2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
53 static int max_queued_requests
= 1024;
55 static void allow_barrier(struct r1conf
*conf
);
56 static void lower_barrier(struct r1conf
*conf
);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
60 struct pool_info
*pi
= data
;
61 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size
, gfp_flags
);
67 static void r1bio_pool_free(void *r1_bio
, void *data
)
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
80 struct pool_info
*pi
= data
;
86 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j
= pi
->raid_disks
; j
-- ; ) {
94 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
97 r1_bio
->bios
[j
] = bio
;
100 * Allocate RESYNC_PAGES data pages and attach them to
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
110 bio
= r1_bio
->bios
[j
];
111 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
112 page
= alloc_page(gfp_flags
);
116 bio
->bi_io_vec
[i
].bv_page
= page
;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
122 for (i
=0; i
<RESYNC_PAGES
; i
++)
123 for (j
=1; j
<pi
->raid_disks
; j
++)
124 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
125 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
128 r1_bio
->master_bio
= NULL
;
133 for (j
=0 ; j
< pi
->raid_disks
; j
++)
134 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
135 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
138 while (++j
< pi
->raid_disks
)
139 bio_put(r1_bio
->bios
[j
]);
140 r1bio_pool_free(r1_bio
, data
);
144 static void r1buf_pool_free(void *__r1_bio
, void *data
)
146 struct pool_info
*pi
= data
;
148 struct r1bio
*r1bio
= __r1_bio
;
150 for (i
= 0; i
< RESYNC_PAGES
; i
++)
151 for (j
= pi
->raid_disks
; j
-- ;) {
153 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
154 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
155 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
157 for (i
=0 ; i
< pi
->raid_disks
; i
++)
158 bio_put(r1bio
->bios
[i
]);
160 r1bio_pool_free(r1bio
, data
);
163 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
167 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
168 struct bio
**bio
= r1_bio
->bios
+ i
;
169 if (!BIO_SPECIAL(*bio
))
175 static void free_r1bio(struct r1bio
*r1_bio
)
177 struct r1conf
*conf
= r1_bio
->mddev
->private;
179 put_all_bios(conf
, r1_bio
);
180 mempool_free(r1_bio
, conf
->r1bio_pool
);
183 static void put_buf(struct r1bio
*r1_bio
)
185 struct r1conf
*conf
= r1_bio
->mddev
->private;
188 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
189 struct bio
*bio
= r1_bio
->bios
[i
];
191 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
194 mempool_free(r1_bio
, conf
->r1buf_pool
);
199 static void reschedule_retry(struct r1bio
*r1_bio
)
202 struct mddev
*mddev
= r1_bio
->mddev
;
203 struct r1conf
*conf
= mddev
->private;
205 spin_lock_irqsave(&conf
->device_lock
, flags
);
206 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
208 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
210 wake_up(&conf
->wait_barrier
);
211 md_wakeup_thread(mddev
->thread
);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
219 static void call_bio_endio(struct r1bio
*r1_bio
)
221 struct bio
*bio
= r1_bio
->master_bio
;
223 struct r1conf
*conf
= r1_bio
->mddev
->private;
225 if (bio
->bi_phys_segments
) {
227 spin_lock_irqsave(&conf
->device_lock
, flags
);
228 bio
->bi_phys_segments
--;
229 done
= (bio
->bi_phys_segments
== 0);
230 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
234 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
235 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
239 * Wake up any possible resync thread that waits for the device
246 static void raid_end_bio_io(struct r1bio
*r1_bio
)
248 struct bio
*bio
= r1_bio
->master_bio
;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
254 (unsigned long long) bio
->bi_sector
,
255 (unsigned long long) bio
->bi_sector
+
256 (bio
->bi_size
>> 9) - 1);
258 call_bio_endio(r1_bio
);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
268 struct r1conf
*conf
= r1_bio
->mddev
->private;
270 conf
->mirrors
[disk
].head_position
=
271 r1_bio
->sector
+ (r1_bio
->sectors
);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
280 struct r1conf
*conf
= r1_bio
->mddev
->private;
281 int raid_disks
= conf
->raid_disks
;
283 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
284 if (r1_bio
->bios
[mirror
] == bio
)
287 BUG_ON(mirror
== raid_disks
* 2);
288 update_head_pos(mirror
, r1_bio
);
293 static void raid1_end_read_request(struct bio
*bio
, int error
)
295 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
296 struct r1bio
*r1_bio
= bio
->bi_private
;
298 struct r1conf
*conf
= r1_bio
->mddev
->private;
300 mirror
= r1_bio
->read_disk
;
302 * this branch is our 'one mirror IO has finished' event handler:
304 update_head_pos(mirror
, r1_bio
);
307 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
314 spin_lock_irqsave(&conf
->device_lock
, flags
);
315 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
316 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
317 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
319 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
323 raid_end_bio_io(r1_bio
);
328 char b
[BDEVNAME_SIZE
];
330 KERN_ERR
"md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
333 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
335 (unsigned long long)r1_bio
->sector
);
336 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
337 reschedule_retry(r1_bio
);
340 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
343 static void close_write(struct r1bio
*r1_bio
)
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
347 /* free extra copy of the data pages */
348 int i
= r1_bio
->behind_page_count
;
350 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
351 kfree(r1_bio
->behind_bvecs
);
352 r1_bio
->behind_bvecs
= NULL
;
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
357 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
358 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
359 md_write_end(r1_bio
->mddev
);
362 static void r1_bio_write_done(struct r1bio
*r1_bio
)
364 if (!atomic_dec_and_test(&r1_bio
->remaining
))
367 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
368 reschedule_retry(r1_bio
);
371 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
372 reschedule_retry(r1_bio
);
374 raid_end_bio_io(r1_bio
);
378 static void raid1_end_write_request(struct bio
*bio
, int error
)
380 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
381 struct r1bio
*r1_bio
= bio
->bi_private
;
382 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
383 struct r1conf
*conf
= r1_bio
->mddev
->private;
384 struct bio
*to_put
= NULL
;
386 mirror
= find_bio_disk(r1_bio
, bio
);
389 * 'one mirror IO has finished' event handler:
392 set_bit(WriteErrorSeen
,
393 &conf
->mirrors
[mirror
].rdev
->flags
);
394 if (!test_and_set_bit(WantReplacement
,
395 &conf
->mirrors
[mirror
].rdev
->flags
))
396 set_bit(MD_RECOVERY_NEEDED
, &
397 conf
->mddev
->recovery
);
399 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
414 r1_bio
->bios
[mirror
] = NULL
;
416 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
420 r1_bio
->sector
, r1_bio
->sectors
,
421 &first_bad
, &bad_sectors
)) {
422 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
423 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
428 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
429 atomic_dec(&r1_bio
->behind_remaining
);
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
438 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
439 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
442 struct bio
*mbio
= r1_bio
->master_bio
;
443 pr_debug("raid1: behind end write sectors"
445 (unsigned long long) mbio
->bi_sector
,
446 (unsigned long long) mbio
->bi_sector
+
447 (mbio
->bi_size
>> 9) - 1);
448 call_bio_endio(r1_bio
);
452 if (r1_bio
->bios
[mirror
] == NULL
)
453 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
457 * Let's see if all mirrored write operations have finished
460 r1_bio_write_done(r1_bio
);
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
481 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
483 const sector_t this_sector
= r1_bio
->sector
;
485 int best_good_sectors
;
490 struct md_rdev
*rdev
;
495 * Check if we can balance. We can balance on the whole
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
500 sectors
= r1_bio
->sectors
;
502 best_dist
= MaxSector
;
503 best_good_sectors
= 0;
505 if (conf
->mddev
->recovery_cp
< MaxSector
&&
506 (this_sector
+ sectors
>= conf
->next_resync
)) {
511 start_disk
= conf
->last_used
;
514 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++) {
519 int disk
= start_disk
+ i
;
520 if (disk
>= conf
->raid_disks
* 2)
521 disk
-= conf
->raid_disks
* 2;
523 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
524 if (r1_bio
->bios
[disk
] == IO_BLOCKED
526 || test_bit(Unmerged
, &rdev
->flags
)
527 || test_bit(Faulty
, &rdev
->flags
))
529 if (!test_bit(In_sync
, &rdev
->flags
) &&
530 rdev
->recovery_offset
< this_sector
+ sectors
)
532 if (test_bit(WriteMostly
, &rdev
->flags
)) {
533 /* Don't balance among write-mostly, just
534 * use the first as a last resort */
536 if (is_badblock(rdev
, this_sector
, sectors
,
537 &first_bad
, &bad_sectors
)) {
538 if (first_bad
< this_sector
)
539 /* Cannot use this */
541 best_good_sectors
= first_bad
- this_sector
;
543 best_good_sectors
= sectors
;
548 /* This is a reasonable device to use. It might
551 if (is_badblock(rdev
, this_sector
, sectors
,
552 &first_bad
, &bad_sectors
)) {
553 if (best_dist
< MaxSector
)
554 /* already have a better device */
556 if (first_bad
<= this_sector
) {
557 /* cannot read here. If this is the 'primary'
558 * device, then we must not read beyond
559 * bad_sectors from another device..
