1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
54 * 1. Although all of the necessary command mapping places have the
55 * appropriate dma_map.. APIs, the driver still processes its internal
56 * queue using bus_to_virt() and virt_to_bus() which are illegal under
57 * the API. The entire queue processing structure will need to be
58 * altered to fix this.
59 * 2. Need to add memory mapping workaround. Test the memory mapping.
60 * If it doesn't work revert to I/O port access. Can a test be done
62 * 3. Handle an interrupt not working. Keep an interrupt counter in
63 * the interrupt handler. In the timeout function if the interrupt
64 * has not occurred then print a message and run in polled mode.
65 * 4. Need to add support for target mode commands, cf. CAM XPT.
66 * 5. check DMA mapping functions for failure
67 * 6. Use scsi_transport_spi
68 * 7. advansys_info is not safe against multiple simultaneous callers
69 * 8. Add module_param to override ISA/VLB ioport array
71 #warning this driver is still not properly converted to the DMA API
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
76 /* Enable driver tracing. */
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
93 typedef unsigned char uchar
;
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
133 #define ASC_CS_TYPE unsigned short
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
190 #define ASC_SG_LIST_PER_Q 7
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
196 #define QS_ABORTED 0x40
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 typedef struct asc_scsiq_1
{
312 ASC_PADDR sense_addr
;
317 typedef struct asc_scsiq_2
{
326 typedef struct asc_scsiq_3
{
333 typedef struct asc_scsiq_4
{
334 uchar cdb
[ASC_MAX_CDB_LEN
];
335 uchar y_first_sg_list_qp
;
336 uchar y_working_sg_qp
;
337 uchar y_working_sg_ix
;
340 ushort x_reconnect_rtn
;
341 ASC_PADDR x_saved_data_addr
;
342 ASC_DCNT x_saved_data_cnt
;
345 typedef struct asc_q_done_info
{
354 ASC_DCNT remain_bytes
;
357 typedef struct asc_sg_list
{
362 typedef struct asc_sg_head
{
365 ushort entry_to_copy
;
367 ASC_SG_LIST sg_list
[0];
370 typedef struct asc_scsi_q
{
374 ASC_SG_HEAD
*sg_head
;
375 ushort remain_sg_entry_cnt
;
376 ushort next_sg_index
;
379 typedef struct asc_scsi_req_q
{
383 ASC_SG_HEAD
*sg_head
;
386 uchar cdb
[ASC_MAX_CDB_LEN
];
387 uchar sense
[ASC_MIN_SENSE_LEN
];
390 typedef struct asc_scsi_bios_req_q
{
394 ASC_SG_HEAD
*sg_head
;
397 uchar cdb
[ASC_MAX_CDB_LEN
];
398 uchar sense
[ASC_MIN_SENSE_LEN
];
399 } ASC_SCSI_BIOS_REQ_Q
;
401 typedef struct asc_risc_q
{
410 typedef struct asc_sg_list_q
{
416 uchar sg_cur_list_cnt
;
419 typedef struct asc_risc_sg_list_q
{
423 ASC_SG_LIST sg_list
[7];
424 } ASC_RISC_SG_LIST_Q
;
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
434 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 /* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not. These tables let us convert from one to the other.
482 static const unsigned char asc_syn_xfer_period
[8] = {
483 25, 30, 35, 40, 50, 60, 70, 85
486 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
490 typedef struct ext_msg
{
496 uchar sdtr_xfer_period
;
497 uchar sdtr_req_ack_offset
;
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
520 typedef struct asc_dvc_cfg
{
521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
523 ASC_SCSI_BIT_ID_TYPE disc_enable
;
524 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
527 uchar isa_dma_channel
;
530 ushort mcode_version
;
531 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
532 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
533 uchar adapter_info
[6];
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
555 struct asc_dvc_var
; /* Forward Declaration. */
557 typedef struct asc_dvc_var
{
563 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
564 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
566 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
568 ASC_SCSI_BIT_ID_TYPE start_motor
;
570 dma_addr_t overrun_dma
;
571 uchar scsi_reset_wait
;
576 uchar in_critical_cnt
;
577 uchar last_q_shortage
;
579 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
580 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
581 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
582 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
583 const uchar
*sdtr_period_tbl
;
585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
588 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
589 ASC_DCNT max_dma_count
;
590 ASC_SCSI_BIT_ID_TYPE no_scam
;
591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
592 uchar min_sdtr_index
;
593 uchar max_sdtr_index
;
594 struct asc_board
*drv_ptr
;
600 typedef struct asc_dvc_inq_info
{
601 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
604 typedef struct asc_cap_info
{
609 typedef struct asc_cap_info_array
{
610 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
611 } ASC_CAP_INFO_ARRAY
;
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 typedef struct asceep_config
{
661 uchar id_speed
; /* low order 4 bits is chip scsi id */
662 /* high order 4 bits is isa dma speed */
663 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
664 uchar adapter_info
[6];
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
859 typedef struct asc_mc_saved
{
860 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
861 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
933 * Portable Data Types
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
960 * Define Adv Library required memory access macros.
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
982 * Define maximum number of scatter-gather elements per request.
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
992 #define ADV_EEP_DELAY_MS 100
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1016 typedef struct adveep_3550_config
{
1017 /* Word Offset, Description */
1019 ushort cfg_lsw
; /* 00 power up initialization */
1020 /* bit 13 set - Term Polarity Control */
1021 /* bit 14 set - BIOS Enable */
1022 /* bit 15 set - Big Endian Mode */
1023 ushort cfg_msw
; /* 01 unused */
1024 ushort disc_enable
; /* 02 disconnect enable */
1025 ushort wdtr_able
; /* 03 Wide DTR able */
1026 ushort sdtr_able
; /* 04 Synchronous DTR able */
1027 ushort start_motor
; /* 05 send start up motor */
1028 ushort tagqng_able
; /* 06 tag queuing able */
1029 ushort bios_scan
; /* 07 BIOS device control */
1030 ushort scam_tolerant
; /* 08 no scam */
1032 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1033 uchar bios_boot_delay
; /* power up wait */
1035 uchar scsi_reset_delay
; /* 10 reset delay */
1036 uchar bios_id_lun
; /* first boot device scsi id & lun */
1037 /* high nibble is lun */
1038 /* low nibble is scsi id */
1040 uchar termination
; /* 11 0 - automatic */
1041 /* 1 - low off / high off */
1042 /* 2 - low off / high on */
1043 /* 3 - low on / high on */
1044 /* There is no low on / high off */
1046 uchar reserved1
; /* reserved byte (not used) */
1048 ushort bios_ctrl
; /* 12 BIOS control bits */
1049 /* bit 0 BIOS don't act as initiator. */
1050 /* bit 1 BIOS > 1 GB support */
1051 /* bit 2 BIOS > 2 Disk Support */
1052 /* bit 3 BIOS don't support removables */
1053 /* bit 4 BIOS support bootable CD */
1054 /* bit 5 BIOS scan enabled */
1055 /* bit 6 BIOS support multiple LUNs */
1056 /* bit 7 BIOS display of message */
1057 /* bit 8 SCAM disabled */
1058 /* bit 9 Reset SCSI bus during init. */
1060 /* bit 11 No verbose initialization. */
1061 /* bit 12 SCSI parity enabled */
1065 ushort ultra_able
; /* 13 ULTRA speed able */
1066 ushort reserved2
; /* 14 reserved */
1067 uchar max_host_qng
; /* 15 maximum host queuing */
1068 uchar max_dvc_qng
; /* maximum per device queuing */
1069 ushort dvc_cntl
; /* 16 control bit for driver */
1070 ushort bug_fix
; /* 17 control bit for bug fix */
1071 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1072 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1073 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1074 ushort check_sum
; /* 21 EEP check sum */
1075 uchar oem_name
[16]; /* 22 OEM name */
1076 ushort dvc_err_code
; /* 30 last device driver error code */
1077 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1078 ushort adv_err_addr
; /* 32 last uc error address */
1079 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1080 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1081 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1082 ushort num_of_err
; /* 36 number of error */
1083 } ADVEEP_3550_CONFIG
;
1085 typedef struct adveep_38C0800_config
{
1086 /* Word Offset, Description */
1088 ushort cfg_lsw
; /* 00 power up initialization */
1089 /* bit 13 set - Load CIS */
1090 /* bit 14 set - BIOS Enable */
1091 /* bit 15 set - Big Endian Mode */
1092 ushort cfg_msw
; /* 01 unused */
1093 ushort disc_enable
; /* 02 disconnect enable */
1094 ushort wdtr_able
; /* 03 Wide DTR able */
1095 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1096 ushort start_motor
; /* 05 send start up motor */
1097 ushort tagqng_able
; /* 06 tag queuing able */
1098 ushort bios_scan
; /* 07 BIOS device control */
1099 ushort scam_tolerant
; /* 08 no scam */
1101 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1102 uchar bios_boot_delay
; /* power up wait */
1104 uchar scsi_reset_delay
; /* 10 reset delay */
1105 uchar bios_id_lun
; /* first boot device scsi id & lun */
1106 /* high nibble is lun */
1107 /* low nibble is scsi id */
1109 uchar termination_se
; /* 11 0 - automatic */
1110 /* 1 - low off / high off */
1111 /* 2 - low off / high on */
1112 /* 3 - low on / high on */
1113 /* There is no low on / high off */
1115 uchar termination_lvd
; /* 11 0 - automatic */
1116 /* 1 - low off / high off */
1117 /* 2 - low off / high on */
1118 /* 3 - low on / high on */
1119 /* There is no low on / high off */
1121 ushort bios_ctrl
; /* 12 BIOS control bits */
1122 /* bit 0 BIOS don't act as initiator. */
1123 /* bit 1 BIOS > 1 GB support */
1124 /* bit 2 BIOS > 2 Disk Support */
1125 /* bit 3 BIOS don't support removables */
1126 /* bit 4 BIOS support bootable CD */
1127 /* bit 5 BIOS scan enabled */
1128 /* bit 6 BIOS support multiple LUNs */
1129 /* bit 7 BIOS display of message */
1130 /* bit 8 SCAM disabled */
1131 /* bit 9 Reset SCSI bus during init. */
1133 /* bit 11 No verbose initialization. */
1134 /* bit 12 SCSI parity enabled */
1138 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1139 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1140 uchar max_host_qng
; /* 15 maximum host queueing */
1141 uchar max_dvc_qng
; /* maximum per device queuing */
1142 ushort dvc_cntl
; /* 16 control bit for driver */
1143 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1144 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1145 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1146 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1147 ushort check_sum
; /* 21 EEP check sum */
1148 uchar oem_name
[16]; /* 22 OEM name */
1149 ushort dvc_err_code
; /* 30 last device driver error code */
1150 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1151 ushort adv_err_addr
; /* 32 last uc error address */
1152 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1153 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1154 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1155 ushort reserved36
; /* 36 reserved */
1156 ushort reserved37
; /* 37 reserved */
1157 ushort reserved38
; /* 38 reserved */
1158 ushort reserved39
; /* 39 reserved */
1159 ushort reserved40
; /* 40 reserved */
1160 ushort reserved41
; /* 41 reserved */
1161 ushort reserved42
; /* 42 reserved */
1162 ushort reserved43
; /* 43 reserved */
1163 ushort reserved44
; /* 44 reserved */
1164 ushort reserved45
; /* 45 reserved */
1165 ushort reserved46
; /* 46 reserved */
1166 ushort reserved47
; /* 47 reserved */
1167 ushort reserved48
; /* 48 reserved */
1168 ushort reserved49
; /* 49 reserved */
1169 ushort reserved50
; /* 50 reserved */
1170 ushort reserved51
; /* 51 reserved */
1171 ushort reserved52
; /* 52 reserved */
1172 ushort reserved53
; /* 53 reserved */
1173 ushort reserved54
; /* 54 reserved */
1174 ushort reserved55
; /* 55 reserved */
1175 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1176 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1177 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1178 ushort subsysid
; /* 59 SubSystem ID */
1179 ushort reserved60
; /* 60 reserved */
1180 ushort reserved61
; /* 61 reserved */
1181 ushort reserved62
; /* 62 reserved */
1182 ushort reserved63
; /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG
;
1185 typedef struct adveep_38C1600_config
{
1186 /* Word Offset, Description */
1188 ushort cfg_lsw
; /* 00 power up initialization */
1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 /* clear - Func. 0 INTA, Func. 1 INTB */
1191 /* bit 13 set - Load CIS */
1192 /* bit 14 set - BIOS Enable */
1193 /* bit 15 set - Big Endian Mode */
1194 ushort cfg_msw
; /* 01 unused */
1195 ushort disc_enable
; /* 02 disconnect enable */
1196 ushort wdtr_able
; /* 03 Wide DTR able */
1197 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1198 ushort start_motor
; /* 05 send start up motor */
1199 ushort tagqng_able
; /* 06 tag queuing able */
1200 ushort bios_scan
; /* 07 BIOS device control */
1201 ushort scam_tolerant
; /* 08 no scam */
1203 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1204 uchar bios_boot_delay
; /* power up wait */
1206 uchar scsi_reset_delay
; /* 10 reset delay */
1207 uchar bios_id_lun
; /* first boot device scsi id & lun */
1208 /* high nibble is lun */
1209 /* low nibble is scsi id */
1211 uchar termination_se
; /* 11 0 - automatic */
1212 /* 1 - low off / high off */
1213 /* 2 - low off / high on */
1214 /* 3 - low on / high on */
1215 /* There is no low on / high off */
1217 uchar termination_lvd
; /* 11 0 - automatic */
1218 /* 1 - low off / high off */
1219 /* 2 - low off / high on */
1220 /* 3 - low on / high on */
1221 /* There is no low on / high off */
1223 ushort bios_ctrl
; /* 12 BIOS control bits */
1224 /* bit 0 BIOS don't act as initiator. */
1225 /* bit 1 BIOS > 1 GB support */
1226 /* bit 2 BIOS > 2 Disk Support */
1227 /* bit 3 BIOS don't support removables */
1228 /* bit 4 BIOS support bootable CD */
1229 /* bit 5 BIOS scan enabled */
1230 /* bit 6 BIOS support multiple LUNs */
1231 /* bit 7 BIOS display of message */
1232 /* bit 8 SCAM disabled */
1233 /* bit 9 Reset SCSI bus during init. */
1234 /* bit 10 Basic Integrity Checking disabled */
1235 /* bit 11 No verbose initialization. */
1236 /* bit 12 SCSI parity enabled */
1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1240 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1241 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1242 uchar max_host_qng
; /* 15 maximum host queueing */
1243 uchar max_dvc_qng
; /* maximum per device queuing */
1244 ushort dvc_cntl
; /* 16 control bit for driver */
1245 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1246 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1247 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1248 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1249 ushort check_sum
; /* 21 EEP check sum */
1250 uchar oem_name
[16]; /* 22 OEM name */
1251 ushort dvc_err_code
; /* 30 last device driver error code */
1252 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1253 ushort adv_err_addr
; /* 32 last uc error address */
1254 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1255 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1256 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1257 ushort reserved36
; /* 36 reserved */
1258 ushort reserved37
; /* 37 reserved */
1259 ushort reserved38
; /* 38 reserved */
1260 ushort reserved39
; /* 39 reserved */
1261 ushort reserved40
; /* 40 reserved */
1262 ushort reserved41
; /* 41 reserved */
1263 ushort reserved42
; /* 42 reserved */
1264 ushort reserved43
; /* 43 reserved */
1265 ushort reserved44
; /* 44 reserved */
1266 ushort reserved45
; /* 45 reserved */
1267 ushort reserved46
; /* 46 reserved */
1268 ushort reserved47
; /* 47 reserved */
1269 ushort reserved48
; /* 48 reserved */
1270 ushort reserved49
; /* 49 reserved */
1271 ushort reserved50
; /* 50 reserved */
1272 ushort reserved51
; /* 51 reserved */
1273 ushort reserved52
; /* 52 reserved */
1274 ushort reserved53
; /* 53 reserved */
1275 ushort reserved54
; /* 54 reserved */
1276 ushort reserved55
; /* 55 reserved */
1277 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1278 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1279 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1280 ushort subsysid
; /* 59 SubSystem ID */
1281 ushort reserved60
; /* 60 reserved */
1282 ushort reserved61
; /* 61 reserved */
1283 ushort reserved62
; /* 62 reserved */
1284 ushort reserved63
; /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG
;
1290 #define ASC_EEP_CMD_DONE 0x0200
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1320 * Byte I/O register address from base of 'iop_base'.
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1388 * Word I/O register address from base of 'iop_base'.
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1425 * Doubleword I/O register address from base of 'iop_base'.
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1486 #define AdvIsIntPending(port) \
1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1490 * SCSI_CFG0 Register bit definitions
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1505 * SCSI_CFG1 Register bit definitions
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1524 * Addendum for ASC-38C0800 Chip
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1552 #define CABLE_ILLEGAL_A 0x7
1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1555 #define CABLE_ILLEGAL_B 0xB
1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1559 * MEM_CFG Register bit definitions
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1572 * DMA_CFG0 Register bit definitions
1574 * This register is only accessible to the host.
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1596 * ASC-38C0800 RAM BIST Register bit definitions
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1612 * ASC38C1600 Definitions
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1625 #define TOTEMPOLE 0x02
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1639 * Adv Library Status Definitions
1643 #define ADV_SUCCESS 1
1645 #define ADV_ERROR (-1)
1648 * ADV_DVC_VAR 'warn_code' values
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1659 * Fixed locations of microcode operating variables.
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1699 * BIOS LRAM variable absolute offsets.
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1707 * Microcode Control Flags
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1746 * All fields here are accessed by the board microcode and need to be
1749 typedef struct adv_carr_t
{
1750 ADV_VADDR carr_va
; /* Carrier Virtual Address */
1751 ADV_PADDR carr_pa
; /* Carrier Physical Address */
1752 ADV_VADDR areq_vpa
; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1756 * next_vpa [3:1] Reserved Bits
1757 * next_vpa [0] Done Flag set in Response Queue.
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 #define ADV_CARRIER_BUFSIZE \
1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1794 * Adapter temporary configuration structure
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1799 * Field naming convention:
1801 * *_enable indicates the field enables or disables a feature. The
1802 * value of the field is never reset.
1804 typedef struct adv_dvc_cfg
{
1805 ushort disc_enable
; /* enable disconnection */
1806 uchar chip_version
; /* chip version */
1807 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 ushort control_flag
; /* Microcode Control Flag */
1809 ushort mcode_date
; /* Microcode date */
1810 ushort mcode_version
; /* Microcode version */
1811 ushort serial1
; /* EEPROM serial number word 1 */
1812 ushort serial2
; /* EEPROM serial number word 2 */
1813 ushort serial3
; /* EEPROM serial number word 3 */
1817 struct adv_scsi_req_q
;
1819 typedef struct asc_sg_block
{
1823 uchar sg_cnt
; /* Valid entries in block. */
1824 ADV_PADDR sg_ptr
; /* Pointer to next sg block. */
1826 ADV_PADDR sg_addr
; /* SG element address. */
1827 ADV_DCNT sg_count
; /* SG element count. */
1828 } sg_list
[NO_OF_SG_PER_BLOCK
];
1832 * ADV_SCSI_REQ_Q - microcode request structure
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1839 * All fields accessed by microcode must be maintained in little_endian
1842 typedef struct adv_scsi_req_q
{
1843 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1845 uchar target_id
; /* Device target identifier. */
1846 uchar target_lun
; /* Device target logical unit number. */
1847 ADV_PADDR data_addr
; /* Data buffer physical address. */
1848 ADV_DCNT data_cnt
; /* Data count. Ucode sets to residual. */
1849 ADV_PADDR sense_addr
;
1853 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1855 uchar done_status
; /* Completion status. */
1856 uchar scsi_status
; /* SCSI status byte. */
1857 uchar host_status
; /* Ucode host status. */
1858 uchar sg_working_ix
;
1859 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1860 ADV_PADDR sg_real_addr
; /* SG list physical address. */
1861 ADV_PADDR scsiq_rptr
;
1862 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1863 ADV_VADDR scsiq_ptr
;
1866 * End of microcode structure - 60 bytes. The rest of the structure
1867 * is used by the Adv Library and ignored by the microcode.
1870 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1871 char *vdata_addr
; /* Data buffer virtual address. */
1873 uchar pad
[2]; /* Pad out to a word boundary. */
1877 * The following two structures are used to process Wide Board requests.
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1889 * Both structures must be 32 byte aligned.
1891 typedef struct adv_sgblk
{
1892 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1893 uchar align
[32]; /* Sgblock structure padding. */
1894 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1897 typedef struct adv_req
{
1898 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1899 uchar align
[32]; /* Request structure padding. */
1900 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1901 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1902 struct adv_req
*next_reqp
; /* Next Request Structure. */
1906 * Adapter operation variable structure.
1908 * One structure is required per host adapter.
1910 * Field naming convention:
1912 * *_able indicates both whether a feature should be enabled or disabled
1913 * and whether a device isi capable of the feature. At initialization
1914 * this field may be set, but later if a device is found to be incapable
1915 * of the feature, the field is cleared.
1917 typedef struct adv_dvc_var
{
1918 AdvPortAddr iop_base
; /* I/O port address */
1919 ushort err_code
; /* fatal error code */
1920 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1921 ushort wdtr_able
; /* try WDTR for a device */
1922 ushort sdtr_able
; /* try SDTR for a device */
1923 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1924 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1925 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1926 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1927 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1928 ushort tagqng_able
; /* try tagged queuing with a device */
1929 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1930 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1931 ushort start_motor
; /* start motor command allowed */
1932 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1933 uchar chip_no
; /* should be assigned by caller */
1934 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1935 ushort no_scam
; /* scam_tolerant of EEPROM */
1936 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1937 uchar chip_scsi_id
; /* chip SCSI target ID */
1939 uchar bist_err_code
;
1940 ADV_CARR_T
*carrier_buf
;
1941 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1942 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1943 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1944 ushort carr_pending_cnt
; /* Count of pending carriers. */
1945 struct adv_req
*orig_reqp
; /* adv_req_t memory block. */
1947 * Note: The following fields will not be used after initialization. The
1948 * driver may discard the buffer after initialization is done.
1950 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1954 * Microcode idle loop commands
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1970 * AdvSendIdleCmd() flag definitions.
