hfs: get rid of hfs_sync_super
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
blobf8187ead7b373336c21e603caa448bad99d50b47
1 /**************************************************************************
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include "ttm/ttm_bo_driver.h"
32 #include "ttm/ttm_placement.h"
33 #include <linux/io.h>
34 #include <linux/highmem.h>
35 #include <linux/wait.h>
36 #include <linux/slab.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
40 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
42 ttm_bo_mem_put(bo, &bo->mem);
45 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
46 bool evict, bool no_wait_reserve,
47 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
49 struct ttm_tt *ttm = bo->ttm;
50 struct ttm_mem_reg *old_mem = &bo->mem;
51 int ret;
53 if (old_mem->mem_type != TTM_PL_SYSTEM) {
54 ttm_tt_unbind(ttm);
55 ttm_bo_free_old_node(bo);
56 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
57 TTM_PL_MASK_MEM);
58 old_mem->mem_type = TTM_PL_SYSTEM;
61 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
62 if (unlikely(ret != 0))
63 return ret;
65 if (new_mem->mem_type != TTM_PL_SYSTEM) {
66 ret = ttm_tt_bind(ttm, new_mem);
67 if (unlikely(ret != 0))
68 return ret;
71 *old_mem = *new_mem;
72 new_mem->mm_node = NULL;
74 return 0;
76 EXPORT_SYMBOL(ttm_bo_move_ttm);
78 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
80 if (likely(man->io_reserve_fastpath))
81 return 0;
83 if (interruptible)
84 return mutex_lock_interruptible(&man->io_reserve_mutex);
86 mutex_lock(&man->io_reserve_mutex);
87 return 0;
90 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
92 if (likely(man->io_reserve_fastpath))
93 return;
95 mutex_unlock(&man->io_reserve_mutex);
98 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
100 struct ttm_buffer_object *bo;
102 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
103 return -EAGAIN;
105 bo = list_first_entry(&man->io_reserve_lru,
106 struct ttm_buffer_object,
107 io_reserve_lru);
108 list_del_init(&bo->io_reserve_lru);
109 ttm_bo_unmap_virtual_locked(bo);
111 return 0;
114 static int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
115 struct ttm_mem_reg *mem)
117 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
118 int ret = 0;
120 if (!bdev->driver->io_mem_reserve)
121 return 0;
122 if (likely(man->io_reserve_fastpath))
123 return bdev->driver->io_mem_reserve(bdev, mem);
125 if (bdev->driver->io_mem_reserve &&
126 mem->bus.io_reserved_count++ == 0) {
127 retry:
128 ret = bdev->driver->io_mem_reserve(bdev, mem);
129 if (ret == -EAGAIN) {
130 ret = ttm_mem_io_evict(man);
131 if (ret == 0)
132 goto retry;
135 return ret;
138 static void ttm_mem_io_free(struct ttm_bo_device *bdev,
139 struct ttm_mem_reg *mem)
141 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
143 if (likely(man->io_reserve_fastpath))
144 return;
146 if (bdev->driver->io_mem_reserve &&
147 --mem->bus.io_reserved_count == 0 &&
148 bdev->driver->io_mem_free)
149 bdev->driver->io_mem_free(bdev, mem);
153 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
155 struct ttm_mem_reg *mem = &bo->mem;
156 int ret;
158 if (!mem->bus.io_reserved_vm) {
159 struct ttm_mem_type_manager *man =
160 &bo->bdev->man[mem->mem_type];
162 ret = ttm_mem_io_reserve(bo->bdev, mem);
163 if (unlikely(ret != 0))
164 return ret;
165 mem->bus.io_reserved_vm = true;
166 if (man->use_io_reserve_lru)
167 list_add_tail(&bo->io_reserve_lru,
168 &man->io_reserve_lru);
170 return 0;
173 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
175 struct ttm_mem_reg *mem = &bo->mem;
177 if (mem->bus.io_reserved_vm) {
178 mem->bus.io_reserved_vm = false;
179 list_del_init(&bo->io_reserve_lru);
180 ttm_mem_io_free(bo->bdev, mem);
184 int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
185 void **virtual)
187 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
188 int ret;
189 void *addr;
191 *virtual = NULL;
192 (void) ttm_mem_io_lock(man, false);
193 ret = ttm_mem_io_reserve(bdev, mem);
194 ttm_mem_io_unlock(man);
195 if (ret || !mem->bus.is_iomem)
196 return ret;
198 if (mem->bus.addr) {
199 addr = mem->bus.addr;
200 } else {
201 if (mem->placement & TTM_PL_FLAG_WC)
202 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
203 else
204 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
205 if (!addr) {
206 (void) ttm_mem_io_lock(man, false);
