2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
50 * near_copies and far_copies must be at least one, and their product is at most
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
59 * Number of guaranteed r10bios in case of extreme VM load:
61 #define NR_RAID10_BIOS 256
63 /* When there are this many requests queue to be written by
64 * the raid10 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r10conf
*conf
);
70 static void lower_barrier(struct r10conf
*conf
);
71 static int enough(struct r10conf
*conf
, int ignore
);
72 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
74 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
75 static void end_reshape_write(struct bio
*bio
, int error
);
76 static void end_reshape(struct r10conf
*conf
);
78 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
80 struct r10conf
*conf
= data
;
81 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
83 /* allocate a r10bio with room for raid_disks entries in the
85 return kzalloc(size
, gfp_flags
);
88 static void r10bio_pool_free(void *r10_bio
, void *data
)
93 /* Maximum size of each resync request */
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
96 /* amount of memory to reserve for resync requests */
97 #define RESYNC_WINDOW (1024*1024)
98 /* maximum number of concurrent requests, memory permitting */
99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
102 * When performing a resync, we need to read and compare, so
103 * we need as many pages are there are copies.
104 * When performing a recovery, we need 2 bios, one for read,
105 * one for write (we recover only one drive per r10buf)
108 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
110 struct r10conf
*conf
= data
;
112 struct r10bio
*r10_bio
;
117 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
121 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
122 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
123 nalloc
= conf
->copies
; /* resync */
125 nalloc
= 2; /* recovery */
130 for (j
= nalloc
; j
-- ; ) {
131 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
134 r10_bio
->devs
[j
].bio
= bio
;
135 if (!conf
->have_replacement
)
137 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
140 r10_bio
->devs
[j
].repl_bio
= bio
;
143 * Allocate RESYNC_PAGES data pages and attach them
146 for (j
= 0 ; j
< nalloc
; j
++) {
147 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
148 bio
= r10_bio
->devs
[j
].bio
;
149 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
150 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
151 &conf
->mddev
->recovery
)) {
152 /* we can share bv_page's during recovery
154 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
155 page
= rbio
->bi_io_vec
[i
].bv_page
;
158 page
= alloc_page(gfp_flags
);
162 bio
->bi_io_vec
[i
].bv_page
= page
;
164 rbio
->bi_io_vec
[i
].bv_page
= page
;
172 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
174 for (i
= 0; i
< RESYNC_PAGES
; i
++)
175 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
178 for ( ; j
< nalloc
; j
++) {
179 if (r10_bio
->devs
[j
].bio
)
180 bio_put(r10_bio
->devs
[j
].bio
);
181 if (r10_bio
->devs
[j
].repl_bio
)
182 bio_put(r10_bio
->devs
[j
].repl_bio
);
184 r10bio_pool_free(r10_bio
, conf
);
188 static void r10buf_pool_free(void *__r10_bio
, void *data
)
191 struct r10conf
*conf
= data
;
192 struct r10bio
*r10bio
= __r10_bio
;
195 for (j
=0; j
< conf
->copies
; j
++) {
196 struct bio
*bio
= r10bio
->devs
[j
].bio
;
198 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
199 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
200 bio
->bi_io_vec
[i
].bv_page
= NULL
;
204 bio
= r10bio
->devs
[j
].repl_bio
;
208 r10bio_pool_free(r10bio
, conf
);
211 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
215 for (i
= 0; i
< conf
->copies
; i
++) {
216 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
217 if (!BIO_SPECIAL(*bio
))
220 bio
= &r10_bio
->devs
[i
].repl_bio
;
221 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
227 static void free_r10bio(struct r10bio
*r10_bio
)
229 struct r10conf
*conf
= r10_bio
->mddev
->private;
231 put_all_bios(conf
, r10_bio
);
232 mempool_free(r10_bio
, conf
->r10bio_pool
);
235 static void put_buf(struct r10bio
*r10_bio
)
237 struct r10conf
*conf
= r10_bio
->mddev
->private;
239 mempool_free(r10_bio
, conf
->r10buf_pool
);
244 static void reschedule_retry(struct r10bio
*r10_bio
)
247 struct mddev
*mddev
= r10_bio
->mddev
;
248 struct r10conf
*conf
= mddev
->private;
250 spin_lock_irqsave(&conf
->device_lock
, flags
);
251 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
253 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
255 /* wake up frozen array... */
256 wake_up(&conf
->wait_barrier
);
258 md_wakeup_thread(mddev
->thread
);
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
266 static void raid_end_bio_io(struct r10bio
*r10_bio
)
268 struct bio
*bio
= r10_bio
->master_bio
;
270 struct r10conf
*conf
= r10_bio
->mddev
->private;
272 if (bio
->bi_phys_segments
) {
274 spin_lock_irqsave(&conf
->device_lock
, flags
);
275 bio
->bi_phys_segments
--;
276 done
= (bio
->bi_phys_segments
== 0);
277 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
280 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
281 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
285 * Wake up any possible resync thread that waits for the device
290 free_r10bio(r10_bio
);
294 * Update disk head position estimator based on IRQ completion info.
296 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
298 struct r10conf
*conf
= r10_bio
->mddev
->private;
300 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
301 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
305 * Find the disk number which triggered given bio
307 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
308 struct bio
*bio
, int *slotp
, int *replp
)
313 for (slot
= 0; slot
< conf
->copies
; slot
++) {
314 if (r10_bio
->devs
[slot
].bio
== bio
)
316 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
322 BUG_ON(slot
== conf
->copies
);
323 update_head_pos(slot
, r10_bio
);
329 return r10_bio
->devs
[slot
].devnum
;
332 static void raid10_end_read_request(struct bio
*bio
, int error
)
334 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
335 struct r10bio
*r10_bio
= bio
->bi_private
;
337 struct md_rdev
*rdev
;
338 struct r10conf
*conf
= r10_bio
->mddev
->private;
341 slot
= r10_bio
->read_slot
;
342 dev
= r10_bio
->devs
[slot
].devnum
;
343 rdev
= r10_bio
->devs
[slot
].rdev
;
345 * this branch is our 'one mirror IO has finished' event handler:
347 update_head_pos(slot
, r10_bio
);
351 * Set R10BIO_Uptodate in our master bio, so that
352 * we will return a good error code to the higher
353 * levels even if IO on some other mirrored buffer fails.
355 * The 'master' represents the composite IO operation to
356 * user-side. So if something waits for IO, then it will
357 * wait for the 'master' bio.
359 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
361 /* If all other devices that store this block have
362 * failed, we want to return the error upwards rather
363 * than fail the last device. Here we redefine
364 * "uptodate" to mean "Don't want to retry"
367 spin_lock_irqsave(&conf
->device_lock
, flags
);
368 if (!enough(conf
, rdev
->raid_disk
))
370 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
373 raid_end_bio_io(r10_bio
);
374 rdev_dec_pending(rdev
, conf
->mddev
);
377 * oops, read error - keep the refcount on the rdev
379 char b
[BDEVNAME_SIZE
];
380 printk_ratelimited(KERN_ERR
381 "md/raid10:%s: %s: rescheduling sector %llu\n",
383 bdevname(rdev
->bdev
, b
),
384 (unsigned long long)r10_bio
->sector
);
385 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
386 reschedule_retry(r10_bio
);
390 static void close_write(struct r10bio
*r10_bio
)
392 /* clear the bitmap if all writes complete successfully */
393 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
395 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
397 md_write_end(r10_bio
->mddev
);
400 static void one_write_done(struct r10bio
*r10_bio
)
402 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
403 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
404 reschedule_retry(r10_bio
);
406 close_write(r10_bio
);
407 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
408 reschedule_retry(r10_bio
);
410 raid_end_bio_io(r10_bio
);
415 static void raid10_end_write_request(struct bio
*bio
, int error
)
417 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
418 struct r10bio
*r10_bio
= bio
->bi_private
;
421 struct r10conf
*conf
= r10_bio
->mddev
->private;
423 struct md_rdev
*rdev
= NULL
;
425 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
428 rdev
= conf
->mirrors
[dev
].replacement
;
432 rdev
= conf
->mirrors
[dev
].rdev
;
435 * this branch is our 'one mirror IO has finished' event handler:
439 /* Never record new bad blocks to replacement,
442 md_error(rdev
->mddev
, rdev
);
444 set_bit(WriteErrorSeen
, &rdev
->flags
);
445 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
446 set_bit(MD_RECOVERY_NEEDED
,
447 &rdev
->mddev
->recovery
);
448 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
453 * Set R10BIO_Uptodate in our master bio, so that
454 * we will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer fails.
457 * The 'master' represents the composite IO operation to
458 * user-side. So if something waits for IO, then it will
459 * wait for the 'master' bio.
464 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
466 /* Maybe we can clear some bad blocks. */
467 if (is_badblock(rdev
,
468 r10_bio
->devs
[slot
].addr
,
470 &first_bad
, &bad_sectors
)) {
473 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
475 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
477 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
483 * Let's see if all mirrored write operations have finished
486 one_write_done(r10_bio
);
488 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
492 * RAID10 layout manager
493 * As well as the chunksize and raid_disks count, there are two
494 * parameters: near_copies and far_copies.
495 * near_copies * far_copies must be <= raid_disks.
496 * Normally one of these will be 1.
497 * If both are 1, we get raid0.
498 * If near_copies == raid_disks, we get raid1.
500 * Chunks are laid out in raid0 style with near_copies copies of the
501 * first chunk, followed by near_copies copies of the next chunk and
503 * If far_copies > 1, then after 1/far_copies of the array has been assigned
504 * as described above, we start again with a device offset of near_copies.
505 * So we effectively have another copy of the whole array further down all
506 * the drives, but with blocks on different drives.
507 * With this layout, and block is never stored twice on the one device.
509 * raid10_find_phys finds the sector offset of a given virtual sector
510 * on each device that it is on.
512 * raid10_find_virt does the reverse mapping, from a device and a
513 * sector offset to a virtual address
516 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
525 /* now calculate first sector/dev */
526 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
527 sector
= r10bio
->sector
& geo
->chunk_mask
;
529 chunk
*= geo
->near_copies
;
531 dev
= sector_div(stripe
, geo
->raid_disks
);
533 stripe
*= geo
->far_copies
;
535 sector
+= stripe
<< geo
->chunk_shift
;
537 /* and calculate all the others */
538 for (n
= 0; n
< geo
->near_copies
; n
++) {
541 r10bio
->devs
[slot
].addr
= sector
;
542 r10bio
->devs
[slot
].devnum
= d
;
545 for (f
= 1; f
< geo
->far_copies
; f
++) {
546 d
+= geo
->near_copies
;
547 if (d
>= geo
->raid_disks
)
548 d
-= geo
->raid_disks
;
550 r10bio
->devs
[slot
].devnum
= d
;
551 r10bio
->devs
[slot
].addr
= s
;
555 if (dev
>= geo
->raid_disks
) {
557 sector
+= (geo
->chunk_mask
+ 1);
562 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
564 struct geom
*geo
= &conf
->geo
;
566 if (conf
->reshape_progress
!= MaxSector
&&
567 ((r10bio
->sector
>= conf
->reshape_progress
) !=
568 conf
->mddev
->reshape_backwards
)) {
569 set_bit(R10BIO_Previous
, &r10bio
->state
);
572 clear_bit(R10BIO_Previous
, &r10bio
->state
);
574 __raid10_find_phys(geo
, r10bio
);
577 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
579 sector_t offset
, chunk
, vchunk
;
580 /* Never use conf->prev as this is only called during resync
581 * or recovery, so reshape isn't happening
583 struct geom
*geo
= &conf
->geo
;
585 offset
= sector
& geo
->chunk_mask
;
586 if (geo
->far_offset
) {
588 chunk
= sector
>> geo
->chunk_shift
;
589 fc
= sector_div(chunk
, geo
->far_copies
);
590 dev
-= fc
* geo
->near_copies
;
592 dev
+= geo
->raid_disks
;
594 while (sector
>= geo
->stride
) {
595 sector
-= geo
->stride
;
596 if (dev
< geo
->near_copies
)
597 dev
+= geo
->raid_disks
- geo
->near_copies
;
599 dev
-= geo
->near_copies
;
601 chunk
= sector
>> geo
->chunk_shift
;
603 vchunk
= chunk
* geo
->raid_disks
+ dev
;
604 sector_div(vchunk
, geo
->near_copies
);
605 return (vchunk
<< geo
->chunk_shift
) + offset
;
609 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
611 * @bvm: properties of new bio
612 * @biovec: the request that could be merged to it.
614 * Return amount of bytes we can accept at this offset
615 * This requires checking for end-of-chunk if near_copies != raid_disks,
616 * and for subordinate merge_bvec_fns if merge_check_needed.
618 static int raid10_mergeable_bvec(struct request_queue
*q
,
619 struct bvec_merge_data
*bvm
,
620 struct bio_vec
*biovec
)
622 struct mddev
*mddev
= q
->queuedata
;
623 struct r10conf
*conf
= mddev
->private;
624 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
626 unsigned int chunk_sectors
;
627 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
628 struct geom
*geo
= &conf
->geo
;
630 chunk_sectors
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
) + 1;
631 if (conf
->reshape_progress
!= MaxSector
&&
632 ((sector
>= conf
->reshape_progress
) !=
633 conf
->mddev
->reshape_backwards
))
636 if (geo
->near_copies
< geo
->raid_disks
) {
637 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
638 + bio_sectors
)) << 9;
640 /* bio_add cannot handle a negative return */
642 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
643 return biovec
->bv_len
;
645 max
= biovec
->bv_len
;
647 if (mddev
->merge_check_needed
) {
648 struct r10bio r10_bio
;
650 if (conf
->reshape_progress
!= MaxSector
) {
651 /* Cannot give any guidance during reshape */
652 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
653 return biovec
->bv_len
;
656 r10_bio
.sector
= sector
;
657 raid10_find_phys(conf
, &r10_bio
);
659 for (s
= 0; s
< conf
->copies
; s
++) {
660 int disk
= r10_bio
.devs
[s
].devnum
;
661 struct md_rdev
*rdev
= rcu_dereference(
662 conf
->mirrors
[disk
].rdev
);
663 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
664 struct request_queue
*q
=
665 bdev_get_queue(rdev
->bdev
);
666 if (q
->merge_bvec_fn
) {
667 bvm
->bi_sector
= r10_bio
.devs
[s
].addr
669 bvm
->bi_bdev
= rdev
->bdev
;
670 max
= min(max
, q
->merge_bvec_fn(
674 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
675 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
676 struct request_queue
*q
=
677 bdev_get_queue(rdev
->bdev
);
678 if (q
->merge_bvec_fn
) {
679 bvm
->bi_sector
= r10_bio
.devs
[s
].addr
681 bvm
->bi_bdev
= rdev
->bdev
;
682 max
= min(max
, q
->merge_bvec_fn(
693 * This routine returns the disk from which the requested read should
694 * be done. There is a per-array 'next expected sequential IO' sector
695 * number - if this matches on the next IO then we use the last disk.