561 bad_sectors
-= (this_sector
- first_bad
);
562 if (choose_first
&& sectors
> bad_sectors
)
563 sectors
= bad_sectors
;
564 if (best_good_sectors
> sectors
)
565 best_good_sectors
= sectors
;
568 sector_t good_sectors
= first_bad
- this_sector
;
569 if (good_sectors
> best_good_sectors
) {
570 best_good_sectors
= good_sectors
;
578 best_good_sectors
= sectors
;
580 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
582 /* Don't change to another disk for sequential reads */
583 || conf
->next_seq_sect
== this_sector
585 /* If device is idle, use it */
586 || atomic_read(&rdev
->nr_pending
) == 0) {
590 if (dist
< best_dist
) {
596 if (best_disk
>= 0) {
597 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
600 atomic_inc(&rdev
->nr_pending
);
601 if (test_bit(Faulty
, &rdev
->flags
)) {
602 /* cannot risk returning a device that failed
603 * before we inc'ed nr_pending
605 rdev_dec_pending(rdev
, conf
->mddev
);
608 sectors
= best_good_sectors
;
609 conf
->next_seq_sect
= this_sector
+ sectors
;
610 conf
->last_used
= best_disk
;
613 *max_sectors
= sectors
;
618 static int raid1_mergeable_bvec(struct request_queue
*q
,
619 struct bvec_merge_data
*bvm
,
620 struct bio_vec
*biovec
)
622 struct mddev
*mddev
= q
->queuedata
;
623 struct r1conf
*conf
= mddev
->private;
624 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
625 int max
= biovec
->bv_len
;
627 if (mddev
->merge_check_needed
) {
630 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
631 struct md_rdev
*rdev
= rcu_dereference(
632 conf
->mirrors
[disk
].rdev
);
633 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
634 struct request_queue
*q
=
635 bdev_get_queue(rdev
->bdev
);
636 if (q
->merge_bvec_fn
) {
637 bvm
->bi_sector
= sector
+
639 bvm
->bi_bdev
= rdev
->bdev
;
640 max
= min(max
, q
->merge_bvec_fn(
651 int md_raid1_congested(struct mddev
*mddev
, int bits
)
653 struct r1conf
*conf
= mddev
->private;
656 if ((bits
& (1 << BDI_async_congested
)) &&
657 conf
->pending_count
>= max_queued_requests
)
661 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
662 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
663 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
664 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
668 /* Note the '|| 1' - when read_balance prefers
669 * non-congested targets, it can be removed
671 if ((bits
& (1<<BDI_async_congested
)) || 1)
672 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
674 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
680 EXPORT_SYMBOL_GPL(md_raid1_congested
);
682 static int raid1_congested(void *data
, int bits
)
684 struct mddev
*mddev
= data
;
686 return mddev_congested(mddev
, bits
) ||
687 md_raid1_congested(mddev
, bits
);
690 static void flush_pending_writes(struct r1conf
*conf
)
692 /* Any writes that have been queued but are awaiting
693 * bitmap updates get flushed here.
695 spin_lock_irq(&conf
->device_lock
);
697 if (conf
->pending_bio_list
.head
) {
699 bio
= bio_list_get(&conf
->pending_bio_list
);
700 conf
->pending_count
= 0;
701 spin_unlock_irq(&conf
->device_lock
);
702 /* flush any pending bitmap writes to
703 * disk before proceeding w/ I/O */
704 bitmap_unplug(conf
->mddev
->bitmap
);
705 wake_up(&conf
->wait_barrier
);
707 while (bio
) { /* submit pending writes */
708 struct bio
*next
= bio
->bi_next
;
710 generic_make_request(bio
);
714 spin_unlock_irq(&conf
->device_lock
);
718 * Sometimes we need to suspend IO while we do something else,
719 * either some resync/recovery, or reconfigure the array.
720 * To do this we raise a 'barrier'.
721 * The 'barrier' is a counter that can be raised multiple times
722 * to count how many activities are happening which preclude
724 * We can only raise the barrier if there is no pending IO.
725 * i.e. if nr_pending == 0.
726 * We choose only to raise the barrier if no-one is waiting for the
727 * barrier to go down. This means that as soon as an IO request
728 * is ready, no other operations which require a barrier will start
729 * until the IO request has had a chance.
731 * So: regular IO calls 'wait_barrier'. When that returns there
732 * is no backgroup IO happening, It must arrange to call
733 * allow_barrier when it has finished its IO.
734 * backgroup IO calls must call raise_barrier. Once that returns
735 * there is no normal IO happeing. It must arrange to call
736 * lower_barrier when the particular background IO completes.
738 #define RESYNC_DEPTH 32
740 static void raise_barrier(struct r1conf
*conf
)
742 spin_lock_irq(&conf
->resync_lock
);
744 /* Wait until no block IO is waiting */
745 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
746 conf
->resync_lock
, );
748 /* block any new IO from starting */
751 /* Now wait for all pending IO to complete */
752 wait_event_lock_irq(conf
->wait_barrier
,
753 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
754 conf
->resync_lock
, );
756 spin_unlock_irq(&conf
->resync_lock
);
759 static void lower_barrier(struct r1conf
*conf
)
762 BUG_ON(conf
->barrier
<= 0);
763 spin_lock_irqsave(&conf
->resync_lock
, flags
);
765 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
766 wake_up(&conf
->wait_barrier
);
769 static void wait_barrier(struct r1conf
*conf
)
771 spin_lock_irq(&conf
->resync_lock
);
774 /* Wait for the barrier to drop.
775 * However if there are already pending
776 * requests (preventing the barrier from
777 * rising completely), and the
778 * pre-process bio queue isn't empty,
779 * then don't wait, as we need to empty
780 * that queue to get the nr_pending
783 wait_event_lock_irq(conf
->wait_barrier
,
787 !bio_list_empty(current
->bio_list
)),
793 spin_unlock_irq(&conf
->resync_lock
);
796 static void allow_barrier(struct r1conf
*conf
)
799 spin_lock_irqsave(&conf
->resync_lock
, flags
);
801 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
802 wake_up(&conf
->wait_barrier
);
805 static void freeze_array(struct r1conf
*conf
)
807 /* stop syncio and normal IO and wait for everything to
809 * We increment barrier and nr_waiting, and then
810 * wait until nr_pending match nr_queued+1
811 * This is called in the context of one normal IO request
812 * that has failed. Thus any sync request that might be pending
813 * will be blocked by nr_pending, and we need to wait for
814 * pending IO requests to complete or be queued for re-try.
815 * Thus the number queued (nr_queued) plus this request (1)
816 * must match the number of pending IOs (nr_pending) before
819 spin_lock_irq(&conf
->resync_lock
);
822 wait_event_lock_irq(conf
->wait_barrier
,
823 conf
->nr_pending
== conf
->nr_queued
+1,
825 flush_pending_writes(conf
));
826 spin_unlock_irq(&conf
->resync_lock
);
828 static void unfreeze_array(struct r1conf
*conf
)
830 /* reverse the effect of the freeze */
831 spin_lock_irq(&conf
->resync_lock
);
834 wake_up(&conf
->wait_barrier
);
835 spin_unlock_irq(&conf
->resync_lock
);
839 /* duplicate the data pages for behind I/O
841 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
844 struct bio_vec
*bvec
;
845 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
847 if (unlikely(!bvecs
))
850 bio_for_each_segment(bvec
, bio
, i
) {
852 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
853 if (unlikely(!bvecs
[i
].bv_page
))
855 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
856 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
857 kunmap(bvecs
[i
].bv_page
);
858 kunmap(bvec
->bv_page
);
860 r1_bio
->behind_bvecs
= bvecs
;
861 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
862 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
866 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
867 if (bvecs
[i
].bv_page
)
868 put_page(bvecs
[i
].bv_page
);
870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
873 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
875 struct r1conf
*conf
= mddev
->private;
876 struct mirror_info
*mirror
;
877 struct r1bio
*r1_bio
;
878 struct bio
*read_bio
;
880 struct bitmap
*bitmap
;
882 const int rw
= bio_data_dir(bio
);
883 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
884 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
885 struct md_rdev
*blocked_rdev
;
891 * Register the new request and wait if the reconstruction
892 * thread has put up a bar for new requests.
