(pool
->pool_md
));
3720 if (!strcasecmp(argv
[0], "create_thin"))
3721 r
= process_create_thin_mesg(argc
, argv
, pool
);
3723 else if (!strcasecmp(argv
[0], "create_snap"))
3724 r
= process_create_snap_mesg(argc
, argv
, pool
);
3726 else if (!strcasecmp(argv
[0], "delete"))
3727 r
= process_delete_mesg(argc
, argv
, pool
);
3729 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3730 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3732 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3733 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3735 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3736 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3739 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3742 (void) commit(pool
);
3747 static void emit_flags(struct pool_features
*pf
, char *result
,
3748 unsigned sz
, unsigned maxlen
)
3750 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3751 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3752 pf
->error_if_no_space
;
3753 DMEMIT("%u ", count
);
3755 if (!pf
->zero_new_blocks
)
3756 DMEMIT("skip_block_zeroing ");
3758 if (!pf
->discard_enabled
)
3759 DMEMIT("ignore_discard ");
3761 if (!pf
->discard_passdown
)
3762 DMEMIT("no_discard_passdown ");
3764 if (pf
->mode
== PM_READ_ONLY
)
3765 DMEMIT("read_only ");
3767 if (pf
->error_if_no_space
)
3768 DMEMIT("error_if_no_space ");
3773 * <transaction id> <used metadata sectors>/<total metadata sectors>
3774 * <used data sectors>/<total data sectors> <held metadata root>
3775 * <pool mode> <discard config> <no space config> <needs_check>
3777 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3778 unsigned status_flags
, char *result
, unsigned maxlen
)
3782 uint64_t transaction_id
;
3783 dm_block_t nr_free_blocks_data
;
3784 dm_block_t nr_free_blocks_metadata
;
3785 dm_block_t nr_blocks_data
;
3786 dm_block_t nr_blocks_metadata
;
3787 dm_block_t held_root
;
3788 char buf
[BDEVNAME_SIZE
];
3789 char buf2
[BDEVNAME_SIZE
];
3790 struct pool_c
*pt
= ti
->private;
3791 struct pool
*pool
= pt
->pool
;
3794 case STATUSTYPE_INFO
:
3795 if (get_pool_mode(pool
) == PM_FAIL
) {
3800 /* Commit to ensure statistics aren't out-of-date */
3801 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3802 (void) commit(pool
);
3804 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3806 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807 dm_device_name(pool
->pool_md
), r
);
3811 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3813 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814 dm_device_name(pool
->pool_md
), r
);
3818 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3820 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821 dm_device_name(pool
->pool_md
), r
);
3825 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3827 DMERR("%s: dm_pool_get_free_block_count returned %d",
3828 dm_device_name(pool
->pool_md
), r
);
3832 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3834 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835 dm_device_name(pool
->pool_md
), r
);
3839 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3841 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842 dm_device_name(pool
->pool_md
), r
);
3846 DMEMIT("%llu %llu/%llu %llu/%llu ",
3847 (unsigned long long)transaction_id
,
3848 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3849 (unsigned long long)nr_blocks_metadata
,
3850 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3851 (unsigned long long)nr_blocks_data
);
3854 DMEMIT("%llu ", held_root
);
3858 if (pool
->pf
.mode
== PM_OUT_OF_DATA_SPACE
)
3859 DMEMIT("out_of_data_space ");
3860 else if (pool
->pf
.mode
== PM_READ_ONLY
)
3865 if (!pool
->pf
.discard_enabled
)
3866 DMEMIT("ignore_discard ");
3867 else if (pool
->pf
.discard_passdown
)
3868 DMEMIT("discard_passdown ");
3870 DMEMIT("no_discard_passdown ");
3872 if (pool
->pf
.error_if_no_space
)
3873 DMEMIT("error_if_no_space ");
3875 DMEMIT("queue_if_no_space ");
3877 if (dm_pool_metadata_needs_check(pool
->pmd
))
3878 DMEMIT("needs_check ");
3884 case STATUSTYPE_TABLE
:
3885 DMEMIT("%s %s %lu %llu ",
3886 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3887 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3888 (unsigned long)pool
->sectors_per_block
,
3889 (unsigned long long)pt
->low_water_blocks
);
3890 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3899 static int pool_iterate_devices(struct dm_target
*ti
,
3900 iterate_devices_callout_fn fn
, void *data
)
3902 struct pool_c
*pt
= ti
->private;
3904 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3907 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3909 struct pool_c
*pt
= ti
->private;
3910 struct pool
*pool
= pt
->pool
;
3911 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3914 * If max_sectors is smaller than pool->sectors_per_block adjust it
3915 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916 * This is especially beneficial when the pool's data device is a RAID
3917 * device that has a full stripe width that matches pool->sectors_per_block
3918 * -- because even though partial RAID stripe-sized IOs will be issued to a
3919 * single RAID stripe; when aggregated they will end on a full RAID stripe
3920 * boundary.. which avoids additional partial RAID stripe writes cascading
3922 if (limits
->max_sectors
< pool
->sectors_per_block
) {
3923 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
3924 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
3925 limits
->max_sectors
--;
3926 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
3931 * If the system-determined stacked limits are compatible with the
3932 * pool's blocksize (io_opt is a factor) do not override them.