696 * There is also a per-disk 'last know head position' sector that is
697 * maintained from IRQ contexts, both the normal and the resync IO
698 * completion handlers update this position correctly. If there is no
699 * perfect sequential match then we pick the disk whose head is closest.
701 * If there are 2 mirrors in the same 2 devices, performance degrades
702 * because position is mirror, not device based.
704 * The rdev for the device selected will have nr_pending incremented.
708 * FIXME: possibly should rethink readbalancing and do it differently
709 * depending on near_copies / far_copies geometry.
711 static struct md_rdev
*read_balance(struct r10conf
*conf
,
712 struct r10bio
*r10_bio
,
715 const sector_t this_sector
= r10_bio
->sector
;
717 int sectors
= r10_bio
->sectors
;
718 int best_good_sectors
;
719 sector_t new_distance
, best_dist
;
720 struct md_rdev
*rdev
, *best_rdev
;
723 struct geom
*geo
= &conf
->geo
;
725 raid10_find_phys(conf
, r10_bio
);
728 sectors
= r10_bio
->sectors
;
731 best_dist
= MaxSector
;
732 best_good_sectors
= 0;
735 * Check if we can balance. We can balance on the whole
736 * device if no resync is going on (recovery is ok), or below
737 * the resync window. We take the first readable disk when
738 * above the resync window.
740 if (conf
->mddev
->recovery_cp
< MaxSector
741 && (this_sector
+ sectors
>= conf
->next_resync
))
744 for (slot
= 0; slot
< conf
->copies
; slot
++) {
749 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
751 disk
= r10_bio
->devs
[slot
].devnum
;
752 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
753 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
754 test_bit(Unmerged
, &rdev
->flags
) ||
755 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
756 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
758 test_bit(Faulty
, &rdev
->flags
) ||
759 test_bit(Unmerged
, &rdev
->flags
))
761 if (!test_bit(In_sync
, &rdev
->flags
) &&
762 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
765 dev_sector
= r10_bio
->devs
[slot
].addr
;
766 if (is_badblock(rdev
, dev_sector
, sectors
,
767 &first_bad
, &bad_sectors
)) {
768 if (best_dist
< MaxSector
)
769 /* Already have a better slot */
771 if (first_bad
<= dev_sector
) {
772 /* Cannot read here. If this is the
773 * 'primary' device, then we must not read
774 * beyond 'bad_sectors' from another device.
776 bad_sectors
-= (dev_sector
- first_bad
);
777 if (!do_balance
&& sectors
> bad_sectors
)
778 sectors
= bad_sectors
;
779 if (best_good_sectors
> sectors
)
780 best_good_sectors
= sectors
;
782 sector_t good_sectors
=
783 first_bad
- dev_sector
;
784 if (good_sectors
> best_good_sectors
) {
785 best_good_sectors
= good_sectors
;
790 /* Must read from here */
795 best_good_sectors
= sectors
;
800 /* This optimisation is debatable, and completely destroys
801 * sequential read speed for 'far copies' arrays. So only
802 * keep it for 'near' arrays, and review those later.
804 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
807 /* for far > 1 always use the lowest address */
808 if (geo
->far_copies
> 1)
809 new_distance
= r10_bio
->devs
[slot
].addr
;
811 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
812 conf
->mirrors
[disk
].head_position
);
813 if (new_distance
< best_dist
) {
814 best_dist
= new_distance
;
819 if (slot
>= conf
->copies
) {
825 atomic_inc(&rdev
->nr_pending
);
826 if (test_bit(Faulty
, &rdev
->flags
)) {
827 /* Cannot risk returning a device that failed
828 * before we inc'ed nr_pending
830 rdev_dec_pending(rdev
, conf
->mddev
);
833 r10_bio
->read_slot
= slot
;
837 *max_sectors
= best_good_sectors
;
842 static int raid10_congested(void *data
, int bits
)
844 struct mddev
*mddev
= data
;
845 struct r10conf
*conf
= mddev
->private;
848 if ((bits
& (1 << BDI_async_congested
)) &&
849 conf
->pending_count
>= max_queued_requests
)
852 if (mddev_congested(mddev
, bits
))
856 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
859 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
860 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
861 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
863 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
870 static void flush_pending_writes(struct r10conf
*conf
)
872 /* Any writes that have been queued but are awaiting
873 * bitmap updates get flushed here.
875 spin_lock_irq(&conf
->device_lock
);
877 if (conf
->pending_bio_list
.head
) {
879 bio
= bio_list_get(&conf
->pending_bio_list
);
880 conf
->pending_count
= 0;
881 spin_unlock_irq(&conf
->device_lock
);
882 /* flush any pending bitmap writes to disk
883 * before proceeding w/ I/O */
884 bitmap_unplug(conf
->mddev
->bitmap
);
885 wake_up(&conf
->wait_barrier
);
887 while (bio
) { /* submit pending writes */
888 struct bio
*next
= bio
->bi_next
;
890 generic_make_request(bio
);
894 spin_unlock_irq(&conf
->device_lock
);
898 * Sometimes we need to suspend IO while we do something else,
899 * either some resync/recovery, or reconfigure the array.
900 * To do this we raise a 'barrier'.
901 * The 'barrier' is a counter that can be raised multiple times
902 * to count how many activities are happening which preclude
904 * We can only raise the barrier if there is no pending IO.
905 * i.e. if nr_pending == 0.
906 * We choose only to raise the barrier if no-one is waiting for the
907 * barrier to go down. This means that as soon as an IO request
908 * is ready, no other operations which require a barrier will start
909 * until the IO request has had a chance.
911 * So: regular IO calls 'wait_barrier'. When that returns there
912 * is no backgroup IO happening, It must arrange to call
913 * allow_barrier when it has finished its IO.
914 * backgroup IO calls must call raise_barrier. Once that returns
915 * there is no normal IO happeing. It must arrange to call
916 * lower_barrier when the particular background IO completes.
919 static void raise_barrier(struct r10conf
*conf
, int force
)
921 BUG_ON(force
&& !conf
->barrier
);
922 spin_lock_irq(&conf
->resync_lock
);
924 /* Wait until no block IO is waiting (unless 'force') */
925 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
926 conf
->resync_lock
, );
928 /* block any new IO from starting */
931 /* Now wait for all pending IO to complete */
932 wait_event_lock_irq(conf
->wait_barrier
,
933 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
934 conf
->resync_lock
, );
936 spin_unlock_irq(&conf
->resync_lock
);
939 static void lower_barrier(struct r10conf
*conf
)
942 spin_lock_irqsave(&conf
->resync_lock
, flags
);
944 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
945 wake_up(&conf
->wait_barrier
);
948 static void wait_barrier(struct r10conf
*conf
)
950 spin_lock_irq(&conf
->resync_lock
);
953 /* Wait for the barrier to drop.
954 * However if there are already pending
955 * requests (preventing the barrier from
956 * rising completely), and the
957 * pre-process bio queue isn't empty,
958 * then don't wait, as we need to empty
959 * that queue to get the nr_pending
962 wait_event_lock_irq(conf
->wait_barrier
,
966 !bio_list_empty(current
->bio_list
)),
972 spin_unlock_irq(&conf
->resync_lock
);
975 static void allow_barrier(struct r10conf
*conf
)
978 spin_lock_irqsave(&conf
->resync_lock
, flags
);
980 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
981 wake_up(&conf
->wait_barrier
);
984 static void freeze_array(struct r10conf
*conf
)
986 /* stop syncio and normal IO and wait for everything to
988 * We increment barrier and nr_waiting, and then
989 * wait until nr_pending match nr_queued+1
990 * This is called in the context of one normal IO request
991 * that has failed. Thus any sync request that might be pending
992 * will be blocked by nr_pending, and we need to wait for
993 * pending IO requests to complete or be queued for re-try.
994 * Thus the number queued (nr_queued) plus this request (1)
995 * must match the number of pending IOs (nr_pending) before
998 spin_lock_irq(&conf
->resync_lock
);
1001 wait_event_lock_irq(conf
->wait_barrier
,
1002 conf
->nr_pending
== conf
->nr_queued
+1,
1004 flush_pending_writes(conf
));
1006 spin_unlock_irq(&conf
->resync_lock
);
1009 static void unfreeze_array(struct r10conf
*conf
)
1011 /* reverse the effect of the freeze */
1012 spin_lock_irq(&conf
->resync_lock
);
1015 wake_up(&conf
->wait_barrier
);
1016 spin_unlock_irq(&conf
->resync_lock
);
1019 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1020 struct md_rdev
*rdev
)
1022 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1023 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1024 return rdev
->data_offset
;
1026 return rdev
->new_data_offset
;
1029 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1031 struct r10conf
*conf
= mddev
->private;
1032 struct r10bio
*r10_bio
;
1033 struct bio
*read_bio
;
1035 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1036 int chunk_sects
= chunk_mask
+ 1;
1037 const int rw
= bio_data_dir(bio
);
1038 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1039 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1040 unsigned long flags
;
1041 struct md_rdev
*blocked_rdev
;
1042 int sectors_handled
;
1046 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1047 md_flush_request(mddev
, bio
);
1051 /* If this request crosses a chunk boundary, we need to
1052 * split it. This will only happen for 1 PAGE (or less) requests.
1054 if (unlikely((bio
->bi_sector
& chunk_mask
) + (bio
->bi_size
>> 9)
1056 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1057 || conf
->prev
.near_copies
< conf
->prev
.raid_disks
))) {
1058 struct bio_pair
*bp
;
1059 /* Sanity check -- queue functions should prevent this happening */
1060 if (bio
->bi_vcnt
!= 1 ||
1063 /* This is a one page bio that upper layers
1064 * refuse to split for us, so we need to split it.
1067 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1069 /* Each of these 'make_request' calls will call 'wait_barrier'.
1070 * If the first succeeds but the second blocks due to the resync
1071 * thread raising the barrier, we will deadlock because the
1072 * IO to the underlying device will be queued in generic_make_request
1073 * and will never complete, so will never reduce nr_pending.
1074 * So increment nr_waiting here so no new raise_barriers will
1075 * succeed, and so the second wait_barrier cannot block.
1077 spin_lock_irq(&conf
->resync_lock
);
1079 spin_unlock_irq(&conf
->resync_lock
);
1081 make_request(mddev
, &bp
->bio1
);
1082 make_request(mddev
, &bp
->bio2
);
1084 spin_lock_irq(&conf
->resync_lock
);
1086 wake_up(&conf
->wait_barrier
);
1087 spin_unlock_irq(&conf
->resync_lock
);
1089 bio_pair_release(bp
);
1092 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1093 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1094 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
1100 md_write_start(mddev
, bio
);
1103 * Register the new request and wait if the reconstruction
1104 * thread has put up a bar for new requests.
1105 * Continue immediately if no resync is active currently.
1109 sectors
= bio
->bi_size
>> 9;
1110 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1111 bio
->bi_sector
< conf
->reshape_progress
&&
1112 bio
->bi_sector
+ sectors
> conf
->reshape_progress
) {
1113 /* IO spans the reshape position. Need to wait for
1116 allow_barrier(conf
);
1117 wait_event(conf
->wait_barrier
,
1118 conf
->reshape_progress
<= bio
->bi_sector
||
1119 conf
->reshape_progress
>= bio
->bi_sector
+ sectors
);
1122 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1123 bio_data_dir(bio
) == WRITE
&&
1124 (mddev
->reshape_backwards
1125 ? (bio
->bi_sector
< conf
->reshape_safe
&&
1126 bio
->bi_sector
+ sectors
> conf
->reshape_progress
)
1127 : (bio
->bi_sector
+ sectors
> conf
->reshape_safe
&&
1128 bio
->bi_sector
< conf
->reshape_progress
))) {
1129 /* Need to update reshape_position in metadata */
1130 mddev
->reshape_position
= conf
->reshape_progress
;
1131 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1132 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1133 md_wakeup_thread(mddev
->thread
);
1134 wait_event(mddev
->sb_wait
,
1135 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1137 conf
->reshape_safe
= mddev
->reshape_position
;
1140 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1142 r10_bio
->master_bio
= bio
;
1143 r10_bio
->sectors
= sectors
;
1145 r10_bio
->mddev
= mddev
;
1146 r10_bio
->sector
= bio
->bi_sector
;
1149 /* We might need to issue multiple reads to different
1150 * devices if there are bad blocks around, so we keep
1151 * track of the number of reads in bio->bi_phys_segments.
1152 * If this is 0, there is only one r10_bio and no locking
1153 * will be needed when the request completes. If it is
1154 * non-zero, then it is the number of not-completed requests.
1156 bio
->bi_phys_segments
= 0;
1157 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1161 * read balancing logic:
1163 struct md_rdev
*rdev
;
1167 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1169 raid_end_bio_io(r10_bio
);
1172 slot
= r10_bio
->read_slot
;
1174 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1175 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1178 r10_bio
->devs
[slot
].bio
= read_bio
;
1179 r10_bio
->devs
[slot
].rdev
= rdev
;
1181 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1182 choose_data_offset(r10_bio
, rdev
);
1183 read_bio
->bi_bdev
= rdev
->bdev
;
1184 read_bio
->bi_end_io
= raid10_end_read_request
;
1185 read_bio
->bi_rw
= READ
| do_sync
;
1186 read_bio
->bi_private
= r10_bio
;
1188 if (max_sectors
< r10_bio
->sectors
) {
1189 /* Could not read all from this device, so we will
1190 * need another r10_bio.
1192 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1194 r10_bio
->sectors
= max_sectors
;
1195 spin_lock_irq(&conf
->device_lock
);
1196 if (bio
->bi_phys_segments
== 0)
1197 bio
->bi_phys_segments
= 2;
1199 bio
->bi_phys_segments
++;
1200 spin_unlock(&conf
->device_lock
);
1201 /* Cannot call generic_make_request directly
1202 * as that will be queued in __generic_make_request
1203 * and subsequent mempool_alloc might block
1204 * waiting for it. so hand bio over to raid10d.