893 * Continue immediately if no resync is active currently.
896 md_write_start(mddev
, bio
); /* wait on superblock update early */
898 if (bio_data_dir(bio
) == WRITE
&&
899 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
900 bio
->bi_sector
< mddev
->suspend_hi
) {
901 /* As the suspend_* range is controlled by
902 * userspace, we want an interruptible
907 flush_signals(current
);
908 prepare_to_wait(&conf
->wait_barrier
,
909 &w
, TASK_INTERRUPTIBLE
);
910 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
911 bio
->bi_sector
>= mddev
->suspend_hi
)
915 finish_wait(&conf
->wait_barrier
, &w
);
920 bitmap
= mddev
->bitmap
;
923 * make_request() can abort the operation when READA is being
924 * used and no empty request is available.
927 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
929 r1_bio
->master_bio
= bio
;
930 r1_bio
->sectors
= bio
->bi_size
>> 9;
932 r1_bio
->mddev
= mddev
;
933 r1_bio
->sector
= bio
->bi_sector
;
935 /* We might need to issue multiple reads to different
936 * devices if there are bad blocks around, so we keep
937 * track of the number of reads in bio->bi_phys_segments.
938 * If this is 0, there is only one r1_bio and no locking
939 * will be needed when requests complete. If it is
940 * non-zero, then it is the number of not-completed requests.
942 bio
->bi_phys_segments
= 0;
943 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
947 * read balancing logic:
952 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
955 /* couldn't find anywhere to read from */
956 raid_end_bio_io(r1_bio
);
959 mirror
= conf
->mirrors
+ rdisk
;
961 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
963 /* Reading from a write-mostly device must
964 * take care not to over-take any writes
967 wait_event(bitmap
->behind_wait
,
968 atomic_read(&bitmap
->behind_writes
) == 0);
970 r1_bio
->read_disk
= rdisk
;
972 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
973 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
976 r1_bio
->bios
[rdisk
] = read_bio
;
978 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
979 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
980 read_bio
->bi_end_io
= raid1_end_read_request
;
981 read_bio
->bi_rw
= READ
| do_sync
;
982 read_bio
->bi_private
= r1_bio
;
984 if (max_sectors
< r1_bio
->sectors
) {
985 /* could not read all from this device, so we will
986 * need another r1_bio.
989 sectors_handled
= (r1_bio
->sector
+ max_sectors
991 r1_bio
->sectors
= max_sectors
;
992 spin_lock_irq(&conf
->device_lock
);
993 if (bio
->bi_phys_segments
== 0)
994 bio
->bi_phys_segments
= 2;
996 bio
->bi_phys_segments
++;
997 spin_unlock_irq(&conf
->device_lock
);
998 /* Cannot call generic_make_request directly
999 * as that will be queued in __make_request
1000 * and subsequent mempool_alloc might block waiting
1001 * for it. So hand bio over to raid1d.
1003 reschedule_retry(r1_bio
);
1005 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1007 r1_bio
->master_bio
= bio
;
1008 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1010 r1_bio
->mddev
= mddev
;
1011 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1014 generic_make_request(read_bio
);
1021 if (conf
->pending_count
>= max_queued_requests
) {
1022 md_wakeup_thread(mddev
->thread
);
1023 wait_event(conf
->wait_barrier
,
1024 conf
->pending_count
< max_queued_requests
);
1026 /* first select target devices under rcu_lock and
1027 * inc refcount on their rdev. Record them by setting
1029 * If there are known/acknowledged bad blocks on any device on
1030 * which we have seen a write error, we want to avoid writing those
1032 * This potentially requires several writes to write around
1033 * the bad blocks. Each set of writes gets it's own r1bio
1034 * with a set of bios attached.
1037 disks
= conf
->raid_disks
* 2;
1039 blocked_rdev
= NULL
;
1041 max_sectors
= r1_bio
->sectors
;
1042 for (i
= 0; i
< disks
; i
++) {
1043 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1044 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1045 atomic_inc(&rdev
->nr_pending
);
1046 blocked_rdev
= rdev
;
1049 r1_bio
->bios
[i
] = NULL
;
1050 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1051 || test_bit(Unmerged
, &rdev
->flags
)) {
1052 if (i
< conf
->raid_disks
)
1053 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1057 atomic_inc(&rdev
->nr_pending
);
1058 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1063 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1065 &first_bad
, &bad_sectors
);
1067 /* mustn't write here until the bad block is
1069 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1070 blocked_rdev
= rdev
;
1073 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1074 /* Cannot write here at all */
1075 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1076 if (bad_sectors
< max_sectors
)
1077 /* mustn't write more than bad_sectors
1078 * to other devices yet
1080 max_sectors
= bad_sectors
;
1081 rdev_dec_pending(rdev
, mddev
);
1082 /* We don't set R1BIO_Degraded as that
1083 * only applies if the disk is
1084 * missing, so it might be re-added,
1085 * and we want to know to recover this
1087 * In this case the device is here,
1088 * and the fact that this chunk is not
1089 * in-sync is recorded in the bad
1095 int good_sectors
= first_bad
- r1_bio
->sector
;
1096 if (good_sectors
< max_sectors
)
1097 max_sectors
= good_sectors
;
1100 r1_bio
->bios
[i
] = bio
;
1104 if (unlikely(blocked_rdev
)) {
1105 /* Wait for this device to become unblocked */
1108 for (j
= 0; j
< i
; j
++)
1109 if (r1_bio
->bios
[j
])
1110 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1112 allow_barrier(conf
);
1113 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1118 if (max_sectors
< r1_bio
->sectors
) {
1119 /* We are splitting this write into multiple parts, so
1120 * we need to prepare for allocating another r1_bio.
1122 r1_bio
->sectors
= max_sectors
;
1123 spin_lock_irq(&conf
->device_lock
);
1124 if (bio
->bi_phys_segments
== 0)
1125 bio
->bi_phys_segments
= 2;
1127 bio
->bi_phys_segments
++;
1128 spin_unlock_irq(&conf
->device_lock
);
1130 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1132 atomic_set(&r1_bio
->remaining
, 1);
1133 atomic_set(&r1_bio
->behind_remaining
, 0);
1136 for (i
= 0; i
< disks
; i
++) {
1138 if (!r1_bio
->bios
[i
])
1141 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1142 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1146 * Not if there are too many, or cannot
1147 * allocate memory, or a reader on WriteMostly
1148 * is waiting for behind writes to flush */
1150 (atomic_read(&bitmap
->behind_writes
)
1151 < mddev
->bitmap_info
.max_write_behind
) &&
1152 !waitqueue_active(&bitmap
->behind_wait
))
1153 alloc_behind_pages(mbio
, r1_bio
);
1155 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1157 test_bit(R1BIO_BehindIO
,
1161 if (r1_bio
->behind_bvecs
) {
1162 struct bio_vec
*bvec
;
1165 /* Yes, I really want the '__' version so that
1166 * we clear any unused pointer in the io_vec, rather
1167 * than leave them unchanged. This is important
1168 * because when we come to free the pages, we won't
1169 * know the original bi_idx, so we just free
1172 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1173 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1174 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1175 atomic_inc(&r1_bio
->behind_remaining
);
1178 r1_bio
->bios
[i
] = mbio
;
1180 mbio
->bi_sector
= (r1_bio
->sector
+
1181 conf
->mirrors
[i
].rdev
->data_offset
);
1182 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1183 mbio
->bi_end_io
= raid1_end_write_request
;
1184 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1185 mbio
->bi_private
= r1_bio
;
1187 atomic_inc(&r1_bio
->remaining
);
1188 spin_lock_irqsave(&conf
->device_lock
, flags
);
1189 bio_list_add(&conf
->pending_bio_list
, mbio
);
1190 conf
->pending_count
++;
1191 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1192 if (!mddev_check_plugged(mddev
))
1193 md_wakeup_thread(mddev
->thread
);
1195 /* Mustn't call r1_bio_write_done before this next test,
1196 * as it could result in the bio being freed.
