2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
75 * Number of guaranteed r10bios in case of extreme VM load:
77 #define NR_RAID10_BIOS 256
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
89 #define IO_MADE_GOOD ((struct bio *)2)
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
97 static int max_queued_requests
= 1024;
99 static void allow_barrier(struct r10conf
*conf
);
100 static void lower_barrier(struct r10conf
*conf
);
101 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
102 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
104 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
105 static void end_reshape_write(struct bio
*bio
);
106 static void end_reshape(struct r10conf
*conf
);
108 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
110 struct r10conf
*conf
= data
;
111 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
113 /* allocate a r10bio with room for raid_disks entries in the
115 return kzalloc(size
, gfp_flags
);
118 static void r10bio_pool_free(void *r10_bio
, void *data
)
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
138 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
140 struct r10conf
*conf
= data
;
142 struct r10bio
*r10_bio
;
147 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
151 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
152 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
153 nalloc
= conf
->copies
; /* resync */
155 nalloc
= 2; /* recovery */
160 for (j
= nalloc
; j
-- ; ) {
161 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
164 r10_bio
->devs
[j
].bio
= bio
;
165 if (!conf
->have_replacement
)
167 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
170 r10_bio
->devs
[j
].repl_bio
= bio
;
173 * Allocate RESYNC_PAGES data pages and attach them
176 for (j
= 0 ; j
< nalloc
; j
++) {
177 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
178 bio
= r10_bio
->devs
[j
].bio
;
179 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
180 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
181 &conf
->mddev
->recovery
)) {
182 /* we can share bv_page's during recovery
184 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
185 page
= rbio
->bi_io_vec
[i
].bv_page
;
188 page
= alloc_page(gfp_flags
);
192 bio
->bi_io_vec
[i
].bv_page
= page
;
194 rbio
->bi_io_vec
[i
].bv_page
= page
;
202 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
204 for (i
= 0; i
< RESYNC_PAGES
; i
++)
205 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
208 for ( ; j
< nalloc
; j
++) {
209 if (r10_bio
->devs
[j
].bio
)
210 bio_put(r10_bio
->devs
[j
].bio
);
211 if (r10_bio
->devs
[j
].repl_bio
)
212 bio_put(r10_bio
->devs
[j
].repl_bio
);
214 r10bio_pool_free(r10_bio
, conf
);
218 static void r10buf_pool_free(void *__r10_bio
, void *data
)
221 struct r10conf
*conf
= data
;
222 struct r10bio
*r10bio
= __r10_bio
;
225 for (j
=0; j
< conf
->copies
; j
++) {
226 struct bio
*bio
= r10bio
->devs
[j
].bio
;
228 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
229 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
230 bio
->bi_io_vec
[i
].bv_page
= NULL
;
234 bio
= r10bio
->devs
[j
].repl_bio
;
238 r10bio_pool_free(r10bio
, conf
);
241 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
245 for (i
= 0; i
< conf
->copies
; i
++) {
246 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
247 if (!BIO_SPECIAL(*bio
))
250 bio
= &r10_bio
->devs
[i
].repl_bio
;
251 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
257 static void free_r10bio(struct r10bio
*r10_bio
)
259 struct r10conf
*conf
= r10_bio
->mddev
->private;
261 put_all_bios(conf
, r10_bio
);
262 mempool_free(r10_bio
, conf
->r10bio_pool
);
265 static void put_buf(struct r10bio
*r10_bio
)
267 struct r10conf
*conf
= r10_bio
->mddev
->private;
269 mempool_free(r10_bio
, conf
->r10buf_pool
);
274 static void reschedule_retry(struct r10bio
*r10_bio
)
277 struct mddev
*mddev
= r10_bio
->mddev
;
278 struct r10conf
*conf
= mddev
->private;
280 spin_lock_irqsave(&conf
->device_lock
, flags
);
281 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
283 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
285 /* wake up frozen array... */
286 wake_up(&conf
->wait_barrier
);
288 md_wakeup_thread(mddev
->thread
);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
296 static void raid_end_bio_io(struct r10bio
*r10_bio
)
298 struct bio
*bio
= r10_bio
->master_bio
;
300 struct r10conf
*conf
= r10_bio
->mddev
->private;
302 if (bio
->bi_phys_segments
) {
304 spin_lock_irqsave(&conf
->device_lock
, flags
);
305 bio
->bi_phys_segments
--;
306 done
= (bio
->bi_phys_segments
== 0);
307 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
310 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
311 bio
->bi_error
= -EIO
;
315 * Wake up any possible resync thread that waits for the device
320 free_r10bio(r10_bio
);
324 * Update disk head position estimator based on IRQ completion info.
326 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
328 struct r10conf
*conf
= r10_bio
->mddev
->private;
330 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
331 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
335 * Find the disk number which triggered given bio
337 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
338 struct bio
*bio
, int *slotp
, int *replp
)
343 for (slot
= 0; slot
< conf
->copies
; slot
++) {
344 if (r10_bio
->devs
[slot
].bio
== bio
)
346 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
352 BUG_ON(slot
== conf
->copies
);
353 update_head_pos(slot
, r10_bio
);
359 return r10_bio
->devs
[slot
].devnum
;
362 static void raid10_end_read_request(struct bio
*bio
)
364 int uptodate
= !bio
->bi_error
;
365 struct r10bio
*r10_bio
= bio
->bi_private
;
367 struct md_rdev
*rdev
;
368 struct r10conf
*conf
= r10_bio
->mddev
->private;
370 slot
= r10_bio
->read_slot
;
371 dev
= r10_bio
->devs
[slot
].devnum
;
372 rdev
= r10_bio
->devs
[slot
].rdev
;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot
, r10_bio
);
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
400 raid_end_bio_io(r10_bio
);
401 rdev_dec_pending(rdev
, conf
->mddev
);
404 * oops, read error - keep the refcount on the rdev
406 char b
[BDEVNAME_SIZE
];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
410 bdevname(rdev
->bdev
, b
),
411 (unsigned long long)r10_bio
->sector
);
412 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
413 reschedule_retry(r10_bio
);
417 static void close_write(struct r10bio
*r10_bio
)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
422 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
424 md_write_end(r10_bio
->mddev
);
427 static void one_write_done(struct r10bio
*r10_bio
)
429 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
430 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
431 reschedule_retry(r10_bio
);
433 close_write(r10_bio
);
434 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
435 reschedule_retry(r10_bio
);
437 raid_end_bio_io(r10_bio
);
442 static void raid10_end_write_request(struct bio
*bio
)
444 struct r10bio
*r10_bio
= bio
->bi_private
;
447 struct r10conf
*conf
= r10_bio
->mddev
->private;
449 struct md_rdev
*rdev
= NULL
;
452 discard_error
= bio
->bi_error
&& bio_op(bio
) == REQ_OP_DISCARD
;
454 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
457 rdev
= conf
->mirrors
[dev
].replacement
;
461 rdev
= conf
->mirrors
[dev
].rdev
;
464 * this branch is our 'one mirror IO has finished' event handler:
466 if (bio
->bi_error
&& !discard_error
) {
468 /* Never record new bad blocks to replacement,
471 md_error(rdev
->mddev
, rdev
);
473 set_bit(WriteErrorSeen
, &rdev
->flags
);
474 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
475 set_bit(MD_RECOVERY_NEEDED
,
476 &rdev
->mddev
->recovery
);
477 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
494 * Do not set R10BIO_Uptodate if the current device is
495 * rebuilding or Faulty. This is because we cannot use
496 * such device for properly reading the data back (we could
497 * potentially use it, if the current write would have felt
498 * before rdev->recovery_offset, but for simplicity we don't
501 if (test_bit(In_sync
, &rdev
->flags
) &&
502 !test_bit(Faulty
, &rdev
->flags
))
503 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
505 /* Maybe we can clear some bad blocks. */
506 if (is_badblock(rdev
,
507 r10_bio
->devs
[slot
].addr
,
509 &first_bad
, &bad_sectors
) && !discard_error
) {
512 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
514 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
516 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
522 * Let's see if all mirrored write operations have finished
525 one_write_done(r10_bio
);
527 rdev_dec_pending(rdev
, conf
->mddev
);
531 * RAID10 layout manager
532 * As well as the chunksize and raid_disks count, there are two
533 * parameters: near_copies and far_copies.
534 * near_copies * far_copies must be <= raid_disks.
535 * Normally one of these will be 1.
536 * If both are 1, we get raid0.
537 * If near_copies == raid_disks, we get raid1.
539 * Chunks are laid out in raid0 style with near_copies copies of the
540 * first chunk, followed by near_copies copies of the next chunk and
542 * If far_copies > 1, then after 1/far_copies of the array has been assigned
543 * as described above, we start again with a device offset of near_copies.
544 * So we effectively have another copy of the whole array further down all
545 * the drives, but with blocks on different drives.
546 * With this layout, and block is never stored twice on the one device.
548 * raid10_find_phys finds the sector offset of a given virtual sector
549 * on each device that it is on.
551 * raid10_find_virt does the reverse mapping, from a device and a
552 * sector offset to a virtual address
555 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
563 int last_far_set_start
, last_far_set_size
;
565 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
566 last_far_set_start
*= geo
->far_set_size
;
568 last_far_set_size
= geo
->far_set_size
;
569 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
571 /* now calculate first sector/dev */
572 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
573 sector
= r10bio
->sector
& geo
->chunk_mask
;
575 chunk
*= geo
->near_copies
;
577 dev
= sector_div(stripe
, geo
->raid_disks
);
579 stripe
*= geo
->far_copies
;
581 sector
+= stripe
<< geo
->chunk_shift
;
583 /* and calculate all the others */
584 for (n
= 0; n
< geo
->near_copies
; n
++) {
588 r10bio
->devs
[slot
].devnum
= d
;
589 r10bio
->devs
[slot
].addr
= s
;
592 for (f
= 1; f
< geo
->far_copies
; f
++) {
593 set
= d
/ geo
->far_set_size
;
594 d
+= geo
->near_copies
;
596 if ((geo
->raid_disks
% geo
->far_set_size
) &&
597 (d
> last_far_set_start
)) {
598 d
-= last_far_set_start
;
599 d
%= last_far_set_size
;
600 d
+= last_far_set_start
;
602 d
%= geo
->far_set_size
;
603 d
+= geo
->far_set_size
* set
;
606 r10bio
->devs
[slot
].devnum
= d
;
607 r10bio
->devs
[slot
].addr
= s
;
611 if (dev
>= geo
->raid_disks
) {
613 sector
+= (geo
->chunk_mask
+ 1);
618 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
620 struct geom
*geo
= &conf
->geo
;
622 if (conf
->reshape_progress
!= MaxSector
&&
623 ((r10bio
->sector
>= conf
->reshape_progress
) !=
624 conf
->mddev
->reshape_backwards
)) {
625 set_bit(R10BIO_Previous
, &r10bio
->state
);
628 clear_bit(R10BIO_Previous
, &r10bio
->state
);
630 __raid10_find_phys(geo
, r10bio
);
633 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
635 sector_t offset
, chunk
, vchunk
;
636 /* Never use conf->prev as this is only called during resync
637 * or recovery, so reshape isn't happening
639 struct geom
*geo
= &conf
->geo
;
640 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
641 int far_set_size
= geo
->far_set_size
;
642 int last_far_set_start
;
644 if (geo
->raid_disks
% geo
->far_set_size
) {
645 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
646 last_far_set_start
*= geo
->far_set_size
;
648 if (dev
>= last_far_set_start
) {
649 far_set_size
= geo
->far_set_size
;
650 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
651 far_set_start
= last_far_set_start
;
655 offset
= sector
& geo
->chunk_mask
;
656 if (geo
->far_offset
) {
658 chunk
= sector
>> geo
->chunk_shift
;
659 fc
= sector_div(chunk
, geo
->far_copies
);
660 dev
-= fc
* geo
->near_copies
;
661 if (dev
< far_set_start
)
664 while (sector
>= geo
->stride
) {
665 sector
-= geo
->stride
;
666 if (dev
< (geo
->near_copies
+ far_set_start
))
667 dev
+= far_set_size
- geo
->near_copies
;
669 dev
-= geo
->near_copies
;
671 chunk
= sector
>> geo
->chunk_shift
;
673 vchunk
= chunk
* geo
->raid_disks
+ dev
;
674 sector_div(vchunk
, geo
->near_copies
);
675 return (vchunk
<< geo
->chunk_shift
) + offset
;
679 * This routine returns the disk from which the requested read should
680 * be done. There is a per-array 'next expected sequential IO' sector
681 * number - if this matches on the next IO then we use the last disk.
682 * There is also a per-disk 'last know head position' sector that is
683 * maintained from IRQ contexts, both the normal and the resync IO
684 * completion handlers update this position correctly. If there is no
685 * perfect sequential match then we pick the disk whose head is closest.
687 * If there are 2 mirrors in the same 2 devices, performance degrades
688 * because position is mirror, not device based.
690 * The rdev for the device selected will have nr_pending incremented.
694 * FIXME: possibly should rethink readbalancing and do it differently
695 * depending on near_copies / far_copies geometry.
697 static struct md_rdev
*read_balance(struct r10conf
*conf
,
698 struct r10bio
*r10_bio
,
701 const sector_t this_sector
= r10_bio
->sector
;
703 int sectors
= r10_bio
->sectors
;
704 int best_good_sectors
;
705 sector_t new_distance
, best_dist
;
706 struct md_rdev
*best_rdev
, *rdev
= NULL
;
709 struct geom
*geo
= &conf
->geo
;
711 raid10_find_phys(conf
, r10_bio
);
713 sectors
= r10_bio
->sectors
;
716 best_dist
= MaxSector
;
717 best_good_sectors
= 0;
720 * Check if we can balance. We can balance on the whole
721 * device if no resync is going on (recovery is ok), or below
722 * the resync window. We take the first readable disk when
723 * above the resync window.