1206 reschedule_retry(r10_bio
);
1208 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1210 r10_bio
->master_bio
= bio
;
1211 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1214 r10_bio
->mddev
= mddev
;
1215 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1218 generic_make_request(read_bio
);
1225 if (conf
->pending_count
>= max_queued_requests
) {
1226 md_wakeup_thread(mddev
->thread
);
1227 wait_event(conf
->wait_barrier
,
1228 conf
->pending_count
< max_queued_requests
);
1230 /* first select target devices under rcu_lock and
1231 * inc refcount on their rdev. Record them by setting
1233 * If there are known/acknowledged bad blocks on any device
1234 * on which we have seen a write error, we want to avoid
1235 * writing to those blocks. This potentially requires several
1236 * writes to write around the bad blocks. Each set of writes
1237 * gets its own r10_bio with a set of bios attached. The number
1238 * of r10_bios is recored in bio->bi_phys_segments just as with
1242 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1243 raid10_find_phys(conf
, r10_bio
);
1245 blocked_rdev
= NULL
;
1247 max_sectors
= r10_bio
->sectors
;
1249 for (i
= 0; i
< conf
->copies
; i
++) {
1250 int d
= r10_bio
->devs
[i
].devnum
;
1251 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1252 struct md_rdev
*rrdev
= rcu_dereference(
1253 conf
->mirrors
[d
].replacement
);
1256 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1257 atomic_inc(&rdev
->nr_pending
);
1258 blocked_rdev
= rdev
;
1261 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1262 atomic_inc(&rrdev
->nr_pending
);
1263 blocked_rdev
= rrdev
;
1266 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1267 || test_bit(Unmerged
, &rrdev
->flags
)))
1270 r10_bio
->devs
[i
].bio
= NULL
;
1271 r10_bio
->devs
[i
].repl_bio
= NULL
;
1272 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
1273 test_bit(Unmerged
, &rdev
->flags
)) {
1274 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1277 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1279 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1283 is_bad
= is_badblock(rdev
, dev_sector
,
1285 &first_bad
, &bad_sectors
);
1287 /* Mustn't write here until the bad block
1290 atomic_inc(&rdev
->nr_pending
);
1291 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1292 blocked_rdev
= rdev
;
1295 if (is_bad
&& first_bad
<= dev_sector
) {
1296 /* Cannot write here at all */
1297 bad_sectors
-= (dev_sector
- first_bad
);
1298 if (bad_sectors
< max_sectors
)
1299 /* Mustn't write more than bad_sectors
1300 * to other devices yet
1302 max_sectors
= bad_sectors
;
1303 /* We don't set R10BIO_Degraded as that
1304 * only applies if the disk is missing,
1305 * so it might be re-added, and we want to
1306 * know to recover this chunk.
1307 * In this case the device is here, and the
1308 * fact that this chunk is not in-sync is
1309 * recorded in the bad block log.
1314 int good_sectors
= first_bad
- dev_sector
;
1315 if (good_sectors
< max_sectors
)
1316 max_sectors
= good_sectors
;
1319 r10_bio
->devs
[i
].bio
= bio
;
1320 atomic_inc(&rdev
->nr_pending
);
1322 r10_bio
->devs
[i
].repl_bio
= bio
;
1323 atomic_inc(&rrdev
->nr_pending
);
1328 if (unlikely(blocked_rdev
)) {
1329 /* Have to wait for this device to get unblocked, then retry */
1333 for (j
= 0; j
< i
; j
++) {
1334 if (r10_bio
->devs
[j
].bio
) {
1335 d
= r10_bio
->devs
[j
].devnum
;
1336 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1338 if (r10_bio
->devs
[j
].repl_bio
) {
1339 struct md_rdev
*rdev
;
1340 d
= r10_bio
->devs
[j
].devnum
;
1341 rdev
= conf
->mirrors
[d
].replacement
;
1343 /* Race with remove_disk */
1345 rdev
= conf
->mirrors
[d
].rdev
;
1347 rdev_dec_pending(rdev
, mddev
);
1350 allow_barrier(conf
);
1351 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1356 if (max_sectors
< r10_bio
->sectors
) {
1357 /* We are splitting this into multiple parts, so
1358 * we need to prepare for allocating another r10_bio.
1360 r10_bio
->sectors
= max_sectors
;
1361 spin_lock_irq(&conf
->device_lock
);
1362 if (bio
->bi_phys_segments
== 0)
1363 bio
->bi_phys_segments
= 2;
1365 bio
->bi_phys_segments
++;
1366 spin_unlock_irq(&conf
->device_lock
);
1368 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1370 atomic_set(&r10_bio
->remaining
, 1);
1371 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1373 for (i
= 0; i
< conf
->copies
; i
++) {
1375 int d
= r10_bio
->devs
[i
].devnum
;
1376 if (!r10_bio
->devs
[i
].bio
)
1379 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1380 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1382 r10_bio
->devs
[i
].bio
= mbio
;
1384 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1385 choose_data_offset(r10_bio
,
1386 conf
->mirrors
[d
].rdev
));
1387 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1388 mbio
->bi_end_io
= raid10_end_write_request
;
1389 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1390 mbio
->bi_private
= r10_bio
;
1392 atomic_inc(&r10_bio
->remaining
);
1393 spin_lock_irqsave(&conf
->device_lock
, flags
);
1394 bio_list_add(&conf
->pending_bio_list
, mbio
);
1395 conf
->pending_count
++;
1396 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1397 if (!mddev_check_plugged(mddev
))
1398 md_wakeup_thread(mddev
->thread
);
1400 if (!r10_bio
->devs
[i
].repl_bio
)
1403 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1404 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1406 r10_bio
->devs
[i
].repl_bio
= mbio
;
1408 /* We are actively writing to the original device
1409 * so it cannot disappear, so the replacement cannot
1412 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1415 conf
->mirrors
[d
].replacement
));
1416 mbio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
1417 mbio
->bi_end_io
= raid10_end_write_request
;
1418 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1419 mbio
->bi_private
= r10_bio
;
1421 atomic_inc(&r10_bio
->remaining
);
1422 spin_lock_irqsave(&conf
->device_lock
, flags
);
1423 bio_list_add(&conf
->pending_bio_list
, mbio
);
1424 conf
->pending_count
++;
1425 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1426 if (!mddev_check_plugged(mddev
))
1427 md_wakeup_thread(mddev
->thread
);
1430 /* Don't remove the bias on 'remaining' (one_write_done) until
1431 * after checking if we need to go around again.
1434 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1435 one_write_done(r10_bio
);
1436 /* We need another r10_bio. It has already been counted
1437 * in bio->bi_phys_segments.
1439 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1441 r10_bio
->master_bio
= bio
;
1442 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1444 r10_bio
->mddev
= mddev
;
1445 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1449 one_write_done(r10_bio
);
1451 /* In case raid10d snuck in to freeze_array */
1452 wake_up(&conf
->wait_barrier
);
1455 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1457 struct r10conf
*conf
= mddev
->private;
1460 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1461 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1462 if (conf
->geo
.near_copies
> 1)
1463 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1464 if (conf
->geo
.far_copies
> 1) {
1465 if (conf
->geo
.far_offset
)
1466 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1468 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1470 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1471 conf
->geo
.raid_disks
- mddev
->degraded
);
1472 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
1473 seq_printf(seq
, "%s",
1474 conf
->mirrors
[i
].rdev
&&
1475 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1476 seq_printf(seq
, "]");
1479 /* check if there are enough drives for
1480 * every block to appear on atleast one.
1481 * Don't consider the device numbered 'ignore'
1482 * as we might be about to remove it.
1484 static int _enough(struct r10conf
*conf
, struct geom
*geo
, int ignore
)
1489 int n
= conf
->copies
;
1492 if (conf
->mirrors
[first
].rdev
&&
1495 first
= (first
+1) % geo
->raid_disks
;
1499 } while (first
!= 0);
1503 static int enough(struct r10conf
*conf
, int ignore
)
1505 return _enough(conf
, &conf
->geo
, ignore
) &&
1506 _enough(conf
, &conf
->prev
, ignore
);
1509 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1511 char b
[BDEVNAME_SIZE
];
1512 struct r10conf
*conf
= mddev
->private;
1515 * If it is not operational, then we have already marked it as dead
1516 * else if it is the last working disks, ignore the error, let the
1517 * next level up know.
1518 * else mark the drive as failed
1520 if (test_bit(In_sync
, &rdev
->flags
)
1521 && !enough(conf
, rdev
->raid_disk
))
1523 * Don't fail the drive, just return an IO error.
1526 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1527 unsigned long flags
;
1528 spin_lock_irqsave(&conf
->device_lock
, flags
);
1530 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1532 * if recovery is running, make sure it aborts.
1534 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1536 set_bit(Blocked
, &rdev
->flags
);
1537 set_bit(Faulty
, &rdev
->flags
);
1538 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1540 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1541 "md/raid10:%s: Operation continuing on %d devices.\n",
1542 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1543 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1546 static void print_conf(struct r10conf
*conf
)
1549 struct mirror_info
*tmp
;
1551 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1553 printk(KERN_DEBUG
"(!conf)\n");
1556 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1557 conf
->geo
.raid_disks
);
1559 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1560 char b
[BDEVNAME_SIZE
];
1561 tmp
= conf
->mirrors
+ i
;
1563 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1564 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1565 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1566 bdevname(tmp
->rdev
->bdev
,b
));
1570 static void close_sync(struct r10conf
*conf
)
1573 allow_barrier(conf
);
1575 mempool_destroy(conf
->r10buf_pool
);
1576 conf
->r10buf_pool
= NULL
;
1579 static int raid10_spare_active(struct mddev
*mddev
)
1582 struct r10conf
*conf
= mddev
->private;
1583 struct mirror_info
*tmp
;
1585 unsigned long flags
;
1588 * Find all non-in_sync disks within the RAID10 configuration
1589 * and mark them in_sync
1591 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1592 tmp
= conf
->mirrors
+ i
;
1593 if (tmp
->replacement
1594 && tmp
->replacement
->recovery_offset
== MaxSector
1595 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1596 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1597 /* Replacement has just become active */
1599 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1602 /* Replaced device not technically faulty,
1603 * but we need to be sure it gets removed
1604 * and never re-added.
1606 set_bit(Faulty
, &tmp
->rdev
->flags
);
1607 sysfs_notify_dirent_safe(
1608 tmp
->rdev
->sysfs_state
);
1610 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1611 } else if (tmp
->rdev
1612 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1613 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1615 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1618 spin_lock_irqsave(&conf
->device_lock
, flags
);
1619 mddev
->degraded
-= count
;
1620 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1627 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1629 struct r10conf
*conf
= mddev
->private;
1633 int last
= conf
->geo
.raid_disks
- 1;
1634 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1636 if (mddev
->recovery_cp
< MaxSector
)
1637 /* only hot-add to in-sync arrays, as recovery is
1638 * very different from resync
1641 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, &conf
->prev
, -1))
1644 if (rdev
->raid_disk
>= 0)
1645 first
= last
= rdev
->raid_disk
;
1647 if (q
->merge_bvec_fn
) {
1648 set_bit(Unmerged
, &rdev
->flags
);
1649 mddev
->merge_check_needed
= 1;
1652 if (rdev
->saved_raid_disk
>= first
&&
1653 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1654 mirror
= rdev
->saved_raid_disk
;
1657 for ( ; mirror
<= last
; mirror
++) {
1658 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1659 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1662 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1663 p
->replacement
!= NULL
)
1665 clear_bit(In_sync
, &rdev
->flags
);
1666 set_bit(Replacement
, &rdev
->flags
);
1667 rdev
->raid_disk
= mirror
;
1669 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1670 rdev
->data_offset
<< 9);
1672 rcu_assign_pointer(p
->replacement
, rdev
);
1676 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1677 rdev
->data_offset
<< 9);
1679 p
->head_position
= 0;
1680 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1681 rdev
->raid_disk
= mirror
;
1683 if (rdev
->saved_raid_disk
!= mirror
)
1685 rcu_assign_pointer(p
->rdev
, rdev
);
1688 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1689 /* Some requests might not have seen this new
1690 * merge_bvec_fn. We must wait for them to complete
1691 * before merging the device fully.
1692 * First we make sure any code which has tested
1693 * our function has submitted the request, then
1694 * we wait for all outstanding requests to complete.
1696 synchronize_sched();
1697 raise_barrier(conf
, 0);
1698 lower_barrier(conf
);
1699 clear_bit(Unmerged
, &rdev
->flags
);
1701 md_integrity_add_rdev(rdev
, mddev
);
1706 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1708 struct r10conf
*conf
= mddev
->private;
1710 int number
= rdev
->raid_disk
;
1711 struct md_rdev
**rdevp
;
1712 struct mirror_info
*p
= conf
->mirrors
+ number
;
1715 if (rdev
== p
->rdev
)
1717 else if (rdev
== p
->replacement
)
1718 rdevp
= &p
->replacement
;
1722 if (test_bit(In_sync
, &rdev
->flags
) ||
1723 atomic_read(&rdev
->nr_pending
)) {
1727 /* Only remove faulty devices if recovery
1730 if (!test_bit(Faulty
, &rdev
->flags
) &&
1731 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1732 (!p
->replacement
|| p
->replacement
== rdev
) &&
1733 number
< conf
->geo
.raid_disks
&&
1740 if (atomic_read(&rdev
->nr_pending
)) {
1741 /* lost the race, try later */
1745 } else if (p
->replacement
) {
1746 /* We must have just cleared 'rdev' */
1747 p
->rdev
= p
->replacement
;
1748 clear_bit(Replacement
, &p
->replacement
->flags
);
1749 smp_mb(); /* Make sure other CPUs may see both as identical
1750 * but will never see neither -- if they are careful.
1752 p
->replacement
= NULL
;
1753 clear_bit(WantReplacement
, &rdev
->flags
);
1755 /* We might have just remove the Replacement as faulty
1756 * Clear the flag just in case
1758 clear_bit(WantReplacement
, &rdev
->flags
);
1760 err
= md_integrity_register(mddev
);
1769 static void end_sync_read(struct bio
*bio
, int error
)
1771 struct r10bio
*r10_bio
= bio
->bi_private
;
1772 struct r10conf
*conf
= r10_bio
->mddev
->private;
1775 if (bio
== r10_bio
->master_bio
) {
1776 /* this is a reshape read */
1777 d
= r10_bio
->read_slot
; /* really the read dev */
1779 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1781 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1782 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1784 /* The write handler will notice the lack of
1785 * R10BIO_Uptodate and record any errors etc
1787 atomic_add(r10_bio
->sectors
,
1788 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1790 /* for reconstruct, we always reschedule after a read.