1198 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1199 r1_bio_write_done(r1_bio
);
1200 /* We need another r1_bio. It has already been counted
1201 * in bio->bi_phys_segments
1203 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1204 r1_bio
->master_bio
= bio
;
1205 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1207 r1_bio
->mddev
= mddev
;
1208 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1212 r1_bio_write_done(r1_bio
);
1214 /* In case raid1d snuck in to freeze_array */
1215 wake_up(&conf
->wait_barrier
);
1218 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1220 struct r1conf
*conf
= mddev
->private;
1223 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1224 conf
->raid_disks
- mddev
->degraded
);
1226 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1227 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1228 seq_printf(seq
, "%s",
1229 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1232 seq_printf(seq
, "]");
1236 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1238 char b
[BDEVNAME_SIZE
];
1239 struct r1conf
*conf
= mddev
->private;
1242 * If it is not operational, then we have already marked it as dead
1243 * else if it is the last working disks, ignore the error, let the
1244 * next level up know.
1245 * else mark the drive as failed
1247 if (test_bit(In_sync
, &rdev
->flags
)
1248 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1250 * Don't fail the drive, act as though we were just a
1251 * normal single drive.
1252 * However don't try a recovery from this drive as
1253 * it is very likely to fail.
1255 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1258 set_bit(Blocked
, &rdev
->flags
);
1259 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1260 unsigned long flags
;
1261 spin_lock_irqsave(&conf
->device_lock
, flags
);
1263 set_bit(Faulty
, &rdev
->flags
);
1264 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1266 * if recovery is running, make sure it aborts.
1268 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1270 set_bit(Faulty
, &rdev
->flags
);
1271 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1273 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1274 "md/raid1:%s: Operation continuing on %d devices.\n",
1275 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1276 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1279 static void print_conf(struct r1conf
*conf
)
1283 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1285 printk(KERN_DEBUG
"(!conf)\n");
1288 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1292 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1293 char b
[BDEVNAME_SIZE
];
1294 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1296 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1297 i
, !test_bit(In_sync
, &rdev
->flags
),
1298 !test_bit(Faulty
, &rdev
->flags
),
1299 bdevname(rdev
->bdev
,b
));
1304 static void close_sync(struct r1conf
*conf
)
1307 allow_barrier(conf
);
1309 mempool_destroy(conf
->r1buf_pool
);
1310 conf
->r1buf_pool
= NULL
;
1313 static int raid1_spare_active(struct mddev
*mddev
)
1316 struct r1conf
*conf
= mddev
->private;
1318 unsigned long flags
;
1321 * Find all failed disks within the RAID1 configuration
1322 * and mark them readable.
1323 * Called under mddev lock, so rcu protection not needed.
1325 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1326 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1327 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1329 && repl
->recovery_offset
== MaxSector
1330 && !test_bit(Faulty
, &repl
->flags
)
1331 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1332 /* replacement has just become active */
1334 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1337 /* Replaced device not technically
1338 * faulty, but we need to be sure
1339 * it gets removed and never re-added
1341 set_bit(Faulty
, &rdev
->flags
);
1342 sysfs_notify_dirent_safe(
1347 && !test_bit(Faulty
, &rdev
->flags
)
1348 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1350 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1353 spin_lock_irqsave(&conf
->device_lock
, flags
);
1354 mddev
->degraded
-= count
;
1355 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1362 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1364 struct r1conf
*conf
= mddev
->private;
1367 struct mirror_info
*p
;
1369 int last
= conf
->raid_disks
- 1;
1370 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1372 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1375 if (rdev
->raid_disk
>= 0)
1376 first
= last
= rdev
->raid_disk
;
1378 if (q
->merge_bvec_fn
) {
1379 set_bit(Unmerged
, &rdev
->flags
);
1380 mddev
->merge_check_needed
= 1;
1383 for (mirror
= first
; mirror
<= last
; mirror
++) {
1384 p
= conf
->mirrors
+mirror
;
1387 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1388 rdev
->data_offset
<< 9);
1390 p
->head_position
= 0;
1391 rdev
->raid_disk
= mirror
;
1393 /* As all devices are equivalent, we don't need a full recovery
1394 * if this was recently any drive of the array
1396 if (rdev
->saved_raid_disk
< 0)
1398 rcu_assign_pointer(p
->rdev
, rdev
);
1401 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1402 p
[conf
->raid_disks
].rdev
== NULL
) {
1403 /* Add this device as a replacement */
1404 clear_bit(In_sync
, &rdev
->flags
);
1405 set_bit(Replacement
, &rdev
->flags
);
1406 rdev
->raid_disk
= mirror
;
1409 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1413 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1414 /* Some requests might not have seen this new
1415 * merge_bvec_fn. We must wait for them to complete
1416 * before merging the device fully.
1417 * First we make sure any code which has tested
1418 * our function has submitted the request, then
1419 * we wait for all outstanding requests to complete.
1421 synchronize_sched();
1422 raise_barrier(conf
);
1423 lower_barrier(conf
);
1424 clear_bit(Unmerged
, &rdev
->flags
);
1426 md_integrity_add_rdev(rdev
, mddev
);
1431 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1433 struct r1conf
*conf
= mddev
->private;
1435 int number
= rdev
->raid_disk
;
1436 struct mirror_info
*p
= conf
->mirrors
+ number
;
1438 if (rdev
!= p
->rdev
)
1439 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1442 if (rdev
== p
->rdev
) {
1443 if (test_bit(In_sync
, &rdev
->flags
) ||
1444 atomic_read(&rdev
->nr_pending
)) {
1448 /* Only remove non-faulty devices if recovery
1451 if (!test_bit(Faulty
, &rdev
->flags
) &&
1452 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1453 mddev
->degraded
< conf
->raid_disks
) {
1459 if (atomic_read(&rdev
->nr_pending
)) {
1460 /* lost the race, try later */
1464 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1465 /* We just removed a device that is being replaced.
1466 * Move down the replacement. We drain all IO before
1467 * doing this to avoid confusion.
1469 struct md_rdev
*repl
=
1470 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1471 raise_barrier(conf
);
1472 clear_bit(Replacement
, &repl
->flags
);
1474 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1475 lower_barrier(conf
);
1476 clear_bit(WantReplacement
, &rdev
->flags
);
1478 clear_bit(WantReplacement
, &rdev
->flags
);
1479 err
= md_integrity_register(mddev
);
1488 static void end_sync_read(struct bio
*bio
, int error
)
1490 struct r1bio
*r1_bio
= bio
->bi_private
;
1492 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1495 * we have read a block, now it needs to be re-written,
1496 * or re-read if the read failed.
1497 * We don't do much here, just schedule handling by raid1d
1499 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1500 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1502 if (atomic_dec_and_test(&r1_bio
->remaining
))
1503 reschedule_retry(r1_bio
);
1506 static void end_sync_write(struct bio
*bio
, int error
)
1508 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1509 struct r1bio
*r1_bio
= bio
->bi_private
;
1510 struct mddev
*mddev
= r1_bio
->mddev
;
1511 struct r1conf
*conf
= mddev
->private;
1516 mirror
= find_bio_disk(r1_bio
, bio
);
1519 sector_t sync_blocks
= 0;
1520 sector_t s
= r1_bio
->sector
;
1521 long sectors_to_go
= r1_bio
->sectors
;
1522 /* make sure these bits doesn't get cleared. */
1524 bitmap_end_sync(mddev
->bitmap
, s
,
1527 sectors_to_go
-= sync_blocks
;
1528 } while (sectors_to_go
> 0);
1529 set_bit(WriteErrorSeen
,
1530 &conf
->mirrors
[mirror
].rdev
->flags
);
1531 if (!test_and_set_bit(WantReplacement
,
1532 &conf
->mirrors
[mirror
].rdev
->flags
))
1533 set_bit(MD_RECOVERY_NEEDED
, &
1535 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1536 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1539 &first_bad
, &bad_sectors
) &&
1540 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1543 &first_bad
, &bad_sectors
)
1545 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1547 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1548 int s
= r1_bio
->sectors
;
1549 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1550 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1551 reschedule_retry(r1_bio
);
1554 md_done_sync(mddev
, s
, uptodate
);
1559 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1560 int sectors
, struct page
*page
, int rw
)
1562 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1566 set_bit(WriteErrorSeen
, &rdev
->flags
);
1567 if (!test_and_set_bit(WantReplacement
,
1569 set_bit(MD_RECOVERY_NEEDED
, &
1570 rdev
->mddev
->recovery
);
1572 /* need to record an error - either for the block or the device */
1573 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1574 md_error(rdev
->mddev
, rdev
);
1578 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1580 /* Try some synchronous reads of other devices to get
1581 * good data, much like with normal read errors. Only
1582 * read into the pages we already have so we don't
1583 * need to re-issue the read request.