725 if (conf
->mddev
->recovery_cp
< MaxSector
726 && (this_sector
+ sectors
>= conf
->next_resync
))
729 for (slot
= 0; slot
< conf
->copies
; slot
++) {
734 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
736 disk
= r10_bio
->devs
[slot
].devnum
;
737 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
738 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
739 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
740 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
742 test_bit(Faulty
, &rdev
->flags
))
744 if (!test_bit(In_sync
, &rdev
->flags
) &&
745 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
748 dev_sector
= r10_bio
->devs
[slot
].addr
;
749 if (is_badblock(rdev
, dev_sector
, sectors
,
750 &first_bad
, &bad_sectors
)) {
751 if (best_dist
< MaxSector
)
752 /* Already have a better slot */
754 if (first_bad
<= dev_sector
) {
755 /* Cannot read here. If this is the
756 * 'primary' device, then we must not read
757 * beyond 'bad_sectors' from another device.
759 bad_sectors
-= (dev_sector
- first_bad
);
760 if (!do_balance
&& sectors
> bad_sectors
)
761 sectors
= bad_sectors
;
762 if (best_good_sectors
> sectors
)
763 best_good_sectors
= sectors
;
765 sector_t good_sectors
=
766 first_bad
- dev_sector
;
767 if (good_sectors
> best_good_sectors
) {
768 best_good_sectors
= good_sectors
;
773 /* Must read from here */
778 best_good_sectors
= sectors
;
783 /* This optimisation is debatable, and completely destroys
784 * sequential read speed for 'far copies' arrays. So only
785 * keep it for 'near' arrays, and review those later.
787 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
790 /* for far > 1 always use the lowest address */
791 if (geo
->far_copies
> 1)
792 new_distance
= r10_bio
->devs
[slot
].addr
;
794 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
795 conf
->mirrors
[disk
].head_position
);
796 if (new_distance
< best_dist
) {
797 best_dist
= new_distance
;
802 if (slot
>= conf
->copies
) {
808 atomic_inc(&rdev
->nr_pending
);
809 r10_bio
->read_slot
= slot
;
813 *max_sectors
= best_good_sectors
;
818 static int raid10_congested(struct mddev
*mddev
, int bits
)
820 struct r10conf
*conf
= mddev
->private;
823 if ((bits
& (1 << WB_async_congested
)) &&
824 conf
->pending_count
>= max_queued_requests
)
829 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
832 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
833 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
834 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
836 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
843 static void flush_pending_writes(struct r10conf
*conf
)
845 /* Any writes that have been queued but are awaiting
846 * bitmap updates get flushed here.
848 spin_lock_irq(&conf
->device_lock
);
850 if (conf
->pending_bio_list
.head
) {
852 bio
= bio_list_get(&conf
->pending_bio_list
);
853 conf
->pending_count
= 0;
854 spin_unlock_irq(&conf
->device_lock
);
855 /* flush any pending bitmap writes to disk
856 * before proceeding w/ I/O */
857 bitmap_unplug(conf
->mddev
->bitmap
);
858 wake_up(&conf
->wait_barrier
);
860 while (bio
) { /* submit pending writes */
861 struct bio
*next
= bio
->bi_next
;
863 if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
864 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
868 generic_make_request(bio
);
872 spin_unlock_irq(&conf
->device_lock
);
876 * Sometimes we need to suspend IO while we do something else,
877 * either some resync/recovery, or reconfigure the array.
878 * To do this we raise a 'barrier'.
879 * The 'barrier' is a counter that can be raised multiple times
880 * to count how many activities are happening which preclude
882 * We can only raise the barrier if there is no pending IO.
883 * i.e. if nr_pending == 0.
884 * We choose only to raise the barrier if no-one is waiting for the
885 * barrier to go down. This means that as soon as an IO request
886 * is ready, no other operations which require a barrier will start
887 * until the IO request has had a chance.
889 * So: regular IO calls 'wait_barrier'. When that returns there
890 * is no backgroup IO happening, It must arrange to call
891 * allow_barrier when it has finished its IO.
892 * backgroup IO calls must call raise_barrier. Once that returns
893 * there is no normal IO happeing. It must arrange to call
894 * lower_barrier when the particular background IO completes.
897 static void raise_barrier(struct r10conf
*conf
, int force
)
899 BUG_ON(force
&& !conf
->barrier
);
900 spin_lock_irq(&conf
->resync_lock
);
902 /* Wait until no block IO is waiting (unless 'force') */
903 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
906 /* block any new IO from starting */
909 /* Now wait for all pending IO to complete */
910 wait_event_lock_irq(conf
->wait_barrier
,
911 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
914 spin_unlock_irq(&conf
->resync_lock
);
917 static void lower_barrier(struct r10conf
*conf
)
920 spin_lock_irqsave(&conf
->resync_lock
, flags
);
922 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
923 wake_up(&conf
->wait_barrier
);
926 static void wait_barrier(struct r10conf
*conf
)
928 spin_lock_irq(&conf
->resync_lock
);
931 /* Wait for the barrier to drop.
932 * However if there are already pending
933 * requests (preventing the barrier from
934 * rising completely), and the
935 * pre-process bio queue isn't empty,
936 * then don't wait, as we need to empty
937 * that queue to get the nr_pending
940 wait_event_lock_irq(conf
->wait_barrier
,
942 (atomic_read(&conf
->nr_pending
) &&
944 !bio_list_empty(current
->bio_list
)),
947 if (!conf
->nr_waiting
)
948 wake_up(&conf
->wait_barrier
);
950 atomic_inc(&conf
->nr_pending
);
951 spin_unlock_irq(&conf
->resync_lock
);
954 static void allow_barrier(struct r10conf
*conf
)
956 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
957 (conf
->array_freeze_pending
))
958 wake_up(&conf
->wait_barrier
);
961 static void freeze_array(struct r10conf
*conf
, int extra
)
963 /* stop syncio and normal IO and wait for everything to
965 * We increment barrier and nr_waiting, and then
966 * wait until nr_pending match nr_queued+extra
967 * This is called in the context of one normal IO request
968 * that has failed. Thus any sync request that might be pending
969 * will be blocked by nr_pending, and we need to wait for
970 * pending IO requests to complete or be queued for re-try.
971 * Thus the number queued (nr_queued) plus this request (extra)
972 * must match the number of pending IOs (nr_pending) before
975 spin_lock_irq(&conf
->resync_lock
);
976 conf
->array_freeze_pending
++;
979 wait_event_lock_irq_cmd(conf
->wait_barrier
,
980 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
982 flush_pending_writes(conf
));
984 conf
->array_freeze_pending
--;
985 spin_unlock_irq(&conf
->resync_lock
);
988 static void unfreeze_array(struct r10conf
*conf
)
990 /* reverse the effect of the freeze */
991 spin_lock_irq(&conf
->resync_lock
);
994 wake_up(&conf
->wait_barrier
);
995 spin_unlock_irq(&conf
->resync_lock
);
998 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
999 struct md_rdev
*rdev
)
1001 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1002 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1003 return rdev
->data_offset
;
1005 return rdev
->new_data_offset
;
1008 struct raid10_plug_cb
{
1009 struct blk_plug_cb cb
;
1010 struct bio_list pending
;
1014 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1016 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1018 struct mddev
*mddev
= plug
->cb
.data
;
1019 struct r10conf
*conf
= mddev
->private;
1022 if (from_schedule
|| current
->bio_list
) {
1023 spin_lock_irq(&conf
->device_lock
);
1024 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1025 conf
->pending_count
+= plug
->pending_cnt
;
1026 spin_unlock_irq(&conf
->device_lock
);
1027 wake_up(&conf
->wait_barrier
);
1028 md_wakeup_thread(mddev
->thread
);
1033 /* we aren't scheduling, so we can do the write-out directly. */
1034 bio
= bio_list_get(&plug
->pending
);
1035 bitmap_unplug(mddev
->bitmap
);
1036 wake_up(&conf
->wait_barrier
);
1038 while (bio
) { /* submit pending writes */
1039 struct bio
*next
= bio
->bi_next
;
1040 bio
->bi_next
= NULL
;
1041 if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1042 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1043 /* Just ignore it */
1046 generic_make_request(bio
);
1052 static void __make_request(struct mddev
*mddev
, struct bio
*bio
)
1054 struct r10conf
*conf
= mddev
->private;
1055 struct r10bio
*r10_bio
;
1056 struct bio
*read_bio
;
1058 const int op
= bio_op(bio
);
1059 const int rw
= bio_data_dir(bio
);
1060 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1061 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1062 unsigned long flags
;
1063 struct md_rdev
*blocked_rdev
;
1064 struct blk_plug_cb
*cb
;
1065 struct raid10_plug_cb
*plug
= NULL
;
1066 int sectors_handled
;
1070 md_write_start(mddev
, bio
);
1073 * Register the new request and wait if the reconstruction
1074 * thread has put up a bar for new requests.
1075 * Continue immediately if no resync is active currently.
1079 sectors
= bio_sectors(bio
);
1080 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1081 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1082 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1083 /* IO spans the reshape position. Need to wait for
1086 allow_barrier(conf
);
1087 wait_event(conf
->wait_barrier
,
1088 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1089 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1093 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1094 bio_data_dir(bio
) == WRITE
&&
1095 (mddev
->reshape_backwards
1096 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1097 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1098 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1099 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1100 /* Need to update reshape_position in metadata */
1101 mddev
->reshape_position
= conf
->reshape_progress
;
1102 set_mask_bits(&mddev
->flags
, 0,
1103 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
1104 md_wakeup_thread(mddev
->thread
);
1105 wait_event(mddev
->sb_wait
,
1106 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1108 conf
->reshape_safe
= mddev
->reshape_position
;
1111 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1113 r10_bio
->master_bio
= bio
;
1114 r10_bio
->sectors
= sectors
;
1116 r10_bio
->mddev
= mddev
;
1117 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1120 /* We might need to issue multiple reads to different
1121 * devices if there are bad blocks around, so we keep
1122 * track of the number of reads in bio->bi_phys_segments.
1123 * If this is 0, there is only one r10_bio and no locking
1124 * will be needed when the request completes. If it is
1125 * non-zero, then it is the number of not-completed requests.
1127 bio
->bi_phys_segments
= 0;
1128 bio_clear_flag(bio
, BIO_SEG_VALID
);
1132 * read balancing logic:
1134 struct md_rdev
*rdev
;
1138 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1140 raid_end_bio_io(r10_bio
);
1143 slot
= r10_bio
->read_slot
;
1145 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1146 bio_trim(read_bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1149 r10_bio
->devs
[slot
].bio
= read_bio
;
1150 r10_bio
->devs
[slot
].rdev
= rdev
;
1152 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1153 choose_data_offset(r10_bio
, rdev
);
1154 read_bio
->bi_bdev
= rdev
->bdev
;
1155 read_bio
->bi_end_io
= raid10_end_read_request
;
1156 bio_set_op_attrs(read_bio
, op
, do_sync
);
1157 read_bio
->bi_private
= r10_bio
;
1159 if (max_sectors
< r10_bio
->sectors
) {
1160 /* Could not read all from this device, so we will
1161 * need another r10_bio.
1163 sectors_handled
= (r10_bio
->sector
+ max_sectors
1164 - bio
->bi_iter
.bi_sector
);
1165 r10_bio
->sectors
= max_sectors
;
1166 spin_lock_irq(&conf
->device_lock
);
1167 if (bio
->bi_phys_segments
== 0)
1168 bio
->bi_phys_segments
= 2;
1170 bio
->bi_phys_segments
++;
1171 spin_unlock_irq(&conf
->device_lock
);
1172 /* Cannot call generic_make_request directly
1173 * as that will be queued in __generic_make_request
1174 * and subsequent mempool_alloc might block
1175 * waiting for it. so hand bio over to raid10d.
1177 reschedule_retry(r10_bio
);
1179 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1181 r10_bio
->master_bio
= bio
;
1182 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1184 r10_bio
->mddev
= mddev
;
1185 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+
1189 generic_make_request(read_bio
);
1196 if (conf
->pending_count
>= max_queued_requests
) {
1197 md_wakeup_thread(mddev
->thread
);
1198 wait_event(conf
->wait_barrier
,
1199 conf
->pending_count
< max_queued_requests
);
1201 /* first select target devices under rcu_lock and
1202 * inc refcount on their rdev. Record them by setting
1204 * If there are known/acknowledged bad blocks on any device
1205 * on which we have seen a write error, we want to avoid
1206 * writing to those blocks. This potentially requires several
1207 * writes to write around the bad blocks. Each set of writes
1208 * gets its own r10_bio with a set of bios attached. The number
1209 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1214 raid10_find_phys(conf
, r10_bio
);
1216 blocked_rdev
= NULL
;
1218 max_sectors
= r10_bio
->sectors
;
1220 for (i
= 0; i
< conf
->copies
; i
++) {
1221 int d
= r10_bio
->devs
[i
].devnum
;
1222 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1223 struct md_rdev
*rrdev
= rcu_dereference(
1224 conf
->mirrors
[d
].replacement
);
1227 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1228 atomic_inc(&rdev
->nr_pending
);
1229 blocked_rdev
= rdev
;
1232 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1233 atomic_inc(&rrdev
->nr_pending
);
1234 blocked_rdev
= rrdev
;
1237 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1239 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1242 r10_bio
->devs
[i
].bio
= NULL
;
1243 r10_bio
->devs
[i
].repl_bio
= NULL
;
1245 if (!rdev
&& !rrdev
) {
1246 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1249 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1251 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1255 is_bad
= is_badblock(rdev
, dev_sector
,
1257 &first_bad
, &bad_sectors
);
1259 /* Mustn't write here until the bad block
1262 atomic_inc(&rdev
->nr_pending
);
1263 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1264 blocked_rdev
= rdev
;
1267 if (is_bad
&& first_bad
<= dev_sector
) {
1268 /* Cannot write here at all */
1269 bad_sectors
-= (dev_sector
- first_bad
);
1270 if (bad_sectors
< max_sectors
)
1271 /* Mustn't write more than bad_sectors
1272 * to other devices yet
1274 max_sectors
= bad_sectors
;
1275 /* We don't set R10BIO_Degraded as that
1276 * only applies if the disk is missing,
1277 * so it might be re-added, and we want to
1278 * know to recover this chunk.
1279 * In this case the device is here, and the
1280 * fact that this chunk is not in-sync is
1281 * recorded in the bad block log.