207 ttm_mem_io_free(bdev, mem);
208 ttm_mem_io_unlock(man);
209 return -ENOMEM;
212 *virtual = addr;
213 return 0;
216 void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
217 void *virtual)
219 struct ttm_mem_type_manager *man;
221 man = &bdev->man[mem->mem_type];
223 if (virtual && mem->bus.addr == NULL)
224 iounmap(virtual);
225 (void) ttm_mem_io_lock(man, false);
226 ttm_mem_io_free(bdev, mem);
227 ttm_mem_io_unlock(man);
230 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
232 uint32_t *dstP =
233 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
234 uint32_t *srcP =
235 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
237 int i;
238 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
239 iowrite32(ioread32(srcP++), dstP++);
240 return 0;
243 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
244 unsigned long page,
245 pgprot_t prot)
247 struct page *d = ttm->pages[page];
248 void *dst;
250 if (!d)
251 return -ENOMEM;
253 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
255 #ifdef CONFIG_X86
256 dst = kmap_atomic_prot(d, prot);
257 #else
258 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
259 dst = vmap(&d, 1, 0, prot);
260 else
261 dst = kmap(d);
262 #endif
263 if (!dst)
264 return -ENOMEM;
266 memcpy_fromio(dst, src, PAGE_SIZE);
268 #ifdef CONFIG_X86
269 kunmap_atomic(dst);
270 #else
271 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
272 vunmap(dst);
273 else
274 kunmap(d);
275 #endif
277 return 0;
280 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
281 unsigned long page,
282 pgprot_t prot)
284 struct page *s = ttm->pages[page];
285 void *src;
287 if (!s)
288 return -ENOMEM;
290 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
291 #ifdef CONFIG_X86
292 src = kmap_atomic_prot(s, prot);
293 #else
294 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
295 src = vmap(&s, 1, 0, prot);
296 else
297 src = kmap(s);
298 #endif
299 if (!src)
300 return -ENOMEM;
302 memcpy_toio(dst, src, PAGE_SIZE);
304 #ifdef CONFIG_X86
305 kunmap_atomic(src);
306 #else
307 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
308 vunmap(src);
309 else
310 kunmap(s);
311 #endif
313 return 0;
316 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
317 bool evict, bool no_wait_reserve, bool no_wait_gpu,
318 struct ttm_mem_reg *new_mem)
320 struct ttm_bo_device *bdev = bo->bdev;
321 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
322 struct ttm_tt *ttm = bo->ttm;
323 struct ttm_mem_reg *old_mem = &bo->mem;
324 struct ttm_mem_reg old_copy = *old_mem;
325 void *old_iomap;
326 void *new_iomap;
327 int ret;
328 unsigned long i;
329 unsigned long page;
330 unsigned long add = 0;
331 int dir;
333 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
334 if (ret)
335 return ret;
336 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
337 if (ret)
338 goto out;
340 if (old_iomap == NULL && new_iomap == NULL)
341 goto out2;
342 if (old_iomap == NULL && ttm == NULL)
343 goto out2;
345 if (ttm->state == tt_unpopulated) {
346 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
347 if (ret)
348 goto out1;
351 add = 0;
352 dir = 1;
354 if ((old_mem->mem_type == new_mem->mem_type) &&
355 (new_mem->start < old_mem->start + old_mem->size)) {
356 dir = -1;
357 add = new_mem->num_pages - 1;
360 for (i = 0; i < new_mem->num_pages; ++i) {
361 page = i * dir + add;
362 if (old_iomap == NULL) {
363 pgprot_t prot = ttm_io_prot(old_mem->placement,
364 PAGE_KERNEL);
365 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
366 prot);
367 } else if (new_iomap == NULL) {
368 pgprot_t prot = ttm_io_prot(new_mem->placement,
369 PAGE_KERNEL);
370 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
371 prot);
372 } else
373 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
374 if (ret)
375 goto out1;
377 mb();
378 out2:
379 old_copy = *old_mem;
380 *old_mem = *new_mem;
381 new_mem->mm_node = NULL;
383 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
384 ttm_tt_unbind(ttm);
385 ttm_tt_destroy(ttm);
386 bo->ttm = NULL;
389 out1:
390 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
391 out:
392 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
393 ttm_bo_mem_put(bo, &old_copy);
394 return ret;
396 EXPORT_SYMBOL(ttm_bo_move_memcpy);
398 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
400 kfree(bo);
404 * ttm_buffer_object_transfer
406 * @bo: A pointer to a struct ttm_buffer_object.