1584 * We don't need to freeze the array, because being in an
1585 * active sync request, there is no normal IO, and
1586 * no overlapping syncs.
1587 * We don't need to check is_badblock() again as we
1588 * made sure that anything with a bad block in range
1589 * will have bi_end_io clear.
1591 struct mddev
*mddev
= r1_bio
->mddev
;
1592 struct r1conf
*conf
= mddev
->private;
1593 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1594 sector_t sect
= r1_bio
->sector
;
1595 int sectors
= r1_bio
->sectors
;
1600 int d
= r1_bio
->read_disk
;
1602 struct md_rdev
*rdev
;
1605 if (s
> (PAGE_SIZE
>>9))
1608 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1609 /* No rcu protection needed here devices
1610 * can only be removed when no resync is
1611 * active, and resync is currently active
1613 rdev
= conf
->mirrors
[d
].rdev
;
1614 if (sync_page_io(rdev
, sect
, s
<<9,
1615 bio
->bi_io_vec
[idx
].bv_page
,
1622 if (d
== conf
->raid_disks
* 2)
1624 } while (!success
&& d
!= r1_bio
->read_disk
);
1627 char b
[BDEVNAME_SIZE
];
1629 /* Cannot read from anywhere, this block is lost.
1630 * Record a bad block on each device. If that doesn't
1631 * work just disable and interrupt the recovery.
1632 * Don't fail devices as that won't really help.
1634 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1635 " for block %llu\n",
1637 bdevname(bio
->bi_bdev
, b
),
1638 (unsigned long long)r1_bio
->sector
);
1639 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1640 rdev
= conf
->mirrors
[d
].rdev
;
1641 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1643 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1647 conf
->recovery_disabled
=
1648 mddev
->recovery_disabled
;
1649 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1650 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1662 /* write it back and re-read */
1663 while (d
!= r1_bio
->read_disk
) {
1665 d
= conf
->raid_disks
* 2;
1667 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1669 rdev
= conf
->mirrors
[d
].rdev
;
1670 if (r1_sync_page_io(rdev
, sect
, s
,
1671 bio
->bi_io_vec
[idx
].bv_page
,
1673 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1674 rdev_dec_pending(rdev
, mddev
);
1678 while (d
!= r1_bio
->read_disk
) {
1680 d
= conf
->raid_disks
* 2;
1682 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1684 rdev
= conf
->mirrors
[d
].rdev
;
1685 if (r1_sync_page_io(rdev
, sect
, s
,
1686 bio
->bi_io_vec
[idx
].bv_page
,
1688 atomic_add(s
, &rdev
->corrected_errors
);
1694 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1695 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1699 static int process_checks(struct r1bio
*r1_bio
)
1701 /* We have read all readable devices. If we haven't
1702 * got the block, then there is no hope left.
1703 * If we have, then we want to do a comparison
1704 * and skip the write if everything is the same.
1705 * If any blocks failed to read, then we need to
1706 * attempt an over-write
1708 struct mddev
*mddev
= r1_bio
->mddev
;
1709 struct r1conf
*conf
= mddev
->private;
1714 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1715 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1716 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1717 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1718 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1721 r1_bio
->read_disk
= primary
;
1722 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1723 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1725 struct bio
*pbio
= r1_bio
->bios
[primary
];
1726 struct bio
*sbio
= r1_bio
->bios
[i
];
1729 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1732 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1733 for (j
= vcnt
; j
-- ; ) {
1735 p
= pbio
->bi_io_vec
[j
].bv_page
;
1736 s
= sbio
->bi_io_vec
[j
].bv_page
;
1737 if (memcmp(page_address(p
),
1739 sbio
->bi_io_vec
[j
].bv_len
))
1745 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1746 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1747 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1748 /* No need to write to this device. */
1749 sbio
->bi_end_io
= NULL
;
1750 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1753 /* fixup the bio for reuse */
1754 sbio
->bi_vcnt
= vcnt
;
1755 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1757 sbio
->bi_phys_segments
= 0;
1758 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1759 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1760 sbio
->bi_next
= NULL
;
1761 sbio
->bi_sector
= r1_bio
->sector
+
1762 conf
->mirrors
[i
].rdev
->data_offset
;
1763 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1764 size
= sbio
->bi_size
;
1765 for (j
= 0; j
< vcnt
; j
++) {
1767 bi
= &sbio
->bi_io_vec
[j
];
1769 if (size
> PAGE_SIZE
)
1770 bi
->bv_len
= PAGE_SIZE
;
1774 memcpy(page_address(bi
->bv_page
),
1775 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1782 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1784 struct r1conf
*conf
= mddev
->private;
1786 int disks
= conf
->raid_disks
* 2;
1787 struct bio
*bio
, *wbio
;
1789 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1791 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1792 /* ouch - failed to read all of that. */
1793 if (!fix_sync_read_error(r1_bio
))
1796 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1797 if (process_checks(r1_bio
) < 0)
1802 atomic_set(&r1_bio
->remaining
, 1);
1803 for (i
= 0; i
< disks
; i
++) {
1804 wbio
= r1_bio
->bios
[i
];
1805 if (wbio
->bi_end_io
== NULL
||
1806 (wbio
->bi_end_io
== end_sync_read
&&
1807 (i
== r1_bio
->read_disk
||
1808 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1811 wbio
->bi_rw
= WRITE
;
1812 wbio
->bi_end_io
= end_sync_write
;
1813 atomic_inc(&r1_bio
->remaining
);
1814 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1816 generic_make_request(wbio
);
1819 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1820 /* if we're here, all write(s) have completed, so clean up */
1821 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1827 * This is a kernel thread which:
1829 * 1. Retries failed read operations on working mirrors.
1830 * 2. Updates the raid superblock when problems encounter.
1831 * 3. Performs writes following reads for array synchronising.
1834 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
1835 sector_t sect
, int sectors
)
1837 struct mddev
*mddev
= conf
->mddev
;
1843 struct md_rdev
*rdev
;
1845 if (s
> (PAGE_SIZE
>>9))
1849 /* Note: no rcu protection needed here
1850 * as this is synchronous in the raid1d thread
1851 * which is the thread that might remove
1852 * a device. If raid1d ever becomes multi-threaded....
1857 rdev
= conf
->mirrors
[d
].rdev
;
1859 (test_bit(In_sync
, &rdev
->flags
) ||
1860 (!test_bit(Faulty
, &rdev
->flags
) &&
1861 rdev
->recovery_offset
>= sect
+ s
)) &&
1862 is_badblock(rdev
, sect
, s
,
1863 &first_bad
, &bad_sectors
) == 0 &&
1864 sync_page_io(rdev
, sect
, s
<<9,
1865 conf
->tmppage
, READ
, false))
1869 if (d
== conf
->raid_disks
* 2)
1872 } while (!success
&& d
!= read_disk
);
1875 /* Cannot read from anywhere - mark it bad */
1876 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
1877 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1878 md_error(mddev
, rdev
);
1881 /* write it back and re-read */
1883 while (d
!= read_disk
) {
1885 d
= conf
->raid_disks
* 2;
1887 rdev
= conf
->mirrors
[d
].rdev
;
1889 test_bit(In_sync
, &rdev
->flags
))
1890 r1_sync_page_io(rdev
, sect
, s
,
1891 conf
->tmppage
, WRITE
);
1894 while (d
!= read_disk
) {
1895 char b
[BDEVNAME_SIZE
];
1897 d
= conf
->raid_disks
* 2;
1899 rdev
= conf
->mirrors
[d
].rdev
;
1901 test_bit(In_sync
, &rdev
->flags
)) {
1902 if (r1_sync_page_io(rdev
, sect
, s
,
1903 conf
->tmppage
, READ
)) {
1904 atomic_add(s
, &rdev
->corrected_errors
);
1906 "md/raid1:%s: read error corrected "
1907 "(%d sectors at %llu on %s)\n",
1909 (unsigned long long)(sect
+
1911 bdevname(rdev
->bdev
, b
));
1920 static void bi_complete(struct bio
*bio
, int error
)
1922 complete((struct completion
*)bio
->bi_private
);
1925 static int submit_bio_wait(int rw
, struct bio
*bio
)
1927 struct completion event
;
1930 init_completion(&event
);
1931 bio
->bi_private
= &event
;
1932 bio
->bi_end_io
= bi_complete
;
1933 submit_bio(rw
, bio
);
1934 wait_for_completion(&event
);
1936 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1939 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
1941 struct mddev
*mddev
= r1_bio
->mddev
;
1942 struct r1conf
*conf
= mddev
->private;
1943 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1945 struct bio_vec
*vec
;
1947 /* bio has the data to be written to device 'i' where
1948 * we just recently had a write error.