1286 int good_sectors
= first_bad
- dev_sector
;
1287 if (good_sectors
< max_sectors
)
1288 max_sectors
= good_sectors
;
1292 r10_bio
->devs
[i
].bio
= bio
;
1293 atomic_inc(&rdev
->nr_pending
);
1296 r10_bio
->devs
[i
].repl_bio
= bio
;
1297 atomic_inc(&rrdev
->nr_pending
);
1302 if (unlikely(blocked_rdev
)) {
1303 /* Have to wait for this device to get unblocked, then retry */
1307 for (j
= 0; j
< i
; j
++) {
1308 if (r10_bio
->devs
[j
].bio
) {
1309 d
= r10_bio
->devs
[j
].devnum
;
1310 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1312 if (r10_bio
->devs
[j
].repl_bio
) {
1313 struct md_rdev
*rdev
;
1314 d
= r10_bio
->devs
[j
].devnum
;
1315 rdev
= conf
->mirrors
[d
].replacement
;
1317 /* Race with remove_disk */
1319 rdev
= conf
->mirrors
[d
].rdev
;
1321 rdev_dec_pending(rdev
, mddev
);
1324 allow_barrier(conf
);
1325 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1330 if (max_sectors
< r10_bio
->sectors
) {
1331 /* We are splitting this into multiple parts, so
1332 * we need to prepare for allocating another r10_bio.
1334 r10_bio
->sectors
= max_sectors
;
1335 spin_lock_irq(&conf
->device_lock
);
1336 if (bio
->bi_phys_segments
== 0)
1337 bio
->bi_phys_segments
= 2;
1339 bio
->bi_phys_segments
++;
1340 spin_unlock_irq(&conf
->device_lock
);
1342 sectors_handled
= r10_bio
->sector
+ max_sectors
-
1343 bio
->bi_iter
.bi_sector
;
1345 atomic_set(&r10_bio
->remaining
, 1);
1346 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1348 for (i
= 0; i
< conf
->copies
; i
++) {
1350 int d
= r10_bio
->devs
[i
].devnum
;
1351 if (r10_bio
->devs
[i
].bio
) {
1352 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1353 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1354 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1356 r10_bio
->devs
[i
].bio
= mbio
;
1358 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1359 choose_data_offset(r10_bio
,
1361 mbio
->bi_bdev
= rdev
->bdev
;
1362 mbio
->bi_end_io
= raid10_end_write_request
;
1363 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1364 mbio
->bi_private
= r10_bio
;
1366 atomic_inc(&r10_bio
->remaining
);
1368 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1371 plug
= container_of(cb
, struct raid10_plug_cb
,
1375 spin_lock_irqsave(&conf
->device_lock
, flags
);
1377 bio_list_add(&plug
->pending
, mbio
);
1378 plug
->pending_cnt
++;
1380 bio_list_add(&conf
->pending_bio_list
, mbio
);
1381 conf
->pending_count
++;
1383 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1385 md_wakeup_thread(mddev
->thread
);
1388 if (r10_bio
->devs
[i
].repl_bio
) {
1389 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1391 /* Replacement just got moved to main 'rdev' */
1393 rdev
= conf
->mirrors
[d
].rdev
;
1395 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1396 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1398 r10_bio
->devs
[i
].repl_bio
= mbio
;
1400 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1403 mbio
->bi_bdev
= rdev
->bdev
;
1404 mbio
->bi_end_io
= raid10_end_write_request
;
1405 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1406 mbio
->bi_private
= r10_bio
;
1408 atomic_inc(&r10_bio
->remaining
);
1409 spin_lock_irqsave(&conf
->device_lock
, flags
);
1410 bio_list_add(&conf
->pending_bio_list
, mbio
);
1411 conf
->pending_count
++;
1412 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1413 if (!mddev_check_plugged(mddev
))
1414 md_wakeup_thread(mddev
->thread
);
1418 /* Don't remove the bias on 'remaining' (one_write_done) until
1419 * after checking if we need to go around again.
1422 if (sectors_handled
< bio_sectors(bio
)) {
1423 one_write_done(r10_bio
);
1424 /* We need another r10_bio. It has already been counted
1425 * in bio->bi_phys_segments.
1427 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1429 r10_bio
->master_bio
= bio
;
1430 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1432 r10_bio
->mddev
= mddev
;
1433 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1437 one_write_done(r10_bio
);
1440 static void raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1442 struct r10conf
*conf
= mddev
->private;
1443 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1444 int chunk_sects
= chunk_mask
+ 1;
1448 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1449 md_flush_request(mddev
, bio
);
1456 * If this request crosses a chunk boundary, we need to split
1459 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1460 bio_sectors(bio
) > chunk_sects
1461 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1462 || conf
->prev
.near_copies
<
1463 conf
->prev
.raid_disks
))) {
1464 split
= bio_split(bio
, chunk_sects
-
1465 (bio
->bi_iter
.bi_sector
&
1467 GFP_NOIO
, fs_bio_set
);
1468 bio_chain(split
, bio
);
1473 __make_request(mddev
, split
);
1474 } while (split
!= bio
);
1476 /* In case raid10d snuck in to freeze_array */
1477 wake_up(&conf
->wait_barrier
);
1480 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1482 struct r10conf
*conf
= mddev
->private;
1485 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1486 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1487 if (conf
->geo
.near_copies
> 1)
1488 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1489 if (conf
->geo
.far_copies
> 1) {
1490 if (conf
->geo
.far_offset
)
1491 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1493 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1494 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1495 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1497 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1498 conf
->geo
.raid_disks
- mddev
->degraded
);
1500 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1501 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1502 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1505 seq_printf(seq
, "]");
1508 /* check if there are enough drives for
1509 * every block to appear on atleast one.
1510 * Don't consider the device numbered 'ignore'
1511 * as we might be about to remove it.
1513 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1519 disks
= conf
->prev
.raid_disks
;
1520 ncopies
= conf
->prev
.near_copies
;
1522 disks
= conf
->geo
.raid_disks
;
1523 ncopies
= conf
->geo
.near_copies
;
1528 int n
= conf
->copies
;
1532 struct md_rdev
*rdev
;
1533 if (this != ignore
&&
1534 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1535 test_bit(In_sync
, &rdev
->flags
))
1537 this = (this+1) % disks
;
1541 first
= (first
+ ncopies
) % disks
;
1542 } while (first
!= 0);
1549 static int enough(struct r10conf
*conf
, int ignore
)
1551 /* when calling 'enough', both 'prev' and 'geo' must
1553 * This is ensured if ->reconfig_mutex or ->device_lock
1556 return _enough(conf
, 0, ignore
) &&
1557 _enough(conf
, 1, ignore
);
1560 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1562 char b
[BDEVNAME_SIZE
];
1563 struct r10conf
*conf
= mddev
->private;
1564 unsigned long flags
;
1567 * If it is not operational, then we have already marked it as dead
1568 * else if it is the last working disks, ignore the error, let the
1569 * next level up know.
1570 * else mark the drive as failed
1572 spin_lock_irqsave(&conf
->device_lock
, flags
);
1573 if (test_bit(In_sync
, &rdev
->flags
)
1574 && !enough(conf
, rdev
->raid_disk
)) {
1576 * Don't fail the drive, just return an IO error.
1578 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1581 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1584 * If recovery is running, make sure it aborts.
1586 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1587 set_bit(Blocked
, &rdev
->flags
);
1588 set_bit(Faulty
, &rdev
->flags
);
1589 set_mask_bits(&mddev
->flags
, 0,
1590 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
1591 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1593 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1594 "md/raid10:%s: Operation continuing on %d devices.\n",
1595 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1596 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1599 static void print_conf(struct r10conf
*conf
)
1602 struct md_rdev
*rdev
;
1604 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1606 printk(KERN_DEBUG
"(!conf)\n");
1609 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1610 conf
->geo
.raid_disks
);
1612 /* This is only called with ->reconfix_mutex held, so
1613 * rcu protection of rdev is not needed */
1614 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1615 char b
[BDEVNAME_SIZE
];
1616 rdev
= conf
->mirrors
[i
].rdev
;
1618 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1619 i
, !test_bit(In_sync
, &rdev
->flags
),
1620 !test_bit(Faulty
, &rdev
->flags
),
1621 bdevname(rdev
->bdev
,b
));
1625 static void close_sync(struct r10conf
*conf
)
1628 allow_barrier(conf
);
1630 mempool_destroy(conf
->r10buf_pool
);
1631 conf
->r10buf_pool
= NULL
;
1634 static int raid10_spare_active(struct mddev
*mddev
)
1637 struct r10conf
*conf
= mddev
->private;
1638 struct raid10_info
*tmp
;
1640 unsigned long flags
;
1643 * Find all non-in_sync disks within the RAID10 configuration
1644 * and mark them in_sync
1646 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1647 tmp
= conf
->mirrors
+ i
;
1648 if (tmp
->replacement
1649 && tmp
->replacement
->recovery_offset
== MaxSector
1650 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1651 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1652 /* Replacement has just become active */
1654 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1657 /* Replaced device not technically faulty,
1658 * but we need to be sure it gets removed
1659 * and never re-added.
1661 set_bit(Faulty
, &tmp
->rdev
->flags
);
1662 sysfs_notify_dirent_safe(
1663 tmp
->rdev
->sysfs_state
);
1665 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1666 } else if (tmp
->rdev
1667 && tmp
->rdev
->recovery_offset
== MaxSector
1668 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1669 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1671 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1674 spin_lock_irqsave(&conf
->device_lock
, flags
);
1675 mddev
->degraded
-= count
;
1676 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1682 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1684 struct r10conf
*conf
= mddev
->private;
1688 int last
= conf
->geo
.raid_disks
- 1;
1690 if (mddev
->recovery_cp
< MaxSector
)
1691 /* only hot-add to in-sync arrays, as recovery is
1692 * very different from resync
1695 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1698 if (md_integrity_add_rdev(rdev
, mddev
))
1701 if (rdev
->raid_disk
>= 0)
1702 first
= last
= rdev
->raid_disk
;
1704 if (rdev
->saved_raid_disk
>= first
&&
1705 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1706 mirror
= rdev
->saved_raid_disk
;
1709 for ( ; mirror
<= last
; mirror
++) {
1710 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1711 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1714 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1715 p
->replacement
!= NULL
)
1717 clear_bit(In_sync
, &rdev
->flags
);
1718 set_bit(Replacement
, &rdev
->flags
);
1719 rdev
->raid_disk
= mirror
;
1722 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1723 rdev
->data_offset
<< 9);
1725 rcu_assign_pointer(p
->replacement
, rdev
);
1730 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1731 rdev
->data_offset
<< 9);
1733 p
->head_position
= 0;
1734 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1735 rdev
->raid_disk
= mirror
;
1737 if (rdev
->saved_raid_disk
!= mirror
)
1739 rcu_assign_pointer(p
->rdev
, rdev
);
1742 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1743 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1749 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1751 struct r10conf
*conf
= mddev
->private;
1753 int number
= rdev
->raid_disk
;
1754 struct md_rdev
**rdevp
;
1755 struct raid10_info
*p
= conf
->mirrors
+ number
;
1758 if (rdev
== p
->rdev
)
1760 else if (rdev
== p
->replacement
)
1761 rdevp
= &p
->replacement
;
1765 if (test_bit(In_sync
, &rdev
->flags
) ||
1766 atomic_read(&rdev
->nr_pending
)) {
1770 /* Only remove non-faulty devices if recovery
1773 if (!test_bit(Faulty
, &rdev
->flags
) &&
1774 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1775 (!p
->replacement
|| p
->replacement
== rdev
) &&
1776 number
< conf
->geo
.raid_disks
&&
1782 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1784 if (atomic_read(&rdev
->nr_pending
)) {
1785 /* lost the race, try later */
1791 if (p
->replacement
) {
1792 /* We must have just cleared 'rdev' */
1793 p
->rdev
= p
->replacement
;
1794 clear_bit(Replacement
, &p
->replacement
->flags
);
1795 smp_mb(); /* Make sure other CPUs may see both as identical
1796 * but will never see neither -- if they are careful.
1798 p
->replacement
= NULL
;
1799 clear_bit(WantReplacement
, &rdev
->flags
);
1801 /* We might have just remove the Replacement as faulty
1802 * Clear the flag just in case
1804 clear_bit(WantReplacement
, &rdev
->flags
);
1806 err
= md_integrity_register(mddev
);
1814 static void end_sync_read(struct bio
*bio
)
1816 struct r10bio
*r10_bio
= bio
->bi_private
;
1817 struct r10conf
*conf
= r10_bio
->mddev
->private;
1820 if (bio
== r10_bio
->master_bio
) {
1821 /* this is a reshape read */
1822 d
= r10_bio
->read_slot
; /* really the read dev */
1824 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1827 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1829 /* The write handler will notice the lack of
1830 * R10BIO_Uptodate and record any errors etc
1832 atomic_add(r10_bio
->sectors
,
1833 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1835 /* for reconstruct, we always reschedule after a read.
1836 * for resync, only after all reads
1838 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1839 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1840 atomic_dec_and_test(&r10_bio
->remaining
)) {
1841 /* we have read all the blocks,
1842 * do the comparison in process context in raid10d
1844 reschedule_retry(r10_bio
);
1848 static void end_sync_request(struct r10bio
*r10_bio
)
1850 struct mddev
*mddev
= r10_bio
->mddev
;
1852 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1853 if (r10_bio
->master_bio
== NULL
) {
1854 /* the primary of several recovery bios */
1855 sector_t s
= r10_bio
->sectors
;
1856 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1857 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1858 reschedule_retry(r10_bio
);
1861 md_done_sync(mddev
, s
, 1);
1864 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1865 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1866 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1867 reschedule_retry(r10_bio
);
1875 static void end_sync_write(struct bio
*bio
)
1877 struct r10bio
*r10_bio
= bio
->bi_private
;
1878 struct mddev
*mddev
= r10_bio
->mddev
;
1879 struct r10conf
*conf
= mddev
->private;
1885 struct md_rdev
*rdev
= NULL
;
1887 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1889 rdev
= conf
->mirrors
[d
].replacement
;
1891 rdev
= conf
->mirrors
[d
].rdev
;
1893 if (bio
->bi_error
) {
1895 md_error(mddev
, rdev
);
1897 set_bit(WriteErrorSeen
, &rdev
->flags
);
1898 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1899 set_bit(MD_RECOVERY_NEEDED
,
1900 &rdev
->mddev
->recovery
);
1901 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1903 } else if (is_badblock(rdev
,
1904 r10_bio
->devs
[slot
].addr
,
1906 &first_bad
, &bad_sectors
))
1907 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1909 rdev_dec_pending(rdev
, mddev
);
1911 end_sync_request(r10_bio
);
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write. The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1927 * We check if all blocks are in-sync and only write to blocks that
1930 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1932 struct r10conf
*conf
= mddev
->private;
1934 struct bio
*tbio
, *fbio
;
1937 atomic_set(&r10_bio
->remaining
, 1);
1939 /* find the first device with a block */
1940 for (i
=0; i
<conf
->copies
; i
++)
1941 if (!r10_bio
->devs
[i
].bio
->bi_error
)
1944 if (i
== conf
->copies
)
1948 fbio
= r10_bio
->devs
[i
].bio
;
1949 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
1950 fbio
->bi_iter
.bi_idx
= 0;
1952 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1953 /* now find blocks with errors */
1954 for (i
=0 ; i
< conf
->copies
; i
++) {
1957 tbio
= r10_bio
->devs
[i
].bio
;
1959 if (tbio
->bi_end_io
!= end_sync_read
)
1963 if (!r10_bio
->devs
[i
].bio
->bi_error
) {
1964 /* We know that the bi_io_vec layout is the same for
1965 * both 'first' and 'i', so we just compare them.