3934 if (io_opt_sectors
< pool
->sectors_per_block
||
3935 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
3936 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
3937 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
3939 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3940 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3944 * pt->adjusted_pf is a staging area for the actual features to use.
3945 * They get transferred to the live pool in bind_control_target()
3946 * called from pool_preresume().
3948 if (!pt
->adjusted_pf
.discard_enabled
) {
3950 * Must explicitly disallow stacking discard limits otherwise the
3951 * block layer will stack them if pool's data device has support.
3952 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953 * user to see that, so make sure to set all discard limits to 0.
3955 limits
->discard_granularity
= 0;
3959 disable_passdown_if_not_supported(pt
);
3962 * The pool uses the same discard limits as the underlying data
3963 * device. DM core has already set this up.
3967 static struct target_type pool_target
= {
3968 .name
= "thin-pool",
3969 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
3970 DM_TARGET_IMMUTABLE
,
3971 .version
= {1, 19, 0},
3972 .module
= THIS_MODULE
,
3976 .presuspend
= pool_presuspend
,
3977 .presuspend_undo
= pool_presuspend_undo
,
3978 .postsuspend
= pool_postsuspend
,
3979 .preresume
= pool_preresume
,
3980 .resume
= pool_resume
,
3981 .message
= pool_message
,
3982 .status
= pool_status
,
3983 .iterate_devices
= pool_iterate_devices
,
3984 .io_hints
= pool_io_hints
,
3987 /*----------------------------------------------------------------
3988 * Thin target methods
3989 *--------------------------------------------------------------*/
3990 static void thin_get(struct thin_c
*tc
)
3992 atomic_inc(&tc
->refcount
);
3995 static void thin_put(struct thin_c
*tc
)
3997 if (atomic_dec_and_test(&tc
->refcount
))
3998 complete(&tc
->can_destroy
);
4001 static void thin_dtr(struct dm_target
*ti
)
4003 struct thin_c
*tc
= ti
->private;
4004 unsigned long flags
;
4006 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4007 list_del_rcu(&tc
->list
);
4008 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4012 wait_for_completion(&tc
->can_destroy
);
4014 mutex_lock(&dm_thin_pool_table
.mutex
);
4016 __pool_dec(tc
->pool
);
4017 dm_pool_close_thin_device(tc
->td
);
4018 dm_put_device(ti
, tc
->pool_dev
);
4020 dm_put_device(ti
, tc
->origin_dev
);
4023 mutex_unlock(&dm_thin_pool_table
.mutex
);
4027 * Thin target parameters:
4029 * <pool_dev> <dev_id> [origin_dev]
4031 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032 * dev_id: the internal device identifier
4033 * origin_dev: a device external to the pool that should act as the origin
4035 * If the pool device has discards disabled, they get disabled for the thin
4038 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
4042 struct dm_dev
*pool_dev
, *origin_dev
;
4043 struct mapped_device
*pool_md
;
4044 unsigned long flags
;
4046 mutex_lock(&dm_thin_pool_table
.mutex
);
4048 if (argc
!= 2 && argc
!= 3) {
4049 ti
->error
= "Invalid argument count";
4054 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4056 ti
->error
= "Out of memory";
4060 tc
->thin_md
= dm_table_get_md(ti
->table
);
4061 spin_lock_init(&tc
->lock
);
4062 INIT_LIST_HEAD(&tc
->deferred_cells
);
4063 bio_list_init(&tc
->deferred_bio_list
);
4064 bio_list_init(&tc
->retry_on_resume_list
);
4065 tc
->sort_bio_list
= RB_ROOT
;
4068 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4070 ti
->error
= "Error opening origin device";
4071 goto bad_origin_dev
;
4073 tc
->origin_dev
= origin_dev
;
4076 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4078 ti
->error
= "Error opening pool device";
4081 tc
->pool_dev
= pool_dev
;
4083 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4084 ti
->error
= "Invalid device id";
4089 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4091 ti
->error
= "Couldn't get pool mapped device";
4096 tc
->pool
= __pool_table_lookup(pool_md
);
4098 ti
->error
= "Couldn't find pool object";
4100 goto bad_pool_lookup
;
4102 __pool_inc(tc
->pool
);
4104 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4105 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4110 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4112 ti
->error
= "Couldn't open thin internal device";
4116 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4120 ti
->num_flush_bios
= 1;
4121 ti
->flush_supported
= true;
4122 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4124 /* In case the pool supports discards, pass them on. */
4125 ti
->discard_zeroes_data_unsupported
= true;
4126 if (tc
->pool
->pf
.discard_enabled
) {
4127 ti
->discards_supported
= true;
4128 ti
->num_discard_bios
= 1;
4129 ti
->split_discard_bios
= false;
4132 mutex_unlock(&dm_thin_pool_table
.mutex
);
4134 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4135 if (tc
->pool
->suspended
) {
4136 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4137 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4138 ti
->error
= "Unable to activate thin device while pool is suspended";
4142 atomic_set(&tc
->refcount
, 1);
4143 init_completion(&tc
->can_destroy
);
4144 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4145 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4147 * This synchronize_rcu() call is needed here otherwise we risk a
4148 * wake_worker() call finding no bios to process (because the newly
4149 * added tc isn't yet visible). So this reduces latency since we
4150 * aren't then dependent on the periodic commit to wake_worker().