1972 #define ADV_NOWAIT 0x01
1975 * Wait loop time out values.
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990 (ADV_MEM_READB((iop_base) + (reg_off)))
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998 (ADV_MEM_READW((iop_base) + (reg_off)))
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2051 * Define macro to check for Condor signature.
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 #define AdvFindSignature(iop_base) \
2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058 ADV_CHIP_ID_BYTE) && \
2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2065 * The second parameter 'bus_type' is currently unused.
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2079 * ADV_TRUE(1) - Queue was successfully aborted.
2080 * ADV_FALSE(0) - Queue was not found on the active queue list.
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2087 * Send a Bus Device Reset Message to the specified target ID.
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2093 * ADV_TRUE(1) - All requests on the target are purged.
2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099 (ADV_DCNT) (target_id))
2102 * SCSI Wide Type definition.
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2113 * Convert target id to target id bit mask.
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2161 * Total contiguous memory needed for driver SG blocks.
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169 (sizeof(ADV_SG_BLOCK) * \
2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2181 #ifdef CONFIG_PROC_FS
2182 /* /proc/scsi/advansys/[0...] related definitions */
2183 #define ASC_PRTBUF_SIZE 2048
2184 #define ASC_PRTLINE_SIZE 160
2186 #define ASC_PRT_NEXT() \
2190 if (leftlen == 0) { \
2195 #endif /* CONFIG_PROC_FS */
2197 /* Asc Library return codes */
2200 #define ASC_NOERROR 1
2202 #define ASC_ERROR (-1)
2204 /* struct scsi_cmnd function return codes */
2205 #define STATUS_BYTE(byte) (byte)
2206 #define MSG_BYTE(byte) ((byte) << 8)
2207 #define HOST_BYTE(byte) ((byte) << 16)
2208 #define DRIVER_BYTE(byte) ((byte) << 24)
2210 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2211 #ifndef ADVANSYS_STATS
2212 #define ASC_STATS_ADD(shost, counter, count)
2213 #else /* ADVANSYS_STATS */
2214 #define ASC_STATS_ADD(shost, counter, count) \
2215 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2216 #endif /* ADVANSYS_STATS */
2218 /* If the result wraps when calculating tenths, return 0. */
2219 #define ASC_TENTHS(num, den) \
2220 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2221 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2224 * Display a message to the console.
2226 #define ASC_PRINT(s) \
2228 printk("advansys: "); \
2232 #define ASC_PRINT1(s, a1) \
2234 printk("advansys: "); \
2235 printk((s), (a1)); \
2238 #define ASC_PRINT2(s, a1, a2) \
2240 printk("advansys: "); \
2241 printk((s), (a1), (a2)); \
2244 #define ASC_PRINT3(s, a1, a2, a3) \
2246 printk("advansys: "); \
2247 printk((s), (a1), (a2), (a3)); \
2250 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2252 printk("advansys: "); \
2253 printk((s), (a1), (a2), (a3), (a4)); \
2256 #ifndef ADVANSYS_DEBUG
2258 #define ASC_DBG(lvl, s...)
2259 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2260 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2261 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2263 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2264 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2265 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2266 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2267 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2269 #else /* ADVANSYS_DEBUG */
2272 * Debugging Message Levels:
2274 * 1: High-Level Tracing
2275 * 2-N: Verbose Tracing
2278 #define ASC_DBG(lvl, format, arg...) { \
2279 if (asc_dbglvl >= (lvl)) \
2280 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2281 __func__ , ## arg); \
2284 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2286 if (asc_dbglvl >= (lvl)) { \
2287 asc_prt_scsi_host(s); \
2291 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2293 if (asc_dbglvl >= (lvl)) { \
2294 asc_prt_asc_scsi_q(scsiqp); \
2298 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2300 if (asc_dbglvl >= (lvl)) { \
2301 asc_prt_asc_qdone_info(qdone); \
2305 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2307 if (asc_dbglvl >= (lvl)) { \
2308 asc_prt_adv_scsi_req_q(scsiqp); \
2312 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2314 if (asc_dbglvl >= (lvl)) { \
2315 asc_prt_hex((name), (start), (length)); \
2319 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2320 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2322 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2323 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2325 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2326 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2327 #endif /* ADVANSYS_DEBUG */
2329 #ifdef ADVANSYS_STATS
2331 /* Per board statistics structure */
2333 /* Driver Entrypoint Statistics */
2334 ADV_DCNT queuecommand
; /* # calls to advansys_queuecommand() */
2335 ADV_DCNT reset
; /* # calls to advansys_eh_bus_reset() */
2336 ADV_DCNT biosparam
; /* # calls to advansys_biosparam() */
2337 ADV_DCNT interrupt
; /* # advansys_interrupt() calls */
2338 ADV_DCNT callback
; /* # calls to asc/adv_isr_callback() */
2339 ADV_DCNT done
; /* # calls to request's scsi_done function */
2340 ADV_DCNT build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2341 ADV_DCNT adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2342 ADV_DCNT adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2343 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2344 ADV_DCNT exe_noerror
; /* # ASC_NOERROR returns. */
2345 ADV_DCNT exe_busy
; /* # ASC_BUSY returns. */
2346 ADV_DCNT exe_error
; /* # ASC_ERROR returns. */
2347 ADV_DCNT exe_unknown
; /* # unknown returns. */
2348 /* Data Transfer Statistics */
2349 ADV_DCNT xfer_cnt
; /* # I/O requests received */
2350 ADV_DCNT xfer_elem
; /* # scatter-gather elements */
2351 ADV_DCNT xfer_sect
; /* # 512-byte blocks */
2353 #endif /* ADVANSYS_STATS */
2356 * Structure allocated for each board.
2358 * This structure is allocated by scsi_host_alloc() at the end
2359 * of the 'Scsi_Host' structure starting at the 'hostdata'
2360 * field. It is guaranteed to be allocated from DMA-able memory.
2364 uint flags
; /* Board flags */
2367 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2368 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2371 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2372 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2374 ushort asc_n_io_port
; /* Number I/O ports. */
2375 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2376 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2377 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2378 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2380 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2381 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2382 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2383 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2385 ulong last_reset
; /* Saved last reset time */
2386 /* /proc/scsi/advansys/[0...] */
2387 char *prtbuf
; /* /proc print buffer */
2388 #ifdef ADVANSYS_STATS
2389 struct asc_stats asc_stats
; /* Board statistics */
2390 #endif /* ADVANSYS_STATS */
2392 * The following fields are used only for Narrow Boards.
2394 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2396 * The following fields are used only for Wide Boards.
2398 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2399 ushort ioport
; /* I/O Port address. */
2400 adv_req_t
*adv_reqp
; /* Request structures. */
2401 adv_sgblk_t
*adv_sgblkp
; /* Scatter-gather structures. */
2402 ushort bios_signature
; /* BIOS Signature. */
2403 ushort bios_version
; /* BIOS Version. */
2404 ushort bios_codeseg
; /* BIOS Code Segment. */
2405 ushort bios_codelen
; /* BIOS Code Segment Length. */
2408 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2409 dvc_var.asc_dvc_var)
2410 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2411 dvc_var.adv_dvc_var)
2412 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2414 #ifdef ADVANSYS_DEBUG
2415 static int asc_dbglvl
= 3;
2418 * asc_prt_asc_dvc_var()
2420 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2422 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2424 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2425 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2427 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2428 (unsigned)h
->init_sdtr
);
2430 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2431 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2432 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2433 (unsigned)h
->chip_no
);
2435 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2436 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2437 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2439 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2440 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2441 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2442 (unsigned)h
->in_critical_cnt
);
2444 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2445 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2446 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2447 (unsigned)h
->pci_fix_asyn_xfer
);
2449 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2453 * asc_prt_asc_dvc_cfg()
2455 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2457 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2459 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2460 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2461 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2462 h
->disc_enable
, h
->sdtr_enable
);
2464 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2465 "chip_version %d,\n", h
->chip_scsi_id
, h
->isa_dma_speed
,
2466 h
->isa_dma_channel
, h
->chip_version
);
2468 printk(" mcode_date 0x%x, mcode_version %d\n",
2469 h
->mcode_date
, h
->mcode_version
);
2473 * asc_prt_adv_dvc_var()
2475 * Display an ADV_DVC_VAR structure.
2477 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2479 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2481 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2482 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2484 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2485 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2487 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2488 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2490 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2491 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2492 (ulong
)h
->carr_freelist
);
2494 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2495 (ulong
)h
->icq_sp
, (ulong
)h
->irq_sp
);
2497 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2498 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2500 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2501 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2505 * asc_prt_adv_dvc_cfg()
2507 * Display an ADV_DVC_CFG structure.
2509 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2511 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2513 printk(" disc_enable 0x%x, termination 0x%x\n",
2514 h
->disc_enable
, h
->termination
);
2516 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2517 h
->chip_version
, h
->mcode_date
);
2519 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2520 h
->mcode_version
, h
->control_flag
);
2524 * asc_prt_scsi_host()
2526 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2528 struct asc_board
*boardp
= shost_priv(s
);
2530 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2531 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2532 s
->host_busy
, s
->host_no
, (unsigned)s
->last_reset
);
2534 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2535 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2537 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2538 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2540 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2541 s
->cmd_per_lun
, s
->sg_tablesize
, s
->unchecked_isa_dma
);
2543 if (ASC_NARROW_BOARD(boardp
)) {
2544 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2545 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2547 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2548 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2555 * Print hexadecimal output in 4 byte groupings 32 bytes
2556 * or 8 double-words per line.
2558 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2565 printk("%s: (%d bytes)\n", f
, l
);
2567 for (i
= 0; i
< l
; i
+= 32) {
2569 /* Display a maximum of 8 double-words per line. */
2570 if ((k
= (l
- i
) / 4) >= 8) {
2577 for (j
= 0; j
< k
; j
++) {
2578 printk(" %2.2X%2.2X%2.2X%2.2X",
2579 (unsigned)s
[i
+ (j
* 4)],
2580 (unsigned)s
[i
+ (j
* 4) + 1],
2581 (unsigned)s
[i
+ (j
* 4) + 2],
2582 (unsigned)s
[i
+ (j
* 4) + 3]);
2590 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2593 printk(" %2.2X%2.2X",
2594 (unsigned)s
[i
+ (j
* 4)],
2595 (unsigned)s
[i
+ (j
* 4) + 1]);
2598 printk(" %2.2X%2.2X%2.2X",
2599 (unsigned)s
[i
+ (j
* 4) + 1],
2600 (unsigned)s
[i
+ (j
* 4) + 2],
2601 (unsigned)s
[i
+ (j
* 4) + 3]);
2610 * asc_prt_asc_scsi_q()
2612 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2617 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2620 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2621 q
->q2
.target_ix
, q
->q1
.target_lun
, (ulong
)q
->q2
.srb_ptr
,
2625 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2626 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2627 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2628 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2630 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2631 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2632 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2636 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2637 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2639 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2640 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2641 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2642 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2649 * asc_prt_asc_qdone_info()
2651 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2653 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2654 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2655 (ulong
)q
->d2
.srb_ptr
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2658 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2659 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2663 * asc_prt_adv_sgblock()
2665 * Display an ADV_SG_BLOCK structure.
2667 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2671 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2672 (ulong
)b
, sgblockno
);
2673 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2674 b
->sg_cnt
, (ulong
)le32_to_cpu(b
->sg_ptr
));
2675 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2677 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2678 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2679 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2680 i
, (ulong
)b
->sg_list
[i
].sg_addr
,
2681 (ulong
)b
->sg_list
[i
].sg_count
);
2686 * asc_prt_adv_scsi_req_q()
2688 * Display an ADV_SCSI_REQ_Q structure.
2690 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2693 struct asc_sg_block
*sg_ptr
;
2695 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2697 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2698 q
->target_id
, q
->target_lun
, (ulong
)q
->srb_ptr
, q
->a_flag
);
2700 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2701 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
), (ulong
)q
->vdata_addr
);
2703 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2704 (ulong
)le32_to_cpu(q
->data_cnt
),
2705 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2708 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2709 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2711 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2712 q
->sg_working_ix
, q
->target_cmd
);
2714 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2715 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2716 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2718 /* Display the request's ADV_SG_BLOCK structures. */
2719 if (q
->sg_list_ptr
!= NULL
) {
2723 * 'sg_ptr' is a physical address. Convert it to a virtual
2724 * address by indexing 'sg_blk_cnt' into the virtual address
2725 * array 'sg_list_ptr'.
2727 * XXX - Assumes all SG physical blocks are virtually contiguous.
2730 &(((ADV_SG_BLOCK
*)(q
->sg_list_ptr
))[sg_blk_cnt
]);
2731 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2732 if (sg_ptr
->sg_ptr
== 0) {
2739 #endif /* ADVANSYS_DEBUG */
2742 * The advansys chip/microcode contains a 32-bit identifier for each command
2743 * known as the 'srb'. I don't know what it stands for. The driver used
2744 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2745 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2746 * pointers. It auto-expands when full, unless it can't allocate memory.
2747 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2748 * the return of i+1 in this routine, and the corresponding subtraction in
2749 * the inverse routine.
2752 static u32
advansys_ptr_to_srb(struct asc_dvc_var
*asc_dvc
, void *ptr
)
2757 for (i
= 0; i
< asc_dvc
->ptr_map_count
; i
++) {
2758 if (!asc_dvc
->ptr_map
[i
])
2762 if (asc_dvc
->ptr_map_count
== 0)
2763 asc_dvc
->ptr_map_count
= 1;
2765 asc_dvc
->ptr_map_count
*= 2;
2767 new_ptr
= krealloc(asc_dvc
->ptr_map
,
2768 asc_dvc
->ptr_map_count
* sizeof(void *), GFP_ATOMIC
);
2771 asc_dvc
->ptr_map
= new_ptr
;
2773 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr
, i
);
2774 asc_dvc
->ptr_map
[i
] = ptr
;
2778 static void * advansys_srb_to_ptr(struct asc_dvc_var
*asc_dvc
, u32 srb
)
2783 if (srb
>= asc_dvc
->ptr_map_count
) {
2784 printk("advansys: bad SRB %u, max %u\n", srb
,
2785 asc_dvc
->ptr_map_count
);
2788 ptr
= asc_dvc
->ptr_map
[srb
];
2789 asc_dvc
->ptr_map
[srb
] = NULL
;
2790 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr
, srb
);
2797 * Return suitable for printing on the console with the argument
2798 * adapter's configuration information.
2800 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2801 * otherwise the static 'info' array will be overrun.
2803 static const char *advansys_info(struct Scsi_Host
*shost
)
2805 static char info
[ASC_INFO_SIZE
];
2806 struct asc_board
*boardp
= shost_priv(shost
);
2807 ASC_DVC_VAR
*asc_dvc_varp
;
2808 ADV_DVC_VAR
*adv_dvc_varp
;
2810 char *widename
= NULL
;
2812 if (ASC_NARROW_BOARD(boardp
)) {
2813 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2814 ASC_DBG(1, "begin\n");
2815 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2816 if ((asc_dvc_varp
->bus_type
& ASC_IS_ISAPNP
) ==
2818 busname
= "ISA PnP";
2823 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2824 ASC_VERSION
, busname
,
2825 (ulong
)shost
->io_port
,
2826 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2827 boardp
->irq
, shost
->dma_channel
);
2829 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2831 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2833 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2834 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2835 == ASC_IS_PCI_ULTRA
) {
2836 busname
= "PCI Ultra";
2842 shost_printk(KERN_ERR
, shost
, "unknown bus "
2843 "type %d\n", asc_dvc_varp
->bus_type
);
2846 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2847 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2848 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2853 * Wide Adapter Information
2855 * Memory-mapped I/O is used instead of I/O space to access
2856 * the adapter, but display the I/O Port range. The Memory
2857 * I/O address is displayed through the driver /proc file.
2859 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2860 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2861 widename
= "Ultra-Wide";
2862 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2863 widename
= "Ultra2-Wide";
2865 widename
= "Ultra3-Wide";
2868 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2869 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2870 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2872 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2873 ASC_DBG(1, "end\n");
2877 #ifdef CONFIG_PROC_FS
2881 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2883 * Return 0 if printing to the console, otherwise return the number of
2884 * bytes written to the buffer.
2886 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2887 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2889 static int asc_prt_line(char *buf
, int buflen
, char *fmt
, ...)
2893 char s
[ASC_PRTLINE_SIZE
];
2895 va_start(args
, fmt
);
2896 ret
= vsprintf(s
, fmt
, args
);
2897 BUG_ON(ret
>= ASC_PRTLINE_SIZE
);
2902 ret
= min(buflen
, ret
);
2903 memcpy(buf
, s
, ret
);
2910 * asc_prt_board_devices()
2912 * Print driver information for devices attached to the board.
2914 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2915 * cf. asc_prt_line().
2917 * Return the number of characters copied into 'cp'. No more than
2918 * 'cplen' characters will be copied to 'cp'.
2920 static int asc_prt_board_devices(struct Scsi_Host
*shost
, char *cp
, int cplen
)
2922 struct asc_board
*boardp
= shost_priv(shost
);
2932 len
= asc_prt_line(cp
, leftlen
,
2933 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2937 if (ASC_NARROW_BOARD(boardp
)) {
2938 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2940 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2943 len
= asc_prt_line(cp
, leftlen
, "Target IDs Detected:");
2945 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2946 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) {
2947 len
= asc_prt_line(cp
, leftlen
, " %X,", i
);
2951 len
= asc_prt_line(cp
, leftlen
, " (%X=Host Adapter)\n", chip_scsi_id
);
2958 * Display Wide Board BIOS Information.
2960 static int asc_prt_adv_bios(struct Scsi_Host
*shost
, char *cp
, int cplen
)
2962 struct asc_board
*boardp
= shost_priv(shost
);
2966 ushort major
, minor
, letter
;
2971 len
= asc_prt_line(cp
, leftlen
, "\nROM BIOS Version: ");
2975 * If the BIOS saved a valid signature, then fill in
2976 * the BIOS code segment base address.
2978 if (boardp
->bios_signature
!= 0x55AA) {
2979 len
= asc_prt_line(cp
, leftlen
, "Disabled or Pre-3.1\n");
2981 len
= asc_prt_line(cp
, leftlen
,
2982 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984 len
= asc_prt_line(cp
, leftlen
,
2985 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2988 major
= (boardp
->bios_version
>> 12) & 0xF;
2989 minor
= (boardp
->bios_version
>> 8) & 0xF;
2990 letter
= (boardp
->bios_version
& 0xFF);
2992 len
= asc_prt_line(cp
, leftlen
, "%d.%d%c\n",
2994 letter
>= 26 ? '?' : letter
+ 'A');
2998 * Current available ROM BIOS release is 3.1I for UW
2999 * and 3.2I for U2W. This code doesn't differentiate
3000 * UW and U2W boards.
3002 if (major
< 3 || (major
<= 3 && minor
< 1) ||
3003 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
3004 len
= asc_prt_line(cp
, leftlen
,
3005 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007 len
= asc_prt_line(cp
, leftlen
,
3008 "ftp://ftp.connectcom.net/pub\n");
3017 * Add serial number to information bar if signature AAh
3018 * is found in at bit 15-9 (7 bits) of word 1.
3020 * Serial Number consists fo 12 alpha-numeric digits.
3022 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3023 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3024 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3025 * 5 - Product revision (A-J) Word0: " "
3027 * Signature Word1: 15-9 (7 bits)
3028 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3029 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3031 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3033 * Note 1: Only production cards will have a serial number.
3035 * Note 2: Signature is most significant 7 bits (0xFE).
3037 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3039 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
3043 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
3047 * First word - 6 digits.
3051 /* Product type - 1st digit. */
3052 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
3053 /* Product type is P=Prototype */
3058 /* Manufacturing location - 2nd digit. */
3059 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
3061 /* Product ID - 3rd, 4th digits. */
3063 *cp
++ = '0' + (num
/ 100);
3065 *cp
++ = '0' + (num
/ 10);
3067 /* Product revision - 5th digit. */
3068 *cp
++ = 'A' + (num
% 10);
3078 * If bit 15 of third word is set, then the
3079 * last digit of the year is greater than 7.
3081 if (serialnum
[2] & 0x8000) {
3082 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
3084 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
3087 /* Week of year - 7th, 8th digits. */
3089 *cp
++ = '0' + num
/ 10;
3096 w
= serialnum
[2] & 0x7FFF;
3098 /* Serial number - 9th digit. */
3099 *cp
++ = 'A' + (w
/ 1000);
3101 /* 10th, 11th, 12th digits. */
3103 *cp
++ = '0' + num
/ 100;
3105 *cp
++ = '0' + num
/ 10;
3109 *cp
= '\0'; /* Null Terminate the string. */
3115 * asc_prt_asc_board_eeprom()
3117 * Print board EEPROM configuration.
3119 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3120 * cf. asc_prt_line().
3122 * Return the number of characters copied into 'cp'. No more than
3123 * 'cplen' characters will be copied to 'cp'.
3125 static int asc_prt_asc_board_eeprom(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3127 struct asc_board
*boardp
= shost_priv(shost
);
3128 ASC_DVC_VAR
*asc_dvc_varp
;
3135 int isa_dma_speed
[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3136 #endif /* CONFIG_ISA */
3137 uchar serialstr
[13];
3139 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
3140 ep
= &boardp
->eep_config
.asc_eep
;
3145 len
= asc_prt_line(cp
, leftlen
,
3146 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3150 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
3153 asc_prt_line(cp
, leftlen
, " Serial Number: %s\n",
3157 if (ep
->adapter_info
[5] == 0xBB) {
3158 len
= asc_prt_line(cp
, leftlen
,
3159 " Default Settings Used for EEPROM-less Adapter.\n");
3162 len
= asc_prt_line(cp
, leftlen
,
3163 " Serial Number Signature Not Present.\n");
3168 len
= asc_prt_line(cp
, leftlen
,
3169 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3170 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
3174 len
= asc_prt_line(cp
, leftlen
,
3175 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
3178 len
= asc_prt_line(cp
, leftlen
, " Target ID: ");
3180 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3181 len
= asc_prt_line(cp
, leftlen
, " %d", i
);
3184 len
= asc_prt_line(cp
, leftlen
, "\n");
3187 len
= asc_prt_line(cp
, leftlen
, " Disconnects: ");
3189 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3190 len
= asc_prt_line(cp
, leftlen
, " %c",
3192 disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3196 len
= asc_prt_line(cp
, leftlen
, "\n");
3199 len
= asc_prt_line(cp
, leftlen
, " Command Queuing: ");
3201 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3202 len
= asc_prt_line(cp
, leftlen
, " %c",
3204 use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3208 len
= asc_prt_line(cp
, leftlen
, "\n");
3211 len
= asc_prt_line(cp
, leftlen
, " Start Motor: ");
3213 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3214 len
= asc_prt_line(cp
, leftlen
, " %c",
3216 start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3220 len
= asc_prt_line(cp
, leftlen
, "\n");
3223 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3225 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3226 len
= asc_prt_line(cp
, leftlen
, " %c",
3228 init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3232 len
= asc_prt_line(cp
, leftlen
, "\n");
3236 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
3237 len
= asc_prt_line(cp
, leftlen
,
3238 " Host ISA DMA speed: %d MB/S\n",
3239 isa_dma_speed
[ASC_EEP_GET_DMA_SPD(ep
)]);
3242 #endif /* CONFIG_ISA */
3248 * asc_prt_adv_board_eeprom()
3250 * Print board EEPROM configuration.