1966 * All vec entries are PAGE_SIZE;
1968 int sectors
= r10_bio
->sectors
;
1969 for (j
= 0; j
< vcnt
; j
++) {
1970 int len
= PAGE_SIZE
;
1971 if (sectors
< (len
/ 512))
1972 len
= sectors
* 512;
1973 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1974 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1981 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
1982 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1983 /* Don't fix anything. */
1986 /* Ok, we need to write this bio, either to correct an
1987 * inconsistency or to correct an unreadable block.
1988 * First we need to fixup bv_offset, bv_len and
1989 * bi_vecs, as the read request might have corrupted these
1993 tbio
->bi_vcnt
= vcnt
;
1994 tbio
->bi_iter
.bi_size
= fbio
->bi_iter
.bi_size
;
1995 tbio
->bi_private
= r10_bio
;
1996 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
1997 tbio
->bi_end_io
= end_sync_write
;
1998 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2000 bio_copy_data(tbio
, fbio
);
2002 d
= r10_bio
->devs
[i
].devnum
;
2003 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2004 atomic_inc(&r10_bio
->remaining
);
2005 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2007 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2008 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2009 generic_make_request(tbio
);
2012 /* Now write out to any replacement devices
2015 for (i
= 0; i
< conf
->copies
; i
++) {
2018 tbio
= r10_bio
->devs
[i
].repl_bio
;
2019 if (!tbio
|| !tbio
->bi_end_io
)
2021 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2022 && r10_bio
->devs
[i
].bio
!= fbio
)
2023 bio_copy_data(tbio
, fbio
);
2024 d
= r10_bio
->devs
[i
].devnum
;
2025 atomic_inc(&r10_bio
->remaining
);
2026 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2028 generic_make_request(tbio
);
2032 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2033 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2048 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2050 /* We got a read error during recovery.
2051 * We repeat the read in smaller page-sized sections.
2052 * If a read succeeds, write it to the new device or record
2053 * a bad block if we cannot.
2054 * If a read fails, record a bad block on both old and
2057 struct mddev
*mddev
= r10_bio
->mddev
;
2058 struct r10conf
*conf
= mddev
->private;
2059 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2061 int sectors
= r10_bio
->sectors
;
2063 int dr
= r10_bio
->devs
[0].devnum
;
2064 int dw
= r10_bio
->devs
[1].devnum
;
2068 struct md_rdev
*rdev
;
2072 if (s
> (PAGE_SIZE
>>9))
2075 rdev
= conf
->mirrors
[dr
].rdev
;
2076 addr
= r10_bio
->devs
[0].addr
+ sect
,
2077 ok
= sync_page_io(rdev
,
2080 bio
->bi_io_vec
[idx
].bv_page
,
2081 REQ_OP_READ
, 0, false);
2083 rdev
= conf
->mirrors
[dw
].rdev
;
2084 addr
= r10_bio
->devs
[1].addr
+ sect
;
2085 ok
= sync_page_io(rdev
,
2088 bio
->bi_io_vec
[idx
].bv_page
,
2089 REQ_OP_WRITE
, 0, false);
2091 set_bit(WriteErrorSeen
, &rdev
->flags
);
2092 if (!test_and_set_bit(WantReplacement
,
2094 set_bit(MD_RECOVERY_NEEDED
,
2095 &rdev
->mddev
->recovery
);
2099 /* We don't worry if we cannot set a bad block -
2100 * it really is bad so there is no loss in not
2103 rdev_set_badblocks(rdev
, addr
, s
, 0);
2105 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2106 /* need bad block on destination too */
2107 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2108 addr
= r10_bio
->devs
[1].addr
+ sect
;
2109 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2111 /* just abort the recovery */
2113 "md/raid10:%s: recovery aborted"
2114 " due to read error\n",
2117 conf
->mirrors
[dw
].recovery_disabled
2118 = mddev
->recovery_disabled
;
2119 set_bit(MD_RECOVERY_INTR
,
2132 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2134 struct r10conf
*conf
= mddev
->private;
2136 struct bio
*wbio
, *wbio2
;
2138 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2139 fix_recovery_read_error(r10_bio
);
2140 end_sync_request(r10_bio
);
2145 * share the pages with the first bio
2146 * and submit the write request
2148 d
= r10_bio
->devs
[1].devnum
;
2149 wbio
= r10_bio
->devs
[1].bio
;
2150 wbio2
= r10_bio
->devs
[1].repl_bio
;
2151 /* Need to test wbio2->bi_end_io before we call
2152 * generic_make_request as if the former is NULL,
2153 * the latter is free to free wbio2.
2155 if (wbio2
&& !wbio2
->bi_end_io
)
2157 if (wbio
->bi_end_io
) {
2158 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2159 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2160 generic_make_request(wbio
);
2163 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2164 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2165 bio_sectors(wbio2
));
2166 generic_make_request(wbio2
);
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2176 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2179 unsigned long hours_since_last
;
2180 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2182 cur_time_mon
= ktime_get_seconds();
2184 if (rdev
->last_read_error
== 0) {
2185 /* first time we've seen a read error */
2186 rdev
->last_read_error
= cur_time_mon
;
2190 hours_since_last
= (long)(cur_time_mon
-
2191 rdev
->last_read_error
) / 3600;
2193 rdev
->last_read_error
= cur_time_mon
;
2196 * if hours_since_last is > the number of bits in read_errors
2197 * just set read errors to 0. We do this to avoid
2198 * overflowing the shift of read_errors by hours_since_last.
2200 if (hours_since_last
>= 8 * sizeof(read_errors
))
2201 atomic_set(&rdev
->read_errors
, 0);
2203 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2206 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2207 int sectors
, struct page
*page
, int rw
)
2212 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2213 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2215 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2219 set_bit(WriteErrorSeen
, &rdev
->flags
);
2220 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2221 set_bit(MD_RECOVERY_NEEDED
,
2222 &rdev
->mddev
->recovery
);
2224 /* need to record an error - either for the block or the device */
2225 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2226 md_error(rdev
->mddev
, rdev
);
2231 * This is a kernel thread which:
2233 * 1. Retries failed read operations on working mirrors.
2234 * 2. Updates the raid superblock when problems encounter.
2235 * 3. Performs writes following reads for array synchronising.
2238 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2240 int sect
= 0; /* Offset from r10_bio->sector */
2241 int sectors
= r10_bio
->sectors
;
2242 struct md_rdev
*rdev
;
2243 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2244 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2246 /* still own a reference to this rdev, so it cannot
2247 * have been cleared recently.
2249 rdev
= conf
->mirrors
[d
].rdev
;
2251 if (test_bit(Faulty
, &rdev
->flags
))
2252 /* drive has already been failed, just ignore any
2253 more fix_read_error() attempts */
2256 check_decay_read_errors(mddev
, rdev
);
2257 atomic_inc(&rdev
->read_errors
);
2258 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2259 char b
[BDEVNAME_SIZE
];
2260 bdevname(rdev
->bdev
, b
);
2263 "md/raid10:%s: %s: Raid device exceeded "
2264 "read_error threshold [cur %d:max %d]\n",
2266 atomic_read(&rdev
->read_errors
), max_read_errors
);
2268 "md/raid10:%s: %s: Failing raid device\n",
2270 md_error(mddev
, rdev
);
2271 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2277 int sl
= r10_bio
->read_slot
;
2281 if (s
> (PAGE_SIZE
>>9))
2289 d
= r10_bio
->devs
[sl
].devnum
;
2290 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2292 test_bit(In_sync
, &rdev
->flags
) &&
2293 !test_bit(Faulty
, &rdev
->flags
) &&
2294 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2295 &first_bad
, &bad_sectors
) == 0) {
2296 atomic_inc(&rdev
->nr_pending
);
2298 success
= sync_page_io(rdev
,
2299 r10_bio
->devs
[sl
].addr
+
2303 REQ_OP_READ
, 0, false);
2304 rdev_dec_pending(rdev
, mddev
);
2310 if (sl
== conf
->copies
)
2312 } while (!success
&& sl
!= r10_bio
->read_slot
);
2316 /* Cannot read from anywhere, just mark the block
2317 * as bad on the first device to discourage future
2320 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2321 rdev
= conf
->mirrors
[dn
].rdev
;
2323 if (!rdev_set_badblocks(
2325 r10_bio
->devs
[r10_bio
->read_slot
].addr
2328 md_error(mddev
, rdev
);
2329 r10_bio
->devs
[r10_bio
->read_slot
].bio
2336 /* write it back and re-read */
2338 while (sl
!= r10_bio
->read_slot
) {
2339 char b
[BDEVNAME_SIZE
];
2344 d
= r10_bio
->devs
[sl
].devnum
;
2345 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2347 test_bit(Faulty
, &rdev
->flags
) ||
2348 !test_bit(In_sync
, &rdev
->flags
))
2351 atomic_inc(&rdev
->nr_pending
);
2353 if (r10_sync_page_io(rdev
,
2354 r10_bio
->devs
[sl
].addr
+
2356 s
, conf
->tmppage
, WRITE
)
2358 /* Well, this device is dead */
2360 "md/raid10:%s: read correction "
2362 " (%d sectors at %llu on %s)\n",
2364 (unsigned long long)(
2366 choose_data_offset(r10_bio
,
2368 bdevname(rdev
->bdev
, b
));
2369 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2372 bdevname(rdev
->bdev
, b
));
2374 rdev_dec_pending(rdev
, mddev
);
2378 while (sl
!= r10_bio
->read_slot
) {
2379 char b
[BDEVNAME_SIZE
];
2384 d
= r10_bio
->devs
[sl
].devnum
;
2385 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2387 test_bit(Faulty
, &rdev
->flags
) ||
2388 !test_bit(In_sync
, &rdev
->flags
))
2391 atomic_inc(&rdev
->nr_pending
);
2393 switch (r10_sync_page_io(rdev
,
2394 r10_bio
->devs
[sl
].addr
+
2399 /* Well, this device is dead */
2401 "md/raid10:%s: unable to read back "
2403 " (%d sectors at %llu on %s)\n",
2405 (unsigned long long)(
2407 choose_data_offset(r10_bio
, rdev
)),
2408 bdevname(rdev
->bdev
, b
));
2409 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2412 bdevname(rdev
->bdev
, b
));
2416 "md/raid10:%s: read error corrected"
2417 " (%d sectors at %llu on %s)\n",
2419 (unsigned long long)(
2421 choose_data_offset(r10_bio
, rdev
)),
2422 bdevname(rdev
->bdev
, b
));
2423 atomic_add(s
, &rdev
->corrected_errors
);
2426 rdev_dec_pending(rdev
, mddev
);
2436 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2438 struct bio
*bio
= r10_bio
->master_bio
;
2439 struct mddev
*mddev
= r10_bio
->mddev
;
2440 struct r10conf
*conf
= mddev
->private;
2441 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2442 /* bio has the data to be written to slot 'i' where
2443 * we just recently had a write error.
2444 * We repeatedly clone the bio and trim down to one block,
2445 * then try the write. Where the write fails we record
2447 * It is conceivable that the bio doesn't exactly align with
2448 * blocks. We must handle this.
2450 * We currently own a reference to the rdev.
2456 int sect_to_write
= r10_bio
->sectors
;
2459 if (rdev
->badblocks
.shift
< 0)
2462 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2463 bdev_logical_block_size(rdev
->bdev
) >> 9);
2464 sector
= r10_bio
->sector
;
2465 sectors
= ((r10_bio
->sector
+ block_sectors
)
2466 & ~(sector_t
)(block_sectors
- 1))
2469 while (sect_to_write
) {
2472 if (sectors
> sect_to_write
)
2473 sectors
= sect_to_write
;
2474 /* Write at 'sector' for 'sectors' */
2475 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2476 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2477 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2478 wbio
->bi_iter
.bi_sector
= wsector
+
2479 choose_data_offset(r10_bio
, rdev
);
2480 wbio
->bi_bdev
= rdev
->bdev
;
2481 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2483 if (submit_bio_wait(wbio
) < 0)
2485 ok
= rdev_set_badblocks(rdev
, wsector
,
2490 sect_to_write
-= sectors
;
2492 sectors
= block_sectors
;
2497 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2499 int slot
= r10_bio
->read_slot
;
2501 struct r10conf
*conf
= mddev
->private;
2502 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2503 char b
[BDEVNAME_SIZE
];
2504 unsigned long do_sync
;
2507 /* we got a read error. Maybe the drive is bad. Maybe just
2508 * the block and we can fix it.
2509 * We freeze all other IO, and try reading the block from
2510 * other devices. When we find one, we re-write
2511 * and check it that fixes the read error.