407 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
408 * holding the data of @bo with the old placement.
410 * This is a utility function that may be called after an accelerated move
411 * has been scheduled. A new buffer object is created as a placeholder for
412 * the old data while it's being copied. When that buffer object is idle,
413 * it can be destroyed, releasing the space of the old placement.
414 * Returns:
415 * !0: Failure.
418 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
419 struct ttm_buffer_object **new_obj)
421 struct ttm_buffer_object *fbo;
422 struct ttm_bo_device *bdev = bo->bdev;
423 struct ttm_bo_driver *driver = bdev->driver;
425 fbo = kzalloc(sizeof(*fbo), GFP_KERNEL);
426 if (!fbo)
427 return -ENOMEM;
429 *fbo = *bo;
432 * Fix up members that we shouldn't copy directly:
433 * TODO: Explicit member copy would probably be better here.
436 init_waitqueue_head(&fbo->event_queue);
437 INIT_LIST_HEAD(&fbo->ddestroy);
438 INIT_LIST_HEAD(&fbo->lru);
439 INIT_LIST_HEAD(&fbo->swap);
440 INIT_LIST_HEAD(&fbo->io_reserve_lru);
441 fbo->vm_node = NULL;
442 atomic_set(&fbo->cpu_writers, 0);
444 fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj);
445 kref_init(&fbo->list_kref);
446 kref_init(&fbo->kref);
447 fbo->destroy = &ttm_transfered_destroy;
448 fbo->acc_size = 0;
450 *new_obj = fbo;
451 return 0;
454 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
456 #if defined(__i386__) || defined(__x86_64__)
457 if (caching_flags & TTM_PL_FLAG_WC)
458 tmp = pgprot_writecombine(tmp);
459 else if (boot_cpu_data.x86 > 3)
460 tmp = pgprot_noncached(tmp);
462 #elif defined(__powerpc__)
463 if (!(caching_flags & TTM_PL_FLAG_CACHED)) {
464 pgprot_val(tmp) |= _PAGE_NO_CACHE;
465 if (caching_flags & TTM_PL_FLAG_UNCACHED)
466 pgprot_val(tmp) |= _PAGE_GUARDED;
468 #endif
469 #if defined(__ia64__)
470 if (caching_flags & TTM_PL_FLAG_WC)
471 tmp = pgprot_writecombine(tmp);
472 else
473 tmp = pgprot_noncached(tmp);
474 #endif
475 #if defined(__sparc__)
476 if (!(caching_flags & TTM_PL_FLAG_CACHED))
477 tmp = pgprot_noncached(tmp);
478 #endif
479 return tmp;
481 EXPORT_SYMBOL(ttm_io_prot);
483 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
484 unsigned long offset,
485 unsigned long size,
486 struct ttm_bo_kmap_obj *map)
488 struct ttm_mem_reg *mem = &bo->mem;
490 if (bo->mem.bus.addr) {
491 map->bo_kmap_type = ttm_bo_map_premapped;
492 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
493 } else {
494 map->bo_kmap_type = ttm_bo_map_iomap;
495 if (mem->placement & TTM_PL_FLAG_WC)
496 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
497 size);
498 else
499 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
500 size);
502 return (!map->virtual) ? -ENOMEM : 0;
505 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
506 unsigned long start_page,
507 unsigned long num_pages,
508 struct ttm_bo_kmap_obj *map)
510 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
511 struct ttm_tt *ttm = bo->ttm;
512 int ret;
514 BUG_ON(!ttm);
516 if (ttm->state == tt_unpopulated) {
517 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
518 if (ret)
519 return ret;
522 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
524 * We're mapping a single page, and the desired
525 * page protection is consistent with the bo.
528 map->bo_kmap_type = ttm_bo_map_kmap;
529 map->page = ttm->pages[start_page];
530 map->virtual = kmap(map->page);
531 } else {
533 * We need to use vmap to get the desired page protection
534 * or to make the buffer object look contiguous.
536 prot = (mem->placement & TTM_PL_FLAG_CACHED) ?