3252 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3253 * cf. asc_prt_line().
3255 * Return the number of characters copied into 'cp'. No more than
3256 * 'cplen' characters will be copied to 'cp'.
3258 static int asc_prt_adv_board_eeprom(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3260 struct asc_board
*boardp
= shost_priv(shost
);
3261 ADV_DVC_VAR
*adv_dvc_varp
;
3267 uchar serialstr
[13];
3268 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
3269 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
3270 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
3273 ushort sdtr_speed
= 0;
3275 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
3276 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3277 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
3278 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3279 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
3281 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
3287 len
= asc_prt_line(cp
, leftlen
,
3288 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3292 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3293 wordp
= &ep_3550
->serial_number_word1
;
3294 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3295 wordp
= &ep_38C0800
->serial_number_word1
;
3297 wordp
= &ep_38C1600
->serial_number_word1
;
3300 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
) {
3302 asc_prt_line(cp
, leftlen
, " Serial Number: %s\n",
3306 len
= asc_prt_line(cp
, leftlen
,
3307 " Serial Number Signature Not Present.\n");
3311 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3312 len
= asc_prt_line(cp
, leftlen
,
3313 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3314 ep_3550
->adapter_scsi_id
,
3315 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
3317 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3318 len
= asc_prt_line(cp
, leftlen
,
3319 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3320 ep_38C0800
->adapter_scsi_id
,
3321 ep_38C0800
->max_host_qng
,
3322 ep_38C0800
->max_dvc_qng
);
3325 len
= asc_prt_line(cp
, leftlen
,
3326 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3327 ep_38C1600
->adapter_scsi_id
,
3328 ep_38C1600
->max_host_qng
,
3329 ep_38C1600
->max_dvc_qng
);
3332 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3333 word
= ep_3550
->termination
;
3334 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3335 word
= ep_38C0800
->termination_lvd
;
3337 word
= ep_38C1600
->termination_lvd
;
3341 termstr
= "Low Off/High Off";
3344 termstr
= "Low Off/High On";
3347 termstr
= "Low On/High On";
3351 termstr
= "Automatic";
3355 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3356 len
= asc_prt_line(cp
, leftlen
,
3357 " termination: %u (%s), bios_ctrl: 0x%x\n",
3358 ep_3550
->termination
, termstr
,
3359 ep_3550
->bios_ctrl
);
3361 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3362 len
= asc_prt_line(cp
, leftlen
,
3363 " termination: %u (%s), bios_ctrl: 0x%x\n",
3364 ep_38C0800
->termination_lvd
, termstr
,
3365 ep_38C0800
->bios_ctrl
);
3368 len
= asc_prt_line(cp
, leftlen
,
3369 " termination: %u (%s), bios_ctrl: 0x%x\n",
3370 ep_38C1600
->termination_lvd
, termstr
,
3371 ep_38C1600
->bios_ctrl
);
3375 len
= asc_prt_line(cp
, leftlen
, " Target ID: ");
3377 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3378 len
= asc_prt_line(cp
, leftlen
, " %X", i
);
3381 len
= asc_prt_line(cp
, leftlen
, "\n");
3384 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3385 word
= ep_3550
->disc_enable
;
3386 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3387 word
= ep_38C0800
->disc_enable
;
3389 word
= ep_38C1600
->disc_enable
;
3391 len
= asc_prt_line(cp
, leftlen
, " Disconnects: ");
3393 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3394 len
= asc_prt_line(cp
, leftlen
, " %c",
3395 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3398 len
= asc_prt_line(cp
, leftlen
, "\n");
3401 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3402 word
= ep_3550
->tagqng_able
;
3403 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3404 word
= ep_38C0800
->tagqng_able
;
3406 word
= ep_38C1600
->tagqng_able
;
3408 len
= asc_prt_line(cp
, leftlen
, " Command Queuing: ");
3410 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3411 len
= asc_prt_line(cp
, leftlen
, " %c",
3412 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3415 len
= asc_prt_line(cp
, leftlen
, "\n");
3418 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3419 word
= ep_3550
->start_motor
;
3420 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3421 word
= ep_38C0800
->start_motor
;
3423 word
= ep_38C1600
->start_motor
;
3425 len
= asc_prt_line(cp
, leftlen
, " Start Motor: ");
3427 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3428 len
= asc_prt_line(cp
, leftlen
, " %c",
3429 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3432 len
= asc_prt_line(cp
, leftlen
, "\n");
3435 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3436 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3438 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3439 len
= asc_prt_line(cp
, leftlen
, " %c",
3441 sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3445 len
= asc_prt_line(cp
, leftlen
, "\n");
3449 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3450 len
= asc_prt_line(cp
, leftlen
, " Ultra Transfer: ");
3452 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3453 len
= asc_prt_line(cp
, leftlen
, " %c",
3455 ultra_able
& ADV_TID_TO_TIDMASK(i
))
3459 len
= asc_prt_line(cp
, leftlen
, "\n");
3463 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3464 word
= ep_3550
->wdtr_able
;
3465 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3466 word
= ep_38C0800
->wdtr_able
;
3468 word
= ep_38C1600
->wdtr_able
;
3470 len
= asc_prt_line(cp
, leftlen
, " Wide Transfer: ");
3472 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3473 len
= asc_prt_line(cp
, leftlen
, " %c",
3474 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3477 len
= asc_prt_line(cp
, leftlen
, "\n");
3480 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3481 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3482 len
= asc_prt_line(cp
, leftlen
,
3483 " Synchronous Transfer Speed (Mhz):\n ");
3485 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3489 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3490 } else if (i
== 4) {
3491 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3492 } else if (i
== 8) {
3493 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3494 } else if (i
== 12) {
3495 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3497 switch (sdtr_speed
& ADV_MAX_TID
) {
3520 len
= asc_prt_line(cp
, leftlen
, "%X:%s ", i
, speed_str
);
3523 len
= asc_prt_line(cp
, leftlen
, "\n ");
3528 len
= asc_prt_line(cp
, leftlen
, "\n");
3536 * asc_prt_driver_conf()
3538 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3539 * cf. asc_prt_line().
3541 * Return the number of characters copied into 'cp'. No more than
3542 * 'cplen' characters will be copied to 'cp'.
3544 static int asc_prt_driver_conf(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3546 struct asc_board
*boardp
= shost_priv(shost
);
3555 len
= asc_prt_line(cp
, leftlen
,
3556 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3560 len
= asc_prt_line(cp
, leftlen
,
3561 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3562 shost
->host_busy
, shost
->last_reset
, shost
->max_id
,
3563 shost
->max_lun
, shost
->max_channel
);
3566 len
= asc_prt_line(cp
, leftlen
,
3567 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3568 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3569 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3572 len
= asc_prt_line(cp
, leftlen
,
3573 " unchecked_isa_dma %d, use_clustering %d\n",
3574 shost
->unchecked_isa_dma
, shost
->use_clustering
);
3577 len
= asc_prt_line(cp
, leftlen
,
3578 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3579 boardp
->flags
, boardp
->last_reset
, jiffies
,
3580 boardp
->asc_n_io_port
);
3583 len
= asc_prt_line(cp
, leftlen
, " io_port 0x%x\n", shost
->io_port
);
3586 if (ASC_NARROW_BOARD(boardp
)) {
3587 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
3589 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
3596 * asc_prt_asc_board_info()
3598 * Print dynamic board configuration information.
3600 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3601 * cf. asc_prt_line().
3603 * Return the number of characters copied into 'cp'. No more than
3604 * 'cplen' characters will be copied to 'cp'.
3606 static int asc_prt_asc_board_info(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3608 struct asc_board
*boardp
= shost_priv(shost
);
3616 int renegotiate
= 0;
3618 v
= &boardp
->dvc_var
.asc_dvc_var
;
3619 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3620 chip_scsi_id
= c
->chip_scsi_id
;
3625 len
= asc_prt_line(cp
, leftlen
,
3626 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3630 len
= asc_prt_line(cp
, leftlen
, " chip_version %u, mcode_date 0x%x, "
3631 "mcode_version 0x%x, err_code %u\n",
3632 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3636 /* Current number of commands waiting for the host. */
3637 len
= asc_prt_line(cp
, leftlen
,
3638 " Total Command Pending: %d\n", v
->cur_total_qng
);
3641 len
= asc_prt_line(cp
, leftlen
, " Command Queuing:");
3643 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3644 if ((chip_scsi_id
== i
) ||
3645 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3648 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3651 use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ?
3655 len
= asc_prt_line(cp
, leftlen
, "\n");
3658 /* Current number of commands waiting for a device. */
3659 len
= asc_prt_line(cp
, leftlen
, " Command Queue Pending:");
3661 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3662 if ((chip_scsi_id
== i
) ||
3663 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3666 len
= asc_prt_line(cp
, leftlen
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3669 len
= asc_prt_line(cp
, leftlen
, "\n");
3672 /* Current limit on number of commands that can be sent to a device. */
3673 len
= asc_prt_line(cp
, leftlen
, " Command Queue Limit:");
3675 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3676 if ((chip_scsi_id
== i
) ||
3677 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3680 len
= asc_prt_line(cp
, leftlen
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3683 len
= asc_prt_line(cp
, leftlen
, "\n");
3686 /* Indicate whether the device has returned queue full status. */
3687 len
= asc_prt_line(cp
, leftlen
, " Command Queue Full:");
3689 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3690 if ((chip_scsi_id
== i
) ||
3691 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3694 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
)) {
3695 len
= asc_prt_line(cp
, leftlen
, " %X:Y-%d",
3696 i
, boardp
->queue_full_cnt
[i
]);
3698 len
= asc_prt_line(cp
, leftlen
, " %X:N", i
);
3702 len
= asc_prt_line(cp
, leftlen
, "\n");
3705 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3707 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3708 if ((chip_scsi_id
== i
) ||
3709 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3712 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3715 sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3719 len
= asc_prt_line(cp
, leftlen
, "\n");
3722 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3723 uchar syn_period_ix
;
3725 if ((chip_scsi_id
== i
) ||
3726 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3727 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3731 len
= asc_prt_line(cp
, leftlen
, " %X:", i
);
3734 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3735 len
= asc_prt_line(cp
, leftlen
, " Asynchronous");
3739 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3742 len
= asc_prt_line(cp
, leftlen
,
3743 " Transfer Period Factor: %d (%d.%d Mhz),",
3744 v
->sdtr_period_tbl
[syn_period_ix
],
3746 v
->sdtr_period_tbl
[syn_period_ix
],
3753 len
= asc_prt_line(cp
, leftlen
, " REQ/ACK Offset: %d",
3755 sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3759 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3760 len
= asc_prt_line(cp
, leftlen
, "*\n");
3763 len
= asc_prt_line(cp
, leftlen
, "\n");
3769 len
= asc_prt_line(cp
, leftlen
,
3770 " * = Re-negotiation pending before next command.\n");
3778 * asc_prt_adv_board_info()
3780 * Print dynamic board configuration information.
3782 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3783 * cf. asc_prt_line().
3785 * Return the number of characters copied into 'cp'. No more than
3786 * 'cplen' characters will be copied to 'cp'.
3788 static int asc_prt_adv_board_info(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3790 struct asc_board
*boardp
= shost_priv(shost
);
3797 AdvPortAddr iop_base
;
3798 ushort chip_scsi_id
;
3802 ushort sdtr_able
, wdtr_able
;
3803 ushort wdtr_done
, sdtr_done
;
3805 int renegotiate
= 0;
3807 v
= &boardp
->dvc_var
.adv_dvc_var
;
3808 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3809 iop_base
= v
->iop_base
;
3810 chip_scsi_id
= v
->chip_scsi_id
;
3815 len
= asc_prt_line(cp
, leftlen
,
3816 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3820 len
= asc_prt_line(cp
, leftlen
,
3821 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823 AdvReadWordRegister(iop_base
,
3824 IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3828 len
= asc_prt_line(cp
, leftlen
, " chip_version %u, mcode_date 0x%x, "
3829 "mcode_version 0x%x\n", c
->chip_version
,
3830 c
->mcode_date
, c
->mcode_version
);
3833 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3834 len
= asc_prt_line(cp
, leftlen
, " Queuing Enabled:");
3836 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3837 if ((chip_scsi_id
== i
) ||
3838 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3842 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3844 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3848 len
= asc_prt_line(cp
, leftlen
, "\n");
3851 len
= asc_prt_line(cp
, leftlen
, " Queue Limit:");
3853 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3854 if ((chip_scsi_id
== i
) ||
3855 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3859 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3862 len
= asc_prt_line(cp
, leftlen
, " %X:%d", i
, lrambyte
);
3865 len
= asc_prt_line(cp
, leftlen
, "\n");
3868 len
= asc_prt_line(cp
, leftlen
, " Command Pending:");
3870 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3871 if ((chip_scsi_id
== i
) ||
3872 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3876 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3879 len
= asc_prt_line(cp
, leftlen
, " %X:%d", i
, lrambyte
);
3882 len
= asc_prt_line(cp
, leftlen
, "\n");
3885 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3886 len
= asc_prt_line(cp
, leftlen
, " Wide Enabled:");
3888 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3889 if ((chip_scsi_id
== i
) ||
3890 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3894 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3896 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3900 len
= asc_prt_line(cp
, leftlen
, "\n");
3903 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3904 len
= asc_prt_line(cp
, leftlen
, " Transfer Bit Width:");
3906 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3907 if ((chip_scsi_id
== i
) ||
3908 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3912 AdvReadWordLram(iop_base
,
3913 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3916 len
= asc_prt_line(cp
, leftlen
, " %X:%d",
3917 i
, (lramword
& 0x8000) ? 16 : 8);
3920 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3921 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3922 len
= asc_prt_line(cp
, leftlen
, "*");
3927 len
= asc_prt_line(cp
, leftlen
, "\n");
3930 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3931 len
= asc_prt_line(cp
, leftlen
, " Synchronous Enabled:");
3933 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3934 if ((chip_scsi_id
== i
) ||
3935 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3939 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3941 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3945 len
= asc_prt_line(cp
, leftlen
, "\n");
3948 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3949 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3951 AdvReadWordLram(iop_base
,
3952 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3954 lramword
&= ~0x8000;
3956 if ((chip_scsi_id
== i
) ||
3957 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3958 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3962 len
= asc_prt_line(cp
, leftlen
, " %X:", i
);
3965 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3966 len
= asc_prt_line(cp
, leftlen
, " Asynchronous");
3970 asc_prt_line(cp
, leftlen
,
3971 " Transfer Period Factor: ");
3974 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3976 asc_prt_line(cp
, leftlen
, "9 (80.0 Mhz),");
3978 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3980 asc_prt_line(cp
, leftlen
, "10 (40.0 Mhz),");
3982 } else { /* 20 Mhz or below. */
3984 period
= (((lramword
>> 8) * 25) + 50) / 4;
3986 if (period
== 0) { /* Should never happen. */
3988 asc_prt_line(cp
, leftlen
,
3992 len
= asc_prt_line(cp
, leftlen
,
3994 period
, 250 / period
,
4001 len
= asc_prt_line(cp
, leftlen
, " REQ/ACK Offset: %d",
4006 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
4007 len
= asc_prt_line(cp
, leftlen
, "*\n");
4010 len
= asc_prt_line(cp
, leftlen
, "\n");
4016 len
= asc_prt_line(cp
, leftlen
,
4017 " * = Re-negotiation pending before next command.\n");
4027 * Copy proc information to a read buffer taking into account the current
4028 * read offset in the file and the remaining space in the read buffer.
4031 asc_proc_copy(off_t advoffset
, off_t offset
, char *curbuf
, int leftlen
,
4032 char *cp
, int cplen
)
4036 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4037 (unsigned)offset
, (unsigned)advoffset
, cplen
);
4038 if (offset
<= advoffset
) {
4039 /* Read offset below current offset, copy everything. */
4040 cnt
= min(cplen
, leftlen
);
4041 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4042 (ulong
)curbuf
, (ulong
)cp
, cnt
);
4043 memcpy(curbuf
, cp
, cnt
);
4044 } else if (offset
< advoffset
+ cplen
) {
4045 /* Read offset within current range, partial copy. */
4046 cnt
= (advoffset
+ cplen
) - offset
;
4047 cp
= (cp
+ cplen
) - cnt
;
4048 cnt
= min(cnt
, leftlen
);
4049 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4050 (ulong
)curbuf
, (ulong
)cp
, cnt
);
4051 memcpy(curbuf
, cp
, cnt
);
4056 #ifdef ADVANSYS_STATS
4058 * asc_prt_board_stats()
4060 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4061 * cf. asc_prt_line().
4063 * Return the number of characters copied into 'cp'. No more than
4064 * 'cplen' characters will be copied to 'cp'.
4066 static int asc_prt_board_stats(struct Scsi_Host
*shost
, char *cp
, int cplen
)
4068 struct asc_board
*boardp
= shost_priv(shost
);
4069 struct asc_stats
*s
= &boardp
->asc_stats
;
4071 int leftlen
= cplen
;
4072 int len
, totlen
= 0;
4074 len
= asc_prt_line(cp
, leftlen
,
4075 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4079 len
= asc_prt_line(cp
, leftlen
,
4080 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4081 s
->queuecommand
, s
->reset
, s
->biosparam
,
4085 len
= asc_prt_line(cp
, leftlen
,
4086 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4087 s
->callback
, s
->done
, s
->build_error
,
4088 s
->adv_build_noreq
, s
->adv_build_nosg
);
4091 len
= asc_prt_line(cp
, leftlen
,
4092 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4093 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
4098 * Display data transfer statistics.
4100 if (s
->xfer_cnt
> 0) {
4101 len
= asc_prt_line(cp
, leftlen
, " xfer_cnt %lu, xfer_elem %lu, ",
4102 s
->xfer_cnt
, s
->xfer_elem
);
4105 len
= asc_prt_line(cp
, leftlen
, "xfer_bytes %lu.%01lu kb\n",
4106 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
4109 /* Scatter gather transfer statistics */
4110 len
= asc_prt_line(cp
, leftlen
, " avg_num_elem %lu.%01lu, ",
4111 s
->xfer_elem
/ s
->xfer_cnt
,
4112 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
4115 len
= asc_prt_line(cp
, leftlen
, "avg_elem_size %lu.%01lu kb, ",
4116 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
4117 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
4120 len
= asc_prt_line(cp
, leftlen
, "avg_xfer_size %lu.%01lu kb\n",
4121 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
4122 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
4128 #endif /* ADVANSYS_STATS */
4131 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4133 * *buffer: I/O buffer
4134 * **start: if inout == FALSE pointer into buffer where user read should start
4135 * offset: current offset into a /proc/scsi/advansys/[0...] file
4136 * length: length of buffer
4137 * hostno: Scsi_Host host_no
4138 * inout: TRUE - user is writing; FALSE - user is reading
4140 * Return the number of bytes read from or written to a
4141 * /proc/scsi/advansys/[0...] file.
4143 * Note: This function uses the per board buffer 'prtbuf' which is
4144 * allocated when the board is initialized in advansys_detect(). The
4145 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4146 * used to write to the buffer. The way asc_proc_copy() is written
4147 * if 'prtbuf' is too small it will not be overwritten. Instead the
4148 * user just won't get all the available statistics.
4151 advansys_proc_info(struct Scsi_Host
*shost
, char *buffer
, char **start
,
4152 off_t offset
, int length
, int inout
)
4154 struct asc_board
*boardp
= shost_priv(shost
);
4163 ASC_DBG(1, "begin\n");
4166 * User write not supported.
4172 * User read of /proc/scsi/advansys/[0...] file.
4175 /* Copy read data starting at the beginning of the buffer. */
4183 * Get board configuration information.
4185 * advansys_info() returns the board string from its own static buffer.
4187 cp
= (char *)advansys_info(shost
);
4190 /* Copy board information. */
4191 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4195 ASC_DBG(1, "totcnt %d\n", totcnt
);
4202 * Display Wide Board BIOS Information.
4204 if (!ASC_NARROW_BOARD(boardp
)) {
4205 cp
= boardp
->prtbuf
;
4206 cplen
= asc_prt_adv_bios(shost
, cp
, ASC_PRTBUF_SIZE
);
4207 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4208 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
,
4213 ASC_DBG(1, "totcnt %d\n", totcnt
);
4221 * Display driver information for each device attached to the board.
4223 cp
= boardp
->prtbuf
;
4224 cplen
= asc_prt_board_devices(shost
, cp
, ASC_PRTBUF_SIZE
);
4225 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4226 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4230 ASC_DBG(1, "totcnt %d\n", totcnt
);
4237 * Display EEPROM configuration for the board.
4239 cp
= boardp
->prtbuf
;
4240 if (ASC_NARROW_BOARD(boardp
)) {
4241 cplen
= asc_prt_asc_board_eeprom(shost
, cp
, ASC_PRTBUF_SIZE
);
4243 cplen
= asc_prt_adv_board_eeprom(shost
, cp
, ASC_PRTBUF_SIZE
);
4245 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4246 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4250 ASC_DBG(1, "totcnt %d\n", totcnt
);
4257 * Display driver configuration and information for the board.