1791 * for resync, only after all reads
1793 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1794 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1795 atomic_dec_and_test(&r10_bio
->remaining
)) {
1796 /* we have read all the blocks,
1797 * do the comparison in process context in raid10d
1799 reschedule_retry(r10_bio
);
1803 static void end_sync_request(struct r10bio
*r10_bio
)
1805 struct mddev
*mddev
= r10_bio
->mddev
;
1807 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1808 if (r10_bio
->master_bio
== NULL
) {
1809 /* the primary of several recovery bios */
1810 sector_t s
= r10_bio
->sectors
;
1811 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1812 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1813 reschedule_retry(r10_bio
);
1816 md_done_sync(mddev
, s
, 1);
1819 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1820 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1821 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1822 reschedule_retry(r10_bio
);
1830 static void end_sync_write(struct bio
*bio
, int error
)
1832 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1833 struct r10bio
*r10_bio
= bio
->bi_private
;
1834 struct mddev
*mddev
= r10_bio
->mddev
;
1835 struct r10conf
*conf
= mddev
->private;
1841 struct md_rdev
*rdev
= NULL
;
1843 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1845 rdev
= conf
->mirrors
[d
].replacement
;
1847 rdev
= conf
->mirrors
[d
].rdev
;
1851 md_error(mddev
, rdev
);
1853 set_bit(WriteErrorSeen
, &rdev
->flags
);
1854 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1855 set_bit(MD_RECOVERY_NEEDED
,
1856 &rdev
->mddev
->recovery
);
1857 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1859 } else if (is_badblock(rdev
,
1860 r10_bio
->devs
[slot
].addr
,
1862 &first_bad
, &bad_sectors
))
1863 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1865 rdev_dec_pending(rdev
, mddev
);
1867 end_sync_request(r10_bio
);
1871 * Note: sync and recover and handled very differently for raid10
1872 * This code is for resync.
1873 * For resync, we read through virtual addresses and read all blocks.
1874 * If there is any error, we schedule a write. The lowest numbered
1875 * drive is authoritative.
1876 * However requests come for physical address, so we need to map.
1877 * For every physical address there are raid_disks/copies virtual addresses,
1878 * which is always are least one, but is not necessarly an integer.
1879 * This means that a physical address can span multiple chunks, so we may
1880 * have to submit multiple io requests for a single sync request.
1883 * We check if all blocks are in-sync and only write to blocks that
1886 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1888 struct r10conf
*conf
= mddev
->private;
1890 struct bio
*tbio
, *fbio
;
1893 atomic_set(&r10_bio
->remaining
, 1);
1895 /* find the first device with a block */
1896 for (i
=0; i
<conf
->copies
; i
++)
1897 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1900 if (i
== conf
->copies
)
1904 fbio
= r10_bio
->devs
[i
].bio
;
1906 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1907 /* now find blocks with errors */
1908 for (i
=0 ; i
< conf
->copies
; i
++) {
1911 tbio
= r10_bio
->devs
[i
].bio
;
1913 if (tbio
->bi_end_io
!= end_sync_read
)
1917 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1918 /* We know that the bi_io_vec layout is the same for
1919 * both 'first' and 'i', so we just compare them.
1920 * All vec entries are PAGE_SIZE;
1922 for (j
= 0; j
< vcnt
; j
++)
1923 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1924 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1925 fbio
->bi_io_vec
[j
].bv_len
))
1929 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1930 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1931 /* Don't fix anything. */
1934 /* Ok, we need to write this bio, either to correct an
1935 * inconsistency or to correct an unreadable block.
1936 * First we need to fixup bv_offset, bv_len and
1937 * bi_vecs, as the read request might have corrupted these
1939 tbio
->bi_vcnt
= vcnt
;
1940 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1942 tbio
->bi_phys_segments
= 0;
1943 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1944 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1945 tbio
->bi_next
= NULL
;
1946 tbio
->bi_rw
= WRITE
;
1947 tbio
->bi_private
= r10_bio
;
1948 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1950 for (j
=0; j
< vcnt
; j
++) {
1951 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1952 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1954 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1955 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1958 tbio
->bi_end_io
= end_sync_write
;
1960 d
= r10_bio
->devs
[i
].devnum
;
1961 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1962 atomic_inc(&r10_bio
->remaining
);
1963 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1965 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1966 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1967 generic_make_request(tbio
);
1970 /* Now write out to any replacement devices
1973 for (i
= 0; i
< conf
->copies
; i
++) {
1976 tbio
= r10_bio
->devs
[i
].repl_bio
;
1977 if (!tbio
|| !tbio
->bi_end_io
)
1979 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
1980 && r10_bio
->devs
[i
].bio
!= fbio
)
1981 for (j
= 0; j
< vcnt
; j
++)
1982 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1983 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1985 d
= r10_bio
->devs
[i
].devnum
;
1986 atomic_inc(&r10_bio
->remaining
);
1987 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
1988 tbio
->bi_size
>> 9);
1989 generic_make_request(tbio
);
1993 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1994 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2000 * Now for the recovery code.
2001 * Recovery happens across physical sectors.
2002 * We recover all non-is_sync drives by finding the virtual address of
2003 * each, and then choose a working drive that also has that virt address.
2004 * There is a separate r10_bio for each non-in_sync drive.
2005 * Only the first two slots are in use. The first for reading,
2006 * The second for writing.
2009 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2011 /* We got a read error during recovery.
2012 * We repeat the read in smaller page-sized sections.
2013 * If a read succeeds, write it to the new device or record
2014 * a bad block if we cannot.
2015 * If a read fails, record a bad block on both old and
2018 struct mddev
*mddev
= r10_bio
->mddev
;
2019 struct r10conf
*conf
= mddev
->private;
2020 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2022 int sectors
= r10_bio
->sectors
;
2024 int dr
= r10_bio
->devs
[0].devnum
;
2025 int dw
= r10_bio
->devs
[1].devnum
;
2029 struct md_rdev
*rdev
;
2033 if (s
> (PAGE_SIZE
>>9))
2036 rdev
= conf
->mirrors
[dr
].rdev
;
2037 addr
= r10_bio
->devs
[0].addr
+ sect
,
2038 ok
= sync_page_io(rdev
,
2041 bio
->bi_io_vec
[idx
].bv_page
,
2044 rdev
= conf
->mirrors
[dw
].rdev
;
2045 addr
= r10_bio
->devs
[1].addr
+ sect
;
2046 ok
= sync_page_io(rdev
,
2049 bio
->bi_io_vec
[idx
].bv_page
,
2052 set_bit(WriteErrorSeen
, &rdev
->flags
);
2053 if (!test_and_set_bit(WantReplacement
,
2055 set_bit(MD_RECOVERY_NEEDED
,
2056 &rdev
->mddev
->recovery
);
2060 /* We don't worry if we cannot set a bad block -
2061 * it really is bad so there is no loss in not
2064 rdev_set_badblocks(rdev
, addr
, s
, 0);
2066 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2067 /* need bad block on destination too */
2068 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2069 addr
= r10_bio
->devs
[1].addr
+ sect
;
2070 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2072 /* just abort the recovery */
2074 "md/raid10:%s: recovery aborted"
2075 " due to read error\n",
2078 conf
->mirrors
[dw
].recovery_disabled
2079 = mddev
->recovery_disabled
;
2080 set_bit(MD_RECOVERY_INTR
,
2093 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2095 struct r10conf
*conf
= mddev
->private;
2097 struct bio
*wbio
, *wbio2
;
2099 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2100 fix_recovery_read_error(r10_bio
);
2101 end_sync_request(r10_bio
);
2106 * share the pages with the first bio
2107 * and submit the write request
2109 d
= r10_bio
->devs
[1].devnum
;
2110 wbio
= r10_bio
->devs
[1].bio
;
2111 wbio2
= r10_bio
->devs
[1].repl_bio
;
2112 if (wbio
->bi_end_io
) {
2113 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2114 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
2115 generic_make_request(wbio
);
2117 if (wbio2
&& wbio2
->bi_end_io
) {
2118 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2119 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2120 wbio2
->bi_size
>> 9);
2121 generic_make_request(wbio2
);
2127 * Used by fix_read_error() to decay the per rdev read_errors.
2128 * We halve the read error count for every hour that has elapsed
2129 * since the last recorded read error.
2132 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2134 struct timespec cur_time_mon
;
2135 unsigned long hours_since_last
;
2136 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2138 ktime_get_ts(&cur_time_mon
);
2140 if (rdev
->last_read_error
.tv_sec
== 0 &&
2141 rdev
->last_read_error
.tv_nsec
== 0) {
2142 /* first time we've seen a read error */
2143 rdev
->last_read_error
= cur_time_mon
;
2147 hours_since_last
= (cur_time_mon
.tv_sec
-
2148 rdev
->last_read_error
.tv_sec
) / 3600;
2150 rdev
->last_read_error
= cur_time_mon
;
2153 * if hours_since_last is > the number of bits in read_errors
2154 * just set read errors to 0. We do this to avoid
2155 * overflowing the shift of read_errors by hours_since_last.
2157 if (hours_since_last
>= 8 * sizeof(read_errors
))
2158 atomic_set(&rdev
->read_errors
, 0);
2160 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2163 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2164 int sectors
, struct page
*page
, int rw
)
2169 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2170 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2172 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2176 set_bit(WriteErrorSeen
, &rdev
->flags
);
2177 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2178 set_bit(MD_RECOVERY_NEEDED
,
2179 &rdev
->mddev
->recovery
);
2181 /* need to record an error - either for the block or the device */
2182 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2183 md_error(rdev
->mddev
, rdev
);
2188 * This is a kernel thread which:
2190 * 1. Retries failed read operations on working mirrors.
2191 * 2. Updates the raid superblock when problems encounter.
2192 * 3. Performs writes following reads for array synchronising.
2195 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2197 int sect
= 0; /* Offset from r10_bio->sector */
2198 int sectors
= r10_bio
->sectors
;
2199 struct md_rdev
*rdev
;
2200 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2201 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2203 /* still own a reference to this rdev, so it cannot
2204 * have been cleared recently.
2206 rdev
= conf
->mirrors
[d
].rdev
;
2208 if (test_bit(Faulty
, &rdev
->flags
))
2209 /* drive has already been failed, just ignore any
2210 more fix_read_error() attempts */
2213 check_decay_read_errors(mddev
, rdev
);
2214 atomic_inc(&rdev
->read_errors
);
2215 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2216 char b
[BDEVNAME_SIZE
];
2217 bdevname(rdev
->bdev
, b
);
2220 "md/raid10:%s: %s: Raid device exceeded "
2221 "read_error threshold [cur %d:max %d]\n",
2223 atomic_read(&rdev
->read_errors
), max_read_errors
);
2225 "md/raid10:%s: %s: Failing raid device\n",
2227 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2228 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2234 int sl
= r10_bio
->read_slot
;
2238 if (s
> (PAGE_SIZE
>>9))
2246 d
= r10_bio
->devs
[sl
].devnum
;
2247 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2249 !test_bit(Unmerged
, &rdev
->flags
) &&
2250 test_bit(In_sync
, &rdev
->flags
) &&
2251 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2252 &first_bad
, &bad_sectors
) == 0) {
2253 atomic_inc(&rdev
->nr_pending
);
2255 success
= sync_page_io(rdev
,
2256 r10_bio
->devs
[sl
].addr
+
2259 conf
->tmppage
, READ
, false);
2260 rdev_dec_pending(rdev
, mddev
);
2266 if (sl
== conf
->copies
)
2268 } while (!success
&& sl
!= r10_bio
->read_slot
);
2272 /* Cannot read from anywhere, just mark the block
2273 * as bad on the first device to discourage future
2276 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2277 rdev
= conf
->mirrors
[dn
].rdev
;
2279 if (!rdev_set_badblocks(
2281 r10_bio
->devs
[r10_bio
->read_slot
].addr
2284 md_error(mddev
, rdev
);
2285 r10_bio
->devs
[r10_bio
->read_slot
].bio
2292 /* write it back and re-read */
2294 while (sl
!= r10_bio
->read_slot
) {
2295 char b
[BDEVNAME_SIZE
];
2300 d
= r10_bio
->devs
[sl
].devnum
;
2301 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2303 test_bit(Unmerged
, &rdev
->flags
) ||
2304 !test_bit(In_sync
, &rdev
->flags
))
2307 atomic_inc(&rdev
->nr_pending
);
2309 if (r10_sync_page_io(rdev
,
2310 r10_bio
->devs
[sl
].addr
+
2312 s
, conf
->tmppage
, WRITE
)
2314 /* Well, this device is dead */
2316 "md/raid10:%s: read correction "
2318 " (%d sectors at %llu on %s)\n",
2320 (unsigned long long)(
2322 choose_data_offset(r10_bio
,
2324 bdevname(rdev
->bdev
, b
));
2325 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2328 bdevname(rdev
->bdev
, b
));
2330 rdev_dec_pending(rdev
, mddev
);
2334 while (sl
!= r10_bio
->read_slot
) {
2335 char b
[BDEVNAME_SIZE
];
2340 d
= r10_bio
->devs
[sl
].devnum
;
2341 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2343 !test_bit(In_sync
, &rdev
->flags
))
2346 atomic_inc(&rdev
->nr_pending
);
2348 switch (r10_sync_page_io(rdev
,
2349 r10_bio
->devs
[sl
].addr
+
2354 /* Well, this device is dead */
2356 "md/raid10:%s: unable to read back "
2358 " (%d sectors at %llu on %s)\n",
2360 (unsigned long long)(
2362 choose_data_offset(r10_bio
, rdev
)),
2363 bdevname(rdev
->bdev
, b
));
2364 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2367 bdevname(rdev
->bdev
, b
));
2371 "md/raid10:%s: read error corrected"
2372 " (%d sectors at %llu on %s)\n",
2374 (unsigned long long)(
2376 choose_data_offset(r10_bio
, rdev
)),
2377 bdevname(rdev
->bdev
, b
));
2378 atomic_add(s
, &rdev
->corrected_errors
);
2381 rdev_dec_pending(rdev
, mddev
);
2391 static void bi_complete(struct bio
*bio
, int error
)
2393 complete((struct completion
*)bio
->bi_private
);
2396 static int submit_bio_wait(int rw
, struct bio
*bio
)
2398 struct completion event
;
2401 init_completion(&event
);
2402 bio
->bi_private
= &event
;
2403 bio
->bi_end_io
= bi_complete
;
2404 submit_bio(rw
, bio
);
2405 wait_for_completion(&event
);
2407 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2410 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2412 struct bio
*bio
= r10_bio
->master_bio
;
2413 struct mddev
*mddev
= r10_bio
->mddev
;
2414 struct r10conf
*conf
= mddev
->private;
2415 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2416 /* bio has the data to be written to slot 'i' where
2417 * we just recently had a write error.