2512 * This is all done synchronously while the array is
2515 bio
= r10_bio
->devs
[slot
].bio
;
2516 bdevname(bio
->bi_bdev
, b
);
2518 r10_bio
->devs
[slot
].bio
= NULL
;
2520 if (mddev
->ro
== 0) {
2521 freeze_array(conf
, 1);
2522 fix_read_error(conf
, mddev
, r10_bio
);
2523 unfreeze_array(conf
);
2525 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2527 rdev_dec_pending(rdev
, mddev
);
2530 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2532 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2533 " read error for block %llu\n",
2535 (unsigned long long)r10_bio
->sector
);
2536 raid_end_bio_io(r10_bio
);
2540 do_sync
= (r10_bio
->master_bio
->bi_opf
& REQ_SYNC
);
2541 slot
= r10_bio
->read_slot
;
2544 "md/raid10:%s: %s: redirecting "
2545 "sector %llu to another mirror\n",
2547 bdevname(rdev
->bdev
, b
),
2548 (unsigned long long)r10_bio
->sector
);
2549 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2551 bio_trim(bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
2552 r10_bio
->devs
[slot
].bio
= bio
;
2553 r10_bio
->devs
[slot
].rdev
= rdev
;
2554 bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
2555 + choose_data_offset(r10_bio
, rdev
);
2556 bio
->bi_bdev
= rdev
->bdev
;
2557 bio_set_op_attrs(bio
, REQ_OP_READ
, do_sync
);
2558 bio
->bi_private
= r10_bio
;
2559 bio
->bi_end_io
= raid10_end_read_request
;
2560 if (max_sectors
< r10_bio
->sectors
) {
2561 /* Drat - have to split this up more */
2562 struct bio
*mbio
= r10_bio
->master_bio
;
2563 int sectors_handled
=
2564 r10_bio
->sector
+ max_sectors
2565 - mbio
->bi_iter
.bi_sector
;
2566 r10_bio
->sectors
= max_sectors
;
2567 spin_lock_irq(&conf
->device_lock
);
2568 if (mbio
->bi_phys_segments
== 0)
2569 mbio
->bi_phys_segments
= 2;
2571 mbio
->bi_phys_segments
++;
2572 spin_unlock_irq(&conf
->device_lock
);
2573 generic_make_request(bio
);
2575 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2577 r10_bio
->master_bio
= mbio
;
2578 r10_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2580 set_bit(R10BIO_ReadError
,
2582 r10_bio
->mddev
= mddev
;
2583 r10_bio
->sector
= mbio
->bi_iter
.bi_sector
2588 generic_make_request(bio
);
2591 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2593 /* Some sort of write request has finished and it
2594 * succeeded in writing where we thought there was a
2595 * bad block. So forget the bad block.
2596 * Or possibly if failed and we need to record
2600 struct md_rdev
*rdev
;
2602 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2603 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2604 for (m
= 0; m
< conf
->copies
; m
++) {
2605 int dev
= r10_bio
->devs
[m
].devnum
;
2606 rdev
= conf
->mirrors
[dev
].rdev
;
2607 if (r10_bio
->devs
[m
].bio
== NULL
)
2609 if (!r10_bio
->devs
[m
].bio
->bi_error
) {
2610 rdev_clear_badblocks(
2612 r10_bio
->devs
[m
].addr
,
2613 r10_bio
->sectors
, 0);
2615 if (!rdev_set_badblocks(
2617 r10_bio
->devs
[m
].addr
,
2618 r10_bio
->sectors
, 0))
2619 md_error(conf
->mddev
, rdev
);
2621 rdev
= conf
->mirrors
[dev
].replacement
;
2622 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2625 if (!r10_bio
->devs
[m
].repl_bio
->bi_error
) {
2626 rdev_clear_badblocks(
2628 r10_bio
->devs
[m
].addr
,
2629 r10_bio
->sectors
, 0);
2631 if (!rdev_set_badblocks(
2633 r10_bio
->devs
[m
].addr
,
2634 r10_bio
->sectors
, 0))
2635 md_error(conf
->mddev
, rdev
);
2641 for (m
= 0; m
< conf
->copies
; m
++) {
2642 int dev
= r10_bio
->devs
[m
].devnum
;
2643 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2644 rdev
= conf
->mirrors
[dev
].rdev
;
2645 if (bio
== IO_MADE_GOOD
) {
2646 rdev_clear_badblocks(
2648 r10_bio
->devs
[m
].addr
,
2649 r10_bio
->sectors
, 0);
2650 rdev_dec_pending(rdev
, conf
->mddev
);
2651 } else if (bio
!= NULL
&& bio
->bi_error
) {
2653 if (!narrow_write_error(r10_bio
, m
)) {
2654 md_error(conf
->mddev
, rdev
);
2655 set_bit(R10BIO_Degraded
,
2658 rdev_dec_pending(rdev
, conf
->mddev
);
2660 bio
= r10_bio
->devs
[m
].repl_bio
;
2661 rdev
= conf
->mirrors
[dev
].replacement
;
2662 if (rdev
&& bio
== IO_MADE_GOOD
) {
2663 rdev_clear_badblocks(
2665 r10_bio
->devs
[m
].addr
,
2666 r10_bio
->sectors
, 0);
2667 rdev_dec_pending(rdev
, conf
->mddev
);
2671 spin_lock_irq(&conf
->device_lock
);
2672 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2674 spin_unlock_irq(&conf
->device_lock
);
2675 md_wakeup_thread(conf
->mddev
->thread
);
2677 if (test_bit(R10BIO_WriteError
,
2679 close_write(r10_bio
);
2680 raid_end_bio_io(r10_bio
);
2685 static void raid10d(struct md_thread
*thread
)
2687 struct mddev
*mddev
= thread
->mddev
;
2688 struct r10bio
*r10_bio
;
2689 unsigned long flags
;
2690 struct r10conf
*conf
= mddev
->private;
2691 struct list_head
*head
= &conf
->retry_list
;
2692 struct blk_plug plug
;
2694 md_check_recovery(mddev
);
2696 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2697 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2699 spin_lock_irqsave(&conf
->device_lock
, flags
);
2700 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2701 while (!list_empty(&conf
->bio_end_io_list
)) {
2702 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2706 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2707 while (!list_empty(&tmp
)) {
2708 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2710 list_del(&r10_bio
->retry_list
);
2711 if (mddev
->degraded
)
2712 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2714 if (test_bit(R10BIO_WriteError
,
2716 close_write(r10_bio
);
2717 raid_end_bio_io(r10_bio
);
2721 blk_start_plug(&plug
);
2724 flush_pending_writes(conf
);
2726 spin_lock_irqsave(&conf
->device_lock
, flags
);
2727 if (list_empty(head
)) {
2728 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2731 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2732 list_del(head
->prev
);
2734 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2736 mddev
= r10_bio
->mddev
;
2737 conf
= mddev
->private;
2738 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2739 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2740 handle_write_completed(conf
, r10_bio
);
2741 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2742 reshape_request_write(mddev
, r10_bio
);
2743 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2744 sync_request_write(mddev
, r10_bio
);
2745 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2746 recovery_request_write(mddev
, r10_bio
);
2747 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2748 handle_read_error(mddev
, r10_bio
);
2750 /* just a partial read to be scheduled from a
2753 int slot
= r10_bio
->read_slot
;
2754 generic_make_request(r10_bio
->devs
[slot
].bio
);
2758 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2759 md_check_recovery(mddev
);
2761 blk_finish_plug(&plug
);
2764 static int init_resync(struct r10conf
*conf
)
2769 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2770 BUG_ON(conf
->r10buf_pool
);
2771 conf
->have_replacement
= 0;
2772 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2773 if (conf
->mirrors
[i
].replacement
)
2774 conf
->have_replacement
= 1;
2775 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2776 if (!conf
->r10buf_pool
)
2778 conf
->next_resync
= 0;
2783 * perform a "sync" on one "block"
2785 * We need to make sure that no normal I/O request - particularly write
2786 * requests - conflict with active sync requests.
2788 * This is achieved by tracking pending requests and a 'barrier' concept
2789 * that can be installed to exclude normal IO requests.
2791 * Resync and recovery are handled very differently.
2792 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2794 * For resync, we iterate over virtual addresses, read all copies,
2795 * and update if there are differences. If only one copy is live,
2797 * For recovery, we iterate over physical addresses, read a good
2798 * value for each non-in_sync drive, and over-write.
2800 * So, for recovery we may have several outstanding complex requests for a
2801 * given address, one for each out-of-sync device. We model this by allocating
2802 * a number of r10_bio structures, one for each out-of-sync device.
2803 * As we setup these structures, we collect all bio's together into a list
2804 * which we then process collectively to add pages, and then process again
2805 * to pass to generic_make_request.
2807 * The r10_bio structures are linked using a borrowed master_bio pointer.
2808 * This link is counted in ->remaining. When the r10_bio that points to NULL
2809 * has its remaining count decremented to 0, the whole complex operation
2814 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2817 struct r10conf
*conf
= mddev
->private;
2818 struct r10bio
*r10_bio
;
2819 struct bio
*biolist
= NULL
, *bio
;
2820 sector_t max_sector
, nr_sectors
;
2823 sector_t sync_blocks
;
2824 sector_t sectors_skipped
= 0;
2825 int chunks_skipped
= 0;
2826 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2828 if (!conf
->r10buf_pool
)
2829 if (init_resync(conf
))
2833 * Allow skipping a full rebuild for incremental assembly
2834 * of a clean array, like RAID1 does.
2836 if (mddev
->bitmap
== NULL
&&
2837 mddev
->recovery_cp
== MaxSector
&&
2838 mddev
->reshape_position
== MaxSector
&&
2839 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2840 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2841 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2842 conf
->fullsync
== 0) {
2844 return mddev
->dev_sectors
- sector_nr
;
2848 max_sector
= mddev
->dev_sectors
;
2849 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2850 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2851 max_sector
= mddev
->resync_max_sectors
;
2852 if (sector_nr
>= max_sector
) {
2853 /* If we aborted, we need to abort the
2854 * sync on the 'current' bitmap chucks (there can
2855 * be several when recovering multiple devices).
2856 * as we may have started syncing it but not finished.
2857 * We can find the current address in
2858 * mddev->curr_resync, but for recovery,
2859 * we need to convert that to several
2860 * virtual addresses.
2862 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2868 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2869 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2870 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2872 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2874 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2875 bitmap_end_sync(mddev
->bitmap
, sect
,
2879 /* completed sync */
2880 if ((!mddev
->bitmap
|| conf
->fullsync
)
2881 && conf
->have_replacement
2882 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2883 /* Completed a full sync so the replacements
2884 * are now fully recovered.
2887 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2888 struct md_rdev
*rdev
=
2889 rcu_dereference(conf
->mirrors
[i
].replacement
);
2891 rdev
->recovery_offset
= MaxSector
;
2897 bitmap_close_sync(mddev
->bitmap
);
2900 return sectors_skipped
;
2903 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2904 return reshape_request(mddev
, sector_nr
, skipped
);
2906 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2907 /* if there has been nothing to do on any drive,
2908 * then there is nothing to do at all..
2911 return (max_sector
- sector_nr
) + sectors_skipped
;
2914 if (max_sector
> mddev
->resync_max
)
2915 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2917 /* make sure whole request will fit in a chunk - if chunks
2920 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2921 max_sector
> (sector_nr
| chunk_mask
))
2922 max_sector
= (sector_nr
| chunk_mask
) + 1;
2925 * If there is non-resync activity waiting for a turn, then let it
2926 * though before starting on this new sync request.
2928 if (conf
->nr_waiting
)
2929 schedule_timeout_uninterruptible(1);
2931 /* Again, very different code for resync and recovery.
2932 * Both must result in an r10bio with a list of bios that
2933 * have bi_end_io, bi_sector, bi_bdev set,
2934 * and bi_private set to the r10bio.
2935 * For recovery, we may actually create several r10bios
2936 * with 2 bios in each, that correspond to the bios in the main one.
2937 * In this case, the subordinate r10bios link back through a
2938 * borrowed master_bio pointer, and the counter in the master
2939 * includes a ref from each subordinate.
2941 /* First, we decide what to do and set ->bi_end_io
2942 * To end_sync_read if we want to read, and
2943 * end_sync_write if we will want to write.
2946 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2947 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2948 /* recovery... the complicated one */
2952 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
2958 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
2959 struct md_rdev
*mrdev
, *mreplace
;
2962 mrdev
= rcu_dereference(mirror
->rdev
);
2963 mreplace
= rcu_dereference(mirror
->replacement
);
2965 if ((mrdev
== NULL
||
2966 test_bit(Faulty
, &mrdev
->flags
) ||
2967 test_bit(In_sync
, &mrdev
->flags
)) &&
2968 (mreplace
== NULL
||
2969 test_bit(Faulty
, &mreplace
->flags
))) {
2975 /* want to reconstruct this device */
2977 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2978 if (sect
>= mddev
->resync_max_sectors
) {
2979 /* last stripe is not complete - don't
2980 * try to recover this sector.