1949 * We repeatedly clone the bio and trim down to one block,
1950 * then try the write. Where the write fails we record
1952 * It is conceivable that the bio doesn't exactly align with
1953 * blocks. We must handle this somehow.
1955 * We currently own a reference on the rdev.
1961 int sect_to_write
= r1_bio
->sectors
;
1964 if (rdev
->badblocks
.shift
< 0)
1967 block_sectors
= 1 << rdev
->badblocks
.shift
;
1968 sector
= r1_bio
->sector
;
1969 sectors
= ((sector
+ block_sectors
)
1970 & ~(sector_t
)(block_sectors
- 1))
1973 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
1974 vcnt
= r1_bio
->behind_page_count
;
1975 vec
= r1_bio
->behind_bvecs
;
1977 while (vec
[idx
].bv_page
== NULL
)
1980 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
1981 vec
= r1_bio
->master_bio
->bi_io_vec
;
1982 idx
= r1_bio
->master_bio
->bi_idx
;
1984 while (sect_to_write
) {
1986 if (sectors
> sect_to_write
)
1987 sectors
= sect_to_write
;
1988 /* Write at 'sector' for 'sectors'*/
1990 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
1991 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
1992 wbio
->bi_sector
= r1_bio
->sector
;
1993 wbio
->bi_rw
= WRITE
;
1994 wbio
->bi_vcnt
= vcnt
;
1995 wbio
->bi_size
= r1_bio
->sectors
<< 9;
1998 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
1999 wbio
->bi_sector
+= rdev
->data_offset
;
2000 wbio
->bi_bdev
= rdev
->bdev
;
2001 if (submit_bio_wait(WRITE
, wbio
) == 0)
2003 ok
= rdev_set_badblocks(rdev
, sector
,
2008 sect_to_write
-= sectors
;
2010 sectors
= block_sectors
;
2015 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2018 int s
= r1_bio
->sectors
;
2019 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2020 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2021 struct bio
*bio
= r1_bio
->bios
[m
];
2022 if (bio
->bi_end_io
== NULL
)
2024 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2025 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2026 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2028 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2029 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2030 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2031 md_error(conf
->mddev
, rdev
);
2035 md_done_sync(conf
->mddev
, s
, 1);
2038 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2041 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2042 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2043 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2044 rdev_clear_badblocks(rdev
,
2046 r1_bio
->sectors
, 0);
2047 rdev_dec_pending(rdev
, conf
->mddev
);
2048 } else if (r1_bio
->bios
[m
] != NULL
) {
2049 /* This drive got a write error. We need to
2050 * narrow down and record precise write
2053 if (!narrow_write_error(r1_bio
, m
)) {
2054 md_error(conf
->mddev
,
2055 conf
->mirrors
[m
].rdev
);
2056 /* an I/O failed, we can't clear the bitmap */
2057 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2059 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2062 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2063 close_write(r1_bio
);
2064 raid_end_bio_io(r1_bio
);
2067 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2071 struct mddev
*mddev
= conf
->mddev
;
2073 char b
[BDEVNAME_SIZE
];
2074 struct md_rdev
*rdev
;
2076 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2077 /* we got a read error. Maybe the drive is bad. Maybe just
2078 * the block and we can fix it.
2079 * We freeze all other IO, and try reading the block from
2080 * other devices. When we find one, we re-write
2081 * and check it that fixes the read error.
2082 * This is all done synchronously while the array is
2085 if (mddev
->ro
== 0) {
2087 fix_read_error(conf
, r1_bio
->read_disk
,
2088 r1_bio
->sector
, r1_bio
->sectors
);
2089 unfreeze_array(conf
);
2091 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2093 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2094 bdevname(bio
->bi_bdev
, b
);
2096 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2098 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2099 " read error for block %llu\n",
2100 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2101 raid_end_bio_io(r1_bio
);
2103 const unsigned long do_sync
2104 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2106 r1_bio
->bios
[r1_bio
->read_disk
] =
2107 mddev
->ro
? IO_BLOCKED
: NULL
;
2110 r1_bio
->read_disk
= disk
;
2111 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2112 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
2113 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2114 rdev
= conf
->mirrors
[disk
].rdev
;
2115 printk_ratelimited(KERN_ERR
2116 "md/raid1:%s: redirecting sector %llu"
2117 " to other mirror: %s\n",
2119 (unsigned long long)r1_bio
->sector
,
2120 bdevname(rdev
->bdev
, b
));
2121 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2122 bio
->bi_bdev
= rdev
->bdev
;
2123 bio
->bi_end_io
= raid1_end_read_request
;
2124 bio
->bi_rw
= READ
| do_sync
;
2125 bio
->bi_private
= r1_bio
;
2126 if (max_sectors
< r1_bio
->sectors
) {
2127 /* Drat - have to split this up more */
2128 struct bio
*mbio
= r1_bio
->master_bio
;
2129 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2131 r1_bio
->sectors
= max_sectors
;
2132 spin_lock_irq(&conf
->device_lock
);
2133 if (mbio
->bi_phys_segments
== 0)
2134 mbio
->bi_phys_segments
= 2;
2136 mbio
->bi_phys_segments
++;
2137 spin_unlock_irq(&conf
->device_lock
);
2138 generic_make_request(bio
);
2141 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2143 r1_bio
->master_bio
= mbio
;
2144 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
2147 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2148 r1_bio
->mddev
= mddev
;
2149 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2153 generic_make_request(bio
);
2157 static void raid1d(struct mddev
*mddev
)
2159 struct r1bio
*r1_bio
;
2160 unsigned long flags
;
2161 struct r1conf
*conf
= mddev
->private;
2162 struct list_head
*head
= &conf
->retry_list
;
2163 struct blk_plug plug
;
2165 md_check_recovery(mddev
);
2167 blk_start_plug(&plug
);
2170 if (atomic_read(&mddev
->plug_cnt
) == 0)
2171 flush_pending_writes(conf
);
2173 spin_lock_irqsave(&conf
->device_lock
, flags
);
2174 if (list_empty(head
)) {
2175 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2178 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2179 list_del(head
->prev
);
2181 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2183 mddev
= r1_bio
->mddev
;
2184 conf
= mddev
->private;
2185 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2186 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2187 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2188 handle_sync_write_finished(conf
, r1_bio
);
2190 sync_request_write(mddev
, r1_bio
);
2191 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2192 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2193 handle_write_finished(conf
, r1_bio
);
2194 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2195 handle_read_error(conf
, r1_bio
);
2197 /* just a partial read to be scheduled from separate
2200 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2203 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2204 md_check_recovery(mddev
);
2206 blk_finish_plug(&plug
);
2210 static int init_resync(struct r1conf
*conf
)
2214 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2215 BUG_ON(conf
->r1buf_pool
);
2216 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2218 if (!conf
->r1buf_pool
)
2220 conf
->next_resync
= 0;
2225 * perform a "sync" on one "block"
2227 * We need to make sure that no normal I/O request - particularly write
2228 * requests - conflict with active sync requests.
2230 * This is achieved by tracking pending requests and a 'barrier' concept
2231 * that can be installed to exclude normal IO requests.