4259 cp
= boardp
->prtbuf
;
4260 cplen
= asc_prt_driver_conf(shost
, cp
, ASC_PRTBUF_SIZE
);
4261 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4262 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4266 ASC_DBG(1, "totcnt %d\n", totcnt
);
4272 #ifdef ADVANSYS_STATS
4274 * Display driver statistics for the board.
4276 cp
= boardp
->prtbuf
;
4277 cplen
= asc_prt_board_stats(shost
, cp
, ASC_PRTBUF_SIZE
);
4278 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4279 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4283 ASC_DBG(1, "totcnt %d\n", totcnt
);
4288 #endif /* ADVANSYS_STATS */
4291 * Display Asc Library dynamic configuration information
4294 cp
= boardp
->prtbuf
;
4295 if (ASC_NARROW_BOARD(boardp
)) {
4296 cplen
= asc_prt_asc_board_info(shost
, cp
, ASC_PRTBUF_SIZE
);
4298 cplen
= asc_prt_adv_board_info(shost
, cp
, ASC_PRTBUF_SIZE
);
4300 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4301 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4305 ASC_DBG(1, "totcnt %d\n", totcnt
);
4311 ASC_DBG(1, "totcnt %d\n", totcnt
);
4315 #endif /* CONFIG_PROC_FS */
4317 static void asc_scsi_done(struct scsi_cmnd
*scp
)
4319 scsi_dma_unmap(scp
);
4320 ASC_STATS(scp
->device
->host
, done
);
4321 scp
->scsi_done(scp
);
4324 static void AscSetBank(PortAddr iop_base
, uchar bank
)
4328 val
= AscGetChipControl(iop_base
) &
4330 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
4334 } else if (bank
== 2) {
4335 val
|= CC_DIAG
| CC_BANK_ONE
;
4337 val
&= ~CC_BANK_ONE
;
4339 AscSetChipControl(iop_base
, val
);
4342 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
4344 AscSetBank(iop_base
, 1);
4345 AscWriteChipIH(iop_base
, ins_code
);
4346 AscSetBank(iop_base
, 0);
4349 static int AscStartChip(PortAddr iop_base
)
4351 AscSetChipControl(iop_base
, 0);
4352 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
4358 static int AscStopChip(PortAddr iop_base
)
4363 AscGetChipControl(iop_base
) &
4364 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
4365 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
4366 AscSetChipIH(iop_base
, INS_HALT
);
4367 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
4368 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
4374 static int AscIsChipHalted(PortAddr iop_base
)
4376 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
4377 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
4384 static int AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
4389 iop_base
= asc_dvc
->iop_base
;
4390 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
4394 AscStopChip(iop_base
);
4395 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
4397 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
4398 AscSetChipIH(iop_base
, INS_HALT
);
4399 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
4400 AscSetChipControl(iop_base
, CC_HALT
);
4402 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
4403 AscSetChipStatus(iop_base
, 0);
4404 return (AscIsChipHalted(iop_base
));
4407 static int AscFindSignature(PortAddr iop_base
)
4411 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4412 iop_base
, AscGetChipSignatureByte(iop_base
));
4413 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
4414 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4415 iop_base
, AscGetChipSignatureWord(iop_base
));
4416 sig_word
= AscGetChipSignatureWord(iop_base
);
4417 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
4418 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
4425 static void AscEnableInterrupt(PortAddr iop_base
)
4429 cfg
= AscGetChipCfgLsw(iop_base
);
4430 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
4433 static void AscDisableInterrupt(PortAddr iop_base
)
4437 cfg
= AscGetChipCfgLsw(iop_base
);
4438 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
4441 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
4443 unsigned char byte_data
;
4444 unsigned short word_data
;
4446 if (isodd_word(addr
)) {
4447 AscSetChipLramAddr(iop_base
, addr
- 1);
4448 word_data
= AscGetChipLramData(iop_base
);
4449 byte_data
= (word_data
>> 8) & 0xFF;
4451 AscSetChipLramAddr(iop_base
, addr
);
4452 word_data
= AscGetChipLramData(iop_base
);
4453 byte_data
= word_data
& 0xFF;
4458 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
4462 AscSetChipLramAddr(iop_base
, addr
);
4463 word_data
= AscGetChipLramData(iop_base
);
4467 #if CC_VERY_LONG_SG_LIST
4468 static ASC_DCNT
AscReadLramDWord(PortAddr iop_base
, ushort addr
)
4470 ushort val_low
, val_high
;
4471 ASC_DCNT dword_data
;
4473 AscSetChipLramAddr(iop_base
, addr
);
4474 val_low
= AscGetChipLramData(iop_base
);
4475 val_high
= AscGetChipLramData(iop_base
);
4476 dword_data
= ((ASC_DCNT
) val_high
<< 16) | (ASC_DCNT
) val_low
;
4477 return (dword_data
);
4479 #endif /* CC_VERY_LONG_SG_LIST */
4482 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
4486 AscSetChipLramAddr(iop_base
, s_addr
);
4487 for (i
= 0; i
< words
; i
++) {
4488 AscSetChipLramData(iop_base
, set_wval
);
4492 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
4494 AscSetChipLramAddr(iop_base
, addr
);
4495 AscSetChipLramData(iop_base
, word_val
);
4498 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
4502 if (isodd_word(addr
)) {
4504 word_data
= AscReadLramWord(iop_base
, addr
);
4505 word_data
&= 0x00FF;
4506 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
4508 word_data
= AscReadLramWord(iop_base
, addr
);
4509 word_data
&= 0xFF00;
4510 word_data
|= ((ushort
)byte_val
& 0x00FF);
4512 AscWriteLramWord(iop_base
, addr
, word_data
);
4516 * Copy 2 bytes to LRAM.
4518 * The source data is assumed to be in little-endian order in memory
4519 * and is maintained in little-endian order when written to LRAM.
4522 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
4523 const uchar
*s_buffer
, int words
)
4527 AscSetChipLramAddr(iop_base
, s_addr
);
4528 for (i
= 0; i
< 2 * words
; i
+= 2) {
4530 * On a little-endian system the second argument below
4531 * produces a little-endian ushort which is written to
4532 * LRAM in little-endian order. On a big-endian system
4533 * the second argument produces a big-endian ushort which
4534 * is "transparently" byte-swapped by outpw() and written
4535 * in little-endian order to LRAM.
4537 outpw(iop_base
+ IOP_RAM_DATA
,
4538 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
4543 * Copy 4 bytes to LRAM.
4545 * The source data is assumed to be in little-endian order in memory
4546 * and is maintained in little-endian order when written to LRAM.
4549 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
4550 ushort s_addr
, uchar
*s_buffer
, int dwords
)
4554 AscSetChipLramAddr(iop_base
, s_addr
);
4555 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
4556 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
4557 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
4562 * Copy 2 bytes from LRAM.
4564 * The source data is assumed to be in little-endian order in LRAM
4565 * and is maintained in little-endian order when written to memory.
4568 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
4569 ushort s_addr
, uchar
*d_buffer
, int words
)
4574 AscSetChipLramAddr(iop_base
, s_addr
);
4575 for (i
= 0; i
< 2 * words
; i
+= 2) {
4576 word
= inpw(iop_base
+ IOP_RAM_DATA
);
4577 d_buffer
[i
] = word
& 0xff;
4578 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
4582 static ASC_DCNT
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
4588 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
4589 sum
+= AscReadLramWord(iop_base
, s_addr
);
4594 static ushort
AscInitLram(ASC_DVC_VAR
*asc_dvc
)
4601 iop_base
= asc_dvc
->iop_base
;
4603 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
4604 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
4606 i
= ASC_MIN_ACTIVE_QNO
;
4607 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
4608 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4610 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4611 (uchar
)(asc_dvc
->max_total_qng
));
4612 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4615 s_addr
+= ASC_QBLK_SIZE
;
4616 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
4617 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4619 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4621 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4624 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4625 (uchar
)ASC_QLINK_END
);
4626 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4627 (uchar
)(asc_dvc
->max_total_qng
- 1));
4628 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4629 (uchar
)asc_dvc
->max_total_qng
);
4631 s_addr
+= ASC_QBLK_SIZE
;
4632 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
4633 i
++, s_addr
+= ASC_QBLK_SIZE
) {
4634 AscWriteLramByte(iop_base
,
4635 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
4636 AscWriteLramByte(iop_base
,
4637 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
4638 AscWriteLramByte(iop_base
,
4639 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
4645 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
4646 const uchar
*mcode_buf
, ushort mcode_size
)
4649 ushort mcode_word_size
;
4650 ushort mcode_chksum
;
4652 /* Write the microcode buffer starting at LRAM address 0. */
4653 mcode_word_size
= (ushort
)(mcode_size
>> 1);
4654 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
4655 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
4657 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
4658 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
4659 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
4660 (ushort
)ASC_CODE_SEC_BEG
,
4661 (ushort
)((mcode_size
-
4665 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
4666 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
4667 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
4671 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
4677 iop_base
= asc_dvc
->iop_base
;
4678 AscPutRiscVarFreeQHead(iop_base
, 1);
4679 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4680 AscPutVarFreeQHead(iop_base
, 1);
4681 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4682 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
4683 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
4684 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
4685 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
4686 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
4687 asc_dvc
->max_total_qng
);
4688 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
4689 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
4690 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
4691 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
4692 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
4693 AscPutQDoneInProgress(iop_base
, 0);
4694 lram_addr
= ASC_QADR_BEG
;
4695 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
4696 AscWriteLramWord(iop_base
, lram_addr
, 0);
4700 static ushort
AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
4707 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
4709 iop_base
= asc_dvc
->iop_base
;
4711 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
4712 AscPutMCodeInitSDTRAtID(iop_base
, i
,
4713 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
4716 AscInitQLinkVar(asc_dvc
);
4717 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
4718 asc_dvc
->cfg
->disc_enable
);
4719 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
4720 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
4722 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4723 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
4724 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
4725 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4726 if (dma_mapping_error(board
->dev
, asc_dvc
->overrun_dma
)) {
4727 warn_code
= -ENOMEM
;
4730 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
4731 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
4732 (uchar
*)&phy_addr
, 1);
4733 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
4734 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4735 (uchar
*)&phy_size
, 1);
4737 asc_dvc
->cfg
->mcode_date
=
4738 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4739 asc_dvc
->cfg
->mcode_version
=
4740 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4742 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4743 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4744 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4746 goto err_mcode_start
;
4748 if (AscStartChip(iop_base
) != 1) {
4749 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4751 goto err_mcode_start
;
4757 dma_unmap_single(board
->dev
, asc_dvc
->overrun_dma
,
4758 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4760 asc_dvc
->overrun_dma
= 0;
4764 static ushort
AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4766 const struct firmware
*fw
;
4767 const char fwname
[] = "advansys/mcode.bin";
4769 unsigned long chksum
;
4773 iop_base
= asc_dvc
->iop_base
;
4775 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4776 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4777 AscResetChipAndScsiBus(asc_dvc
);
4778 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4780 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4781 if (asc_dvc
->err_code
!= 0)
4783 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4784 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4787 AscDisableInterrupt(iop_base
);
4788 warn_code
|= AscInitLram(asc_dvc
);
4789 if (asc_dvc
->err_code
!= 0)
4792 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4794 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4796 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4800 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4802 release_firmware(fw
);
4803 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4806 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4807 (fw
->data
[1] << 8) | fw
->data
[0];
4808 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4809 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4810 fw
->size
- 4) != chksum
) {
4811 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4812 release_firmware(fw
);
4815 release_firmware(fw
);
4816 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4817 if (!asc_dvc
->overrun_dma
)
4819 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4820 AscEnableInterrupt(iop_base
);
4825 * Load the Microcode
4827 * Write the microcode image to RISC memory starting at address 0.
4829 * The microcode is stored compressed in the following format:
4831 * 254 word (508 byte) table indexed by byte code followed
4832 * by the following byte codes:
4835 * 00: Emit word 0 in table.
4836 * 01: Emit word 1 in table.
4838 * FD: Emit word 253 in table.
4841 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4842 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4844 * Returns 0 or an error if the checksum doesn't match
4846 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4847 int size
, int memsize
, int chksum
)
4849 int i
, j
, end
, len
= 0;
4852 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4854 for (i
= 253 * 2; i
< size
; i
++) {
4855 if (buf
[i
] == 0xff) {
4856 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4857 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4858 AdvWriteWordAutoIncLram(iop_base
, word
);
4862 } else if (buf
[i
] == 0xfe) {
4863 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4864 AdvWriteWordAutoIncLram(iop_base
, word
);
4868 unsigned int off
= buf
[i
] * 2;
4869 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4870 AdvWriteWordAutoIncLram(iop_base
, word
);
4877 while (len
< memsize
) {
4878 AdvWriteWordAutoIncLram(iop_base
, 0);
4882 /* Verify the microcode checksum. */
4884 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4886 for (len
= 0; len
< end
; len
+= 2) {
4887 sum
+= AdvReadWordAutoIncLram(iop_base
);
4891 return ASC_IERR_MCODE_CHKSUM
;
4896 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*asc_dvc
)
4900 ADV_PADDR carr_paddr
;
4902 carrp
= (ADV_CARR_T
*) ADV_16BALIGN(asc_dvc
->carrier_buf
);
4903 asc_dvc
->carr_freelist
= NULL
;
4904 if (carrp
== asc_dvc
->carrier_buf
) {
4905 buf_size
= ADV_CARRIER_BUFSIZE
;
4907 buf_size
= ADV_CARRIER_BUFSIZE
- sizeof(ADV_CARR_T
);
4911 /* Get physical address of the carrier 'carrp'. */
4912 carr_paddr
= cpu_to_le32(virt_to_bus(carrp
));
4914 buf_size
-= sizeof(ADV_CARR_T
);
4916 carrp
->carr_pa
= carr_paddr
;
4917 carrp
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(carrp
));
4920 * Insert the carrier at the beginning of the freelist.
4923 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
4924 asc_dvc
->carr_freelist
= carrp
;
4927 } while (buf_size
> 0);
4931 * Send an idle command to the chip and wait for completion.
4933 * Command completion is polled for once per microsecond.
4935 * The function can be called from anywhere including an interrupt handler.
4936 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4937 * functions to prevent reentrancy.
4940 * ADV_TRUE - command completed successfully
4941 * ADV_FALSE - command failed
4942 * ADV_ERROR - command timed out
4945 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4946 ushort idle_cmd
, ADV_DCNT idle_cmd_parameter
)
4950 AdvPortAddr iop_base
;
4952 iop_base
= asc_dvc
->iop_base
;
4955 * Clear the idle command status which is set by the microcode
4956 * to a non-zero value to indicate when the command is completed.
4957 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4959 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4962 * Write the idle command value after the idle command parameter
4963 * has been written to avoid a race condition. If the order is not
4964 * followed, the microcode may process the idle command before the
4965 * parameters have been written to LRAM.
4967 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4968 cpu_to_le32(idle_cmd_parameter
));
4969 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4972 * Tickle the RISC to tell it to process the idle command.
4974 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4975 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4977 * Clear the tickle value. In the ASC-3550 the RISC flag
4978 * command 'clr_tickle_b' does not work unless the host
4981 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4984 /* Wait for up to 100 millisecond for the idle command to timeout. */
4985 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4986 /* Poll once each microsecond for command completion. */
4987 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4988 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4996 BUG(); /* The idle command should never timeout. */
5001 * Reset SCSI Bus and purge all outstanding requests.
5004 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
5005 * ADV_FALSE(0) - Microcode command failed.
5006 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5007 * may be hung which requires driver recovery.
5009 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
5014 * Send the SCSI Bus Reset idle start idle command which asserts
5015 * the SCSI Bus Reset signal.
5017 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
5018 if (status
!= ADV_TRUE
) {
5023 * Delay for the specified SCSI Bus Reset hold time.
5025 * The hold time delay is done on the host because the RISC has no
5026 * microsecond accurate timer.
5028 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
5031 * Send the SCSI Bus Reset end idle command which de-asserts
5032 * the SCSI Bus Reset signal and purges any pending requests.
5034 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
5035 if (status
!= ADV_TRUE
) {
5039 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
5045 * Initialize the ASC-3550.
5047 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5049 * For a non-fatal error return a warning code. If there are no warnings
5050 * then 0 is returned.
5052 * Needed after initialization for error recovery.
5054 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
5056 const struct firmware
*fw
;
5057 const char fwname
[] = "advansys/3550.bin";
5058 AdvPortAddr iop_base
;
5066 unsigned long chksum
;
5069 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5070 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
5071 uchar max_cmd
[ADV_MAX_TID
+ 1];
5073 /* If there is already an error, don't continue. */
5074 if (asc_dvc
->err_code
!= 0)
5078 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5080 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
5081 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5086 iop_base
= asc_dvc
->iop_base
;
5089 * Save the RISC memory BIOS region before writing the microcode.
5090 * The BIOS may already be loaded and using its RISC LRAM region
5091 * so its region must be saved and restored.
5093 * Note: This code makes the assumption, which is currently true,
5094 * that a chip reset does not clear RISC LRAM.
5096 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5097 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5102 * Save current per TID negotiated values.
5104 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
5105 ushort bios_version
, major
, minor
;
5108 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
5109 major
= (bios_version
>> 12) & 0xF;
5110 minor
= (bios_version
>> 8) & 0xF;
5111 if (major
< 3 || (major
== 3 && minor
== 1)) {
5112 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5113 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
5115 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5118 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5119 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5120 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5121 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5125 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5127 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5129 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5133 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5135 release_firmware(fw
);
5136 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5139 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5140 (fw
->data
[1] << 8) | fw
->data
[0];
5141 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5142 fw
->size
- 4, ADV_3550_MEMSIZE
,
5144 release_firmware(fw
);
5145 if (asc_dvc
->err_code
)
5149 * Restore the RISC memory BIOS region.
5151 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5152 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5157 * Calculate and write the microcode code checksum to the microcode
5158 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5160 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5161 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5163 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5164 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5165 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5167 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5170 * Read and save microcode version and date.
5172 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5173 asc_dvc
->cfg
->mcode_date
);
5174 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5175 asc_dvc
->cfg
->mcode_version
);
5178 * Set the chip type to indicate the ASC3550.
5180 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
5183 * If the PCI Configuration Command Register "Parity Error Response
5184 * Control" Bit was clear (0), then set the microcode variable
5185 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5186 * to ignore DMA parity errors.
5188 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5189 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5190 word
|= CONTROL_FLAG_IGNORE_PERR
;
5191 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5195 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5196 * threshold of 128 bytes. This register is only accessible to the host.
5198 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5199 START_CTL_EMFU
| READ_CMD_MRM
);
5202 * Microcode operating variables for WDTR, SDTR, and command tag
5203 * queuing will be set in slave_configure() based on what a
5204 * device reports it is capable of in Inquiry byte 7.
5206 * If SCSI Bus Resets have been disabled, then directly set
5207 * SDTR and WDTR from the EEPROM configuration. This will allow
5208 * the BIOS and warm boot to work without a SCSI bus hang on
5209 * the Inquiry caused by host and target mismatched DTR values.
5210 * Without the SCSI Bus Reset, before an Inquiry a device can't
5211 * be assumed to be in Asynchronous, Narrow mode.
5213 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5214 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5215 asc_dvc
->wdtr_able
);
5216 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5217 asc_dvc
->sdtr_able
);
5221 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5222 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5223 * bitmask. These values determine the maximum SDTR speed negotiated
5226 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5227 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5228 * without determining here whether the device supports SDTR.
5230 * 4-bit speed SDTR speed name
5231 * =========== ===============
5232 * 0000b (0x0) SDTR disabled
5234 * 0010b (0x2) 10 Mhz
5235 * 0011b (0x3) 20 Mhz (Ultra)
5236 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5237 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5238 * 0110b (0x6) Undefined
5240 * 1111b (0xF) Undefined
5243 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5244 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
5245 /* Set Ultra speed for TID 'tid'. */
5246 word
|= (0x3 << (4 * (tid
% 4)));
5248 /* Set Fast speed for TID 'tid'. */
5249 word
|= (0x2 << (4 * (tid
% 4)));
5251 if (tid
== 3) { /* Check if done with sdtr_speed1. */
5252 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
5254 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
5255 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
5257 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
5258 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
5260 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
5261 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
5267 * Set microcode operating variable for the disconnect per TID bitmask.
5269 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5270 asc_dvc
->cfg
->disc_enable
);
5273 * Set SCSI_CFG0 Microcode Default Value.
5275 * The microcode will set the SCSI_CFG0 register using this value
5276 * after it is started below.
5278 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5279 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5280 asc_dvc
->chip_scsi_id
);
5283 * Determine SCSI_CFG1 Microcode Default Value.
5285 * The microcode will set the SCSI_CFG1 register using this value
5286 * after it is started below.
5289 /* Read current SCSI_CFG1 Register value. */
5290 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5293 * If all three connectors are in use, return an error.
5295 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
5296 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
5297 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
5302 * If the internal narrow cable is reversed all of the SCSI_CTRL
5303 * register signals will be set. Check for and return an error if
5304 * this condition is found.
5306 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5307 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5312 * If this is a differential board and a single-ended device
5313 * is attached to one of the connectors, return an error.
5315 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
5316 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
5321 * If automatic termination control is enabled, then set the
5322 * termination value based on a table listed in a_condor.h.
5324 * If manual termination was specified with an EEPROM setting
5325 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5326 * is ready to be 'ored' into SCSI_CFG1.
5328 if (asc_dvc
->cfg
->termination
== 0) {
5330 * The software always controls termination by setting TERM_CTL_SEL.
5331 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5333 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
5335 switch (scsi_cfg1
& CABLE_DETECT
) {
5336 /* TERM_CTL_H: on, TERM_CTL_L: on */
5343 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
5346 /* TERM_CTL_H: on, TERM_CTL_L: off */
5352 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
5355 /* TERM_CTL_H: off, TERM_CTL_L: off */
5363 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5365 scsi_cfg1
&= ~TERM_CTL
;
5368 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5369 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5370 * referenced, because the hardware internally inverts
5371 * the Termination High and Low bits if TERM_POL is set.
5373 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
5376 * Set SCSI_CFG1 Microcode Default Value
5378 * Set filter value and possibly modified termination control
5379 * bits in the Microcode SCSI_CFG1 Register Value.
5381 * The microcode will set the SCSI_CFG1 register using this value
5382 * after it is started below.