2985 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
2987 /* Unless we are doing a full sync, or a replacement
2988 * we only need to recover the block if it is set in
2991 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2993 if (sync_blocks
< max_sync
)
2994 max_sync
= sync_blocks
;
2998 /* yep, skip the sync_blocks here, but don't assume
2999 * that there will never be anything to do here
3001 chunks_skipped
= -1;
3005 atomic_inc(&mrdev
->nr_pending
);
3007 atomic_inc(&mreplace
->nr_pending
);
3010 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3012 raise_barrier(conf
, rb2
!= NULL
);
3013 atomic_set(&r10_bio
->remaining
, 0);
3015 r10_bio
->master_bio
= (struct bio
*)rb2
;
3017 atomic_inc(&rb2
->remaining
);
3018 r10_bio
->mddev
= mddev
;
3019 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3020 r10_bio
->sector
= sect
;
3022 raid10_find_phys(conf
, r10_bio
);
3024 /* Need to check if the array will still be
3028 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3029 struct md_rdev
*rdev
= rcu_dereference(
3030 conf
->mirrors
[j
].rdev
);
3031 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3037 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3038 &sync_blocks
, still_degraded
);
3041 for (j
=0; j
<conf
->copies
;j
++) {
3043 int d
= r10_bio
->devs
[j
].devnum
;
3044 sector_t from_addr
, to_addr
;
3045 struct md_rdev
*rdev
=
3046 rcu_dereference(conf
->mirrors
[d
].rdev
);
3047 sector_t sector
, first_bad
;
3050 !test_bit(In_sync
, &rdev
->flags
))
3052 /* This is where we read from */
3054 sector
= r10_bio
->devs
[j
].addr
;
3056 if (is_badblock(rdev
, sector
, max_sync
,
3057 &first_bad
, &bad_sectors
)) {
3058 if (first_bad
> sector
)
3059 max_sync
= first_bad
- sector
;
3061 bad_sectors
-= (sector
3063 if (max_sync
> bad_sectors
)
3064 max_sync
= bad_sectors
;
3068 bio
= r10_bio
->devs
[0].bio
;
3070 bio
->bi_next
= biolist
;
3072 bio
->bi_private
= r10_bio
;
3073 bio
->bi_end_io
= end_sync_read
;
3074 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3075 from_addr
= r10_bio
->devs
[j
].addr
;
3076 bio
->bi_iter
.bi_sector
= from_addr
+
3078 bio
->bi_bdev
= rdev
->bdev
;
3079 atomic_inc(&rdev
->nr_pending
);
3080 /* and we write to 'i' (if not in_sync) */
3082 for (k
=0; k
<conf
->copies
; k
++)
3083 if (r10_bio
->devs
[k
].devnum
== i
)
3085 BUG_ON(k
== conf
->copies
);
3086 to_addr
= r10_bio
->devs
[k
].addr
;
3087 r10_bio
->devs
[0].devnum
= d
;
3088 r10_bio
->devs
[0].addr
= from_addr
;
3089 r10_bio
->devs
[1].devnum
= i
;
3090 r10_bio
->devs
[1].addr
= to_addr
;
3092 if (!test_bit(In_sync
, &mrdev
->flags
)) {
3093 bio
= r10_bio
->devs
[1].bio
;
3095 bio
->bi_next
= biolist
;
3097 bio
->bi_private
= r10_bio
;
3098 bio
->bi_end_io
= end_sync_write
;
3099 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3100 bio
->bi_iter
.bi_sector
= to_addr
3101 + mrdev
->data_offset
;
3102 bio
->bi_bdev
= mrdev
->bdev
;
3103 atomic_inc(&r10_bio
->remaining
);
3105 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3107 /* and maybe write to replacement */
3108 bio
= r10_bio
->devs
[1].repl_bio
;
3110 bio
->bi_end_io
= NULL
;
3111 /* Note: if mreplace != NULL, then bio
3112 * cannot be NULL as r10buf_pool_alloc will
3113 * have allocated it.
3114 * So the second test here is pointless.
3115 * But it keeps semantic-checkers happy, and
3116 * this comment keeps human reviewers
3119 if (mreplace
== NULL
|| bio
== NULL
||
3120 test_bit(Faulty
, &mreplace
->flags
))
3123 bio
->bi_next
= biolist
;
3125 bio
->bi_private
= r10_bio
;
3126 bio
->bi_end_io
= end_sync_write
;
3127 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3128 bio
->bi_iter
.bi_sector
= to_addr
+
3129 mreplace
->data_offset
;
3130 bio
->bi_bdev
= mreplace
->bdev
;
3131 atomic_inc(&r10_bio
->remaining
);
3135 if (j
== conf
->copies
) {
3136 /* Cannot recover, so abort the recovery or
3137 * record a bad block */
3139 /* problem is that there are bad blocks
3140 * on other device(s)
3143 for (k
= 0; k
< conf
->copies
; k
++)
3144 if (r10_bio
->devs
[k
].devnum
== i
)
3146 if (!test_bit(In_sync
,
3148 && !rdev_set_badblocks(
3150 r10_bio
->devs
[k
].addr
,
3154 !rdev_set_badblocks(
3156 r10_bio
->devs
[k
].addr
,
3161 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3163 printk(KERN_INFO
"md/raid10:%s: insufficient "
3164 "working devices for recovery.\n",
3166 mirror
->recovery_disabled
3167 = mddev
->recovery_disabled
;
3171 atomic_dec(&rb2
->remaining
);
3173 rdev_dec_pending(mrdev
, mddev
);
3175 rdev_dec_pending(mreplace
, mddev
);
3178 rdev_dec_pending(mrdev
, mddev
);
3180 rdev_dec_pending(mreplace
, mddev
);
3182 if (biolist
== NULL
) {
3184 struct r10bio
*rb2
= r10_bio
;
3185 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3186 rb2
->master_bio
= NULL
;
3192 /* resync. Schedule a read for every block at this virt offset */
3195 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, 0);
3197 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3198 &sync_blocks
, mddev
->degraded
) &&
3199 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3200 &mddev
->recovery
)) {
3201 /* We can skip this block */
3203 return sync_blocks
+ sectors_skipped
;
3205 if (sync_blocks
< max_sync
)
3206 max_sync
= sync_blocks
;
3207 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3210 r10_bio
->mddev
= mddev
;
3211 atomic_set(&r10_bio
->remaining
, 0);
3212 raise_barrier(conf
, 0);
3213 conf
->next_resync
= sector_nr
;
3215 r10_bio
->master_bio
= NULL
;
3216 r10_bio
->sector
= sector_nr
;
3217 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3218 raid10_find_phys(conf
, r10_bio
);
3219 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3221 for (i
= 0; i
< conf
->copies
; i
++) {
3222 int d
= r10_bio
->devs
[i
].devnum
;
3223 sector_t first_bad
, sector
;
3225 struct md_rdev
*rdev
;
3227 if (r10_bio
->devs
[i
].repl_bio
)
3228 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3230 bio
= r10_bio
->devs
[i
].bio
;
3232 bio
->bi_error
= -EIO
;
3234 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3235 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3239 sector
= r10_bio
->devs
[i
].addr
;
3240 if (is_badblock(rdev
, sector
, max_sync
,
3241 &first_bad
, &bad_sectors
)) {
3242 if (first_bad
> sector
)
3243 max_sync
= first_bad
- sector
;
3245 bad_sectors
-= (sector
- first_bad
);
3246 if (max_sync
> bad_sectors
)
3247 max_sync
= bad_sectors
;
3252 atomic_inc(&rdev
->nr_pending
);
3253 atomic_inc(&r10_bio
->remaining
);
3254 bio
->bi_next
= biolist
;
3256 bio
->bi_private
= r10_bio
;
3257 bio
->bi_end_io
= end_sync_read
;
3258 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3259 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3260 bio
->bi_bdev
= rdev
->bdev
;
3263 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3264 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3268 atomic_inc(&rdev
->nr_pending
);
3271 /* Need to set up for writing to the replacement */
3272 bio
= r10_bio
->devs
[i
].repl_bio
;
3274 bio
->bi_error
= -EIO
;
3276 sector
= r10_bio
->devs
[i
].addr
;
3277 bio
->bi_next
= biolist
;
3279 bio
->bi_private
= r10_bio
;
3280 bio
->bi_end_io
= end_sync_write
;
3281 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3282 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3283 bio
->bi_bdev
= rdev
->bdev
;
3288 for (i
=0; i
<conf
->copies
; i
++) {
3289 int d
= r10_bio
->devs
[i
].devnum
;
3290 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3291 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3293 if (r10_bio
->devs
[i
].repl_bio
&&
3294 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3296 conf
->mirrors
[d
].replacement
,
3306 if (sector_nr
+ max_sync
< max_sector
)
3307 max_sector
= sector_nr
+ max_sync
;
3310 int len
= PAGE_SIZE
;
3311 if (sector_nr
+ (len
>>9) > max_sector
)
3312 len
= (max_sector
- sector_nr
) << 9;
3315 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3317 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3318 if (bio_add_page(bio
, page
, len
, 0))
3322 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3323 for (bio2
= biolist
;
3324 bio2
&& bio2
!= bio
;
3325 bio2
= bio2
->bi_next
) {
3326 /* remove last page from this bio */
3328 bio2
->bi_iter
.bi_size
-= len
;
3329 bio_clear_flag(bio2
, BIO_SEG_VALID
);
3333 nr_sectors
+= len
>>9;
3334 sector_nr
+= len
>>9;
3335 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3337 r10_bio
->sectors
= nr_sectors
;
3341 biolist
= biolist
->bi_next
;
3343 bio
->bi_next
= NULL
;
3344 r10_bio
= bio
->bi_private
;
3345 r10_bio
->sectors
= nr_sectors
;
3347 if (bio
->bi_end_io
== end_sync_read
) {
3348 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3350 generic_make_request(bio
);
3354 if (sectors_skipped
)
3355 /* pretend they weren't skipped, it makes
3356 * no important difference in this case
3358 md_done_sync(mddev
, sectors_skipped
, 1);
3360 return sectors_skipped
+ nr_sectors
;
3362 /* There is nowhere to write, so all non-sync
3363 * drives must be failed or in resync, all drives
3364 * have a bad block, so try the next chunk...
3366 if (sector_nr
+ max_sync
< max_sector
)
3367 max_sector
= sector_nr
+ max_sync
;
3369 sectors_skipped
+= (max_sector
- sector_nr
);
3371 sector_nr
= max_sector
;
3376 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3379 struct r10conf
*conf
= mddev
->private;
3382 raid_disks
= min(conf
->geo
.raid_disks
,
3383 conf
->prev
.raid_disks
);
3385 sectors
= conf
->dev_sectors
;
3387 size
= sectors
>> conf
->geo
.chunk_shift
;
3388 sector_div(size
, conf
->geo
.far_copies
);
3389 size
= size
* raid_disks
;
3390 sector_div(size
, conf
->geo
.near_copies
);
3392 return size
<< conf
->geo
.chunk_shift
;
3395 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3397 /* Calculate the number of sectors-per-device that will
3398 * actually be used, and set conf->dev_sectors and
3402 size
= size
>> conf
->geo
.chunk_shift
;
3403 sector_div(size
, conf
->geo
.far_copies
);
3404 size
= size
* conf
->geo
.raid_disks
;
3405 sector_div(size
, conf
->geo
.near_copies
);
3406 /* 'size' is now the number of chunks in the array */
3407 /* calculate "used chunks per device" */
3408 size
= size
* conf
->copies
;
3410 /* We need to round up when dividing by raid_disks to
3411 * get the stride size.
3413 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3415 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3417 if (conf
->geo
.far_offset
)
3418 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3420 sector_div(size
, conf
->geo
.far_copies
);
3421 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3425 enum geo_type
{geo_new
, geo_old
, geo_start
};
3426 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3429 int layout
, chunk
, disks
;
3432 layout
= mddev
->layout
;
3433 chunk
= mddev
->chunk_sectors
;
3434 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3437 layout
= mddev
->new_layout
;
3438 chunk
= mddev
->new_chunk_sectors
;
3439 disks
= mddev
->raid_disks
;
3441 default: /* avoid 'may be unused' warnings */
3442 case geo_start
: /* new when starting reshape - raid_disks not
3444 layout
= mddev
->new_layout
;
3445 chunk
= mddev
->new_chunk_sectors
;
3446 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3451 if (chunk
< (PAGE_SIZE
>> 9) ||
3452 !is_power_of_2(chunk
))
3455 fc
= (layout
>> 8) & 255;
3456 fo
= layout
& (1<<16);
3457 geo
->raid_disks
= disks
;
3458 geo
->near_copies
= nc
;
3459 geo
->far_copies
= fc
;
3460 geo
->far_offset
= fo
;
3461 switch (layout
>> 17) {
3462 case 0: /* original layout. simple but not always optimal */
3463 geo
->far_set_size
= disks
;
3465 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3466 * actually using this, but leave code here just in case.*/
3467 geo
->far_set_size
= disks
/fc
;
3468 WARN(geo
->far_set_size
< fc
,
3469 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3471 case 2: /* "improved" layout fixed to match documentation */
3472 geo
->far_set_size
= fc
* nc
;
3474 default: /* Not a valid layout */
3477 geo
->chunk_mask
= chunk
- 1;
3478 geo
->chunk_shift
= ffz(~chunk
);
3482 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3484 struct r10conf
*conf
= NULL
;
3489 copies
= setup_geo(&geo
, mddev
, geo_new
);
3492 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3493 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3494 mdname(mddev
), PAGE_SIZE
);
3498 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3499 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3500 mdname(mddev
), mddev
->new_layout
);
3505 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3509 /* FIXME calc properly */
3510 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3511 max(0,-mddev
->delta_disks
)),
3516 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3521 conf
->copies
= copies
;
3522 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3523 r10bio_pool_free
, conf
);
3524 if (!conf
->r10bio_pool
)
3527 calc_sectors(conf
, mddev
->dev_sectors
);
3528 if (mddev
->reshape_position
== MaxSector
) {
3529 conf
->prev
= conf
->geo
;
3530 conf
->reshape_progress
= MaxSector
;
3532 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3536 conf
->reshape_progress
= mddev
->reshape_position
;
3537 if (conf
->prev
.far_offset
)
3538 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3540 /* far_copies must be 1 */
3541 conf
->prev
.stride
= conf
->dev_sectors
;
3543 conf
->reshape_safe
= conf
->reshape_progress
;
3544 spin_lock_init(&conf
->device_lock
);
3545 INIT_LIST_HEAD(&conf
->retry_list
);
3546 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3548 spin_lock_init(&conf
->resync_lock
);
3549 init_waitqueue_head(&conf
->wait_barrier
);
3550 atomic_set(&conf
->nr_pending
, 0);
3552 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3556 conf
->mddev
= mddev
;
3561 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3564 mempool_destroy(conf
->r10bio_pool
);
3565 kfree(conf
->mirrors
);
3566 safe_put_page(conf
->tmppage
);
3569 return ERR_PTR(err
);
3572 static int raid10_run(struct mddev
*mddev
)
3574 struct r10conf
*conf
;
3575 int i
, disk_idx
, chunk_size
;
3576 struct raid10_info
*disk
;
3577 struct md_rdev
*rdev
;
3579 sector_t min_offset_diff
= 0;
3581 bool discard_supported
= false;
3583 if (mddev
->private == NULL
) {
3584 conf
= setup_conf(mddev
);
3586 return PTR_ERR(conf
);
3587 mddev
->private = conf
;
3589 conf
= mddev
->private;
3593 mddev
->thread
= conf
->thread
;
3594 conf
->thread
= NULL
;
3596 chunk_size
= mddev
->chunk_sectors
<< 9;
3598 blk_queue_max_discard_sectors(mddev
->queue
,
3599 mddev
->chunk_sectors
);
3600 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3601 blk_queue_io_min(mddev
->queue
, chunk_size
);
3602 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3603 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3605 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3606 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3609 rdev_for_each(rdev
, mddev
) {
3611 struct request_queue
*q
;
3613 disk_idx
= rdev
->raid_disk
;
3616 if (disk_idx
>= conf
->geo
.raid_disks
&&
3617 disk_idx
>= conf
->prev
.raid_disks
)
3619 disk
= conf
->mirrors
+ disk_idx
;
3621 if (test_bit(Replacement
, &rdev
->flags
)) {
3622 if (disk
->replacement
)
3624 disk
->replacement
= rdev
;
3630 q
= bdev_get_queue(rdev
->bdev
);
3631 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3632 if (!mddev
->reshape_backwards
)
3636 if (first
|| diff
< min_offset_diff
)
3637 min_offset_diff
= diff
;
3640 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3641 rdev
->data_offset
<< 9);
3643 disk
->head_position
= 0;
3645 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3646 discard_supported
= true;
3650 if (discard_supported
)
3651 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3654 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3657 /* need to check that every block has at least one working mirror */
3658 if (!enough(conf
, -1)) {
3659 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3664 if (conf
->reshape_progress
!= MaxSector
) {
3665 /* must ensure that shape change is supported */
3666 if (conf
->geo
.far_copies
!= 1 &&
3667 conf
->geo
.far_offset
== 0)
3669 if (conf
->prev
.far_copies
!= 1 &&
3670 conf
->prev
.far_offset
== 0)
3674 mddev
->degraded
= 0;
3676 i
< conf
->geo
.raid_disks
3677 || i
< conf
->prev
.raid_disks
;
3680 disk
= conf
->mirrors
+ i
;
3682 if (!disk
->rdev
&& disk
->replacement
) {
3683 /* The replacement is all we have - use it */
3684 disk
->rdev
= disk
->replacement
;
3685 disk
->replacement
= NULL
;
3686 clear_bit(Replacement
, &disk
->rdev
->flags
);
3690 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3691 disk
->head_position
= 0;
3694 disk
->rdev
->saved_raid_disk
< 0)
3697 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3700 if (mddev
->recovery_cp
!= MaxSector
)
3701 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3702 " -- starting background reconstruction\n",
3705 "md/raid10:%s: active with %d out of %d devices\n",
3706 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3707 conf
->geo
.raid_disks
);
3709 * Ok, everything is just fine now
3711 mddev
->dev_sectors
= conf
->dev_sectors
;
3712 size
= raid10_size(mddev
, 0, 0);
3713 md_set_array_sectors(mddev
, size
);
3714 mddev
->resync_max_sectors
= size
;
3717 int stripe
= conf
->geo
.raid_disks
*
3718 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3720 /* Calculate max read-ahead size.