2234 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2236 struct r1conf
*conf
= mddev
->private;
2237 struct r1bio
*r1_bio
;
2239 sector_t max_sector
, nr_sectors
;
2243 int write_targets
= 0, read_targets
= 0;
2244 sector_t sync_blocks
;
2245 int still_degraded
= 0;
2246 int good_sectors
= RESYNC_SECTORS
;
2247 int min_bad
= 0; /* number of sectors that are bad in all devices */
2249 if (!conf
->r1buf_pool
)
2250 if (init_resync(conf
))
2253 max_sector
= mddev
->dev_sectors
;
2254 if (sector_nr
>= max_sector
) {
2255 /* If we aborted, we need to abort the
2256 * sync on the 'current' bitmap chunk (there will
2257 * only be one in raid1 resync.
2258 * We can find the current addess in mddev->curr_resync
2260 if (mddev
->curr_resync
< max_sector
) /* aborted */
2261 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2263 else /* completed sync */
2266 bitmap_close_sync(mddev
->bitmap
);
2271 if (mddev
->bitmap
== NULL
&&
2272 mddev
->recovery_cp
== MaxSector
&&
2273 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2274 conf
->fullsync
== 0) {
2276 return max_sector
- sector_nr
;
2278 /* before building a request, check if we can skip these blocks..
2279 * This call the bitmap_start_sync doesn't actually record anything
2281 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2282 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2283 /* We can skip this block, and probably several more */
2288 * If there is non-resync activity waiting for a turn,
2289 * and resync is going fast enough,
2290 * then let it though before starting on this new sync request.
2292 if (!go_faster
&& conf
->nr_waiting
)
2293 msleep_interruptible(1000);
2295 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2296 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2297 raise_barrier(conf
);
2299 conf
->next_resync
= sector_nr
;
2303 * If we get a correctably read error during resync or recovery,
2304 * we might want to read from a different device. So we
2305 * flag all drives that could conceivably be read from for READ,
2306 * and any others (which will be non-In_sync devices) for WRITE.
2307 * If a read fails, we try reading from something else for which READ
2311 r1_bio
->mddev
= mddev
;
2312 r1_bio
->sector
= sector_nr
;
2314 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2316 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2317 struct md_rdev
*rdev
;
2318 bio
= r1_bio
->bios
[i
];
2320 /* take from bio_init */
2321 bio
->bi_next
= NULL
;
2322 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2323 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2327 bio
->bi_phys_segments
= 0;
2329 bio
->bi_end_io
= NULL
;
2330 bio
->bi_private
= NULL
;
2332 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2334 test_bit(Faulty
, &rdev
->flags
)) {
2335 if (i
< conf
->raid_disks
)
2337 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2339 bio
->bi_end_io
= end_sync_write
;
2342 /* may need to read from here */
2343 sector_t first_bad
= MaxSector
;
2346 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2347 &first_bad
, &bad_sectors
)) {
2348 if (first_bad
> sector_nr
)
2349 good_sectors
= first_bad
- sector_nr
;
2351 bad_sectors
-= (sector_nr
- first_bad
);
2353 min_bad
> bad_sectors
)
2354 min_bad
= bad_sectors
;
2357 if (sector_nr
< first_bad
) {
2358 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2366 bio
->bi_end_io
= end_sync_read
;
2370 if (bio
->bi_end_io
) {
2371 atomic_inc(&rdev
->nr_pending
);
2372 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2373 bio
->bi_bdev
= rdev
->bdev
;
2374 bio
->bi_private
= r1_bio
;
2380 r1_bio
->read_disk
= disk
;
2382 if (read_targets
== 0 && min_bad
> 0) {
2383 /* These sectors are bad on all InSync devices, so we
2384 * need to mark them bad on all write targets
2387 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2388 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2389 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2390 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2394 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2399 /* Cannot record the badblocks, so need to
2401 * If there are multiple read targets, could just
2402 * fail the really bad ones ???
2404 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2405 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2411 if (min_bad
> 0 && min_bad
< good_sectors
) {
2412 /* only resync enough to reach the next bad->good
2414 good_sectors
= min_bad
;
2417 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2418 /* extra read targets are also write targets */
2419 write_targets
+= read_targets
-1;
2421 if (write_targets
== 0 || read_targets
== 0) {
2422 /* There is nowhere to write, so all non-sync
2423 * drives must be failed - so we are finished
2425 sector_t rv
= max_sector
- sector_nr
;
2431 if (max_sector
> mddev
->resync_max
)
2432 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2433 if (max_sector
> sector_nr
+ good_sectors
)
2434 max_sector
= sector_nr
+ good_sectors
;
2439 int len
= PAGE_SIZE
;
2440 if (sector_nr
+ (len
>>9) > max_sector
)
2441 len
= (max_sector
- sector_nr
) << 9;
2444 if (sync_blocks
== 0) {
2445 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2446 &sync_blocks
, still_degraded
) &&
2448 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2450 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2451 if ((len
>> 9) > sync_blocks
)
2452 len
= sync_blocks
<<9;
2455 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2456 bio
= r1_bio
->bios
[i
];
2457 if (bio
->bi_end_io
) {
2458 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2459 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2461 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2464 bio
= r1_bio
->bios
[i
];
2465 if (bio
->bi_end_io
==NULL
)
2467 /* remove last page from this bio */
2469 bio
->bi_size
-= len
;
2470 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2476 nr_sectors
+= len
>>9;
2477 sector_nr
+= len
>>9;
2478 sync_blocks
-= (len
>>9);
2479 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2481 r1_bio
->sectors
= nr_sectors
;
2483 /* For a user-requested sync, we read all readable devices and do a
2486 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2487 atomic_set(&r1_bio
->remaining
, read_targets
);
2488 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2489 bio
= r1_bio
->bios
[i
];
2490 if (bio
->bi_end_io
== end_sync_read
) {
2492 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2493 generic_make_request(bio
);
2497 atomic_set(&r1_bio
->remaining
, 1);
2498 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2499 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2500 generic_make_request(bio
);
2506 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2511 return mddev
->dev_sectors
;
2514 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2516 struct r1conf
*conf
;
2518 struct mirror_info
*disk
;
2519 struct md_rdev
*rdev
;
2522 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2526 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)
2527 * mddev
->raid_disks
* 2,
2532 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2536 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2537 if (!conf
->poolinfo
)
2539 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2540 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2543 if (!conf
->r1bio_pool
)
2546 conf
->poolinfo
->mddev
= mddev
;
2549 spin_lock_init(&conf
->device_lock
);
2550 rdev_for_each(rdev
, mddev
) {
2551 struct request_queue
*q
;
2552 int disk_idx
= rdev
->raid_disk
;
2553 if (disk_idx
>= mddev
->raid_disks
2556 if (test_bit(Replacement
, &rdev
->flags
))
2557 disk
= conf
->mirrors
+ conf
->raid_disks
+ disk_idx
;
2559 disk
= conf
->mirrors
+ disk_idx
;
2564 q
= bdev_get_queue(rdev
->bdev
);
2565 if (q
->merge_bvec_fn
)
2566 mddev
->merge_check_needed
= 1;
2568 disk
->head_position
= 0;
2570 conf
->raid_disks
= mddev
->raid_disks
;
2571 conf
->mddev
= mddev
;
2572 INIT_LIST_HEAD(&conf
->retry_list
);
2574 spin_lock_init(&conf
->resync_lock
);
2575 init_waitqueue_head(&conf
->wait_barrier
);
2577 bio_list_init(&conf
->pending_bio_list
);
2578 conf
->pending_count
= 0;
2579 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2582 conf
->last_used
= -1;
2583 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2585 disk
= conf
->mirrors
+ i
;
2587 if (i
< conf
->raid_disks
&&
2588 disk
[conf
->raid_disks
].rdev
) {
2589 /* This slot has a replacement. */
2591 /* No original, just make the replacement
2592 * a recovering spare
2595 disk
[conf
->raid_disks
].rdev
;
2596 disk
[conf
->raid_disks
].rdev
= NULL
;
2597 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2598 /* Original is not in_sync - bad */
2603 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2604 disk
->head_position
= 0;
2606 (disk
->rdev
->saved_raid_disk
< 0))
2608 } else if (conf
->last_used
< 0)
2610 * The first working device is used as a
2611 * starting point to read balancing.