5384 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
5385 FLTR_DISABLE
| scsi_cfg1
);
5388 * Set MEM_CFG Microcode Default Value
5390 * The microcode will set the MEM_CFG register using this value
5391 * after it is started below.
5393 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5396 * ASC-3550 has 8KB internal memory.
5398 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5399 BIOS_EN
| RAM_SZ_8KB
);
5402 * Set SEL_MASK Microcode Default Value
5404 * The microcode will set the SEL_MASK register using this value
5405 * after it is started below.
5407 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5408 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5410 AdvBuildCarrierFreelist(asc_dvc
);
5413 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5416 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5417 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5420 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5421 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5424 * The first command issued will be placed in the stopper carrier.
5426 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5429 * Set RISC ICQ physical address start value.
5431 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5434 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5436 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5437 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5440 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5441 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5444 * The first command completed by the RISC will be placed in
5447 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5448 * completed the RISC will set the ASC_RQ_STOPPER bit.
5450 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5453 * Set RISC IRQ physical address start value.
5455 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5456 asc_dvc
->carr_pending_cnt
= 0;
5458 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5459 (ADV_INTR_ENABLE_HOST_INTR
|
5460 ADV_INTR_ENABLE_GLOBAL_INTR
));
5462 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5463 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5465 /* finally, finally, gentlemen, start your engine */
5466 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5469 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5470 * Resets should be performed. The RISC has to be running
5471 * to issue a SCSI Bus Reset.
5473 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5475 * If the BIOS Signature is present in memory, restore the
5476 * BIOS Handshake Configuration Table and do not perform
5479 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5482 * Restore per TID negotiated values.
5484 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5485 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5486 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5488 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5489 AdvWriteByteLram(iop_base
,
5490 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5494 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5495 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5504 * Initialize the ASC-38C0800.
5506 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5508 * For a non-fatal error return a warning code. If there are no warnings
5509 * then 0 is returned.
5511 * Needed after initialization for error recovery.
5513 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
5515 const struct firmware
*fw
;
5516 const char fwname
[] = "advansys/38C0800.bin";
5517 AdvPortAddr iop_base
;
5525 unsigned long chksum
;
5529 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5530 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5531 uchar max_cmd
[ADV_MAX_TID
+ 1];
5533 /* If there is already an error, don't continue. */
5534 if (asc_dvc
->err_code
!= 0)
5538 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5540 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
5541 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5546 iop_base
= asc_dvc
->iop_base
;
5549 * Save the RISC memory BIOS region before writing the microcode.
5550 * The BIOS may already be loaded and using its RISC LRAM region
5551 * so its region must be saved and restored.
5553 * Note: This code makes the assumption, which is currently true,
5554 * that a chip reset does not clear RISC LRAM.
5556 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5557 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5562 * Save current per TID negotiated values.
5564 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5565 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5566 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5567 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5568 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5573 * RAM BIST (RAM Built-In Self Test)
5575 * Address : I/O base + offset 0x38h register (byte).
5576 * Function: Bit 7-6(RW) : RAM mode
5577 * Normal Mode : 0x00
5578 * Pre-test Mode : 0x40
5579 * RAM Test Mode : 0x80
5581 * Bit 4(RO) : Done bit
5582 * Bit 3-0(RO) : Status
5584 * Int_RAM Error : 0x04
5589 * Note: RAM BIST code should be put right here, before loading the
5590 * microcode and after saving the RISC memory BIOS region.
5596 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5597 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5598 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5599 * to NORMAL_MODE, return an error too.
5601 for (i
= 0; i
< 2; i
++) {
5602 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5603 mdelay(10); /* Wait for 10ms before reading back. */
5604 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5605 if ((byte
& RAM_TEST_DONE
) == 0
5606 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5607 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5611 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5612 mdelay(10); /* Wait for 10ms before reading back. */
5613 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5615 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5621 * LRAM Test - It takes about 1.5 ms to run through the test.
5623 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5624 * If Done bit not set or Status not 0, save register byte, set the
5625 * err_code, and return an error.
5627 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5628 mdelay(10); /* Wait for 10ms before checking status. */
5630 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5631 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5632 /* Get here if Done bit not set or Status not 0. */
5633 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5634 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5638 /* We need to reset back to normal mode after LRAM test passes. */
5639 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5641 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5643 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5645 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5649 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5651 release_firmware(fw
);
5652 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5655 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5656 (fw
->data
[1] << 8) | fw
->data
[0];
5657 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5658 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
5660 release_firmware(fw
);
5661 if (asc_dvc
->err_code
)
5665 * Restore the RISC memory BIOS region.
5667 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5668 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5673 * Calculate and write the microcode code checksum to the microcode
5674 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5676 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5677 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5679 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5680 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5681 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5683 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5686 * Read microcode version and date.
5688 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5689 asc_dvc
->cfg
->mcode_date
);
5690 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5691 asc_dvc
->cfg
->mcode_version
);
5694 * Set the chip type to indicate the ASC38C0800.
5696 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
5699 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5700 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5701 * cable detection and then we are able to read C_DET[3:0].
5703 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5704 * Microcode Default Value' section below.
5706 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5707 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5708 scsi_cfg1
| DIS_TERM_DRV
);
5711 * If the PCI Configuration Command Register "Parity Error Response
5712 * Control" Bit was clear (0), then set the microcode variable
5713 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5714 * to ignore DMA parity errors.
5716 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5717 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5718 word
|= CONTROL_FLAG_IGNORE_PERR
;
5719 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5723 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5724 * bits for the default FIFO threshold.
5726 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5728 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5730 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5731 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5735 * Microcode operating variables for WDTR, SDTR, and command tag
5736 * queuing will be set in slave_configure() based on what a
5737 * device reports it is capable of in Inquiry byte 7.
5739 * If SCSI Bus Resets have been disabled, then directly set
5740 * SDTR and WDTR from the EEPROM configuration. This will allow
5741 * the BIOS and warm boot to work without a SCSI bus hang on
5742 * the Inquiry caused by host and target mismatched DTR values.
5743 * Without the SCSI Bus Reset, before an Inquiry a device can't
5744 * be assumed to be in Asynchronous, Narrow mode.
5746 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5747 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5748 asc_dvc
->wdtr_able
);
5749 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5750 asc_dvc
->sdtr_able
);
5754 * Set microcode operating variables for DISC and SDTR_SPEED1,
5755 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5756 * configuration values.
5758 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5759 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5760 * without determining here whether the device supports SDTR.
5762 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5763 asc_dvc
->cfg
->disc_enable
);
5764 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5765 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5766 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5767 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5770 * Set SCSI_CFG0 Microcode Default Value.
5772 * The microcode will set the SCSI_CFG0 register using this value
5773 * after it is started below.
5775 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5776 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5777 asc_dvc
->chip_scsi_id
);
5780 * Determine SCSI_CFG1 Microcode Default Value.
5782 * The microcode will set the SCSI_CFG1 register using this value
5783 * after it is started below.
5786 /* Read current SCSI_CFG1 Register value. */
5787 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5790 * If the internal narrow cable is reversed all of the SCSI_CTRL
5791 * register signals will be set. Check for and return an error if
5792 * this condition is found.
5794 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5795 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5800 * All kind of combinations of devices attached to one of four
5801 * connectors are acceptable except HVD device attached. For example,
5802 * LVD device can be attached to SE connector while SE device attached
5803 * to LVD connector. If LVD device attached to SE connector, it only
5804 * runs up to Ultra speed.
5806 * If an HVD device is attached to one of LVD connectors, return an
5807 * error. However, there is no way to detect HVD device attached to
5810 if (scsi_cfg1
& HVD
) {
5811 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5816 * If either SE or LVD automatic termination control is enabled, then
5817 * set the termination value based on a table listed in a_condor.h.
5819 * If manual termination was specified with an EEPROM setting then
5820 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5821 * to be 'ored' into SCSI_CFG1.
5823 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5824 /* SE automatic termination control is enabled. */
5825 switch (scsi_cfg1
& C_DET_SE
) {
5826 /* TERM_SE_HI: on, TERM_SE_LO: on */
5830 asc_dvc
->cfg
->termination
|= TERM_SE
;
5833 /* TERM_SE_HI: on, TERM_SE_LO: off */
5835 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5840 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5841 /* LVD automatic termination control is enabled. */
5842 switch (scsi_cfg1
& C_DET_LVD
) {
5843 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5847 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5850 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5857 * Clear any set TERM_SE and TERM_LVD bits.
5859 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5862 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5864 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5867 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5868 * bits and set possibly modified termination control bits in the
5869 * Microcode SCSI_CFG1 Register Value.
5871 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5874 * Set SCSI_CFG1 Microcode Default Value
5876 * Set possibly modified termination control and reset DIS_TERM_DRV
5877 * bits in the Microcode SCSI_CFG1 Register Value.
5879 * The microcode will set the SCSI_CFG1 register using this value
5880 * after it is started below.
5882 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5885 * Set MEM_CFG Microcode Default Value
5887 * The microcode will set the MEM_CFG register using this value
5888 * after it is started below.
5890 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5893 * ASC-38C0800 has 16KB internal memory.
5895 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5896 BIOS_EN
| RAM_SZ_16KB
);
5899 * Set SEL_MASK Microcode Default Value
5901 * The microcode will set the SEL_MASK register using this value
5902 * after it is started below.
5904 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5905 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5907 AdvBuildCarrierFreelist(asc_dvc
);
5910 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5913 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5914 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5917 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5918 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5921 * The first command issued will be placed in the stopper carrier.
5923 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5926 * Set RISC ICQ physical address start value.
5927 * carr_pa is LE, must be native before write
5929 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5932 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5934 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5935 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5938 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5939 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5942 * The first command completed by the RISC will be placed in
5945 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5946 * completed the RISC will set the ASC_RQ_STOPPER bit.
5948 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5951 * Set RISC IRQ physical address start value.
5953 * carr_pa is LE, must be native before write *
5955 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5956 asc_dvc
->carr_pending_cnt
= 0;
5958 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5959 (ADV_INTR_ENABLE_HOST_INTR
|
5960 ADV_INTR_ENABLE_GLOBAL_INTR
));
5962 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5963 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5965 /* finally, finally, gentlemen, start your engine */
5966 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5969 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5970 * Resets should be performed. The RISC has to be running
5971 * to issue a SCSI Bus Reset.
5973 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5975 * If the BIOS Signature is present in memory, restore the
5976 * BIOS Handshake Configuration Table and do not perform
5979 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5982 * Restore per TID negotiated values.
5984 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5985 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5986 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5988 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5989 AdvWriteByteLram(iop_base
,
5990 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5994 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5995 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6004 * Initialize the ASC-38C1600.
6006 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6008 * For a non-fatal error return a warning code. If there are no warnings
6009 * then 0 is returned.
6011 * Needed after initialization for error recovery.
6013 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
6015 const struct firmware
*fw
;
6016 const char fwname
[] = "advansys/38C1600.bin";
6017 AdvPortAddr iop_base
;
6025 unsigned long chksum
;
6029 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
6030 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
6031 uchar max_cmd
[ASC_MAX_TID
+ 1];
6033 /* If there is already an error, don't continue. */
6034 if (asc_dvc
->err_code
!= 0) {
6039 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6041 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
6042 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
6047 iop_base
= asc_dvc
->iop_base
;
6050 * Save the RISC memory BIOS region before writing the microcode.
6051 * The BIOS may already be loaded and using its RISC LRAM region
6052 * so its region must be saved and restored.
6054 * Note: This code makes the assumption, which is currently true,
6055 * that a chip reset does not clear RISC LRAM.
6057 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
6058 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
6063 * Save current per TID negotiated values.
6065 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6066 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6067 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6068 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6069 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6070 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6075 * RAM BIST (Built-In Self Test)
6077 * Address : I/O base + offset 0x38h register (byte).
6078 * Function: Bit 7-6(RW) : RAM mode
6079 * Normal Mode : 0x00
6080 * Pre-test Mode : 0x40
6081 * RAM Test Mode : 0x80
6083 * Bit 4(RO) : Done bit
6084 * Bit 3-0(RO) : Status
6086 * Int_RAM Error : 0x04
6091 * Note: RAM BIST code should be put right here, before loading the
6092 * microcode and after saving the RISC memory BIOS region.
6098 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6099 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6100 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6101 * to NORMAL_MODE, return an error too.
6103 for (i
= 0; i
< 2; i
++) {
6104 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
6105 mdelay(10); /* Wait for 10ms before reading back. */
6106 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
6107 if ((byte
& RAM_TEST_DONE
) == 0
6108 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
6109 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
6113 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
6114 mdelay(10); /* Wait for 10ms before reading back. */
6115 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
6117 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
6123 * LRAM Test - It takes about 1.5 ms to run through the test.
6125 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6126 * If Done bit not set or Status not 0, save register byte, set the
6127 * err_code, and return an error.
6129 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
6130 mdelay(10); /* Wait for 10ms before checking status. */
6132 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
6133 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
6134 /* Get here if Done bit not set or Status not 0. */
6135 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
6136 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
6140 /* We need to reset back to normal mode after LRAM test passes. */
6141 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
6143 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
6145 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
6147 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
6151 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
6153 release_firmware(fw
);
6154 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
6157 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
6158 (fw
->data
[1] << 8) | fw
->data
[0];
6159 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
6160 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
6162 release_firmware(fw
);
6163 if (asc_dvc
->err_code
)
6167 * Restore the RISC memory BIOS region.
6169 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
6170 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
6175 * Calculate and write the microcode code checksum to the microcode
6176 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6178 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
6179 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
6181 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
6182 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
6183 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
6185 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
6188 * Read microcode version and date.
6190 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
6191 asc_dvc
->cfg
->mcode_date
);
6192 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
6193 asc_dvc
->cfg
->mcode_version
);
6196 * Set the chip type to indicate the ASC38C1600.
6198 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
6201 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6202 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6203 * cable detection and then we are able to read C_DET[3:0].
6205 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6206 * Microcode Default Value' section below.
6208 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
6209 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
6210 scsi_cfg1
| DIS_TERM_DRV
);
6213 * If the PCI Configuration Command Register "Parity Error Response
6214 * Control" Bit was clear (0), then set the microcode variable
6215 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6216 * to ignore DMA parity errors.
6218 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
6219 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6220 word
|= CONTROL_FLAG_IGNORE_PERR
;
6221 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6225 * If the BIOS control flag AIPP (Asynchronous Information
6226 * Phase Protection) disable bit is not set, then set the firmware
6227 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6228 * AIPP checking and encoding.
6230 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
6231 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6232 word
|= CONTROL_FLAG_ENABLE_AIPP
;
6233 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6237 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6238 * and START_CTL_TH [3:2].
6240 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
6241 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
6244 * Microcode operating variables for WDTR, SDTR, and command tag
6245 * queuing will be set in slave_configure() based on what a
6246 * device reports it is capable of in Inquiry byte 7.
6248 * If SCSI Bus Resets have been disabled, then directly set
6249 * SDTR and WDTR from the EEPROM configuration. This will allow
6250 * the BIOS and warm boot to work without a SCSI bus hang on
6251 * the Inquiry caused by host and target mismatched DTR values.
6252 * Without the SCSI Bus Reset, before an Inquiry a device can't
6253 * be assumed to be in Asynchronous, Narrow mode.
6255 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
6256 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
6257 asc_dvc
->wdtr_able
);
6258 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
6259 asc_dvc
->sdtr_able
);
6263 * Set microcode operating variables for DISC and SDTR_SPEED1,
6264 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6265 * configuration values.
6267 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6268 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6269 * without determining here whether the device supports SDTR.
6271 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
6272 asc_dvc
->cfg
->disc_enable
);
6273 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
6274 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
6275 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
6276 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
6279 * Set SCSI_CFG0 Microcode Default Value.
6281 * The microcode will set the SCSI_CFG0 register using this value
6282 * after it is started below.
6284 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
6285 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
6286 asc_dvc
->chip_scsi_id
);
6289 * Calculate SCSI_CFG1 Microcode Default Value.
6291 * The microcode will set the SCSI_CFG1 register using this value
6292 * after it is started below.
6294 * Each ASC-38C1600 function has only two cable detect bits.
6295 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6297 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
6300 * If the cable is reversed all of the SCSI_CTRL register signals
6301 * will be set. Check for and return an error if this condition is
6304 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
6305 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
6310 * Each ASC-38C1600 function has two connectors. Only an HVD device
6311 * can not be connected to either connector. An LVD device or SE device
6312 * may be connected to either connecor. If an SE device is connected,
6313 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6315 * If an HVD device is attached, return an error.
6317 if (scsi_cfg1
& HVD
) {
6318 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
6323 * Each function in the ASC-38C1600 uses only the SE cable detect and
6324 * termination because there are two connectors for each function. Each
6325 * function may use either LVD or SE mode. Corresponding the SE automatic
6326 * termination control EEPROM bits are used for each function. Each
6327 * function has its own EEPROM. If SE automatic control is enabled for
6328 * the function, then set the termination value based on a table listed
6331 * If manual termination is specified in the EEPROM for the function,
6332 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6333 * ready to be 'ored' into SCSI_CFG1.
6335 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
6336 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
6337 /* SE automatic termination control is enabled. */
6338 switch (scsi_cfg1
& C_DET_SE
) {
6339 /* TERM_SE_HI: on, TERM_SE_LO: on */
6343 asc_dvc
->cfg
->termination
|= TERM_SE
;
6347 if (PCI_FUNC(pdev
->devfn
) == 0) {
6348 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6350 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6351 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
6358 * Clear any set TERM_SE bits.
6360 scsi_cfg1
&= ~TERM_SE
;
6363 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6365 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
6368 * Clear Big Endian and Terminator Polarity bits and set possibly
6369 * modified termination control bits in the Microcode SCSI_CFG1
6372 * Big Endian bit is not used even on big endian machines.
6374 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
6377 * Set SCSI_CFG1 Microcode Default Value
6379 * Set possibly modified termination control bits in the Microcode
6380 * SCSI_CFG1 Register Value.
6382 * The microcode will set the SCSI_CFG1 register using this value
6383 * after it is started below.
6385 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
6388 * Set MEM_CFG Microcode Default Value
6390 * The microcode will set the MEM_CFG register using this value
6391 * after it is started below.
6393 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6396 * ASC-38C1600 has 32KB internal memory.
6398 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6399 * out a special 16K Adv Library and Microcode version. After the issue
6400 * resolved, we should turn back to the 32K support. Both a_condor.h and
6401 * mcode.sas files also need to be updated.
6403 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6404 * BIOS_EN | RAM_SZ_32KB);
6406 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
6407 BIOS_EN
| RAM_SZ_16KB
);
6410 * Set SEL_MASK Microcode Default Value
6412 * The microcode will set the SEL_MASK register using this value
6413 * after it is started below.
6415 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
6416 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
6418 AdvBuildCarrierFreelist(asc_dvc
);
6421 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6423 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
6424 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
6427 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
6428 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
6431 * The first command issued will be placed in the stopper carrier.
6433 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
6436 * Set RISC ICQ physical address start value. Initialize the
6437 * COMMA register to the same value otherwise the RISC will
6438 * prematurely detect a command is available.
6440 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
6441 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
6442 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
6445 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6447 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
6448 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
6451 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
6452 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
6455 * The first command completed by the RISC will be placed in
6458 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6459 * completed the RISC will set the ASC_RQ_STOPPER bit.
6461 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
6464 * Set RISC IRQ physical address start value.
6466 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
6467 asc_dvc
->carr_pending_cnt
= 0;
6469 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
6470 (ADV_INTR_ENABLE_HOST_INTR
|
6471 ADV_INTR_ENABLE_GLOBAL_INTR
));
6472 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
6473 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
6475 /* finally, finally, gentlemen, start your engine */
6476 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
6479 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6480 * Resets should be performed. The RISC has to be running
6481 * to issue a SCSI Bus Reset.
6483 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
6485 * If the BIOS Signature is present in memory, restore the
6486 * per TID microcode operating variables.
6488 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
6491 * Restore per TID negotiated values.
6493 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6494 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6495 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6496 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
6498 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6499 AdvWriteByteLram(iop_base
,
6500 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6504 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
6505 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6514 * Reset chip and SCSI Bus.
6517 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6518 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6520 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
6523 ushort wdtr_able
, sdtr_able
, tagqng_able
;
6524 ushort ppr_able
= 0;
6525 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
6526 AdvPortAddr iop_base
;
6529 iop_base
= asc_dvc
->iop_base
;
6532 * Save current per TID negotiated values.
6534 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6535 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6536 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6537 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6539 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6540 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6541 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6546 * Force the AdvInitAsc3550/38C0800Driver() function to
6547 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6548 * The initialization functions assumes a SCSI Bus Reset is not
6549 * needed if the BIOS signature word is present.
6551 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6552 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
6555 * Stop chip and reset it.
6557 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
6558 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
6560 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
6561 ADV_CTRL_REG_CMD_WR_IO_REG
);
6564 * Reset Adv Library error code, if any, and try
6565 * re-initializing the chip.
6567 asc_dvc
->err_code
= 0;
6568 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6569 status
= AdvInitAsc38C1600Driver(asc_dvc
);
6570 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6571 status
= AdvInitAsc38C0800Driver(asc_dvc
);
6573 status
= AdvInitAsc3550Driver(asc_dvc
);
6576 /* Translate initialization return value to status value. */
6584 * Restore the BIOS signature word.
6586 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6589 * Restore per TID negotiated values.
6591 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6592 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6593 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6594 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6596 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6597 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6598 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6606 * adv_async_callback() - Adv Library asynchronous event callback function.
6608 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
6611 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
6613 * The firmware detected a SCSI Bus reset.
6615 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6618 case ADV_ASYNC_RDMA_FAILURE
:
6620 * Handle RDMA failure by resetting the SCSI Bus and
6621 * possibly the chip if it is unresponsive. Log the error
6622 * with a unique code.
6624 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6625 AdvResetChipAndSB(adv_dvc_varp
);
6628 case ADV_HOST_SCSI_BUS_RESET
:
6630 * Host generated SCSI bus reset occurred.
6632 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6636 ASC_DBG(0, "unknown code 0x%x\n", code
);
6642 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6644 * Callback function for the Wide SCSI Adv Library.