2418 * We repeatedly clone the bio and trim down to one block,
2419 * then try the write. Where the write fails we record
2421 * It is conceivable that the bio doesn't exactly align with
2422 * blocks. We must handle this.
2424 * We currently own a reference to the rdev.
2430 int sect_to_write
= r10_bio
->sectors
;
2433 if (rdev
->badblocks
.shift
< 0)
2436 block_sectors
= 1 << rdev
->badblocks
.shift
;
2437 sector
= r10_bio
->sector
;
2438 sectors
= ((r10_bio
->sector
+ block_sectors
)
2439 & ~(sector_t
)(block_sectors
- 1))
2442 while (sect_to_write
) {
2444 if (sectors
> sect_to_write
)
2445 sectors
= sect_to_write
;
2446 /* Write at 'sector' for 'sectors' */
2447 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2448 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2449 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2450 choose_data_offset(r10_bio
, rdev
) +
2451 (sector
- r10_bio
->sector
));
2452 wbio
->bi_bdev
= rdev
->bdev
;
2453 if (submit_bio_wait(WRITE
, wbio
) == 0)
2455 ok
= rdev_set_badblocks(rdev
, sector
,
2460 sect_to_write
-= sectors
;
2462 sectors
= block_sectors
;
2467 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2469 int slot
= r10_bio
->read_slot
;
2471 struct r10conf
*conf
= mddev
->private;
2472 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2473 char b
[BDEVNAME_SIZE
];
2474 unsigned long do_sync
;
2477 /* we got a read error. Maybe the drive is bad. Maybe just
2478 * the block and we can fix it.
2479 * We freeze all other IO, and try reading the block from
2480 * other devices. When we find one, we re-write
2481 * and check it that fixes the read error.
2482 * This is all done synchronously while the array is
2485 bio
= r10_bio
->devs
[slot
].bio
;
2486 bdevname(bio
->bi_bdev
, b
);
2488 r10_bio
->devs
[slot
].bio
= NULL
;
2490 if (mddev
->ro
== 0) {
2492 fix_read_error(conf
, mddev
, r10_bio
);
2493 unfreeze_array(conf
);
2495 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2497 rdev_dec_pending(rdev
, mddev
);
2500 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2502 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2503 " read error for block %llu\n",
2505 (unsigned long long)r10_bio
->sector
);
2506 raid_end_bio_io(r10_bio
);
2510 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2511 slot
= r10_bio
->read_slot
;
2514 "md/raid10:%s: %s: redirecting "
2515 "sector %llu to another mirror\n",
2517 bdevname(rdev
->bdev
, b
),
2518 (unsigned long long)r10_bio
->sector
);
2519 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2522 r10_bio
->sector
- bio
->bi_sector
,
2524 r10_bio
->devs
[slot
].bio
= bio
;
2525 r10_bio
->devs
[slot
].rdev
= rdev
;
2526 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2527 + choose_data_offset(r10_bio
, rdev
);
2528 bio
->bi_bdev
= rdev
->bdev
;
2529 bio
->bi_rw
= READ
| do_sync
;
2530 bio
->bi_private
= r10_bio
;
2531 bio
->bi_end_io
= raid10_end_read_request
;
2532 if (max_sectors
< r10_bio
->sectors
) {
2533 /* Drat - have to split this up more */
2534 struct bio
*mbio
= r10_bio
->master_bio
;
2535 int sectors_handled
=
2536 r10_bio
->sector
+ max_sectors
2538 r10_bio
->sectors
= max_sectors
;
2539 spin_lock_irq(&conf
->device_lock
);
2540 if (mbio
->bi_phys_segments
== 0)
2541 mbio
->bi_phys_segments
= 2;
2543 mbio
->bi_phys_segments
++;
2544 spin_unlock_irq(&conf
->device_lock
);
2545 generic_make_request(bio
);
2547 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2549 r10_bio
->master_bio
= mbio
;
2550 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2553 set_bit(R10BIO_ReadError
,
2555 r10_bio
->mddev
= mddev
;
2556 r10_bio
->sector
= mbio
->bi_sector
2561 generic_make_request(bio
);
2564 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2566 /* Some sort of write request has finished and it
2567 * succeeded in writing where we thought there was a
2568 * bad block. So forget the bad block.
2569 * Or possibly if failed and we need to record
2573 struct md_rdev
*rdev
;
2575 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2576 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2577 for (m
= 0; m
< conf
->copies
; m
++) {
2578 int dev
= r10_bio
->devs
[m
].devnum
;
2579 rdev
= conf
->mirrors
[dev
].rdev
;
2580 if (r10_bio
->devs
[m
].bio
== NULL
)
2582 if (test_bit(BIO_UPTODATE
,
2583 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2584 rdev_clear_badblocks(
2586 r10_bio
->devs
[m
].addr
,
2587 r10_bio
->sectors
, 0);
2589 if (!rdev_set_badblocks(
2591 r10_bio
->devs
[m
].addr
,
2592 r10_bio
->sectors
, 0))
2593 md_error(conf
->mddev
, rdev
);
2595 rdev
= conf
->mirrors
[dev
].replacement
;
2596 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2598 if (test_bit(BIO_UPTODATE
,
2599 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2600 rdev_clear_badblocks(
2602 r10_bio
->devs
[m
].addr
,
2603 r10_bio
->sectors
, 0);
2605 if (!rdev_set_badblocks(
2607 r10_bio
->devs
[m
].addr
,
2608 r10_bio
->sectors
, 0))
2609 md_error(conf
->mddev
, rdev
);
2614 for (m
= 0; m
< conf
->copies
; m
++) {
2615 int dev
= r10_bio
->devs
[m
].devnum
;
2616 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2617 rdev
= conf
->mirrors
[dev
].rdev
;
2618 if (bio
== IO_MADE_GOOD
) {
2619 rdev_clear_badblocks(
2621 r10_bio
->devs
[m
].addr
,
2622 r10_bio
->sectors
, 0);
2623 rdev_dec_pending(rdev
, conf
->mddev
);
2624 } else if (bio
!= NULL
&&
2625 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2626 if (!narrow_write_error(r10_bio
, m
)) {
2627 md_error(conf
->mddev
, rdev
);
2628 set_bit(R10BIO_Degraded
,
2631 rdev_dec_pending(rdev
, conf
->mddev
);
2633 bio
= r10_bio
->devs
[m
].repl_bio
;
2634 rdev
= conf
->mirrors
[dev
].replacement
;
2635 if (rdev
&& bio
== IO_MADE_GOOD
) {
2636 rdev_clear_badblocks(
2638 r10_bio
->devs
[m
].addr
,
2639 r10_bio
->sectors
, 0);
2640 rdev_dec_pending(rdev
, conf
->mddev
);
2643 if (test_bit(R10BIO_WriteError
,
2645 close_write(r10_bio
);
2646 raid_end_bio_io(r10_bio
);
2650 static void raid10d(struct mddev
*mddev
)
2652 struct r10bio
*r10_bio
;
2653 unsigned long flags
;
2654 struct r10conf
*conf
= mddev
->private;
2655 struct list_head
*head
= &conf
->retry_list
;
2656 struct blk_plug plug
;
2658 md_check_recovery(mddev
);
2660 blk_start_plug(&plug
);
2663 if (atomic_read(&mddev
->plug_cnt
) == 0)
2664 flush_pending_writes(conf
);
2666 spin_lock_irqsave(&conf
->device_lock
, flags
);
2667 if (list_empty(head
)) {
2668 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2671 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2672 list_del(head
->prev
);
2674 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2676 mddev
= r10_bio
->mddev
;
2677 conf
= mddev
->private;
2678 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2679 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2680 handle_write_completed(conf
, r10_bio
);
2681 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2682 reshape_request_write(mddev
, r10_bio
);
2683 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2684 sync_request_write(mddev
, r10_bio
);
2685 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2686 recovery_request_write(mddev
, r10_bio
);
2687 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2688 handle_read_error(mddev
, r10_bio
);
2690 /* just a partial read to be scheduled from a
2693 int slot
= r10_bio
->read_slot
;
2694 generic_make_request(r10_bio
->devs
[slot
].bio
);
2698 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2699 md_check_recovery(mddev
);
2701 blk_finish_plug(&plug
);
2705 static int init_resync(struct r10conf
*conf
)
2710 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2711 BUG_ON(conf
->r10buf_pool
);
2712 conf
->have_replacement
= 0;
2713 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2714 if (conf
->mirrors
[i
].replacement
)
2715 conf
->have_replacement
= 1;
2716 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2717 if (!conf
->r10buf_pool
)
2719 conf
->next_resync
= 0;
2724 * perform a "sync" on one "block"
2726 * We need to make sure that no normal I/O request - particularly write
2727 * requests - conflict with active sync requests.
2729 * This is achieved by tracking pending requests and a 'barrier' concept
2730 * that can be installed to exclude normal IO requests.
2732 * Resync and recovery are handled very differently.
2733 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2735 * For resync, we iterate over virtual addresses, read all copies,
2736 * and update if there are differences. If only one copy is live,
2738 * For recovery, we iterate over physical addresses, read a good
2739 * value for each non-in_sync drive, and over-write.
2741 * So, for recovery we may have several outstanding complex requests for a
2742 * given address, one for each out-of-sync device. We model this by allocating
2743 * a number of r10_bio structures, one for each out-of-sync device.
2744 * As we setup these structures, we collect all bio's together into a list
2745 * which we then process collectively to add pages, and then process again
2746 * to pass to generic_make_request.
2748 * The r10_bio structures are linked using a borrowed master_bio pointer.
2749 * This link is counted in ->remaining. When the r10_bio that points to NULL
2750 * has its remaining count decremented to 0, the whole complex operation
2755 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2756 int *skipped
, int go_faster
)
2758 struct r10conf
*conf
= mddev
->private;
2759 struct r10bio
*r10_bio
;
2760 struct bio
*biolist
= NULL
, *bio
;
2761 sector_t max_sector
, nr_sectors
;
2764 sector_t sync_blocks
;
2765 sector_t sectors_skipped
= 0;
2766 int chunks_skipped
= 0;
2767 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2769 if (!conf
->r10buf_pool
)
2770 if (init_resync(conf
))
2774 max_sector
= mddev
->dev_sectors
;
2775 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2776 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2777 max_sector
= mddev
->resync_max_sectors
;
2778 if (sector_nr
>= max_sector
) {
2779 /* If we aborted, we need to abort the
2780 * sync on the 'current' bitmap chucks (there can
2781 * be several when recovering multiple devices).
2782 * as we may have started syncing it but not finished.
2783 * We can find the current address in
2784 * mddev->curr_resync, but for recovery,
2785 * we need to convert that to several
2786 * virtual addresses.
2788 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2793 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2794 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2795 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2797 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2799 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2800 bitmap_end_sync(mddev
->bitmap
, sect
,
2804 /* completed sync */
2805 if ((!mddev
->bitmap
|| conf
->fullsync
)
2806 && conf
->have_replacement
2807 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2808 /* Completed a full sync so the replacements
2809 * are now fully recovered.
2811 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2812 if (conf
->mirrors
[i
].replacement
)
2813 conf
->mirrors
[i
].replacement
2819 bitmap_close_sync(mddev
->bitmap
);
2822 return sectors_skipped
;
2825 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2826 return reshape_request(mddev
, sector_nr
, skipped
);
2828 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2829 /* if there has been nothing to do on any drive,
2830 * then there is nothing to do at all..
2833 return (max_sector
- sector_nr
) + sectors_skipped
;
2836 if (max_sector
> mddev
->resync_max
)
2837 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2839 /* make sure whole request will fit in a chunk - if chunks
2842 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2843 max_sector
> (sector_nr
| chunk_mask
))
2844 max_sector
= (sector_nr
| chunk_mask
) + 1;
2846 * If there is non-resync activity waiting for us then
2847 * put in a delay to throttle resync.
2849 if (!go_faster
&& conf
->nr_waiting
)
2850 msleep_interruptible(1000);
2852 /* Again, very different code for resync and recovery.
2853 * Both must result in an r10bio with a list of bios that
2854 * have bi_end_io, bi_sector, bi_bdev set,
2855 * and bi_private set to the r10bio.
2856 * For recovery, we may actually create several r10bios
2857 * with 2 bios in each, that correspond to the bios in the main one.
2858 * In this case, the subordinate r10bios link back through a
2859 * borrowed master_bio pointer, and the counter in the master
2860 * includes a ref from each subordinate.
2862 /* First, we decide what to do and set ->bi_end_io
2863 * To end_sync_read if we want to read, and
2864 * end_sync_write if we will want to write.
2867 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2868 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2869 /* recovery... the complicated one */
2873 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
2879 struct mirror_info
*mirror
= &conf
->mirrors
[i
];
2881 if ((mirror
->rdev
== NULL
||
2882 test_bit(In_sync
, &mirror
->rdev
->flags
))
2884 (mirror
->replacement
== NULL
||
2886 &mirror
->replacement
->flags
)))
2890 /* want to reconstruct this device */
2892 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2893 if (sect
>= mddev
->resync_max_sectors
) {
2894 /* last stripe is not complete - don't
2895 * try to recover this sector.