2613 conf
->last_used
= i
;
2616 if (conf
->last_used
< 0) {
2617 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
2622 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2623 if (!conf
->thread
) {
2625 "md/raid1:%s: couldn't allocate thread\n",
2634 if (conf
->r1bio_pool
)
2635 mempool_destroy(conf
->r1bio_pool
);
2636 kfree(conf
->mirrors
);
2637 safe_put_page(conf
->tmppage
);
2638 kfree(conf
->poolinfo
);
2641 return ERR_PTR(err
);
2644 static int stop(struct mddev
*mddev
);
2645 static int run(struct mddev
*mddev
)
2647 struct r1conf
*conf
;
2649 struct md_rdev
*rdev
;
2652 if (mddev
->level
!= 1) {
2653 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2654 mdname(mddev
), mddev
->level
);
2657 if (mddev
->reshape_position
!= MaxSector
) {
2658 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2663 * copy the already verified devices into our private RAID1
2664 * bookkeeping area. [whatever we allocate in run(),
2665 * should be freed in stop()]
2667 if (mddev
->private == NULL
)
2668 conf
= setup_conf(mddev
);
2670 conf
= mddev
->private;
2673 return PTR_ERR(conf
);
2675 rdev_for_each(rdev
, mddev
) {
2676 if (!mddev
->gendisk
)
2678 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2679 rdev
->data_offset
<< 9);
2682 mddev
->degraded
= 0;
2683 for (i
=0; i
< conf
->raid_disks
; i
++)
2684 if (conf
->mirrors
[i
].rdev
== NULL
||
2685 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2686 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2689 if (conf
->raid_disks
- mddev
->degraded
== 1)
2690 mddev
->recovery_cp
= MaxSector
;
2692 if (mddev
->recovery_cp
!= MaxSector
)
2693 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2694 " -- starting background reconstruction\n",
2697 "md/raid1:%s: active with %d out of %d mirrors\n",
2698 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2702 * Ok, everything is just fine now
2704 mddev
->thread
= conf
->thread
;
2705 conf
->thread
= NULL
;
2706 mddev
->private = conf
;
2708 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2711 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2712 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2713 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2716 ret
= md_integrity_register(mddev
);
2722 static int stop(struct mddev
*mddev
)
2724 struct r1conf
*conf
= mddev
->private;
2725 struct bitmap
*bitmap
= mddev
->bitmap
;
2727 /* wait for behind writes to complete */
2728 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2729 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2731 /* need to kick something here to make sure I/O goes? */
2732 wait_event(bitmap
->behind_wait
,
2733 atomic_read(&bitmap
->behind_writes
) == 0);
2736 raise_barrier(conf
);
2737 lower_barrier(conf
);
2739 md_unregister_thread(&mddev
->thread
);
2740 if (conf
->r1bio_pool
)
2741 mempool_destroy(conf
->r1bio_pool
);
2742 kfree(conf
->mirrors
);
2743 kfree(conf
->poolinfo
);
2745 mddev
->private = NULL
;
2749 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2751 /* no resync is happening, and there is enough space
2752 * on all devices, so we can resize.
2753 * We need to make sure resync covers any new space.
2754 * If the array is shrinking we should possibly wait until
2755 * any io in the removed space completes, but it hardly seems
2758 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
2759 if (mddev
->external_size
&&
2760 mddev
->array_sectors
> newsize
)
2762 if (mddev
->bitmap
) {
2763 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
2767 md_set_array_sectors(mddev
, newsize
);
2768 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2769 revalidate_disk(mddev
->gendisk
);
2770 if (sectors
> mddev
->dev_sectors
&&
2771 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2772 mddev
->recovery_cp
= mddev
->dev_sectors
;
2773 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2775 mddev
->dev_sectors
= sectors
;
2776 mddev
->resync_max_sectors
= sectors
;
2780 static int raid1_reshape(struct mddev
*mddev
)
2783 * 1/ resize the r1bio_pool
2784 * 2/ resize conf->mirrors
2786 * We allocate a new r1bio_pool if we can.
2787 * Then raise a device barrier and wait until all IO stops.
2788 * Then resize conf->mirrors and swap in the new r1bio pool.
2790 * At the same time, we "pack" the devices so that all the missing
2791 * devices have the higher raid_disk numbers.
2793 mempool_t
*newpool
, *oldpool
;
2794 struct pool_info
*newpoolinfo
;
2795 struct mirror_info
*newmirrors
;
2796 struct r1conf
*conf
= mddev
->private;
2797 int cnt
, raid_disks
;
2798 unsigned long flags
;
2801 /* Cannot change chunk_size, layout, or level */
2802 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2803 mddev
->layout
!= mddev
->new_layout
||
2804 mddev
->level
!= mddev
->new_level
) {
2805 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2806 mddev
->new_layout
= mddev
->layout
;
2807 mddev
->new_level
= mddev
->level
;
2811 err
= md_allow_write(mddev
);
2815 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2817 if (raid_disks
< conf
->raid_disks
) {
2819 for (d
= 0; d
< conf
->raid_disks
; d
++)
2820 if (conf
->mirrors
[d
].rdev
)
2822 if (cnt
> raid_disks
)
2826 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2829 newpoolinfo
->mddev
= mddev
;
2830 newpoolinfo
->raid_disks
= raid_disks
* 2;
2832 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2833 r1bio_pool_free
, newpoolinfo
);
2838 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
* 2,
2842 mempool_destroy(newpool
);
2846 raise_barrier(conf
);
2848 /* ok, everything is stopped */
2849 oldpool
= conf
->r1bio_pool
;
2850 conf
->r1bio_pool
= newpool
;
2852 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2853 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
2854 if (rdev
&& rdev
->raid_disk
!= d2
) {
2855 sysfs_unlink_rdev(mddev
, rdev
);
2856 rdev
->raid_disk
= d2
;
2857 sysfs_unlink_rdev(mddev
, rdev
);
2858 if (sysfs_link_rdev(mddev
, rdev
))
2860 "md/raid1:%s: cannot register rd%d\n",
2861 mdname(mddev
), rdev
->raid_disk
);
2864 newmirrors
[d2
++].rdev
= rdev
;
2866 kfree(conf
->mirrors
);
2867 conf
->mirrors
= newmirrors
;
2868 kfree(conf
->poolinfo
);
2869 conf
->poolinfo
= newpoolinfo
;
2871 spin_lock_irqsave(&conf
->device_lock
, flags
);
2872 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2873 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2874 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2875 mddev
->delta_disks
= 0;
2877 conf
->last_used
= 0; /* just make sure it is in-range */
2878 lower_barrier(conf
);
2880 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2881 md_wakeup_thread(mddev
->thread
);
2883 mempool_destroy(oldpool
);
2887 static void raid1_quiesce(struct mddev
*mddev
, int state
)
2889 struct r1conf
*conf
= mddev
->private;
2892 case 2: /* wake for suspend */
2893 wake_up(&conf
->wait_barrier
);
2896 raise_barrier(conf
);
2899 lower_barrier(conf
);
2904 static void *raid1_takeover(struct mddev
*mddev
)
2906 /* raid1 can take over:
2907 * raid5 with 2 devices, any layout or chunk size
2909 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2910 struct r1conf
*conf
;
2911 mddev
->new_level
= 1;
2912 mddev
->new_layout
= 0;
2913 mddev
->new_chunk_sectors
= 0;
2914 conf
= setup_conf(mddev
);
2919 return ERR_PTR(-EINVAL
);
2922 static struct md_personality raid1_personality
=
2926 .owner
= THIS_MODULE
,
2927 .make_request
= make_request
,
2931 .error_handler
= error
,
2932 .hot_add_disk
= raid1_add_disk
,
2933 .hot_remove_disk
= raid1_remove_disk
,
2934 .spare_active
= raid1_spare_active
,
2935 .sync_request
= sync_request
,
2936 .resize
= raid1_resize
,
2938 .check_reshape
= raid1_reshape
,
2939 .quiesce
= raid1_quiesce
,
2940 .takeover
= raid1_takeover
,
2943 static int __init
raid_init(void)
2945 return register_md_personality(&raid1_personality
);
2948 static void raid_exit(void)
2950 unregister_md_personality(&raid1_personality
);
2953 module_init(raid_init
);
2954 module_exit(raid_exit
);
2955 MODULE_LICENSE("GPL");
2956 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2957 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2958 MODULE_ALIAS("md-raid1");
2959 MODULE_ALIAS("md-level-1");
2961 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);