6646 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
6648 struct asc_board
*boardp
;
6650 adv_sgblk_t
*sgblkp
;
6651 struct scsi_cmnd
*scp
;
6652 struct Scsi_Host
*shost
;
6655 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6656 (ulong
)adv_dvc_varp
, (ulong
)scsiqp
);
6657 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
6660 * Get the adv_req_t structure for the command that has been
6661 * completed. The adv_req_t structure actually contains the
6662 * completed ADV_SCSI_REQ_Q structure.
6664 reqp
= (adv_req_t
*)ADV_U32_TO_VADDR(scsiqp
->srb_ptr
);
6665 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
6667 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6672 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6673 * command that has been completed.
6675 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6676 * if any, are dropped, because a board structure pointer can not be
6680 ASC_DBG(1, "scp 0x%p\n", scp
);
6683 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6686 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6688 shost
= scp
->device
->host
;
6689 ASC_STATS(shost
, callback
);
6690 ASC_DBG(1, "shost 0x%p\n", shost
);
6692 boardp
= shost_priv(shost
);
6693 BUG_ON(adv_dvc_varp
!= &boardp
->dvc_var
.adv_dvc_var
);
6696 * 'done_status' contains the command's ending status.
6698 switch (scsiqp
->done_status
) {
6700 ASC_DBG(2, "QD_NO_ERROR\n");
6704 * Check for an underrun condition.
6706 * If there was no error and an underrun condition, then
6707 * then return the number of underrun bytes.
6709 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
6710 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
6711 resid_cnt
<= scsi_bufflen(scp
)) {
6712 ASC_DBG(1, "underrun condition %lu bytes\n",
6714 scsi_set_resid(scp
, resid_cnt
);
6719 ASC_DBG(2, "QD_WITH_ERROR\n");
6720 switch (scsiqp
->host_status
) {
6721 case QHSTA_NO_ERROR
:
6722 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
6723 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6725 SCSI_SENSE_BUFFERSIZE
);
6727 * Note: The 'status_byte()' macro used by
6728 * target drivers defined in scsi.h shifts the
6729 * status byte returned by host drivers right
6730 * by 1 bit. This is why target drivers also
6731 * use right shifted status byte definitions.
6732 * For instance target drivers use
6733 * CHECK_CONDITION, defined to 0x1, instead of
6734 * the SCSI defined check condition value of
6735 * 0x2. Host drivers are supposed to return
6736 * the status byte as it is defined by SCSI.
6738 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6739 STATUS_BYTE(scsiqp
->scsi_status
);
6741 scp
->result
= STATUS_BYTE(scsiqp
->scsi_status
);
6746 /* Some other QHSTA error occurred. */
6747 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
6748 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6753 case QD_ABORTED_BY_HOST
:
6754 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6756 HOST_BYTE(DID_ABORT
) | STATUS_BYTE(scsiqp
->scsi_status
);
6760 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
6762 HOST_BYTE(DID_ERROR
) | STATUS_BYTE(scsiqp
->scsi_status
);
6767 * If the 'init_tidmask' bit isn't already set for the target and the
6768 * current request finished normally, then set the bit for the target
6769 * to indicate that a device is present.
6771 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6772 scsiqp
->done_status
== QD_NO_ERROR
&&
6773 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6774 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6780 * Free all 'adv_sgblk_t' structures allocated for the request.
6782 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6783 /* Remove 'sgblkp' from the request list. */
6784 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6786 /* Add 'sgblkp' to the board free list. */
6787 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
6788 boardp
->adv_sgblkp
= sgblkp
;
6792 * Free the adv_req_t structure used with the command by adding
6793 * it back to the board free list.
6795 reqp
->next_reqp
= boardp
->adv_reqp
;
6796 boardp
->adv_reqp
= reqp
;
6798 ASC_DBG(1, "done\n");
6802 * Adv Library Interrupt Service Routine
6804 * This function is called by a driver's interrupt service routine.
6805 * The function disables and re-enables interrupts.
6807 * When a microcode idle command is completed, the ADV_DVC_VAR
6808 * 'idle_cmd_done' field is set to ADV_TRUE.
6810 * Note: AdvISR() can be called when interrupts are disabled or even
6811 * when there is no hardware interrupt condition present. It will
6812 * always check for completed idle commands and microcode requests.
6813 * This is an important feature that shouldn't be changed because it
6814 * allows commands to be completed from polling mode loops.
6817 * ADV_TRUE(1) - interrupt was pending
6818 * ADV_FALSE(0) - no interrupt was pending
6820 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6822 AdvPortAddr iop_base
;
6825 ADV_CARR_T
*free_carrp
;
6826 ADV_VADDR irq_next_vpa
;
6827 ADV_SCSI_REQ_Q
*scsiq
;
6829 iop_base
= asc_dvc
->iop_base
;
6831 /* Reading the register clears the interrupt. */
6832 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6834 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6835 ADV_INTR_STATUS_INTRC
)) == 0) {
6840 * Notify the driver of an asynchronous microcode condition by
6841 * calling the adv_async_callback function. The function
6842 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6844 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6847 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6849 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6850 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6851 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6852 asc_dvc
->carr_pending_cnt
!= 0) {
6853 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6855 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6856 AdvWriteByteRegister(iop_base
,
6863 adv_async_callback(asc_dvc
, intrb_code
);
6867 * Check if the IRQ stopper carrier contains a completed request.
6869 while (((irq_next_vpa
=
6870 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ASC_RQ_DONE
) != 0) {
6872 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6873 * The RISC will have set 'areq_vpa' to a virtual address.
6875 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6876 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6877 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6878 * in AdvExeScsiQueue().
6880 scsiq
= (ADV_SCSI_REQ_Q
*)
6881 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
));
6884 * Request finished with good status and the queue was not
6885 * DMAed to host memory by the firmware. Set all status fields
6886 * to indicate good status.
6888 if ((irq_next_vpa
& ASC_RQ_GOOD
) != 0) {
6889 scsiq
->done_status
= QD_NO_ERROR
;
6890 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6891 scsiq
->data_cnt
= 0L;
6895 * Advance the stopper pointer to the next carrier
6896 * ignoring the lower four bits. Free the previous
6899 free_carrp
= asc_dvc
->irq_sp
;
6900 asc_dvc
->irq_sp
= (ADV_CARR_T
*)
6901 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa
));
6903 free_carrp
->next_vpa
=
6904 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
6905 asc_dvc
->carr_freelist
= free_carrp
;
6906 asc_dvc
->carr_pending_cnt
--;
6908 target_bit
= ADV_TID_TO_TIDMASK(scsiq
->target_id
);
6911 * Clear request microcode control flag.
6916 * Notify the driver of the completed request by passing
6917 * the ADV_SCSI_REQ_Q pointer to its callback function.
6919 scsiq
->a_flag
|= ADV_SCSIQ_DONE
;
6920 adv_isr_callback(asc_dvc
, scsiq
);
6922 * Note: After the driver callback function is called, 'scsiq'
6923 * can no longer be referenced.
6925 * Fall through and continue processing other completed
6932 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6934 if (asc_dvc
->err_code
== 0) {
6935 asc_dvc
->err_code
= err_code
;
6936 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6942 static void AscAckInterrupt(PortAddr iop_base
)
6950 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6951 if (loop
++ > 0x7FFF) {
6954 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6956 AscReadLramByte(iop_base
,
6957 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6958 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6959 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6960 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6962 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6963 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6968 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6971 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6973 const uchar
*period_table
;
6978 period_table
= asc_dvc
->sdtr_period_tbl
;
6979 max_index
= (int)asc_dvc
->max_sdtr_index
;
6980 min_index
= (int)asc_dvc
->min_sdtr_index
;
6981 if ((syn_time
<= period_table
[max_index
])) {
6982 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6983 if (syn_time
<= period_table
[i
]) {
6987 return (uchar
)max_index
;
6989 return (uchar
)(max_index
+ 1);
6994 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6997 uchar sdtr_period_index
;
7000 iop_base
= asc_dvc
->iop_base
;
7001 sdtr_buf
.msg_type
= EXTENDED_MESSAGE
;
7002 sdtr_buf
.msg_len
= MS_SDTR_LEN
;
7003 sdtr_buf
.msg_req
= EXTENDED_SDTR
;
7004 sdtr_buf
.xfer_period
= sdtr_period
;
7005 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
7006 sdtr_buf
.req_ack_offset
= sdtr_offset
;
7007 sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
7008 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
7009 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
7011 sizeof(EXT_MSG
) >> 1);
7012 return ((sdtr_period_index
<< 4) | sdtr_offset
);
7014 sdtr_buf
.req_ack_offset
= 0;
7015 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
7017 sizeof(EXT_MSG
) >> 1);
7023 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
7026 uchar sdtr_period_ix
;
7028 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
7029 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
7031 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
7035 static int AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
7037 ASC_SCSI_BIT_ID_TYPE org_id
;
7041 AscSetBank(iop_base
, 1);
7042 org_id
= AscReadChipDvcID(iop_base
);
7043 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
7044 if (org_id
== (0x01 << i
))
7047 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
7048 AscWriteChipDvcID(iop_base
, id
);
7049 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
7050 AscSetBank(iop_base
, 0);
7051 AscSetChipSyn(iop_base
, sdtr_data
);
7052 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
7058 AscSetBank(iop_base
, 1);
7059 AscWriteChipDvcID(iop_base
, org_id
);
7060 AscSetBank(iop_base
, 0);
7064 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
7066 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7067 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
7070 static int AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
7076 ushort int_halt_code
;
7077 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7078 ASC_SCSI_BIT_ID_TYPE target_id
;
7085 uchar q_cntl
, tid_no
;
7089 struct asc_board
*boardp
;
7091 BUG_ON(!asc_dvc
->drv_ptr
);
7092 boardp
= asc_dvc
->drv_ptr
;
7094 iop_base
= asc_dvc
->iop_base
;
7095 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
7097 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
7098 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
7099 target_ix
= AscReadLramByte(iop_base
,
7100 (ushort
)(halt_q_addr
+
7101 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
7102 q_cntl
= AscReadLramByte(iop_base
,
7103 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7104 tid_no
= ASC_TIX_TO_TID(target_ix
);
7105 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
7106 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7107 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
7111 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
7112 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7113 AscSetChipSDTR(iop_base
, 0, tid_no
);
7114 boardp
->sdtr_data
[tid_no
] = 0;
7116 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7118 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
7119 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7120 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7121 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7123 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7125 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
7126 AscMemWordCopyPtrFromLram(iop_base
,
7129 sizeof(EXT_MSG
) >> 1);
7131 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
7132 ext_msg
.msg_req
== EXTENDED_SDTR
&&
7133 ext_msg
.msg_len
== MS_SDTR_LEN
) {
7135 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
7137 sdtr_accept
= FALSE
;
7138 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
7140 if ((ext_msg
.xfer_period
<
7141 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
7142 || (ext_msg
.xfer_period
>
7143 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
7145 sdtr_accept
= FALSE
;
7146 ext_msg
.xfer_period
=
7147 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
7152 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
7153 ext_msg
.req_ack_offset
);
7154 if ((sdtr_data
== 0xFF)) {
7156 q_cntl
|= QC_MSG_OUT
;
7157 asc_dvc
->init_sdtr
&= ~target_id
;
7158 asc_dvc
->sdtr_done
&= ~target_id
;
7159 AscSetChipSDTR(iop_base
, asyn_sdtr
,
7161 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7164 if (ext_msg
.req_ack_offset
== 0) {
7166 q_cntl
&= ~QC_MSG_OUT
;
7167 asc_dvc
->init_sdtr
&= ~target_id
;
7168 asc_dvc
->sdtr_done
&= ~target_id
;
7169 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7171 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
7172 q_cntl
&= ~QC_MSG_OUT
;
7173 asc_dvc
->sdtr_done
|= target_id
;
7174 asc_dvc
->init_sdtr
|= target_id
;
7175 asc_dvc
->pci_fix_asyn_xfer
&=
7178 AscCalSDTRData(asc_dvc
,
7179 ext_msg
.xfer_period
,
7182 AscSetChipSDTR(iop_base
, sdtr_data
,
7184 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
7186 q_cntl
|= QC_MSG_OUT
;
7187 AscMsgOutSDTR(asc_dvc
,
7188 ext_msg
.xfer_period
,
7189 ext_msg
.req_ack_offset
);
7190 asc_dvc
->pci_fix_asyn_xfer
&=
7193 AscCalSDTRData(asc_dvc
,
7194 ext_msg
.xfer_period
,
7197 AscSetChipSDTR(iop_base
, sdtr_data
,
7199 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
7200 asc_dvc
->sdtr_done
|= target_id
;
7201 asc_dvc
->init_sdtr
|= target_id
;
7205 AscWriteLramByte(iop_base
,
7206 (ushort
)(halt_q_addr
+
7207 (ushort
)ASC_SCSIQ_B_CNTL
),
7209 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7211 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
7212 ext_msg
.msg_req
== EXTENDED_WDTR
&&
7213 ext_msg
.msg_len
== MS_WDTR_LEN
) {
7215 ext_msg
.wdtr_width
= 0;
7216 AscMemWordCopyPtrToLram(iop_base
,
7219 sizeof(EXT_MSG
) >> 1);
7220 q_cntl
|= QC_MSG_OUT
;
7221 AscWriteLramByte(iop_base
,
7222 (ushort
)(halt_q_addr
+
7223 (ushort
)ASC_SCSIQ_B_CNTL
),
7225 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7229 ext_msg
.msg_type
= MESSAGE_REJECT
;
7230 AscMemWordCopyPtrToLram(iop_base
,
7233 sizeof(EXT_MSG
) >> 1);
7234 q_cntl
|= QC_MSG_OUT
;
7235 AscWriteLramByte(iop_base
,
7236 (ushort
)(halt_q_addr
+
7237 (ushort
)ASC_SCSIQ_B_CNTL
),
7239 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7242 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
7244 q_cntl
|= QC_REQ_SENSE
;
7246 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
7248 asc_dvc
->sdtr_done
&= ~target_id
;
7250 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
7251 q_cntl
|= QC_MSG_OUT
;
7252 AscMsgOutSDTR(asc_dvc
,
7254 sdtr_period_tbl
[(sdtr_data
>> 4) &
7258 (uchar
)(sdtr_data
& (uchar
)
7259 ASC_SYN_MAX_OFFSET
));
7262 AscWriteLramByte(iop_base
,
7263 (ushort
)(halt_q_addr
+
7264 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
7266 tag_code
= AscReadLramByte(iop_base
,
7267 (ushort
)(halt_q_addr
+ (ushort
)
7268 ASC_SCSIQ_B_TAG_CODE
));
7270 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
7271 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
7274 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7275 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
7278 AscWriteLramByte(iop_base
,
7279 (ushort
)(halt_q_addr
+
7280 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
7283 q_status
= AscReadLramByte(iop_base
,
7284 (ushort
)(halt_q_addr
+ (ushort
)
7285 ASC_SCSIQ_B_STATUS
));
7286 q_status
|= (QS_READY
| QS_BUSY
);
7287 AscWriteLramByte(iop_base
,
7288 (ushort
)(halt_q_addr
+
7289 (ushort
)ASC_SCSIQ_B_STATUS
),
7292 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
7293 scsi_busy
&= ~target_id
;
7294 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
7296 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7298 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
7300 AscMemWordCopyPtrFromLram(iop_base
,
7303 sizeof(EXT_MSG
) >> 1);
7305 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
7306 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
7307 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
7309 asc_dvc
->init_sdtr
&= ~target_id
;
7310 asc_dvc
->sdtr_done
&= ~target_id
;
7311 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7312 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7314 q_cntl
&= ~QC_MSG_OUT
;
7315 AscWriteLramByte(iop_base
,
7316 (ushort
)(halt_q_addr
+
7317 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
7318 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7320 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
7322 scsi_status
= AscReadLramByte(iop_base
,
7323 (ushort
)((ushort
)halt_q_addr
+
7325 ASC_SCSIQ_SCSI_STATUS
));
7327 AscReadLramByte(iop_base
,
7328 (ushort
)((ushort
)ASC_QADR_BEG
+
7329 (ushort
)target_ix
));
7330 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
7332 scsi_busy
= AscReadLramByte(iop_base
,
7333 (ushort
)ASCV_SCSIBUSY_B
);
7334 scsi_busy
|= target_id
;
7335 AscWriteLramByte(iop_base
,
7336 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
7337 asc_dvc
->queue_full_or_busy
|= target_id
;
7339 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
7340 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
7342 asc_dvc
->max_dvc_qng
[tid_no
] =
7345 AscWriteLramByte(iop_base
,
7347 ASCV_MAX_DVC_QNG_BEG
7353 * Set the device queue depth to the
7354 * number of active requests when the
7355 * QUEUE FULL condition was encountered.
7357 boardp
->queue_full
|= target_id
;
7358 boardp
->queue_full_cnt
[tid_no
] =
7363 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7366 #if CC_VERY_LONG_SG_LIST
7367 else if (int_halt_code
== ASC_HALT_HOST_COPY_SG_LIST_TO_RISC
) {
7371 uchar first_sg_wk_q_no
;
7372 ASC_SCSI_Q
*scsiq
; /* Ptr to driver request. */
7373 ASC_SG_HEAD
*sg_head
; /* Ptr to driver SG request. */
7374 ASC_SG_LIST_Q scsi_sg_q
; /* Structure written to queue. */
7375 ushort sg_list_dwords
;
7376 ushort sg_entry_cnt
;
7380 q_no
= AscReadLramByte(iop_base
, (ushort
)ASCV_REQ_SG_LIST_QP
);
7381 if (q_no
== ASC_QLINK_END
)
7384 q_addr
= ASC_QNO_TO_QADDR(q_no
);
7387 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7388 * structure pointer using a macro provided by the driver.
7389 * The ASC_SCSI_REQ pointer provides a pointer to the
7390 * host ASC_SG_HEAD structure.
7392 /* Read request's SRB pointer. */
7393 scsiq
= (ASC_SCSI_Q
*)
7394 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base
,
7397 ASC_SCSIQ_D_SRBPTR
))));
7400 * Get request's first and working SG queue.
7402 sg_wk_q_no
= AscReadLramByte(iop_base
,
7404 ASC_SCSIQ_B_SG_WK_QP
));
7406 first_sg_wk_q_no
= AscReadLramByte(iop_base
,
7408 ASC_SCSIQ_B_FIRST_SG_WK_QP
));
7411 * Reset request's working SG queue back to the
7414 AscWriteLramByte(iop_base
,
7416 (ushort
)ASC_SCSIQ_B_SG_WK_QP
),
7419 sg_head
= scsiq
->sg_head
;
7422 * Set sg_entry_cnt to the number of SG elements
7423 * that will be completed on this interrupt.
7425 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7426 * SG elements. The data_cnt and data_addr fields which
7427 * add 1 to the SG element capacity are not used when
7428 * restarting SG handling after a halt.
7430 if (scsiq
->remain_sg_entry_cnt
> (ASC_MAX_SG_LIST
- 1)) {
7431 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
7434 * Keep track of remaining number of SG elements that
7435 * will need to be handled on the next interrupt.
7437 scsiq
->remain_sg_entry_cnt
-= (ASC_MAX_SG_LIST
- 1);
7439 sg_entry_cnt
= scsiq
->remain_sg_entry_cnt
;
7440 scsiq
->remain_sg_entry_cnt
= 0;
7444 * Copy SG elements into the list of allocated SG queues.
7446 * Last index completed is saved in scsiq->next_sg_index.
7448 next_qp
= first_sg_wk_q_no
;
7449 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7450 scsi_sg_q
.sg_head_qp
= q_no
;
7451 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
7452 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
7453 scsi_sg_q
.seq_no
= i
+ 1;
7454 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
7455 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
7456 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
7458 * After very first SG queue RISC FW uses next
7459 * SG queue first element then checks sg_list_cnt
7460 * against zero and then decrements, so set
7461 * sg_list_cnt 1 less than number of SG elements
7464 scsi_sg_q
.sg_list_cnt
= ASC_SG_LIST_PER_Q
- 1;
7465 scsi_sg_q
.sg_cur_list_cnt
=
7466 ASC_SG_LIST_PER_Q
- 1;
7469 * This is the last SG queue in the list of
7470 * allocated SG queues. If there are more
7471 * SG elements than will fit in the allocated
7472 * queues, then set the QCSG_SG_XFER_MORE flag.
7474 if (scsiq
->remain_sg_entry_cnt
!= 0) {
7475 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
7477 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
7479 /* equals sg_entry_cnt * 2 */
7480 sg_list_dwords
= sg_entry_cnt
<< 1;
7481 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
- 1;
7482 scsi_sg_q
.sg_cur_list_cnt
= sg_entry_cnt
- 1;
7486 scsi_sg_q
.q_no
= next_qp
;
7487 AscMemWordCopyPtrToLram(iop_base
,
7488 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
7489 (uchar
*)&scsi_sg_q
,
7490 sizeof(ASC_SG_LIST_Q
) >> 1);
7492 AscMemDWordCopyPtrToLram(iop_base
,
7493 q_addr
+ ASC_SGQ_LIST_BEG
,
7495 sg_list
[scsiq
->next_sg_index
],
7498 scsiq
->next_sg_index
+= ASC_SG_LIST_PER_Q
;
7501 * If the just completed SG queue contained the
7502 * last SG element, then no more SG queues need
7505 if (scsi_sg_q
.cntl
& QCSG_SG_XFER_END
) {
7509 next_qp
= AscReadLramByte(iop_base
,
7512 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7516 * Clear the halt condition so the RISC will be restarted
7519 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7522 #endif /* CC_VERY_LONG_SG_LIST */
7528 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7530 * Calling/Exit State:
7534 * Input an ASC_QDONE_INFO structure from the chip
7537 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
7542 AscSetChipLramAddr(iop_base
, s_addr
);
7543 for (i
= 0; i
< 2 * words
; i
+= 2) {
7547 word
= inpw(iop_base
+ IOP_RAM_DATA
);
7548 inbuf
[i
] = word
& 0xff;
7549 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
7551 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
7555 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
7557 ASC_QDONE_INFO
*scsiq
, ASC_DCNT max_dma_count
)
7562 DvcGetQinfo(iop_base
,
7563 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
7565 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
7567 _val
= AscReadLramWord(iop_base
,
7568 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
7569 scsiq
->q_status
= (uchar
)_val
;
7570 scsiq
->q_no
= (uchar
)(_val
>> 8);
7571 _val
= AscReadLramWord(iop_base
,
7572 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7573 scsiq
->cntl
= (uchar
)_val
;
7574 sg_queue_cnt
= (uchar
)(_val
>> 8);
7575 _val
= AscReadLramWord(iop_base
,
7577 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
7578 scsiq
->sense_len
= (uchar
)_val
;
7579 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
7582 * Read high word of remain bytes from alternate location.