2899 /* Unless we are doing a full sync, or a replacement
2900 * we only need to recover the block if it is set in
2903 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2905 if (sync_blocks
< max_sync
)
2906 max_sync
= sync_blocks
;
2908 mirror
->replacement
== NULL
&&
2910 /* yep, skip the sync_blocks here, but don't assume
2911 * that there will never be anything to do here
2913 chunks_skipped
= -1;
2917 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2918 raise_barrier(conf
, rb2
!= NULL
);
2919 atomic_set(&r10_bio
->remaining
, 0);
2921 r10_bio
->master_bio
= (struct bio
*)rb2
;
2923 atomic_inc(&rb2
->remaining
);
2924 r10_bio
->mddev
= mddev
;
2925 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2926 r10_bio
->sector
= sect
;
2928 raid10_find_phys(conf
, r10_bio
);
2930 /* Need to check if the array will still be
2933 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++)
2934 if (conf
->mirrors
[j
].rdev
== NULL
||
2935 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2940 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2941 &sync_blocks
, still_degraded
);
2944 for (j
=0; j
<conf
->copies
;j
++) {
2946 int d
= r10_bio
->devs
[j
].devnum
;
2947 sector_t from_addr
, to_addr
;
2948 struct md_rdev
*rdev
;
2949 sector_t sector
, first_bad
;
2951 if (!conf
->mirrors
[d
].rdev
||
2952 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2954 /* This is where we read from */
2956 rdev
= conf
->mirrors
[d
].rdev
;
2957 sector
= r10_bio
->devs
[j
].addr
;
2959 if (is_badblock(rdev
, sector
, max_sync
,
2960 &first_bad
, &bad_sectors
)) {
2961 if (first_bad
> sector
)
2962 max_sync
= first_bad
- sector
;
2964 bad_sectors
-= (sector
2966 if (max_sync
> bad_sectors
)
2967 max_sync
= bad_sectors
;
2971 bio
= r10_bio
->devs
[0].bio
;
2972 bio
->bi_next
= biolist
;
2974 bio
->bi_private
= r10_bio
;
2975 bio
->bi_end_io
= end_sync_read
;
2977 from_addr
= r10_bio
->devs
[j
].addr
;
2978 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
2979 bio
->bi_bdev
= rdev
->bdev
;
2980 atomic_inc(&rdev
->nr_pending
);
2981 /* and we write to 'i' (if not in_sync) */
2983 for (k
=0; k
<conf
->copies
; k
++)
2984 if (r10_bio
->devs
[k
].devnum
== i
)
2986 BUG_ON(k
== conf
->copies
);
2987 to_addr
= r10_bio
->devs
[k
].addr
;
2988 r10_bio
->devs
[0].devnum
= d
;
2989 r10_bio
->devs
[0].addr
= from_addr
;
2990 r10_bio
->devs
[1].devnum
= i
;
2991 r10_bio
->devs
[1].addr
= to_addr
;
2993 rdev
= mirror
->rdev
;
2994 if (!test_bit(In_sync
, &rdev
->flags
)) {
2995 bio
= r10_bio
->devs
[1].bio
;
2996 bio
->bi_next
= biolist
;
2998 bio
->bi_private
= r10_bio
;
2999 bio
->bi_end_io
= end_sync_write
;
3001 bio
->bi_sector
= to_addr
3002 + rdev
->data_offset
;
3003 bio
->bi_bdev
= rdev
->bdev
;
3004 atomic_inc(&r10_bio
->remaining
);
3006 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3008 /* and maybe write to replacement */
3009 bio
= r10_bio
->devs
[1].repl_bio
;
3011 bio
->bi_end_io
= NULL
;
3012 rdev
= mirror
->replacement
;
3013 /* Note: if rdev != NULL, then bio
3014 * cannot be NULL as r10buf_pool_alloc will
3015 * have allocated it.
3016 * So the second test here is pointless.
3017 * But it keeps semantic-checkers happy, and
3018 * this comment keeps human reviewers
3021 if (rdev
== NULL
|| bio
== NULL
||
3022 test_bit(Faulty
, &rdev
->flags
))
3024 bio
->bi_next
= biolist
;
3026 bio
->bi_private
= r10_bio
;
3027 bio
->bi_end_io
= end_sync_write
;
3029 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
3030 bio
->bi_bdev
= rdev
->bdev
;
3031 atomic_inc(&r10_bio
->remaining
);
3034 if (j
== conf
->copies
) {
3035 /* Cannot recover, so abort the recovery or
3036 * record a bad block */
3039 atomic_dec(&rb2
->remaining
);
3042 /* problem is that there are bad blocks
3043 * on other device(s)
3046 for (k
= 0; k
< conf
->copies
; k
++)
3047 if (r10_bio
->devs
[k
].devnum
== i
)
3049 if (!test_bit(In_sync
,
3050 &mirror
->rdev
->flags
)
3051 && !rdev_set_badblocks(
3053 r10_bio
->devs
[k
].addr
,
3056 if (mirror
->replacement
&&
3057 !rdev_set_badblocks(
3058 mirror
->replacement
,
3059 r10_bio
->devs
[k
].addr
,
3064 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3066 printk(KERN_INFO
"md/raid10:%s: insufficient "
3067 "working devices for recovery.\n",
3069 mirror
->recovery_disabled
3070 = mddev
->recovery_disabled
;
3075 if (biolist
== NULL
) {
3077 struct r10bio
*rb2
= r10_bio
;
3078 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3079 rb2
->master_bio
= NULL
;
3085 /* resync. Schedule a read for every block at this virt offset */
3088 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3090 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3091 &sync_blocks
, mddev
->degraded
) &&
3092 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3093 &mddev
->recovery
)) {
3094 /* We can skip this block */
3096 return sync_blocks
+ sectors_skipped
;
3098 if (sync_blocks
< max_sync
)
3099 max_sync
= sync_blocks
;
3100 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3102 r10_bio
->mddev
= mddev
;
3103 atomic_set(&r10_bio
->remaining
, 0);
3104 raise_barrier(conf
, 0);
3105 conf
->next_resync
= sector_nr
;
3107 r10_bio
->master_bio
= NULL
;
3108 r10_bio
->sector
= sector_nr
;
3109 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3110 raid10_find_phys(conf
, r10_bio
);
3111 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3113 for (i
= 0; i
< conf
->copies
; i
++) {
3114 int d
= r10_bio
->devs
[i
].devnum
;
3115 sector_t first_bad
, sector
;
3118 if (r10_bio
->devs
[i
].repl_bio
)
3119 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3121 bio
= r10_bio
->devs
[i
].bio
;
3122 bio
->bi_end_io
= NULL
;
3123 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3124 if (conf
->mirrors
[d
].rdev
== NULL
||
3125 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3127 sector
= r10_bio
->devs
[i
].addr
;
3128 if (is_badblock(conf
->mirrors
[d
].rdev
,
3130 &first_bad
, &bad_sectors
)) {
3131 if (first_bad
> sector
)
3132 max_sync
= first_bad
- sector
;
3134 bad_sectors
-= (sector
- first_bad
);
3135 if (max_sync
> bad_sectors
)
3136 max_sync
= max_sync
;
3140 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3141 atomic_inc(&r10_bio
->remaining
);
3142 bio
->bi_next
= biolist
;
3144 bio
->bi_private
= r10_bio
;
3145 bio
->bi_end_io
= end_sync_read
;
3147 bio
->bi_sector
= sector
+
3148 conf
->mirrors
[d
].rdev
->data_offset
;
3149 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3152 if (conf
->mirrors
[d
].replacement
== NULL
||
3154 &conf
->mirrors
[d
].replacement
->flags
))
3157 /* Need to set up for writing to the replacement */
3158 bio
= r10_bio
->devs
[i
].repl_bio
;
3159 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3161 sector
= r10_bio
->devs
[i
].addr
;
3162 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3163 bio
->bi_next
= biolist
;
3165 bio
->bi_private
= r10_bio
;
3166 bio
->bi_end_io
= end_sync_write
;
3168 bio
->bi_sector
= sector
+
3169 conf
->mirrors
[d
].replacement
->data_offset
;
3170 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3175 for (i
=0; i
<conf
->copies
; i
++) {
3176 int d
= r10_bio
->devs
[i
].devnum
;
3177 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3178 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3180 if (r10_bio
->devs
[i
].repl_bio
&&
3181 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3183 conf
->mirrors
[d
].replacement
,
3192 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3194 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
3196 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
3199 bio
->bi_phys_segments
= 0;
3204 if (sector_nr
+ max_sync
< max_sector
)
3205 max_sector
= sector_nr
+ max_sync
;
3208 int len
= PAGE_SIZE
;
3209 if (sector_nr
+ (len
>>9) > max_sector
)
3210 len
= (max_sector
- sector_nr
) << 9;
3213 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3215 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3216 if (bio_add_page(bio
, page
, len
, 0))
3220 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3221 for (bio2
= biolist
;
3222 bio2
&& bio2
!= bio
;
3223 bio2
= bio2
->bi_next
) {
3224 /* remove last page from this bio */
3226 bio2
->bi_size
-= len
;
3227 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3231 nr_sectors
+= len
>>9;
3232 sector_nr
+= len
>>9;
3233 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3235 r10_bio
->sectors
= nr_sectors
;
3239 biolist
= biolist
->bi_next
;
3241 bio
->bi_next
= NULL
;
3242 r10_bio
= bio
->bi_private
;
3243 r10_bio
->sectors
= nr_sectors
;
3245 if (bio
->bi_end_io
== end_sync_read
) {
3246 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3247 generic_make_request(bio
);
3251 if (sectors_skipped
)
3252 /* pretend they weren't skipped, it makes
3253 * no important difference in this case
3255 md_done_sync(mddev
, sectors_skipped
, 1);
3257 return sectors_skipped
+ nr_sectors
;
3259 /* There is nowhere to write, so all non-sync
3260 * drives must be failed or in resync, all drives
3261 * have a bad block, so try the next chunk...
3263 if (sector_nr
+ max_sync
< max_sector
)
3264 max_sector
= sector_nr
+ max_sync
;
3266 sectors_skipped
+= (max_sector
- sector_nr
);
3268 sector_nr
= max_sector
;
3273 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3276 struct r10conf
*conf
= mddev
->private;
3279 raid_disks
= min(conf
->geo
.raid_disks
,
3280 conf
->prev
.raid_disks
);
3282 sectors
= conf
->dev_sectors
;
3284 size
= sectors
>> conf
->geo
.chunk_shift
;
3285 sector_div(size
, conf
->geo
.far_copies
);
3286 size
= size
* raid_disks
;
3287 sector_div(size
, conf
->geo
.near_copies
);
3289 return size
<< conf
->geo
.chunk_shift
;
3292 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3294 /* Calculate the number of sectors-per-device that will
3295 * actually be used, and set conf->dev_sectors and
3299 size
= size
>> conf
->geo
.chunk_shift
;
3300 sector_div(size
, conf
->geo
.far_copies
);
3301 size
= size
* conf
->geo
.raid_disks
;
3302 sector_div(size
, conf
->geo
.near_copies
);
3303 /* 'size' is now the number of chunks in the array */
3304 /* calculate "used chunks per device" */
3305 size
= size
* conf
->copies
;
3307 /* We need to round up when dividing by raid_disks to
3308 * get the stride size.
3310 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3312 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3314 if (conf
->geo
.far_offset
)
3315 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3317 sector_div(size
, conf
->geo
.far_copies
);
3318 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3322 enum geo_type
{geo_new
, geo_old
, geo_start
};
3323 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3326 int layout
, chunk
, disks
;
3329 layout
= mddev
->layout
;
3330 chunk
= mddev
->chunk_sectors
;
3331 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3334 layout
= mddev
->new_layout
;
3335 chunk
= mddev
->new_chunk_sectors
;
3336 disks
= mddev
->raid_disks
;
3338 default: /* avoid 'may be unused' warnings */
3339 case geo_start
: /* new when starting reshape - raid_disks not
3341 layout
= mddev
->new_layout
;
3342 chunk
= mddev
->new_chunk_sectors
;
3343 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3348 if (chunk
< (PAGE_SIZE
>> 9) ||
3349 !is_power_of_2(chunk
))
3352 fc
= (layout
>> 8) & 255;
3353 fo
= layout
& (1<<16);
3354 geo
->raid_disks
= disks
;
3355 geo
->near_copies
= nc
;
3356 geo
->far_copies
= fc
;
3357 geo
->far_offset
= fo
;
3358 geo
->chunk_mask
= chunk
- 1;
3359 geo
->chunk_shift
= ffz(~chunk
);
3363 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3365 struct r10conf
*conf
= NULL
;
3370 copies
= setup_geo(&geo
, mddev
, geo_new
);
3373 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3374 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3375 mdname(mddev
), PAGE_SIZE
);
3379 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3380 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3381 mdname(mddev
), mddev
->new_layout
);
3386 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3390 /* FIXME calc properly */
3391 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*(mddev
->raid_disks
+
3392 max(0,mddev
->delta_disks
)),
3397 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3402 conf
->copies
= copies
;
3403 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3404 r10bio_pool_free
, conf
);
3405 if (!conf
->r10bio_pool
)
3408 calc_sectors(conf
, mddev
->dev_sectors
);
3409 if (mddev
->reshape_position
== MaxSector
) {
3410 conf
->prev
= conf
->geo
;
3411 conf
->reshape_progress
= MaxSector
;
3413 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3417 conf
->reshape_progress
= mddev
->reshape_position
;
3418 if (conf
->prev
.far_offset
)
3419 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3421 /* far_copies must be 1 */
3422 conf
->prev
.stride
= conf
->dev_sectors
;
3424 spin_lock_init(&conf
->device_lock
);
3425 INIT_LIST_HEAD(&conf
->retry_list
);
3427 spin_lock_init(&conf
->resync_lock
);
3428 init_waitqueue_head(&conf
->wait_barrier
);
3430 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3434 conf
->mddev
= mddev
;
3439 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3442 if (conf
->r10bio_pool
)
3443 mempool_destroy(conf
->r10bio_pool
);
3444 kfree(conf
->mirrors
);
3445 safe_put_page(conf
->tmppage
);
3448 return ERR_PTR(err
);
3451 static int run(struct mddev
*mddev
)
3453 struct r10conf
*conf
;
3454 int i
, disk_idx
, chunk_size
;
3455 struct mirror_info
*disk
;
3456 struct md_rdev
*rdev
;
3458 sector_t min_offset_diff
= 0;
3461 if (mddev
->private == NULL
) {
3462 conf
= setup_conf(mddev
);
3464 return PTR_ERR(conf
);
3465 mddev
->private = conf
;
3467 conf
= mddev
->private;
3471 mddev
->thread
= conf
->thread
;
3472 conf
->thread
= NULL
;
3474 chunk_size
= mddev
->chunk_sectors
<< 9;
3475 blk_queue_io_min(mddev
->queue
, chunk_size
);
3476 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3477 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3479 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3480 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3482 rdev_for_each(rdev
, mddev
) {
3484 struct request_queue
*q
;
3486 disk_idx
= rdev
->raid_disk
;
3489 if (disk_idx
>= conf
->geo
.raid_disks
&&
3490 disk_idx
>= conf
->prev
.raid_disks
)
3492 disk
= conf
->mirrors
+ disk_idx
;
3494 if (test_bit(Replacement
, &rdev
->flags
)) {
3495 if (disk
->replacement
)
3497 disk
->replacement
= rdev
;
3503 q
= bdev_get_queue(rdev
->bdev
);
3504 if (q
->merge_bvec_fn
)
3505 mddev
->merge_check_needed
= 1;
3506 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3507 if (!mddev
->reshape_backwards
)
3511 if (first
|| diff
< min_offset_diff
)
3512 min_offset_diff
= diff
;
3514 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3515 rdev
->data_offset
<< 9);
3517 disk
->head_position
= 0;
3520 /* need to check that every block has at least one working mirror */
3521 if (!enough(conf
, -1)) {
3522 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3527 if (conf
->reshape_progress
!= MaxSector
) {
3528 /* must ensure that shape change is supported */
3529 if (conf
->geo
.far_copies
!= 1 &&
3530 conf
->geo
.far_offset
== 0)
3532 if (conf
->prev
.far_copies
!= 1 &&
3533 conf
->geo
.far_offset
== 0)
3537 mddev
->degraded
= 0;
3539 i
< conf
->geo
.raid_disks
3540 || i
< conf
->prev
.raid_disks
;
3543 disk
= conf
->mirrors
+ i
;
3545 if (!disk
->rdev
&& disk
->replacement
) {
3546 /* The replacement is all we have - use it */
3547 disk
->rdev
= disk
->replacement
;
3548 disk
->replacement
= NULL
;
3549 clear_bit(Replacement
, &disk
->rdev
->flags
);
3553 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3554 disk
->head_position
= 0;
3559 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3562 if (mddev
->recovery_cp
!= MaxSector
)
3563 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3564 " -- starting background reconstruction\n",
3567 "md/raid10:%s: active with %d out of %d devices\n",
3568 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3569 conf
->geo
.raid_disks
);
3571 * Ok, everything is just fine now
3573 mddev
->dev_sectors
= conf
->dev_sectors
;
3574 size
= raid10_size(mddev
, 0, 0);
3575 md_set_array_sectors(mddev
, size
);
3576 mddev
->resync_max_sectors
= size
;
3578 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3579 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3581 /* Calculate max read-ahead size.