537 PAGE_KERNEL :
538 ttm_io_prot(mem->placement, PAGE_KERNEL);
539 map->bo_kmap_type = ttm_bo_map_vmap;
540 map->virtual = vmap(ttm->pages + start_page, num_pages,
541 0, prot);
543 return (!map->virtual) ? -ENOMEM : 0;
546 int ttm_bo_kmap(struct ttm_buffer_object *bo,
547 unsigned long start_page, unsigned long num_pages,
548 struct ttm_bo_kmap_obj *map)
550 struct ttm_mem_type_manager *man =
551 &bo->bdev->man[bo->mem.mem_type];
552 unsigned long offset, size;
553 int ret;
555 BUG_ON(!list_empty(&bo->swap));
556 map->virtual = NULL;
557 map->bo = bo;
558 if (num_pages > bo->num_pages)
559 return -EINVAL;
560 if (start_page > bo->num_pages)
561 return -EINVAL;
562 #if 0
563 if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC))
564 return -EPERM;
565 #endif
566 (void) ttm_mem_io_lock(man, false);
567 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
568 ttm_mem_io_unlock(man);
569 if (ret)
570 return ret;
571 if (!bo->mem.bus.is_iomem) {
572 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
573 } else {
574 offset = start_page << PAGE_SHIFT;
575 size = num_pages << PAGE_SHIFT;
576 return ttm_bo_ioremap(bo, offset, size, map);
579 EXPORT_SYMBOL(ttm_bo_kmap);
581 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
583 struct ttm_buffer_object *bo = map->bo;
584 struct ttm_mem_type_manager *man =
585 &bo->bdev->man[bo->mem.mem_type];
587 if (!map->virtual)
588 return;
589 switch (map->bo_kmap_type) {
590 case ttm_bo_map_iomap:
591 iounmap(map->virtual);
592 break;
593 case ttm_bo_map_vmap:
594 vunmap(map->virtual);
595 break;
596 case ttm_bo_map_kmap:
597 kunmap(map->page);
598 break;
599 case ttm_bo_map_premapped:
600 break;
601 default:
602 BUG();
604 (void) ttm_mem_io_lock(man, false);
605 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
606 ttm_mem_io_unlock(man);
607 map->virtual = NULL;
608 map->page = NULL;
610 EXPORT_SYMBOL(ttm_bo_kunmap);
612 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
613 void *sync_obj,
614 void *sync_obj_arg,
615 bool evict, bool no_wait_reserve,
616 bool no_wait_gpu,
617 struct ttm_mem_reg *new_mem)
619 struct ttm_bo_device *bdev = bo->bdev;
620 struct ttm_bo_driver *driver = bdev->driver;
621 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
622 struct ttm_mem_reg *old_mem = &bo->mem;
623 int ret;
624 struct ttm_buffer_object *ghost_obj;
625 void *tmp_obj = NULL;
627 spin_lock(&bdev->fence_lock);
628 if (bo->sync_obj) {
629 tmp_obj = bo->sync_obj;
630 bo->sync_obj = NULL;
632 bo->sync_obj = driver->sync_obj_ref(sync_obj);
633 bo->sync_obj_arg = sync_obj_arg;
634 if (evict) {
635 ret = ttm_bo_wait(bo, false, false, false);
636 spin_unlock(&bdev->fence_lock);
637 if (tmp_obj)
638 driver->sync_obj_unref(&tmp_obj);
639 if (ret)
640 return ret;
642 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
643 (bo->ttm != NULL)) {
644 ttm_tt_unbind(bo->ttm);
645 ttm_tt_destroy(bo->ttm);
646 bo->ttm = NULL;
648 ttm_bo_free_old_node(bo);
649 } else {
651 * This should help pipeline ordinary buffer moves.
653 * Hang old buffer memory on a new buffer object,
654 * and leave it to be released when the GPU
655 * operation has completed.
658 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
659 spin_unlock(&bdev->fence_lock);
660 if (tmp_obj)
661 driver->sync_obj_unref(&tmp_obj);
663 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
664 if (ret)
665 return ret;
668 * If we're not moving to fixed memory, the TTM object
669 * needs to stay alive. Otherwhise hang it on the ghost
670 * bo to be unbound and destroyed.
673 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
674 ghost_obj->ttm = NULL;
675 else
676 bo->ttm = NULL;
678 ttm_bo_unreserve(ghost_obj);
679 ttm_bo_unref(&ghost_obj);
682 *old_mem = *new_mem;
683 new_mem->mm_node = NULL;
685 return 0;
687 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);