7584 scsiq
->remain_bytes
= (((ADV_DCNT
)AscReadLramWord(iop_base
,
7587 ASC_SCSIQ_W_ALT_DC1
)))
7590 * Read low word of remain bytes from original location.
7592 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
7593 (ushort
)(q_addr
+ (ushort
)
7594 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
7596 scsiq
->remain_bytes
&= max_dma_count
;
7597 return sg_queue_cnt
;
7601 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7603 * Interrupt callback function for the Narrow SCSI Asc Library.
7605 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
7607 struct asc_board
*boardp
;
7608 struct scsi_cmnd
*scp
;
7609 struct Scsi_Host
*shost
;
7611 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
7612 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
7614 scp
= advansys_srb_to_ptr(asc_dvc_varp
, qdonep
->d2
.srb_ptr
);
7618 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
7620 shost
= scp
->device
->host
;
7621 ASC_STATS(shost
, callback
);
7622 ASC_DBG(1, "shost 0x%p\n", shost
);
7624 boardp
= shost_priv(shost
);
7625 BUG_ON(asc_dvc_varp
!= &boardp
->dvc_var
.asc_dvc_var
);
7627 dma_unmap_single(boardp
->dev
, scp
->SCp
.dma_handle
,
7628 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7630 * 'qdonep' contains the command's ending status.
7632 switch (qdonep
->d3
.done_stat
) {
7634 ASC_DBG(2, "QD_NO_ERROR\n");
7638 * Check for an underrun condition.
7640 * If there was no error and an underrun condition, then
7641 * return the number of underrun bytes.
7643 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
7644 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
7645 ASC_DBG(1, "underrun condition %u bytes\n",
7646 (unsigned)qdonep
->remain_bytes
);
7647 scsi_set_resid(scp
, qdonep
->remain_bytes
);
7652 ASC_DBG(2, "QD_WITH_ERROR\n");
7653 switch (qdonep
->d3
.host_stat
) {
7654 case QHSTA_NO_ERROR
:
7655 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
7656 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7657 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
7658 SCSI_SENSE_BUFFERSIZE
);
7660 * Note: The 'status_byte()' macro used by
7661 * target drivers defined in scsi.h shifts the
7662 * status byte returned by host drivers right
7663 * by 1 bit. This is why target drivers also
7664 * use right shifted status byte definitions.
7665 * For instance target drivers use
7666 * CHECK_CONDITION, defined to 0x1, instead of
7667 * the SCSI defined check condition value of
7668 * 0x2. Host drivers are supposed to return
7669 * the status byte as it is defined by SCSI.
7671 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
7672 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7674 scp
->result
= STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7679 /* QHSTA error occurred */
7680 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
7681 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
7686 case QD_ABORTED_BY_HOST
:
7687 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7689 HOST_BYTE(DID_ABORT
) | MSG_BYTE(qdonep
->d3
.
7691 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7695 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
7697 HOST_BYTE(DID_ERROR
) | MSG_BYTE(qdonep
->d3
.
7699 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7704 * If the 'init_tidmask' bit isn't already set for the target and the
7705 * current request finished normally, then set the bit for the target
7706 * to indicate that a device is present.
7708 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
7709 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
7710 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
7711 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
7717 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
7726 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7727 ASC_SCSI_BIT_ID_TYPE target_id
;
7731 uchar cur_target_qng
;
7732 ASC_QDONE_INFO scsiq_buf
;
7733 ASC_QDONE_INFO
*scsiq
;
7736 iop_base
= asc_dvc
->iop_base
;
7738 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
7739 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
7740 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
7741 next_qp
= AscReadLramByte(iop_base
,
7742 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
7743 if (next_qp
!= ASC_QLINK_END
) {
7744 AscPutVarDoneQTail(iop_base
, next_qp
);
7745 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7746 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
7747 asc_dvc
->max_dma_count
);
7748 AscWriteLramByte(iop_base
,
7750 (ushort
)ASC_SCSIQ_B_STATUS
),
7752 q_status
& (uchar
)~(QS_READY
|
7754 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
7755 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
7756 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
7758 sg_list_qp
= next_qp
;
7759 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
7760 sg_list_qp
= AscReadLramByte(iop_base
,
7764 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
7765 if (sg_list_qp
== ASC_QLINK_END
) {
7766 AscSetLibErrorCode(asc_dvc
,
7767 ASCQ_ERR_SG_Q_LINKS
);
7768 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7769 scsiq
->d3
.host_stat
=
7770 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
7771 goto FATAL_ERR_QDONE
;
7773 AscWriteLramByte(iop_base
,
7774 (ushort
)(sg_q_addr
+ (ushort
)
7775 ASC_SCSIQ_B_STATUS
),
7778 n_q_used
= sg_queue_cnt
+ 1;
7779 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
7781 if (asc_dvc
->queue_full_or_busy
& target_id
) {
7782 cur_target_qng
= AscReadLramByte(iop_base
,
7788 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
7789 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
7791 scsi_busy
&= ~target_id
;
7792 AscWriteLramByte(iop_base
,
7793 (ushort
)ASCV_SCSIBUSY_B
,
7795 asc_dvc
->queue_full_or_busy
&= ~target_id
;
7798 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
7799 asc_dvc
->cur_total_qng
-= n_q_used
;
7800 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
7801 asc_dvc
->cur_dvc_qng
[tid_no
]--;
7804 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
7805 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7806 goto FATAL_ERR_QDONE
;
7808 if ((scsiq
->d2
.srb_ptr
== 0UL) ||
7809 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
7811 } else if (scsiq
->q_status
== QS_DONE
) {
7812 false_overrun
= FALSE
;
7813 if (scsiq
->extra_bytes
!= 0) {
7814 scsiq
->remain_bytes
+=
7815 (ADV_DCNT
)scsiq
->extra_bytes
;
7817 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
7818 if (scsiq
->d3
.host_stat
==
7819 QHSTA_M_DATA_OVER_RUN
) {
7821 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
7823 scsiq
->d3
.done_stat
=
7825 scsiq
->d3
.host_stat
=
7827 } else if (false_overrun
) {
7828 scsiq
->d3
.done_stat
=
7830 scsiq
->d3
.host_stat
=
7833 } else if (scsiq
->d3
.host_stat
==
7834 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
7835 AscStopChip(iop_base
);
7836 AscSetChipControl(iop_base
,
7837 (uchar
)(CC_SCSI_RESET
7840 AscSetChipControl(iop_base
, CC_HALT
);
7841 AscSetChipStatus(iop_base
,
7842 CIW_CLR_SCSI_RESET_INT
);
7843 AscSetChipStatus(iop_base
, 0);
7844 AscSetChipControl(iop_base
, 0);
7847 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7848 asc_isr_callback(asc_dvc
, scsiq
);
7850 if ((AscReadLramByte(iop_base
,
7851 (ushort
)(q_addr
+ (ushort
)
7854 asc_dvc
->unit_not_ready
&= ~target_id
;
7855 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
7856 asc_dvc
->start_motor
&=
7863 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
7865 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7866 asc_isr_callback(asc_dvc
, scsiq
);
7874 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
7876 ASC_CS_TYPE chipstat
;
7878 ushort saved_ram_addr
;
7880 uchar saved_ctrl_reg
;
7885 iop_base
= asc_dvc
->iop_base
;
7886 int_pending
= FALSE
;
7888 if (AscIsIntPending(iop_base
) == 0)
7891 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
7894 if (asc_dvc
->in_critical_cnt
!= 0) {
7895 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
7898 if (asc_dvc
->is_in_int
) {
7899 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
7902 asc_dvc
->is_in_int
= TRUE
;
7903 ctrl_reg
= AscGetChipControl(iop_base
);
7904 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
7905 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
7906 chipstat
= AscGetChipStatus(iop_base
);
7907 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
7908 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
7911 asc_dvc
->sdtr_done
= 0;
7912 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7913 while ((AscGetChipStatus(iop_base
) &
7914 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
7917 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
7918 AscSetChipControl(iop_base
, CC_HALT
);
7919 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
7920 AscSetChipStatus(iop_base
, 0);
7921 chipstat
= AscGetChipStatus(iop_base
);
7924 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
7925 host_flag
= AscReadLramByte(iop_base
,
7927 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
7928 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
7929 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
7930 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
7931 AscAckInterrupt(iop_base
);
7933 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
7934 if (AscIsrChipHalted(asc_dvc
) == ERR
) {
7935 goto ISR_REPORT_QDONE_FATAL_ERROR
;
7937 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7940 ISR_REPORT_QDONE_FATAL_ERROR
:
7941 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
7943 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
7948 AscIsrQDone(asc_dvc
)) == 1) {
7951 } while (status
== 0x11);
7953 if ((status
& 0x80) != 0)
7957 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7958 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7959 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7960 asc_dvc
->is_in_int
= FALSE
;
7967 * Reset the bus associated with the command 'scp'.
7969 * This function runs its own thread. Interrupts must be blocked but
7970 * sleeping is allowed and no locking other than for host structures is
7971 * required. Returns SUCCESS or FAILED.
7973 static int advansys_reset(struct scsi_cmnd
*scp
)
7975 struct Scsi_Host
*shost
= scp
->device
->host
;
7976 struct asc_board
*boardp
= shost_priv(shost
);
7977 unsigned long flags
;
7981 ASC_DBG(1, "0x%p\n", scp
);
7983 ASC_STATS(shost
, reset
);
7985 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset started...\n");
7987 if (ASC_NARROW_BOARD(boardp
)) {
7988 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7990 /* Reset the chip and SCSI bus. */
7991 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7992 status
= AscInitAsc1000Driver(asc_dvc
);
7994 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7995 if (asc_dvc
->err_code
|| !asc_dvc
->overrun_dma
) {
7996 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error: "
7997 "0x%x, status: 0x%x\n", asc_dvc
->err_code
,
8000 } else if (status
) {
8001 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset warning: "
8004 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
8008 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8009 spin_lock_irqsave(shost
->host_lock
, flags
);
8012 * If the suggest reset bus flags are set, then reset the bus.
8013 * Otherwise only reset the device.
8015 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
8018 * Reset the target's SCSI bus.
8020 ASC_DBG(1, "before AdvResetChipAndSB()\n");
8021 switch (AdvResetChipAndSB(adv_dvc
)) {
8023 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
8028 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error\n");
8032 spin_lock_irqsave(shost
->host_lock
, flags
);
8036 /* Save the time of the most recently completed reset. */
8037 boardp
->last_reset
= jiffies
;
8038 spin_unlock_irqrestore(shost
->host_lock
, flags
);
8040 ASC_DBG(1, "ret %d\n", ret
);
8046 * advansys_biosparam()
8048 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8049 * support is enabled for a drive.
8051 * ip (information pointer) is an int array with the following definition:
8057 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
8058 sector_t capacity
, int ip
[])
8060 struct asc_board
*boardp
= shost_priv(sdev
->host
);
8062 ASC_DBG(1, "begin\n");
8063 ASC_STATS(sdev
->host
, biosparam
);
8064 if (ASC_NARROW_BOARD(boardp
)) {
8065 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
8066 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
8074 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
8075 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
8083 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
8084 ASC_DBG(1, "end\n");
8089 * First-level interrupt handler.
8091 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8093 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
8095 struct Scsi_Host
*shost
= dev_id
;
8096 struct asc_board
*boardp
= shost_priv(shost
);
8097 irqreturn_t result
= IRQ_NONE
;
8099 ASC_DBG(2, "boardp 0x%p\n", boardp
);
8100 spin_lock(shost
->host_lock
);
8101 if (ASC_NARROW_BOARD(boardp
)) {
8102 if (AscIsIntPending(shost
->io_port
)) {
8103 result
= IRQ_HANDLED
;
8104 ASC_STATS(shost
, interrupt
);
8105 ASC_DBG(1, "before AscISR()\n");
8106 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
8109 ASC_DBG(1, "before AdvISR()\n");
8110 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
8111 result
= IRQ_HANDLED
;
8112 ASC_STATS(shost
, interrupt
);
8115 spin_unlock(shost
->host_lock
);
8117 ASC_DBG(1, "end\n");
8121 static int AscHostReqRiscHalt(PortAddr iop_base
)
8125 uchar saved_stop_code
;
8127 if (AscIsChipHalted(iop_base
))
8129 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
8130 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
8131 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
8133 if (AscIsChipHalted(iop_base
)) {
8138 } while (count
++ < 20);
8139 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
8144 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
8148 if (AscHostReqRiscHalt(iop_base
)) {
8149 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
8150 AscStartChip(iop_base
);
8155 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
8157 char type
= sdev
->type
;
8158 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
8160 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
8162 if (asc_dvc
->init_sdtr
& tid_bits
)
8165 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
8166 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
8168 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
8169 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
8170 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
8171 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
8173 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
8174 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
8175 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
8179 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
8181 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
8182 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
8184 if (sdev
->lun
== 0) {
8185 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
8186 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
8187 asc_dvc
->init_sdtr
|= tid_bit
;
8189 asc_dvc
->init_sdtr
&= ~tid_bit
;
8192 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
8193 AscAsyncFix(asc_dvc
, sdev
);
8196 if (sdev
->tagged_supported
) {
8197 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
8198 if (sdev
->lun
== 0) {
8199 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
8200 asc_dvc
->use_tagged_qng
|= tid_bit
;
8202 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
8203 asc_dvc
->max_dvc_qng
[sdev
->id
]);
8206 if (sdev
->lun
== 0) {
8207 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
8208 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
8210 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
8213 if ((sdev
->lun
== 0) &&
8214 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
8215 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
8216 asc_dvc
->cfg
->disc_enable
);
8217 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
8218 asc_dvc
->use_tagged_qng
);
8219 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
8220 asc_dvc
->cfg
->can_tagged_qng
);
8222 asc_dvc
->max_dvc_qng
[sdev
->id
] =
8223 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
8224 AscWriteLramByte(asc_dvc
->iop_base
,
8225 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
8226 asc_dvc
->max_dvc_qng
[sdev
->id
]);
8233 * If the EEPROM enabled WDTR for the device and the device supports wide
8234 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8235 * write the new value to the microcode.
8238 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
8240 unsigned short cfg_word
;
8241 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
8242 if ((cfg_word
& tidmask
) != 0)
8245 cfg_word
|= tidmask
;
8246 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
8249 * Clear the microcode SDTR and WDTR negotiation done indicators for
8250 * the target to cause it to negotiate with the new setting set above.
8251 * WDTR when accepted causes the target to enter asynchronous mode, so
8252 * SDTR must be negotiated.
8254 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8255 cfg_word
&= ~tidmask
;
8256 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8257 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
8258 cfg_word
&= ~tidmask
;
8259 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
8263 * Synchronous Transfers
8265 * If the EEPROM enabled SDTR for the device and the device
8266 * supports synchronous transfers, then turn on the device's
8267 * 'sdtr_able' bit. Write the new value to the microcode.
8270 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
8272 unsigned short cfg_word
;
8273 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
8274 if ((cfg_word
& tidmask
) != 0)
8277 cfg_word
|= tidmask
;
8278 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
8281 * Clear the microcode "SDTR negotiation" done indicator for the
8282 * target to cause it to negotiate with the new setting set above.
8284 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8285 cfg_word
&= ~tidmask
;
8286 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8290 * PPR (Parallel Protocol Request) Capable
8292 * If the device supports DT mode, then it must be PPR capable.
8293 * The PPR message will be used in place of the SDTR and WDTR
8294 * messages to negotiate synchronous speed and offset, transfer
8295 * width, and protocol options.
8297 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
8298 AdvPortAddr iop_base
, unsigned short tidmask
)
8300 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
8301 adv_dvc
->ppr_able
|= tidmask
;
8302 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
8306 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
8308 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
8309 unsigned short tidmask
= 1 << sdev
->id
;
8311 if (sdev
->lun
== 0) {
8313 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8314 * is enabled in the EEPROM and the device supports the
8315 * feature, then enable it in the microcode.
8318 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
8319 advansys_wide_enable_wdtr(iop_base
, tidmask
);
8320 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
8321 advansys_wide_enable_sdtr(iop_base
, tidmask
);
8322 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
8323 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
8326 * Tag Queuing is disabled for the BIOS which runs in polled
8327 * mode and would see no benefit from Tag Queuing. Also by
8328 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8329 * bugs will at least work with the BIOS.
8331 if ((adv_dvc
->tagqng_able
& tidmask
) &&
8332 sdev
->tagged_supported
) {
8333 unsigned short cfg_word
;
8334 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
8335 cfg_word
|= tidmask
;
8336 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
8338 AdvWriteByteLram(iop_base
,
8339 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
8340 adv_dvc
->max_dvc_qng
);
8344 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
) {
8345 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
8346 adv_dvc
->max_dvc_qng
);
8348 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
8353 * Set the number of commands to queue per device for the
8354 * specified host adapter.
8356 static int advansys_slave_configure(struct scsi_device
*sdev
)
8358 struct asc_board
*boardp
= shost_priv(sdev
->host
);
8360 if (ASC_NARROW_BOARD(boardp
))
8361 advansys_narrow_slave_configure(sdev
,
8362 &boardp
->dvc_var
.asc_dvc_var
);
8364 advansys_wide_slave_configure(sdev
,
8365 &boardp
->dvc_var
.adv_dvc_var
);
8370 static __le32
advansys_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
8372 struct asc_board
*board
= shost_priv(scp
->device
->host
);
8373 scp
->SCp
.dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
8374 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
8375 dma_cache_sync(board
->dev
, scp
->sense_buffer
,
8376 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
8377 return cpu_to_le32(scp
->SCp
.dma_handle
);
8380 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8381 struct asc_scsi_q
*asc_scsi_q
)
8383 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8386 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
8389 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8391 asc_scsi_q
->q2
.srb_ptr
= advansys_ptr_to_srb(asc_dvc
, scp
);
8392 if (asc_scsi_q
->q2
.srb_ptr
== BAD_SRB
) {
8393 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
8398 * Build the ASC_SCSI_Q request.
8400 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
8401 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
8402 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
8403 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
8404 asc_scsi_q
->q2
.target_ix
=
8405 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
8406 asc_scsi_q
->q1
.sense_addr
= advansys_get_sense_buffer_dma(scp
);
8407 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
8410 * If there are any outstanding requests for the current target,
8411 * then every 255th request send an ORDERED request. This heuristic
8412 * tries to retain the benefit of request sorting while preventing
8413 * request starvation. 255 is the max number of tags or pending commands
8414 * a device may have outstanding.
8416 * The request count is incremented below for every successfully
8420 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
8421 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
8422 asc_scsi_q
->q2
.tag_code
= MSG_ORDERED_TAG
;
8424 asc_scsi_q
->q2
.tag_code
= MSG_SIMPLE_TAG
;
8427 /* Build ASC_SCSI_Q */
8428 use_sg
= scsi_dma_map(scp
);
8431 struct scatterlist
*slp
;
8432 struct asc_sg_head
*asc_sg_head
;
8434 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
8435 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8436 "sg_tablesize %d\n", use_sg
,
8437 scp
->device
->host
->sg_tablesize
);
8438 scsi_dma_unmap(scp
);
8439 scp
->result
= HOST_BYTE(DID_ERROR
);
8443 asc_sg_head
= kzalloc(sizeof(asc_scsi_q
->sg_head
) +
8444 use_sg
* sizeof(struct asc_sg_list
), GFP_ATOMIC
);
8446 scsi_dma_unmap(scp
);
8447 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
8451 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
8452 asc_scsi_q
->sg_head
= asc_sg_head
;
8453 asc_scsi_q
->q1
.data_cnt
= 0;
8454 asc_scsi_q
->q1
.data_addr
= 0;
8455 /* This is a byte value, otherwise it would need to be swapped. */
8456 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
8457 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
8458 asc_sg_head
->entry_cnt
);
8461 * Convert scatter-gather list into ASC_SG_HEAD list.
8463 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
8464 asc_sg_head
->sg_list
[sgcnt
].addr
=
8465 cpu_to_le32(sg_dma_address(slp
));
8466 asc_sg_head
->sg_list
[sgcnt
].bytes
=
8467 cpu_to_le32(sg_dma_len(slp
));
8468 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8469 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8473 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8475 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
8476 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8482 * Build scatter-gather list for Adv Library (Wide Board).
8484 * Additional ADV_SG_BLOCK structures will need to be allocated
8485 * if the total number of scatter-gather elements exceeds
8486 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8487 * assumed to be physically contiguous.
8490 * ADV_SUCCESS(1) - SG List successfully created
8491 * ADV_ERROR(-1) - SG List creation failed
8494 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
, struct scsi_cmnd
*scp
,
8497 adv_sgblk_t
*sgblkp
;
8498 ADV_SCSI_REQ_Q
*scsiqp
;
8499 struct scatterlist
*slp
;
8501 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
8502 ADV_PADDR sg_block_paddr
;
8505 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8506 slp
= scsi_sglist(scp
);
8507 sg_elem_cnt
= use_sg
;
8508 prev_sg_block
= NULL
;
8509 reqp
->sgblkp
= NULL
;
8513 * Allocate a 'adv_sgblk_t' structure from the board free
8514 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8515 * (15) scatter-gather elements.
8517 if ((sgblkp
= boardp
->adv_sgblkp
) == NULL
) {
8518 ASC_DBG(1, "no free adv_sgblk_t\n");
8519 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
8522 * Allocation failed. Free 'adv_sgblk_t' structures
8523 * already allocated for the request.
8525 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
8526 /* Remove 'sgblkp' from the request list. */
8527 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
8529 /* Add 'sgblkp' to the board free list. */
8530 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
8531 boardp
->adv_sgblkp
= sgblkp
;
8536 /* Complete 'adv_sgblk_t' board allocation. */
8537 boardp
->adv_sgblkp
= sgblkp
->next_sgblkp
;
8538 sgblkp
->next_sgblkp
= NULL
;
8541 * Get 8 byte aligned virtual and physical addresses
8542 * for the allocated ADV_SG_BLOCK structure.