4159 dm_pool_close_thin_device(tc
->td
);
4161 __pool_dec(tc
->pool
);
4165 dm_put_device(ti
, tc
->pool_dev
);
4168 dm_put_device(ti
, tc
->origin_dev
);
4172 mutex_unlock(&dm_thin_pool_table
.mutex
);
4177 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4179 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4181 return thin_bio_map(ti
, bio
);
4184 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
4186 unsigned long flags
;
4187 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4188 struct list_head work
;
4189 struct dm_thin_new_mapping
*m
, *tmp
;
4190 struct pool
*pool
= h
->tc
->pool
;
4192 if (h
->shared_read_entry
) {
4193 INIT_LIST_HEAD(&work
);
4194 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4196 spin_lock_irqsave(&pool
->lock
, flags
);
4197 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4199 __complete_mapping_preparation(m
);
4201 spin_unlock_irqrestore(&pool
->lock
, flags
);
4204 if (h
->all_io_entry
) {
4205 INIT_LIST_HEAD(&work
);
4206 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4207 if (!list_empty(&work
)) {
4208 spin_lock_irqsave(&pool
->lock
, flags
);
4209 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4210 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4211 spin_unlock_irqrestore(&pool
->lock
, flags
);
4217 cell_defer_no_holder(h
->tc
, h
->cell
);
4222 static void thin_presuspend(struct dm_target
*ti
)
4224 struct thin_c
*tc
= ti
->private;
4226 if (dm_noflush_suspending(ti
))
4227 noflush_work(tc
, do_noflush_start
);
4230 static void thin_postsuspend(struct dm_target
*ti
)
4232 struct thin_c
*tc
= ti
->private;
4235 * The dm_noflush_suspending flag has been cleared by now, so
4236 * unfortunately we must always run this.
4238 noflush_work(tc
, do_noflush_stop
);
4241 static int thin_preresume(struct dm_target
*ti
)
4243 struct thin_c
*tc
= ti
->private;
4246 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4252 * <nr mapped sectors> <highest mapped sector>
4254 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4255 unsigned status_flags
, char *result
, unsigned maxlen
)
4259 dm_block_t mapped
, highest
;
4260 char buf
[BDEVNAME_SIZE
];
4261 struct thin_c
*tc
= ti
->private;
4263 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4272 case STATUSTYPE_INFO
:
4273 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4275 DMERR("dm_thin_get_mapped_count returned %d", r
);
4279 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4281 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4285 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4287 DMEMIT("%llu", ((highest
+ 1) *
4288 tc
->pool
->sectors_per_block
) - 1);
4293 case STATUSTYPE_TABLE
:
4295 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4296 (unsigned long) tc
->dev_id
);
4298 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4309 static int thin_iterate_devices(struct dm_target
*ti
,
4310 iterate_devices_callout_fn fn
, void *data
)
4313 struct thin_c
*tc
= ti
->private;
4314 struct pool
*pool
= tc
->pool
;
4317 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4318 * we follow a more convoluted path through to the pool's target.
4321 return 0; /* nothing is bound */
4323 blocks
= pool
->ti
->len
;
4324 (void) sector_div(blocks
, pool
->sectors_per_block
);
4326 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4331 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4333 struct thin_c
*tc
= ti
->private;
4334 struct pool
*pool
= tc
->pool
;
4336 if (!pool
->pf
.discard_enabled
)
4339 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4340 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4343 static struct target_type thin_target
= {
4345 .version
= {1, 19, 0},
4346 .module
= THIS_MODULE
,
4350 .end_io
= thin_endio
,
4351 .preresume
= thin_preresume
,
4352 .presuspend
= thin_presuspend
,
4353 .postsuspend
= thin_postsuspend
,
4354 .status
= thin_status
,
4355 .iterate_devices
= thin_iterate_devices
,
4356 .io_hints
= thin_io_hints
,
4359 /*----------------------------------------------------------------*/
4361 static int __init
dm_thin_init(void)
4367 r
= dm_register_target(&thin_target
);
4371 r
= dm_register_target(&pool_target
);
4373 goto bad_pool_target
;
4377 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4378 if (!_new_mapping_cache
)
4379 goto bad_new_mapping_cache
;
4383 bad_new_mapping_cache
:
4384 dm_unregister_target(&pool_target
);
4386 dm_unregister_target(&thin_target
);
4391 static void dm_thin_exit(void)
4393 dm_unregister_target(&thin_target
);
4394 dm_unregister_target(&pool_target
);
4396 kmem_cache_destroy(_new_mapping_cache
);
4399 module_init(dm_thin_init
);
4400 module_exit(dm_thin_exit
);
4402 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4403 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4405 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407 MODULE_LICENSE("GPL");