3721 * We need to readahead at least twice a whole stripe....
3724 stripe
/= conf
->geo
.near_copies
;
3725 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3726 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3729 if (md_integrity_register(mddev
))
3732 if (conf
->reshape_progress
!= MaxSector
) {
3733 unsigned long before_length
, after_length
;
3735 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3736 conf
->prev
.far_copies
);
3737 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3738 conf
->geo
.far_copies
);
3740 if (max(before_length
, after_length
) > min_offset_diff
) {
3741 /* This cannot work */
3742 printk("md/raid10: offset difference not enough to continue reshape\n");
3745 conf
->offset_diff
= min_offset_diff
;
3747 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3748 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3749 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3750 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3751 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3758 md_unregister_thread(&mddev
->thread
);
3759 mempool_destroy(conf
->r10bio_pool
);
3760 safe_put_page(conf
->tmppage
);
3761 kfree(conf
->mirrors
);
3763 mddev
->private = NULL
;
3768 static void raid10_free(struct mddev
*mddev
, void *priv
)
3770 struct r10conf
*conf
= priv
;
3772 mempool_destroy(conf
->r10bio_pool
);
3773 safe_put_page(conf
->tmppage
);
3774 kfree(conf
->mirrors
);
3775 kfree(conf
->mirrors_old
);
3776 kfree(conf
->mirrors_new
);
3780 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3782 struct r10conf
*conf
= mddev
->private;
3786 raise_barrier(conf
, 0);
3789 lower_barrier(conf
);
3794 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3796 /* Resize of 'far' arrays is not supported.
3797 * For 'near' and 'offset' arrays we can set the
3798 * number of sectors used to be an appropriate multiple
3799 * of the chunk size.
3800 * For 'offset', this is far_copies*chunksize.
3801 * For 'near' the multiplier is the LCM of
3802 * near_copies and raid_disks.
3803 * So if far_copies > 1 && !far_offset, fail.
3804 * Else find LCM(raid_disks, near_copy)*far_copies and
3805 * multiply by chunk_size. Then round to this number.
3806 * This is mostly done by raid10_size()
3808 struct r10conf
*conf
= mddev
->private;
3809 sector_t oldsize
, size
;
3811 if (mddev
->reshape_position
!= MaxSector
)
3814 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3817 oldsize
= raid10_size(mddev
, 0, 0);
3818 size
= raid10_size(mddev
, sectors
, 0);
3819 if (mddev
->external_size
&&
3820 mddev
->array_sectors
> size
)
3822 if (mddev
->bitmap
) {
3823 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3827 md_set_array_sectors(mddev
, size
);
3829 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3830 revalidate_disk(mddev
->gendisk
);
3832 if (sectors
> mddev
->dev_sectors
&&
3833 mddev
->recovery_cp
> oldsize
) {
3834 mddev
->recovery_cp
= oldsize
;
3835 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3837 calc_sectors(conf
, sectors
);
3838 mddev
->dev_sectors
= conf
->dev_sectors
;
3839 mddev
->resync_max_sectors
= size
;
3843 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3845 struct md_rdev
*rdev
;
3846 struct r10conf
*conf
;
3848 if (mddev
->degraded
> 0) {
3849 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3851 return ERR_PTR(-EINVAL
);
3853 sector_div(size
, devs
);
3855 /* Set new parameters */
3856 mddev
->new_level
= 10;
3857 /* new layout: far_copies = 1, near_copies = 2 */
3858 mddev
->new_layout
= (1<<8) + 2;
3859 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3860 mddev
->delta_disks
= mddev
->raid_disks
;
3861 mddev
->raid_disks
*= 2;
3862 /* make sure it will be not marked as dirty */
3863 mddev
->recovery_cp
= MaxSector
;
3864 mddev
->dev_sectors
= size
;
3866 conf
= setup_conf(mddev
);
3867 if (!IS_ERR(conf
)) {
3868 rdev_for_each(rdev
, mddev
)
3869 if (rdev
->raid_disk
>= 0) {
3870 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3871 rdev
->sectors
= size
;
3879 static void *raid10_takeover(struct mddev
*mddev
)
3881 struct r0conf
*raid0_conf
;
3883 /* raid10 can take over:
3884 * raid0 - providing it has only two drives
3886 if (mddev
->level
== 0) {
3887 /* for raid0 takeover only one zone is supported */
3888 raid0_conf
= mddev
->private;
3889 if (raid0_conf
->nr_strip_zones
> 1) {
3890 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3891 " with more than one zone.\n",
3893 return ERR_PTR(-EINVAL
);
3895 return raid10_takeover_raid0(mddev
,
3896 raid0_conf
->strip_zone
->zone_end
,
3897 raid0_conf
->strip_zone
->nb_dev
);
3899 return ERR_PTR(-EINVAL
);
3902 static int raid10_check_reshape(struct mddev
*mddev
)
3904 /* Called when there is a request to change
3905 * - layout (to ->new_layout)
3906 * - chunk size (to ->new_chunk_sectors)
3907 * - raid_disks (by delta_disks)
3908 * or when trying to restart a reshape that was ongoing.
3910 * We need to validate the request and possibly allocate
3911 * space if that might be an issue later.
3913 * Currently we reject any reshape of a 'far' mode array,
3914 * allow chunk size to change if new is generally acceptable,
3915 * allow raid_disks to increase, and allow
3916 * a switch between 'near' mode and 'offset' mode.
3918 struct r10conf
*conf
= mddev
->private;
3921 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3924 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3925 /* mustn't change number of copies */
3927 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3928 /* Cannot switch to 'far' mode */
3931 if (mddev
->array_sectors
& geo
.chunk_mask
)
3932 /* not factor of array size */
3935 if (!enough(conf
, -1))
3938 kfree(conf
->mirrors_new
);
3939 conf
->mirrors_new
= NULL
;
3940 if (mddev
->delta_disks
> 0) {
3941 /* allocate new 'mirrors' list */
3942 conf
->mirrors_new
= kzalloc(
3943 sizeof(struct raid10_info
)
3944 *(mddev
->raid_disks
+
3945 mddev
->delta_disks
),
3947 if (!conf
->mirrors_new
)
3954 * Need to check if array has failed when deciding whether to:
3956 * - remove non-faulty devices
3959 * This determination is simple when no reshape is happening.
3960 * However if there is a reshape, we need to carefully check
3961 * both the before and after sections.
3962 * This is because some failed devices may only affect one
3963 * of the two sections, and some non-in_sync devices may
3964 * be insync in the section most affected by failed devices.
3966 static int calc_degraded(struct r10conf
*conf
)
3968 int degraded
, degraded2
;
3973 /* 'prev' section first */
3974 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3975 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3976 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3978 else if (!test_bit(In_sync
, &rdev
->flags
))
3979 /* When we can reduce the number of devices in
3980 * an array, this might not contribute to
3981 * 'degraded'. It does now.
3986 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
3990 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3991 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3992 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3994 else if (!test_bit(In_sync
, &rdev
->flags
)) {
3995 /* If reshape is increasing the number of devices,
3996 * this section has already been recovered, so
3997 * it doesn't contribute to degraded.
4000 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4005 if (degraded2
> degraded
)
4010 static int raid10_start_reshape(struct mddev
*mddev
)
4012 /* A 'reshape' has been requested. This commits
4013 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4014 * This also checks if there are enough spares and adds them
4016 * We currently require enough spares to make the final
4017 * array non-degraded. We also require that the difference
4018 * between old and new data_offset - on each device - is
4019 * enough that we never risk over-writing.
4022 unsigned long before_length
, after_length
;
4023 sector_t min_offset_diff
= 0;
4026 struct r10conf
*conf
= mddev
->private;
4027 struct md_rdev
*rdev
;
4031 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4034 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4037 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4038 conf
->prev
.far_copies
);
4039 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4040 conf
->geo
.far_copies
);
4042 rdev_for_each(rdev
, mddev
) {
4043 if (!test_bit(In_sync
, &rdev
->flags
)
4044 && !test_bit(Faulty
, &rdev
->flags
))
4046 if (rdev
->raid_disk
>= 0) {
4047 long long diff
= (rdev
->new_data_offset
4048 - rdev
->data_offset
);
4049 if (!mddev
->reshape_backwards
)
4053 if (first
|| diff
< min_offset_diff
)
4054 min_offset_diff
= diff
;
4058 if (max(before_length
, after_length
) > min_offset_diff
)
4061 if (spares
< mddev
->delta_disks
)
4064 conf
->offset_diff
= min_offset_diff
;
4065 spin_lock_irq(&conf
->device_lock
);
4066 if (conf
->mirrors_new
) {
4067 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4068 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4070 kfree(conf
->mirrors_old
);
4071 conf
->mirrors_old
= conf
->mirrors
;
4072 conf
->mirrors
= conf
->mirrors_new
;
4073 conf
->mirrors_new
= NULL
;
4075 setup_geo(&conf
->geo
, mddev
, geo_start
);
4077 if (mddev
->reshape_backwards
) {
4078 sector_t size
= raid10_size(mddev
, 0, 0);
4079 if (size
< mddev
->array_sectors
) {
4080 spin_unlock_irq(&conf
->device_lock
);
4081 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
4085 mddev
->resync_max_sectors
= size
;
4086 conf
->reshape_progress
= size
;
4088 conf
->reshape_progress
= 0;
4089 conf
->reshape_safe
= conf
->reshape_progress
;
4090 spin_unlock_irq(&conf
->device_lock
);
4092 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4093 ret
= bitmap_resize(mddev
->bitmap
,
4094 raid10_size(mddev
, 0,
4095 conf
->geo
.raid_disks
),
4100 if (mddev
->delta_disks
> 0) {
4101 rdev_for_each(rdev
, mddev
)
4102 if (rdev
->raid_disk
< 0 &&
4103 !test_bit(Faulty
, &rdev
->flags
)) {
4104 if (raid10_add_disk(mddev
, rdev
) == 0) {
4105 if (rdev
->raid_disk
>=
4106 conf
->prev
.raid_disks
)
4107 set_bit(In_sync
, &rdev
->flags
);
4109 rdev
->recovery_offset
= 0;
4111 if (sysfs_link_rdev(mddev
, rdev
))
4112 /* Failure here is OK */;
4114 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4115 && !test_bit(Faulty
, &rdev
->flags
)) {
4116 /* This is a spare that was manually added */
4117 set_bit(In_sync
, &rdev
->flags
);
4120 /* When a reshape changes the number of devices,
4121 * ->degraded is measured against the larger of the
4122 * pre and post numbers.
4124 spin_lock_irq(&conf
->device_lock
);
4125 mddev
->degraded
= calc_degraded(conf
);
4126 spin_unlock_irq(&conf
->device_lock
);
4127 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4128 mddev
->reshape_position
= conf
->reshape_progress
;
4129 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4131 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4132 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4133 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4134 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4135 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4137 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4139 if (!mddev
->sync_thread
) {
4143 conf
->reshape_checkpoint
= jiffies
;
4144 md_wakeup_thread(mddev
->sync_thread
);
4145 md_new_event(mddev
);
4149 mddev
->recovery
= 0;
4150 spin_lock_irq(&conf
->device_lock
);
4151 conf
->geo
= conf
->prev
;
4152 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4153 rdev_for_each(rdev
, mddev
)
4154 rdev
->new_data_offset
= rdev
->data_offset
;
4156 conf
->reshape_progress
= MaxSector
;
4157 conf
->reshape_safe
= MaxSector
;
4158 mddev
->reshape_position
= MaxSector
;
4159 spin_unlock_irq(&conf
->device_lock
);
4163 /* Calculate the last device-address that could contain
4164 * any block from the chunk that includes the array-address 's'
4165 * and report the next address.
4166 * i.e. the address returned will be chunk-aligned and after
4167 * any data that is in the chunk containing 's'.