3582 * We need to readahead at least twice a whole stripe....
3586 int stripe
= conf
->geo
.raid_disks
*
3587 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3588 stripe
/= conf
->geo
.near_copies
;
3589 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3590 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3593 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3595 if (md_integrity_register(mddev
))
3598 if (conf
->reshape_progress
!= MaxSector
) {
3599 unsigned long before_length
, after_length
;
3601 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3602 conf
->prev
.far_copies
);
3603 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3604 conf
->geo
.far_copies
);
3606 if (max(before_length
, after_length
) > min_offset_diff
) {
3607 /* This cannot work */
3608 printk("md/raid10: offset difference not enough to continue reshape\n");
3611 conf
->offset_diff
= min_offset_diff
;
3613 conf
->reshape_safe
= conf
->reshape_progress
;
3614 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3615 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3616 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3617 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3618 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3625 md_unregister_thread(&mddev
->thread
);
3626 if (conf
->r10bio_pool
)
3627 mempool_destroy(conf
->r10bio_pool
);
3628 safe_put_page(conf
->tmppage
);
3629 kfree(conf
->mirrors
);
3631 mddev
->private = NULL
;
3636 static int stop(struct mddev
*mddev
)
3638 struct r10conf
*conf
= mddev
->private;
3640 raise_barrier(conf
, 0);
3641 lower_barrier(conf
);
3643 md_unregister_thread(&mddev
->thread
);
3644 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3645 if (conf
->r10bio_pool
)
3646 mempool_destroy(conf
->r10bio_pool
);
3647 kfree(conf
->mirrors
);
3649 mddev
->private = NULL
;
3653 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3655 struct r10conf
*conf
= mddev
->private;
3659 raise_barrier(conf
, 0);
3662 lower_barrier(conf
);
3667 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3669 /* Resize of 'far' arrays is not supported.
3670 * For 'near' and 'offset' arrays we can set the
3671 * number of sectors used to be an appropriate multiple
3672 * of the chunk size.
3673 * For 'offset', this is far_copies*chunksize.
3674 * For 'near' the multiplier is the LCM of
3675 * near_copies and raid_disks.
3676 * So if far_copies > 1 && !far_offset, fail.
3677 * Else find LCM(raid_disks, near_copy)*far_copies and
3678 * multiply by chunk_size. Then round to this number.
3679 * This is mostly done by raid10_size()
3681 struct r10conf
*conf
= mddev
->private;
3682 sector_t oldsize
, size
;
3684 if (mddev
->reshape_position
!= MaxSector
)
3687 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3690 oldsize
= raid10_size(mddev
, 0, 0);
3691 size
= raid10_size(mddev
, sectors
, 0);
3692 if (mddev
->external_size
&&
3693 mddev
->array_sectors
> size
)
3695 if (mddev
->bitmap
) {
3696 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3700 md_set_array_sectors(mddev
, size
);
3701 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3702 revalidate_disk(mddev
->gendisk
);
3703 if (sectors
> mddev
->dev_sectors
&&
3704 mddev
->recovery_cp
> oldsize
) {
3705 mddev
->recovery_cp
= oldsize
;
3706 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3708 calc_sectors(conf
, sectors
);
3709 mddev
->dev_sectors
= conf
->dev_sectors
;
3710 mddev
->resync_max_sectors
= size
;
3714 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3716 struct md_rdev
*rdev
;
3717 struct r10conf
*conf
;
3719 if (mddev
->degraded
> 0) {
3720 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3722 return ERR_PTR(-EINVAL
);
3725 /* Set new parameters */
3726 mddev
->new_level
= 10;
3727 /* new layout: far_copies = 1, near_copies = 2 */
3728 mddev
->new_layout
= (1<<8) + 2;
3729 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3730 mddev
->delta_disks
= mddev
->raid_disks
;
3731 mddev
->raid_disks
*= 2;
3732 /* make sure it will be not marked as dirty */
3733 mddev
->recovery_cp
= MaxSector
;
3735 conf
= setup_conf(mddev
);
3736 if (!IS_ERR(conf
)) {
3737 rdev_for_each(rdev
, mddev
)
3738 if (rdev
->raid_disk
>= 0)
3739 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3746 static void *raid10_takeover(struct mddev
*mddev
)
3748 struct r0conf
*raid0_conf
;
3750 /* raid10 can take over:
3751 * raid0 - providing it has only two drives
3753 if (mddev
->level
== 0) {
3754 /* for raid0 takeover only one zone is supported */
3755 raid0_conf
= mddev
->private;
3756 if (raid0_conf
->nr_strip_zones
> 1) {
3757 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3758 " with more than one zone.\n",
3760 return ERR_PTR(-EINVAL
);
3762 return raid10_takeover_raid0(mddev
);
3764 return ERR_PTR(-EINVAL
);
3767 static int raid10_check_reshape(struct mddev
*mddev
)
3769 /* Called when there is a request to change
3770 * - layout (to ->new_layout)
3771 * - chunk size (to ->new_chunk_sectors)
3772 * - raid_disks (by delta_disks)
3773 * or when trying to restart a reshape that was ongoing.
3775 * We need to validate the request and possibly allocate
3776 * space if that might be an issue later.
3778 * Currently we reject any reshape of a 'far' mode array,
3779 * allow chunk size to change if new is generally acceptable,
3780 * allow raid_disks to increase, and allow
3781 * a switch between 'near' mode and 'offset' mode.
3783 struct r10conf
*conf
= mddev
->private;
3786 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3789 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3790 /* mustn't change number of copies */
3792 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3793 /* Cannot switch to 'far' mode */
3796 if (mddev
->array_sectors
& geo
.chunk_mask
)
3797 /* not factor of array size */
3800 if (!enough(conf
, -1))
3803 kfree(conf
->mirrors_new
);
3804 conf
->mirrors_new
= NULL
;
3805 if (mddev
->delta_disks
> 0) {
3806 /* allocate new 'mirrors' list */
3807 conf
->mirrors_new
= kzalloc(
3808 sizeof(struct mirror_info
)
3809 *(mddev
->raid_disks
+
3810 mddev
->delta_disks
),
3812 if (!conf
->mirrors_new
)
3819 * Need to check if array has failed when deciding whether to:
3821 * - remove non-faulty devices
3824 * This determination is simple when no reshape is happening.
3825 * However if there is a reshape, we need to carefully check
3826 * both the before and after sections.
3827 * This is because some failed devices may only affect one
3828 * of the two sections, and some non-in_sync devices may
3829 * be insync in the section most affected by failed devices.
3831 static int calc_degraded(struct r10conf
*conf
)
3833 int degraded
, degraded2
;
3838 /* 'prev' section first */
3839 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3840 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3841 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3843 else if (!test_bit(In_sync
, &rdev
->flags
))
3844 /* When we can reduce the number of devices in
3845 * an array, this might not contribute to
3846 * 'degraded'. It does now.
3851 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
3855 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3856 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3857 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3859 else if (!test_bit(In_sync
, &rdev
->flags
)) {
3860 /* If reshape is increasing the number of devices,
3861 * this section has already been recovered, so
3862 * it doesn't contribute to degraded.
3865 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
3870 if (degraded2
> degraded
)
3875 static int raid10_start_reshape(struct mddev
*mddev
)
3877 /* A 'reshape' has been requested. This commits
3878 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3879 * This also checks if there are enough spares and adds them
3881 * We currently require enough spares to make the final
3882 * array non-degraded. We also require that the difference
3883 * between old and new data_offset - on each device - is
3884 * enough that we never risk over-writing.
3887 unsigned long before_length
, after_length
;
3888 sector_t min_offset_diff
= 0;
3891 struct r10conf
*conf
= mddev
->private;
3892 struct md_rdev
*rdev
;
3896 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
3899 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
3902 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3903 conf
->prev
.far_copies
);
3904 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3905 conf
->geo
.far_copies
);
3907 rdev_for_each(rdev
, mddev
) {
3908 if (!test_bit(In_sync
, &rdev
->flags
)
3909 && !test_bit(Faulty
, &rdev
->flags
))
3911 if (rdev
->raid_disk
>= 0) {
3912 long long diff
= (rdev
->new_data_offset
3913 - rdev
->data_offset
);
3914 if (!mddev
->reshape_backwards
)
3918 if (first
|| diff
< min_offset_diff
)
3919 min_offset_diff
= diff
;
3923 if (max(before_length
, after_length
) > min_offset_diff
)
3926 if (spares
< mddev
->delta_disks
)
3929 conf
->offset_diff
= min_offset_diff
;
3930 spin_lock_irq(&conf
->device_lock
);
3931 if (conf
->mirrors_new
) {
3932 memcpy(conf
->mirrors_new
, conf
->mirrors
,
3933 sizeof(struct mirror_info
)*conf
->prev
.raid_disks
);
3935 kfree(conf
->mirrors_old
); /* FIXME and elsewhere */
3936 conf
->mirrors_old
= conf
->mirrors
;
3937 conf
->mirrors
= conf
->mirrors_new
;
3938 conf
->mirrors_new
= NULL
;
3940 setup_geo(&conf
->geo
, mddev
, geo_start
);
3942 if (mddev
->reshape_backwards
) {
3943 sector_t size
= raid10_size(mddev
, 0, 0);
3944 if (size
< mddev
->array_sectors
) {
3945 spin_unlock_irq(&conf
->device_lock
);
3946 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
3950 mddev
->resync_max_sectors
= size
;
3951 conf
->reshape_progress
= size
;
3953 conf
->reshape_progress
= 0;
3954 spin_unlock_irq(&conf
->device_lock
);
3956 if (mddev
->delta_disks
&& mddev
->bitmap
) {
3957 ret
= bitmap_resize(mddev
->bitmap
,
3958 raid10_size(mddev
, 0,
3959 conf
->geo
.raid_disks
),
3964 if (mddev
->delta_disks
> 0) {
3965 rdev_for_each(rdev
, mddev
)
3966 if (rdev
->raid_disk
< 0 &&
3967 !test_bit(Faulty
, &rdev
->flags
)) {
3968 if (raid10_add_disk(mddev
, rdev
) == 0) {
3969 if (rdev
->raid_disk
>=
3970 conf
->prev
.raid_disks
)
3971 set_bit(In_sync
, &rdev
->flags
);
3973 rdev
->recovery_offset
= 0;
3975 if (sysfs_link_rdev(mddev
, rdev
))
3976 /* Failure here is OK */;
3978 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
3979 && !test_bit(Faulty
, &rdev
->flags
)) {
3980 /* This is a spare that was manually added */
3981 set_bit(In_sync
, &rdev
->flags
);
3984 /* When a reshape changes the number of devices,
3985 * ->degraded is measured against the larger of the
3986 * pre and post numbers.
3988 spin_lock_irq(&conf
->device_lock
);
3989 mddev
->degraded
= calc_degraded(conf
);
3990 spin_unlock_irq(&conf
->device_lock
);
3991 mddev
->raid_disks
= conf
->geo
.raid_disks
;
3992 mddev
->reshape_position
= conf
->reshape_progress
;
3993 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3995 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3996 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3997 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3998 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4000 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4002 if (!mddev
->sync_thread
) {
4006 conf
->reshape_checkpoint
= jiffies
;
4007 md_wakeup_thread(mddev
->sync_thread
);
4008 md_new_event(mddev
);
4012 mddev
->recovery
= 0;
4013 spin_lock_irq(&conf
->device_lock
);
4014 conf
->geo
= conf
->prev
;
4015 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4016 rdev_for_each(rdev
, mddev
)
4017 rdev
->new_data_offset
= rdev
->data_offset
;
4019 conf
->reshape_progress
= MaxSector
;
4020 mddev
->reshape_position
= MaxSector
;
4021 spin_unlock_irq(&conf
->device_lock
);
4025 /* Calculate the last device-address that could contain
4026 * any block from the chunk that includes the array-address 's'
4027 * and report the next address.