4169 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4171 s
= (s
| geo
->chunk_mask
) + 1;
4172 s
>>= geo
->chunk_shift
;
4173 s
*= geo
->near_copies
;
4174 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4175 s
*= geo
->far_copies
;
4176 s
<<= geo
->chunk_shift
;
4180 /* Calculate the first device-address that could contain
4181 * any block from the chunk that includes the array-address 's'.
4182 * This too will be the start of a chunk
4184 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4186 s
>>= geo
->chunk_shift
;
4187 s
*= geo
->near_copies
;
4188 sector_div(s
, geo
->raid_disks
);
4189 s
*= geo
->far_copies
;
4190 s
<<= geo
->chunk_shift
;
4194 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4197 /* We simply copy at most one chunk (smallest of old and new)
4198 * at a time, possibly less if that exceeds RESYNC_PAGES,
4199 * or we hit a bad block or something.
4200 * This might mean we pause for normal IO in the middle of
4201 * a chunk, but that is not a problem as mddev->reshape_position
4202 * can record any location.
4204 * If we will want to write to a location that isn't
4205 * yet recorded as 'safe' (i.e. in metadata on disk) then
4206 * we need to flush all reshape requests and update the metadata.
4208 * When reshaping forwards (e.g. to more devices), we interpret
4209 * 'safe' as the earliest block which might not have been copied
4210 * down yet. We divide this by previous stripe size and multiply
4211 * by previous stripe length to get lowest device offset that we
4212 * cannot write to yet.
4213 * We interpret 'sector_nr' as an address that we want to write to.
4214 * From this we use last_device_address() to find where we might
4215 * write to, and first_device_address on the 'safe' position.
4216 * If this 'next' write position is after the 'safe' position,
4217 * we must update the metadata to increase the 'safe' position.
4219 * When reshaping backwards, we round in the opposite direction
4220 * and perform the reverse test: next write position must not be
4221 * less than current safe position.
4223 * In all this the minimum difference in data offsets
4224 * (conf->offset_diff - always positive) allows a bit of slack,
4225 * so next can be after 'safe', but not by more than offset_diff
4227 * We need to prepare all the bios here before we start any IO
4228 * to ensure the size we choose is acceptable to all devices.
4229 * The means one for each copy for write-out and an extra one for
4231 * We store the read-in bio in ->master_bio and the others in
4232 * ->devs[x].bio and ->devs[x].repl_bio.
4234 struct r10conf
*conf
= mddev
->private;
4235 struct r10bio
*r10_bio
;
4236 sector_t next
, safe
, last
;
4240 struct md_rdev
*rdev
;
4243 struct bio
*bio
, *read_bio
;
4244 int sectors_done
= 0;
4246 if (sector_nr
== 0) {
4247 /* If restarting in the middle, skip the initial sectors */
4248 if (mddev
->reshape_backwards
&&
4249 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4250 sector_nr
= (raid10_size(mddev
, 0, 0)
4251 - conf
->reshape_progress
);
4252 } else if (!mddev
->reshape_backwards
&&
4253 conf
->reshape_progress
> 0)
4254 sector_nr
= conf
->reshape_progress
;
4256 mddev
->curr_resync_completed
= sector_nr
;
4257 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4263 /* We don't use sector_nr to track where we are up to
4264 * as that doesn't work well for ->reshape_backwards.
4265 * So just use ->reshape_progress.
4267 if (mddev
->reshape_backwards
) {
4268 /* 'next' is the earliest device address that we might
4269 * write to for this chunk in the new layout
4271 next
= first_dev_address(conf
->reshape_progress
- 1,
4274 /* 'safe' is the last device address that we might read from
4275 * in the old layout after a restart
4277 safe
= last_dev_address(conf
->reshape_safe
- 1,
4280 if (next
+ conf
->offset_diff
< safe
)
4283 last
= conf
->reshape_progress
- 1;
4284 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4285 & conf
->prev
.chunk_mask
);
4286 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4287 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4289 /* 'next' is after the last device address that we
4290 * might write to for this chunk in the new layout
4292 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4294 /* 'safe' is the earliest device address that we might
4295 * read from in the old layout after a restart
4297 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4299 /* Need to update metadata if 'next' might be beyond 'safe'
4300 * as that would possibly corrupt data
4302 if (next
> safe
+ conf
->offset_diff
)
4305 sector_nr
= conf
->reshape_progress
;
4306 last
= sector_nr
| (conf
->geo
.chunk_mask
4307 & conf
->prev
.chunk_mask
);
4309 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4310 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4314 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4315 /* Need to update reshape_position in metadata */
4317 mddev
->reshape_position
= conf
->reshape_progress
;
4318 if (mddev
->reshape_backwards
)
4319 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4320 - conf
->reshape_progress
;
4322 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4323 conf
->reshape_checkpoint
= jiffies
;
4324 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4325 md_wakeup_thread(mddev
->thread
);
4326 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4327 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4328 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4329 allow_barrier(conf
);
4330 return sectors_done
;
4332 conf
->reshape_safe
= mddev
->reshape_position
;
4333 allow_barrier(conf
);
4337 /* Now schedule reads for blocks from sector_nr to last */
4338 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4340 raise_barrier(conf
, sectors_done
!= 0);
4341 atomic_set(&r10_bio
->remaining
, 0);
4342 r10_bio
->mddev
= mddev
;
4343 r10_bio
->sector
= sector_nr
;
4344 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4345 r10_bio
->sectors
= last
- sector_nr
+ 1;
4346 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4347 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4350 /* Cannot read from here, so need to record bad blocks
4351 * on all the target devices.
4354 mempool_free(r10_bio
, conf
->r10buf_pool
);
4355 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4356 return sectors_done
;
4359 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4361 read_bio
->bi_bdev
= rdev
->bdev
;
4362 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4363 + rdev
->data_offset
);
4364 read_bio
->bi_private
= r10_bio
;
4365 read_bio
->bi_end_io
= end_sync_read
;
4366 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4367 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4368 read_bio
->bi_error
= 0;
4369 read_bio
->bi_vcnt
= 0;
4370 read_bio
->bi_iter
.bi_size
= 0;
4371 r10_bio
->master_bio
= read_bio
;
4372 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4374 /* Now find the locations in the new layout */
4375 __raid10_find_phys(&conf
->geo
, r10_bio
);
4378 read_bio
->bi_next
= NULL
;
4381 for (s
= 0; s
< conf
->copies
*2; s
++) {
4383 int d
= r10_bio
->devs
[s
/2].devnum
;
4384 struct md_rdev
*rdev2
;
4386 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4387 b
= r10_bio
->devs
[s
/2].repl_bio
;
4389 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4390 b
= r10_bio
->devs
[s
/2].bio
;
4392 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4396 b
->bi_bdev
= rdev2
->bdev
;
4397 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4398 rdev2
->new_data_offset
;
4399 b
->bi_private
= r10_bio
;
4400 b
->bi_end_io
= end_reshape_write
;
4401 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4406 /* Now add as many pages as possible to all of these bios. */
4409 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4410 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4411 int len
= (max_sectors
- s
) << 9;
4412 if (len
> PAGE_SIZE
)
4414 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4416 if (bio_add_page(bio
, page
, len
, 0))
4419 /* Didn't fit, must stop */
4421 bio2
&& bio2
!= bio
;
4422 bio2
= bio2
->bi_next
) {
4423 /* Remove last page from this bio */
4425 bio2
->bi_iter
.bi_size
-= len
;
4426 bio_clear_flag(bio2
, BIO_SEG_VALID
);
4430 sector_nr
+= len
>> 9;
4431 nr_sectors
+= len
>> 9;
4435 r10_bio
->sectors
= nr_sectors
;
4437 /* Now submit the read */
4438 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4439 atomic_inc(&r10_bio
->remaining
);
4440 read_bio
->bi_next
= NULL
;
4441 generic_make_request(read_bio
);
4442 sector_nr
+= nr_sectors
;
4443 sectors_done
+= nr_sectors
;
4444 if (sector_nr
<= last
)
4447 /* Now that we have done the whole section we can
4448 * update reshape_progress
4450 if (mddev
->reshape_backwards
)
4451 conf
->reshape_progress
-= sectors_done
;
4453 conf
->reshape_progress
+= sectors_done
;
4455 return sectors_done
;
4458 static void end_reshape_request(struct r10bio
*r10_bio
);
4459 static int handle_reshape_read_error(struct mddev
*mddev
,
4460 struct r10bio
*r10_bio
);
4461 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4463 /* Reshape read completed. Hopefully we have a block
4465 * If we got a read error then we do sync 1-page reads from
4466 * elsewhere until we find the data - or give up.
4468 struct r10conf
*conf
= mddev
->private;
4471 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4472 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4473 /* Reshape has been aborted */
4474 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4478 /* We definitely have the data in the pages, schedule the
4481 atomic_set(&r10_bio
->remaining
, 1);
4482 for (s
= 0; s
< conf
->copies
*2; s
++) {
4484 int d
= r10_bio
->devs
[s
/2].devnum
;
4485 struct md_rdev
*rdev
;
4488 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4489 b
= r10_bio
->devs
[s
/2].repl_bio
;
4491 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4492 b
= r10_bio
->devs
[s
/2].bio
;
4494 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4498 atomic_inc(&rdev
->nr_pending
);
4500 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4501 atomic_inc(&r10_bio
->remaining
);
4503 generic_make_request(b
);
4505 end_reshape_request(r10_bio
);
4508 static void end_reshape(struct r10conf
*conf
)
4510 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4513 spin_lock_irq(&conf
->device_lock
);
4514 conf
->prev
= conf
->geo
;
4515 md_finish_reshape(conf
->mddev
);
4517 conf
->reshape_progress
= MaxSector
;
4518 conf
->reshape_safe
= MaxSector
;
4519 spin_unlock_irq(&conf
->device_lock
);
4521 /* read-ahead size must cover two whole stripes, which is
4522 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4524 if (conf
->mddev
->queue
) {
4525 int stripe
= conf
->geo
.raid_disks
*
4526 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4527 stripe
/= conf
->geo
.near_copies
;
4528 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4529 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4534 static int handle_reshape_read_error(struct mddev
*mddev
,
4535 struct r10bio
*r10_bio
)
4537 /* Use sync reads to get the blocks from somewhere else */
4538 int sectors
= r10_bio
->sectors
;
4539 struct r10conf
*conf
= mddev
->private;
4541 struct r10bio r10_bio
;
4542 struct r10dev devs
[conf
->copies
];
4544 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4547 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4549 r10b
->sector
= r10_bio
->sector
;
4550 __raid10_find_phys(&conf
->prev
, r10b
);
4555 int first_slot
= slot
;
4557 if (s
> (PAGE_SIZE
>> 9))
4562 int d
= r10b
->devs
[slot
].devnum
;
4563 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4566 test_bit(Faulty
, &rdev
->flags
) ||
4567 !test_bit(In_sync
, &rdev
->flags
))
4570 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4571 atomic_inc(&rdev
->nr_pending
);
4573 success
= sync_page_io(rdev
,
4577 REQ_OP_READ
, 0, false);
4578 rdev_dec_pending(rdev
, mddev
);
4584 if (slot
>= conf
->copies
)
4586 if (slot
== first_slot
)
4591 /* couldn't read this block, must give up */
4592 set_bit(MD_RECOVERY_INTR
,
4602 static void end_reshape_write(struct bio
*bio
)
4604 struct r10bio
*r10_bio
= bio
->bi_private
;
4605 struct mddev
*mddev
= r10_bio
->mddev
;
4606 struct r10conf
*conf
= mddev
->private;
4610 struct md_rdev
*rdev
= NULL
;
4612 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4614 rdev
= conf
->mirrors
[d
].replacement
;
4617 rdev
= conf
->mirrors
[d
].rdev
;
4620 if (bio
->bi_error
) {
4621 /* FIXME should record badblock */
4622 md_error(mddev
, rdev
);
4625 rdev_dec_pending(rdev
, mddev
);
4626 end_reshape_request(r10_bio
);
4629 static void end_reshape_request(struct r10bio
*r10_bio
)
4631 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4633 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4634 bio_put(r10_bio
->master_bio
);
4638 static void raid10_finish_reshape(struct mddev
*mddev
)
4640 struct r10conf
*conf
= mddev
->private;
4642 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4645 if (mddev
->delta_disks
> 0) {
4646 sector_t size
= raid10_size(mddev
, 0, 0);
4647 md_set_array_sectors(mddev
, size
);
4648 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4649 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4650 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4652 mddev
->resync_max_sectors
= size
;
4654 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4655 revalidate_disk(mddev
->gendisk
);
4660 for (d
= conf
->geo
.raid_disks
;
4661 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4663 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4665 clear_bit(In_sync
, &rdev
->flags
);
4666 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4668 clear_bit(In_sync
, &rdev
->flags
);
4672 mddev
->layout
= mddev
->new_layout
;
4673 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4674 mddev
->reshape_position
= MaxSector
;
4675 mddev
->delta_disks
= 0;
4676 mddev
->reshape_backwards
= 0;
4679 static struct md_personality raid10_personality
=
4683 .owner
= THIS_MODULE
,
4684 .make_request
= raid10_make_request
,
4686 .free
= raid10_free
,
4687 .status
= raid10_status
,
4688 .error_handler
= raid10_error
,
4689 .hot_add_disk
= raid10_add_disk
,
4690 .hot_remove_disk
= raid10_remove_disk
,
4691 .spare_active
= raid10_spare_active
,
4692 .sync_request
= raid10_sync_request
,
4693 .quiesce
= raid10_quiesce
,
4694 .size
= raid10_size
,
4695 .resize
= raid10_resize
,
4696 .takeover
= raid10_takeover
,
4697 .check_reshape
= raid10_check_reshape
,
4698 .start_reshape
= raid10_start_reshape
,
4699 .finish_reshape
= raid10_finish_reshape
,
4700 .congested
= raid10_congested
,
4703 static int __init
raid_init(void)
4705 return register_md_personality(&raid10_personality
);
4708 static void raid_exit(void)
4710 unregister_md_personality(&raid10_personality
);
4713 module_init(raid_init
);
4714 module_exit(raid_exit
);
4715 MODULE_LICENSE("GPL");
4716 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4717 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4718 MODULE_ALIAS("md-raid10");
4719 MODULE_ALIAS("md-level-10");
4721 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);