4028 * i.e. the address returned will be chunk-aligned and after
4029 * any data that is in the chunk containing 's'.
4031 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4033 s
= (s
| geo
->chunk_mask
) + 1;
4034 s
>>= geo
->chunk_shift
;
4035 s
*= geo
->near_copies
;
4036 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4037 s
*= geo
->far_copies
;
4038 s
<<= geo
->chunk_shift
;
4042 /* Calculate the first device-address that could contain
4043 * any block from the chunk that includes the array-address 's'.
4044 * This too will be the start of a chunk
4046 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4048 s
>>= geo
->chunk_shift
;
4049 s
*= geo
->near_copies
;
4050 sector_div(s
, geo
->raid_disks
);
4051 s
*= geo
->far_copies
;
4052 s
<<= geo
->chunk_shift
;
4056 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4059 /* We simply copy at most one chunk (smallest of old and new)
4060 * at a time, possibly less if that exceeds RESYNC_PAGES,
4061 * or we hit a bad block or something.
4062 * This might mean we pause for normal IO in the middle of
4063 * a chunk, but that is not a problem was mddev->reshape_position
4064 * can record any location.
4066 * If we will want to write to a location that isn't
4067 * yet recorded as 'safe' (i.e. in metadata on disk) then
4068 * we need to flush all reshape requests and update the metadata.
4070 * When reshaping forwards (e.g. to more devices), we interpret
4071 * 'safe' as the earliest block which might not have been copied
4072 * down yet. We divide this by previous stripe size and multiply
4073 * by previous stripe length to get lowest device offset that we
4074 * cannot write to yet.
4075 * We interpret 'sector_nr' as an address that we want to write to.
4076 * From this we use last_device_address() to find where we might
4077 * write to, and first_device_address on the 'safe' position.
4078 * If this 'next' write position is after the 'safe' position,
4079 * we must update the metadata to increase the 'safe' position.
4081 * When reshaping backwards, we round in the opposite direction
4082 * and perform the reverse test: next write position must not be
4083 * less than current safe position.
4085 * In all this the minimum difference in data offsets
4086 * (conf->offset_diff - always positive) allows a bit of slack,
4087 * so next can be after 'safe', but not by more than offset_disk
4089 * We need to prepare all the bios here before we start any IO
4090 * to ensure the size we choose is acceptable to all devices.
4091 * The means one for each copy for write-out and an extra one for
4093 * We store the read-in bio in ->master_bio and the others in
4094 * ->devs[x].bio and ->devs[x].repl_bio.
4096 struct r10conf
*conf
= mddev
->private;
4097 struct r10bio
*r10_bio
;
4098 sector_t next
, safe
, last
;
4102 struct md_rdev
*rdev
;
4105 struct bio
*bio
, *read_bio
;
4106 int sectors_done
= 0;
4108 if (sector_nr
== 0) {
4109 /* If restarting in the middle, skip the initial sectors */
4110 if (mddev
->reshape_backwards
&&
4111 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4112 sector_nr
= (raid10_size(mddev
, 0, 0)
4113 - conf
->reshape_progress
);
4114 } else if (!mddev
->reshape_backwards
&&
4115 conf
->reshape_progress
> 0)
4116 sector_nr
= conf
->reshape_progress
;
4118 mddev
->curr_resync_completed
= sector_nr
;
4119 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4125 /* We don't use sector_nr to track where we are up to
4126 * as that doesn't work well for ->reshape_backwards.
4127 * So just use ->reshape_progress.
4129 if (mddev
->reshape_backwards
) {
4130 /* 'next' is the earliest device address that we might
4131 * write to for this chunk in the new layout
4133 next
= first_dev_address(conf
->reshape_progress
- 1,
4136 /* 'safe' is the last device address that we might read from
4137 * in the old layout after a restart
4139 safe
= last_dev_address(conf
->reshape_safe
- 1,
4142 if (next
+ conf
->offset_diff
< safe
)
4145 last
= conf
->reshape_progress
- 1;
4146 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4147 & conf
->prev
.chunk_mask
);
4148 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4149 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4151 /* 'next' is after the last device address that we
4152 * might write to for this chunk in the new layout
4154 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4156 /* 'safe' is the earliest device address that we might
4157 * read from in the old layout after a restart
4159 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4161 /* Need to update metadata if 'next' might be beyond 'safe'
4162 * as that would possibly corrupt data
4164 if (next
> safe
+ conf
->offset_diff
)
4167 sector_nr
= conf
->reshape_progress
;
4168 last
= sector_nr
| (conf
->geo
.chunk_mask
4169 & conf
->prev
.chunk_mask
);
4171 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4172 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4176 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4177 /* Need to update reshape_position in metadata */
4179 mddev
->reshape_position
= conf
->reshape_progress
;
4180 if (mddev
->reshape_backwards
)
4181 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4182 - conf
->reshape_progress
;
4184 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4185 conf
->reshape_checkpoint
= jiffies
;
4186 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4187 md_wakeup_thread(mddev
->thread
);
4188 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4189 kthread_should_stop());
4190 conf
->reshape_safe
= mddev
->reshape_position
;
4191 allow_barrier(conf
);
4195 /* Now schedule reads for blocks from sector_nr to last */
4196 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4197 raise_barrier(conf
, sectors_done
!= 0);
4198 atomic_set(&r10_bio
->remaining
, 0);
4199 r10_bio
->mddev
= mddev
;
4200 r10_bio
->sector
= sector_nr
;
4201 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4202 r10_bio
->sectors
= last
- sector_nr
+ 1;
4203 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4204 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4207 /* Cannot read from here, so need to record bad blocks
4208 * on all the target devices.
4211 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4212 return sectors_done
;
4215 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4217 read_bio
->bi_bdev
= rdev
->bdev
;
4218 read_bio
->bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4219 + rdev
->data_offset
);
4220 read_bio
->bi_private
= r10_bio
;
4221 read_bio
->bi_end_io
= end_sync_read
;
4222 read_bio
->bi_rw
= READ
;
4223 read_bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4224 read_bio
->bi_flags
|= 1 << BIO_UPTODATE
;
4225 read_bio
->bi_vcnt
= 0;
4226 read_bio
->bi_idx
= 0;
4227 read_bio
->bi_size
= 0;
4228 r10_bio
->master_bio
= read_bio
;
4229 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4231 /* Now find the locations in the new layout */
4232 __raid10_find_phys(&conf
->geo
, r10_bio
);
4235 read_bio
->bi_next
= NULL
;
4237 for (s
= 0; s
< conf
->copies
*2; s
++) {
4239 int d
= r10_bio
->devs
[s
/2].devnum
;
4240 struct md_rdev
*rdev2
;
4242 rdev2
= conf
->mirrors
[d
].replacement
;
4243 b
= r10_bio
->devs
[s
/2].repl_bio
;
4245 rdev2
= conf
->mirrors
[d
].rdev
;
4246 b
= r10_bio
->devs
[s
/2].bio
;
4248 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4250 b
->bi_bdev
= rdev2
->bdev
;
4251 b
->bi_sector
= r10_bio
->devs
[s
/2].addr
+ rdev2
->new_data_offset
;
4252 b
->bi_private
= r10_bio
;
4253 b
->bi_end_io
= end_reshape_write
;
4255 b
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4256 b
->bi_flags
|= 1 << BIO_UPTODATE
;
4264 /* Now add as many pages as possible to all of these bios. */
4267 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4268 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4269 int len
= (max_sectors
- s
) << 9;
4270 if (len
> PAGE_SIZE
)
4272 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4274 if (bio_add_page(bio
, page
, len
, 0))
4277 /* Didn't fit, must stop */
4279 bio2
&& bio2
!= bio
;
4280 bio2
= bio2
->bi_next
) {
4281 /* Remove last page from this bio */
4283 bio2
->bi_size
-= len
;
4284 bio2
->bi_flags
&= ~(1<<BIO_SEG_VALID
);
4288 sector_nr
+= len
>> 9;
4289 nr_sectors
+= len
>> 9;
4292 r10_bio
->sectors
= nr_sectors
;
4294 /* Now submit the read */
4295 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4296 atomic_inc(&r10_bio
->remaining
);
4297 read_bio
->bi_next
= NULL
;
4298 generic_make_request(read_bio
);
4299 sector_nr
+= nr_sectors
;
4300 sectors_done
+= nr_sectors
;
4301 if (sector_nr
<= last
)
4304 /* Now that we have done the whole section we can
4305 * update reshape_progress
4307 if (mddev
->reshape_backwards
)
4308 conf
->reshape_progress
-= sectors_done
;
4310 conf
->reshape_progress
+= sectors_done
;
4312 return sectors_done
;
4315 static void end_reshape_request(struct r10bio
*r10_bio
);
4316 static int handle_reshape_read_error(struct mddev
*mddev
,
4317 struct r10bio
*r10_bio
);
4318 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4320 /* Reshape read completed. Hopefully we have a block
4322 * If we got a read error then we do sync 1-page reads from
4323 * elsewhere until we find the data - or give up.
4325 struct r10conf
*conf
= mddev
->private;
4328 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4329 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4330 /* Reshape has been aborted */
4331 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4335 /* We definitely have the data in the pages, schedule the
4338 atomic_set(&r10_bio
->remaining
, 1);
4339 for (s
= 0; s
< conf
->copies
*2; s
++) {
4341 int d
= r10_bio
->devs
[s
/2].devnum
;
4342 struct md_rdev
*rdev
;
4344 rdev
= conf
->mirrors
[d
].replacement
;
4345 b
= r10_bio
->devs
[s
/2].repl_bio
;
4347 rdev
= conf
->mirrors
[d
].rdev
;
4348 b
= r10_bio
->devs
[s
/2].bio
;
4350 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4352 atomic_inc(&rdev
->nr_pending
);
4353 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4354 atomic_inc(&r10_bio
->remaining
);
4356 generic_make_request(b
);
4358 end_reshape_request(r10_bio
);
4361 static void end_reshape(struct r10conf
*conf
)
4363 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4366 spin_lock_irq(&conf
->device_lock
);
4367 conf
->prev
= conf
->geo
;
4368 md_finish_reshape(conf
->mddev
);
4370 conf
->reshape_progress
= MaxSector
;
4371 spin_unlock_irq(&conf
->device_lock
);
4373 /* read-ahead size must cover two whole stripes, which is
4374 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4376 if (conf
->mddev
->queue
) {
4377 int stripe
= conf
->geo
.raid_disks
*
4378 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4379 stripe
/= conf
->geo
.near_copies
;
4380 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4381 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4387 static int handle_reshape_read_error(struct mddev
*mddev
,
4388 struct r10bio
*r10_bio
)
4390 /* Use sync reads to get the blocks from somewhere else */
4391 int sectors
= r10_bio
->sectors
;
4393 struct r10conf
*conf
= mddev
->private;
4396 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4398 r10b
.sector
= r10_bio
->sector
;
4399 __raid10_find_phys(&conf
->prev
, &r10b
);
4404 int first_slot
= slot
;
4406 if (s
> (PAGE_SIZE
>> 9))
4410 int d
= r10b
.devs
[slot
].devnum
;
4411 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4414 test_bit(Faulty
, &rdev
->flags
) ||
4415 !test_bit(In_sync
, &rdev
->flags
))
4418 addr
= r10b
.devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4419 success
= sync_page_io(rdev
,
4428 if (slot
>= conf
->copies
)
4430 if (slot
== first_slot
)
4434 /* couldn't read this block, must give up */
4435 set_bit(MD_RECOVERY_INTR
,
4445 static void end_reshape_write(struct bio
*bio
, int error
)
4447 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
4448 struct r10bio
*r10_bio
= bio
->bi_private
;
4449 struct mddev
*mddev
= r10_bio
->mddev
;
4450 struct r10conf
*conf
= mddev
->private;
4454 struct md_rdev
*rdev
= NULL
;
4456 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4458 rdev
= conf
->mirrors
[d
].replacement
;
4461 rdev
= conf
->mirrors
[d
].rdev
;
4465 /* FIXME should record badblock */
4466 md_error(mddev
, rdev
);
4469 rdev_dec_pending(rdev
, mddev
);
4470 end_reshape_request(r10_bio
);
4473 static void end_reshape_request(struct r10bio
*r10_bio
)
4475 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4477 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4478 bio_put(r10_bio
->master_bio
);
4482 static void raid10_finish_reshape(struct mddev
*mddev
)
4484 struct r10conf
*conf
= mddev
->private;
4486 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4489 if (mddev
->delta_disks
> 0) {
4490 sector_t size
= raid10_size(mddev
, 0, 0);
4491 md_set_array_sectors(mddev
, size
);
4492 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4493 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4494 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4496 mddev
->resync_max_sectors
= size
;
4497 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4498 revalidate_disk(mddev
->gendisk
);
4501 for (d
= conf
->geo
.raid_disks
;
4502 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4504 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4506 clear_bit(In_sync
, &rdev
->flags
);
4507 rdev
= conf
->mirrors
[d
].replacement
;
4509 clear_bit(In_sync
, &rdev
->flags
);
4512 mddev
->layout
= mddev
->new_layout
;
4513 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4514 mddev
->reshape_position
= MaxSector
;
4515 mddev
->delta_disks
= 0;
4516 mddev
->reshape_backwards
= 0;
4519 static struct md_personality raid10_personality
=
4523 .owner
= THIS_MODULE
,
4524 .make_request
= make_request
,
4528 .error_handler
= error
,
4529 .hot_add_disk
= raid10_add_disk
,
4530 .hot_remove_disk
= raid10_remove_disk
,
4531 .spare_active
= raid10_spare_active
,
4532 .sync_request
= sync_request
,
4533 .quiesce
= raid10_quiesce
,
4534 .size
= raid10_size
,
4535 .resize
= raid10_resize
,
4536 .takeover
= raid10_takeover
,
4537 .check_reshape
= raid10_check_reshape
,
4538 .start_reshape
= raid10_start_reshape
,
4539 .finish_reshape
= raid10_finish_reshape
,
4542 static int __init
raid_init(void)
4544 return register_md_personality(&raid10_personality
);
4547 static void raid_exit(void)
4549 unregister_md_personality(&raid10_personality
);
4552 module_init(raid_init
);
4553 module_exit(raid_exit
);
4554 MODULE_LICENSE("GPL");
4555 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4556 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4557 MODULE_ALIAS("md-raid10");
4558 MODULE_ALIAS("md-level-10");
4560 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);