8544 sg_block
= (ADV_SG_BLOCK
*)ADV_8BALIGN(&sgblkp
->sg_block
);
8545 sg_block_paddr
= virt_to_bus(sg_block
);
8548 * Check if this is the first 'adv_sgblk_t' for the
8551 if (reqp
->sgblkp
== NULL
) {
8552 /* Request's first scatter-gather block. */
8553 reqp
->sgblkp
= sgblkp
;
8556 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8559 scsiqp
->sg_list_ptr
= sg_block
;
8560 scsiqp
->sg_real_addr
= cpu_to_le32(sg_block_paddr
);
8562 /* Request's second or later scatter-gather block. */
8563 sgblkp
->next_sgblkp
= reqp
->sgblkp
;
8564 reqp
->sgblkp
= sgblkp
;
8567 * Point the previous ADV_SG_BLOCK structure to
8568 * the newly allocated ADV_SG_BLOCK structure.
8570 prev_sg_block
->sg_ptr
= cpu_to_le32(sg_block_paddr
);
8573 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
8574 sg_block
->sg_list
[i
].sg_addr
=
8575 cpu_to_le32(sg_dma_address(slp
));
8576 sg_block
->sg_list
[i
].sg_count
=
8577 cpu_to_le32(sg_dma_len(slp
));
8578 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8579 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8581 if (--sg_elem_cnt
== 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8582 sg_block
->sg_cnt
= i
+ 1;
8583 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
8588 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
8589 prev_sg_block
= sg_block
;
8594 * Build a request structure for the Adv Library (Wide Board).
8596 * If an adv_req_t can not be allocated to issue the request,
8597 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8599 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8600 * microcode for DMA addresses or math operations are byte swapped
8601 * to little-endian order.
8604 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8605 ADV_SCSI_REQ_Q
**adv_scsiqpp
)
8608 ADV_SCSI_REQ_Q
*scsiqp
;
8614 * Allocate an adv_req_t structure from the board to execute
8617 if (boardp
->adv_reqp
== NULL
) {
8618 ASC_DBG(1, "no free adv_req_t\n");
8619 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
8622 reqp
= boardp
->adv_reqp
;
8623 boardp
->adv_reqp
= reqp
->next_reqp
;
8624 reqp
->next_reqp
= NULL
;
8628 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8630 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8633 * Initialize the structure.
8635 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
8638 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8640 scsiqp
->srb_ptr
= ADV_VADDR_TO_U32(reqp
);
8643 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8648 * Build the ADV_SCSI_REQ_Q request.
8651 /* Set CDB length and copy it to the request structure. */
8652 scsiqp
->cdb_len
= scp
->cmd_len
;
8653 /* Copy first 12 CDB bytes to cdb[]. */
8654 for (i
= 0; i
< scp
->cmd_len
&& i
< 12; i
++) {
8655 scsiqp
->cdb
[i
] = scp
->cmnd
[i
];
8657 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8658 for (; i
< scp
->cmd_len
; i
++) {
8659 scsiqp
->cdb16
[i
- 12] = scp
->cmnd
[i
];
8662 scsiqp
->target_id
= scp
->device
->id
;
8663 scsiqp
->target_lun
= scp
->device
->lun
;
8665 scsiqp
->sense_addr
= cpu_to_le32(virt_to_bus(&scp
->sense_buffer
[0]));
8666 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
8668 /* Build ADV_SCSI_REQ_Q */
8670 use_sg
= scsi_dma_map(scp
);
8672 /* Zero-length transfer */
8673 reqp
->sgblkp
= NULL
;
8674 scsiqp
->data_cnt
= 0;
8675 scsiqp
->vdata_addr
= NULL
;
8677 scsiqp
->data_addr
= 0;
8678 scsiqp
->sg_list_ptr
= NULL
;
8679 scsiqp
->sg_real_addr
= 0;
8681 if (use_sg
> ADV_MAX_SG_LIST
) {
8682 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8683 "ADV_MAX_SG_LIST %d\n", use_sg
,
8684 scp
->device
->host
->sg_tablesize
);
8685 scsi_dma_unmap(scp
);
8686 scp
->result
= HOST_BYTE(DID_ERROR
);
8689 * Free the 'adv_req_t' structure by adding it back
8690 * to the board free list.
8692 reqp
->next_reqp
= boardp
->adv_reqp
;
8693 boardp
->adv_reqp
= reqp
;
8698 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
8700 ret
= adv_get_sglist(boardp
, reqp
, scp
, use_sg
);
8701 if (ret
!= ADV_SUCCESS
) {
8703 * Free the adv_req_t structure by adding it back to
8704 * the board free list.
8706 reqp
->next_reqp
= boardp
->adv_reqp
;
8707 boardp
->adv_reqp
= reqp
;
8712 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
8715 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8717 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
8718 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8720 *adv_scsiqpp
= scsiqp
;
8725 static int AscSgListToQueue(int sg_list
)
8729 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
8730 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
8732 return n_sg_list_qs
+ 1;
8736 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
8740 ASC_SCSI_BIT_ID_TYPE target_id
;
8743 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
8744 tid_no
= ASC_TIX_TO_TID(target_ix
);
8745 if ((asc_dvc
->unit_not_ready
& target_id
) ||
8746 (asc_dvc
->queue_full_or_busy
& target_id
)) {
8750 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8751 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
8753 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8754 (uint
) ASC_MIN_FREE_Q
;
8756 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
8757 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
8758 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
8759 asc_dvc
->max_dvc_qng
[tid_no
]) {
8765 if ((n_qs
> asc_dvc
->last_q_shortage
)
8766 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
8767 asc_dvc
->last_q_shortage
= n_qs
;
8773 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
8779 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
8780 q_status
= (uchar
)AscReadLramByte(iop_base
,
8782 ASC_SCSIQ_B_STATUS
));
8783 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
8784 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
8786 return ASC_QLINK_END
;
8790 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
8794 for (i
= 0; i
< n_free_q
; i
++) {
8795 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
8796 if (free_q_head
== ASC_QLINK_END
)
8804 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8806 * Calling/Exit State:
8810 * Output an ASC_SCSI_Q structure to the chip
8813 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
8817 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
8818 AscSetChipLramAddr(iop_base
, s_addr
);
8819 for (i
= 0; i
< 2 * words
; i
+= 2) {
8820 if (i
== 4 || i
== 20) {
8823 outpw(iop_base
+ IOP_RAM_DATA
,
8824 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
8828 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8833 uchar syn_period_ix
;
8837 iop_base
= asc_dvc
->iop_base
;
8838 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
8839 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
8840 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
8841 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8843 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
8844 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
8845 AscMsgOutSDTR(asc_dvc
,
8846 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
8848 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
8850 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8851 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
8852 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
8854 scsiq
->q1
.status
= QS_FREE
;
8855 AscMemWordCopyPtrToLram(iop_base
,
8856 q_addr
+ ASC_SCSIQ_CDB_BEG
,
8857 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
8859 DvcPutScsiQ(iop_base
,
8860 q_addr
+ ASC_SCSIQ_CPY_BEG
,
8861 (uchar
*)&scsiq
->q1
.cntl
,
8862 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
8863 AscWriteLramWord(iop_base
,
8864 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
8865 (ushort
)(((ushort
)scsiq
->q1
.
8866 q_no
<< 8) | (ushort
)QS_READY
));
8871 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8875 ASC_SG_HEAD
*sg_head
;
8876 ASC_SG_LIST_Q scsi_sg_q
;
8877 ASC_DCNT saved_data_addr
;
8878 ASC_DCNT saved_data_cnt
;
8880 ushort sg_list_dwords
;
8882 ushort sg_entry_cnt
;
8886 iop_base
= asc_dvc
->iop_base
;
8887 sg_head
= scsiq
->sg_head
;
8888 saved_data_addr
= scsiq
->q1
.data_addr
;
8889 saved_data_cnt
= scsiq
->q1
.data_cnt
;
8890 scsiq
->q1
.data_addr
= (ASC_PADDR
) sg_head
->sg_list
[0].addr
;
8891 scsiq
->q1
.data_cnt
= (ASC_DCNT
) sg_head
->sg_list
[0].bytes
;
8892 #if CC_VERY_LONG_SG_LIST
8894 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8895 * then not all SG elements will fit in the allocated queues.
8896 * The rest of the SG elements will be copied when the RISC
8897 * completes the SG elements that fit and halts.
8899 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8901 * Set sg_entry_cnt to be the number of SG elements that
8902 * will fit in the allocated SG queues. It is minus 1, because
8903 * the first SG element is handled above. ASC_MAX_SG_LIST is
8904 * already inflated by 1 to account for this. For example it
8905 * may be 50 which is 1 + 7 queues * 7 SG elements.
8907 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
8910 * Keep track of remaining number of SG elements that will
8911 * need to be handled from a_isr.c.
8913 scsiq
->remain_sg_entry_cnt
=
8914 sg_head
->entry_cnt
- ASC_MAX_SG_LIST
;
8916 #endif /* CC_VERY_LONG_SG_LIST */
8918 * Set sg_entry_cnt to be the number of SG elements that
8919 * will fit in the allocated SG queues. It is minus 1, because
8920 * the first SG element is handled above.
8922 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
8923 #if CC_VERY_LONG_SG_LIST
8925 #endif /* CC_VERY_LONG_SG_LIST */
8926 if (sg_entry_cnt
!= 0) {
8927 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
8928 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8930 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
8931 scsi_sg_q
.sg_head_qp
= q_no
;
8932 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
8933 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
8934 scsi_sg_q
.seq_no
= i
+ 1;
8935 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
8936 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
8937 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
8939 scsi_sg_q
.sg_list_cnt
=
8941 scsi_sg_q
.sg_cur_list_cnt
=
8944 scsi_sg_q
.sg_list_cnt
=
8945 ASC_SG_LIST_PER_Q
- 1;
8946 scsi_sg_q
.sg_cur_list_cnt
=
8947 ASC_SG_LIST_PER_Q
- 1;
8950 #if CC_VERY_LONG_SG_LIST
8952 * This is the last SG queue in the list of
8953 * allocated SG queues. If there are more
8954 * SG elements than will fit in the allocated
8955 * queues, then set the QCSG_SG_XFER_MORE flag.
8957 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8958 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
8960 #endif /* CC_VERY_LONG_SG_LIST */
8961 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
8962 #if CC_VERY_LONG_SG_LIST
8964 #endif /* CC_VERY_LONG_SG_LIST */
8965 sg_list_dwords
= sg_entry_cnt
<< 1;
8967 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
8968 scsi_sg_q
.sg_cur_list_cnt
=
8971 scsi_sg_q
.sg_list_cnt
=
8973 scsi_sg_q
.sg_cur_list_cnt
=
8978 next_qp
= AscReadLramByte(iop_base
,
8981 scsi_sg_q
.q_no
= next_qp
;
8982 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
8983 AscMemWordCopyPtrToLram(iop_base
,
8984 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
8985 (uchar
*)&scsi_sg_q
,
8986 sizeof(ASC_SG_LIST_Q
) >> 1);
8987 AscMemDWordCopyPtrToLram(iop_base
,
8988 q_addr
+ ASC_SGQ_LIST_BEG
,
8992 sg_index
+= ASC_SG_LIST_PER_Q
;
8993 scsiq
->next_sg_index
= sg_index
;
8996 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8998 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
8999 scsiq
->q1
.data_addr
= saved_data_addr
;
9000 scsiq
->q1
.data_cnt
= saved_data_cnt
;
9005 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
9014 iop_base
= asc_dvc
->iop_base
;
9015 target_ix
= scsiq
->q2
.target_ix
;
9016 tid_no
= ASC_TIX_TO_TID(target_ix
);
9018 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
9019 if (n_q_required
> 1) {
9020 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
9021 (uchar
)n_q_required
);
9022 if (next_qp
!= ASC_QLINK_END
) {
9023 asc_dvc
->last_q_shortage
= 0;
9024 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
9025 scsiq
->q1
.q_no
= free_q_head
;
9026 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
9029 } else if (n_q_required
== 1) {
9030 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
9031 if (next_qp
!= ASC_QLINK_END
) {
9032 scsiq
->q1
.q_no
= free_q_head
;
9033 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
9037 AscPutVarFreeQHead(iop_base
, next_qp
);
9038 asc_dvc
->cur_total_qng
+= n_q_required
;
9039 asc_dvc
->cur_dvc_qng
[tid_no
]++;
9044 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9045 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
9064 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
9069 int disable_syn_offset_one_fix
;
9072 ushort sg_entry_cnt
= 0;
9073 ushort sg_entry_cnt_minus_one
= 0;
9080 ASC_SG_HEAD
*sg_head
;
9083 iop_base
= asc_dvc
->iop_base
;
9084 sg_head
= scsiq
->sg_head
;
9085 if (asc_dvc
->err_code
!= 0)
9088 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
9089 scsiq
->q1
.extra_bytes
= 0;
9092 target_ix
= scsiq
->q2
.target_ix
;
9093 tid_no
= ASC_TIX_TO_TID(target_ix
);
9095 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
9096 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
9097 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
9098 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
9099 AscMsgOutSDTR(asc_dvc
,
9101 sdtr_period_tbl
[(sdtr_data
>> 4) &
9105 (uchar
)(sdtr_data
& (uchar
)
9106 ASC_SYN_MAX_OFFSET
));
9107 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
9110 if (asc_dvc
->in_critical_cnt
!= 0) {
9111 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
9114 asc_dvc
->in_critical_cnt
++;
9115 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
9116 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
9117 asc_dvc
->in_critical_cnt
--;
9120 #if !CC_VERY_LONG_SG_LIST
9121 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
9122 asc_dvc
->in_critical_cnt
--;
9125 #endif /* !CC_VERY_LONG_SG_LIST */
9126 if (sg_entry_cnt
== 1) {
9127 scsiq
->q1
.data_addr
=
9128 (ADV_PADDR
)sg_head
->sg_list
[0].addr
;
9129 scsiq
->q1
.data_cnt
=
9130 (ADV_DCNT
)sg_head
->sg_list
[0].bytes
;
9131 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
9133 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
9135 scsi_cmd
= scsiq
->cdbptr
[0];
9136 disable_syn_offset_one_fix
= FALSE
;
9137 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
9138 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
9139 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
9141 for (i
= 0; i
< sg_entry_cnt
; i
++) {
9143 (ADV_DCNT
)le32_to_cpu(sg_head
->sg_list
[i
].
9147 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
9149 if (data_cnt
!= 0UL) {
9150 if (data_cnt
< 512UL) {
9151 disable_syn_offset_one_fix
= TRUE
;
9153 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
9156 _syn_offset_one_disable_cmd
[i
];
9157 if (disable_cmd
== 0xFF) {
9160 if (scsi_cmd
== disable_cmd
) {
9161 disable_syn_offset_one_fix
=
9169 if (disable_syn_offset_one_fix
) {
9170 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
9171 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
9172 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
9174 scsiq
->q2
.tag_code
&= 0x27;
9176 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
9177 if (asc_dvc
->bug_fix_cntl
) {
9178 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
9179 if ((scsi_cmd
== READ_6
) ||
9180 (scsi_cmd
== READ_10
)) {
9182 (ADV_PADDR
)le32_to_cpu(sg_head
->
9184 [sg_entry_cnt_minus_one
].
9186 (ADV_DCNT
)le32_to_cpu(sg_head
->
9188 [sg_entry_cnt_minus_one
].
9191 (uchar
)((ushort
)addr
& 0x0003);
9192 if ((extra_bytes
!= 0)
9196 ASC_TAG_FLAG_EXTRA_BYTES
)
9198 scsiq
->q2
.tag_code
|=
9199 ASC_TAG_FLAG_EXTRA_BYTES
;
9200 scsiq
->q1
.extra_bytes
=
9203 le32_to_cpu(sg_head
->
9205 [sg_entry_cnt_minus_one
].
9208 (ASC_DCNT
) extra_bytes
;
9211 [sg_entry_cnt_minus_one
].
9213 cpu_to_le32(data_cnt
);
9218 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
9219 #if CC_VERY_LONG_SG_LIST
9221 * Set the sg_entry_cnt to the maximum possible. The rest of
9222 * the SG elements will be copied when the RISC completes the
9223 * SG elements that fit and halts.
9225 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
9226 sg_entry_cnt
= ASC_MAX_SG_LIST
;
9228 #endif /* CC_VERY_LONG_SG_LIST */
9229 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
9230 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
9231 (uint
) n_q_required
)
9232 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
9234 AscSendScsiQueue(asc_dvc
, scsiq
,
9235 n_q_required
)) == 1) {
9236 asc_dvc
->in_critical_cnt
--;
9241 if (asc_dvc
->bug_fix_cntl
) {
9242 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
9243 if ((scsi_cmd
== READ_6
) ||
9244 (scsi_cmd
== READ_10
)) {
9246 le32_to_cpu(scsiq
->q1
.data_addr
) +
9247 le32_to_cpu(scsiq
->q1
.data_cnt
);
9249 (uchar
)((ushort
)addr
& 0x0003);
9250 if ((extra_bytes
!= 0)
9254 ASC_TAG_FLAG_EXTRA_BYTES
)
9257 le32_to_cpu(scsiq
->q1
.
9259 if (((ushort
)data_cnt
& 0x01FF)
9261 scsiq
->q2
.tag_code
|=
9262 ASC_TAG_FLAG_EXTRA_BYTES
;
9263 data_cnt
-= (ASC_DCNT
)
9265 scsiq
->q1
.data_cnt
=
9268 scsiq
->q1
.extra_bytes
=
9276 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
9277 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
9278 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
9279 n_q_required
)) == 1) {
9280 asc_dvc
->in_critical_cnt
--;
9285 asc_dvc
->in_critical_cnt
--;
9290 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9292 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9293 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9294 * RISC to notify it a new command is ready to be executed.
9296 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9297 * set to SCSI_MAX_RETRY.
9299 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9300 * for DMA addresses or math operations are byte swapped to little-endian
9304 * ADV_SUCCESS(1) - The request was successfully queued.
9305 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9306 * request completes.
9307 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9310 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, ADV_SCSI_REQ_Q
*scsiq
)
9312 AdvPortAddr iop_base
;
9313 ADV_PADDR req_paddr
;
9314 ADV_CARR_T
*new_carrp
;
9317 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9319 if (scsiq
->target_id
> ADV_MAX_TID
) {
9320 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
9321 scsiq
->done_status
= QD_WITH_ERROR
;
9325 iop_base
= asc_dvc
->iop_base
;
9328 * Allocate a carrier ensuring at least one carrier always
9329 * remains on the freelist and initialize fields.
9331 if ((new_carrp
= asc_dvc
->carr_freelist
) == NULL
) {
9334 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
9335 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp
->next_vpa
));
9336 asc_dvc
->carr_pending_cnt
++;
9339 * Set the carrier to be a stopper by setting 'next_vpa'
9340 * to the stopper value. The current stopper will be changed
9341 * below to point to the new stopper.
9343 new_carrp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
9346 * Clear the ADV_SCSI_REQ_Q done flag.
9348 scsiq
->a_flag
&= ~ADV_SCSIQ_DONE
;
9350 req_paddr
= virt_to_bus(scsiq
);
9351 BUG_ON(req_paddr
& 31);
9352 /* Wait for assertion before making little-endian */
9353 req_paddr
= cpu_to_le32(req_paddr
);
9355 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9356 scsiq
->scsiq_ptr
= cpu_to_le32(ADV_VADDR_TO_U32(scsiq
));
9357 scsiq
->scsiq_rptr
= req_paddr
;
9359 scsiq
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->icq_sp
));
9361 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9362 * order during initialization.
9364 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
9367 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9368 * the microcode. The newly allocated stopper will become the new
9371 asc_dvc
->icq_sp
->areq_vpa
= req_paddr
;
9374 * Set the 'next_vpa' pointer for the old stopper to be the
9375 * physical address of the new stopper. The RISC can only
9376 * follow physical addresses.
9378 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
9381 * Set the host adapter stopper pointer to point to the new carrier.
9383 asc_dvc
->icq_sp
= new_carrp
;
9385 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
9386 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
9388 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9390 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
9391 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
9393 * Clear the tickle value. In the ASC-3550 the RISC flag
9394 * command 'clr_tickle_a' does not work unless the host
9397 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
9400 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
9402 * Notify the RISC a carrier is ready by writing the physical
9403 * address of the new carrier stopper to the COMMA register.
9405 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
9406 le32_to_cpu(new_carrp
->carr_pa
));
9413 * Execute a single 'Scsi_Cmnd'.
9415 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
9418 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
9420 ASC_DBG(1, "scp 0x%p\n", scp
);
9422 if (ASC_NARROW_BOARD(boardp
)) {
9423 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
9424 struct asc_scsi_q asc_scsi_q
;
9426 /* asc_build_req() can not return ASC_BUSY. */
9427 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
9428 if (ret
== ASC_ERROR
) {
9429 ASC_STATS(scp
->device
->host
, build_error
);
9433 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
9434 kfree(asc_scsi_q
.sg_head
);
9435 err_code
= asc_dvc
->err_code
;
9437 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
9438 ADV_SCSI_REQ_Q
*adv_scsiqp
;
9440 switch (adv_build_req(boardp
, scp
, &adv_scsiqp
)) {
9442 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9445 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9447 * The asc_stats fields 'adv_build_noreq' and
9448 * 'adv_build_nosg' count wide board busy conditions.
9449 * They are updated in adv_build_req and
9450 * adv_get_sglist, respectively.
9455 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9456 ASC_STATS(scp
->device
->host
, build_error
);
9460 ret
= AdvExeScsiQueue(adv_dvc
, adv_scsiqp
);
9461 err_code
= adv_dvc
->err_code
;
9466 ASC_STATS(scp
->device
->host
, exe_noerror
);
9468 * Increment monotonically increasing per device
9469 * successful request counter. Wrapping doesn't matter.
9471 boardp
->reqcnt
[scp
->device
->id
]++;
9472 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9475 ASC_STATS(scp
->device
->host
, exe_busy
);
9478 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
9479 "err_code 0x%x\n", err_code
);
9480 ASC_STATS(scp
->device
->host
, exe_error
);
9481 scp
->result
= HOST_BYTE(DID_ERROR
);
9484 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
9485 "err_code 0x%x\n", err_code
);
9486 ASC_STATS(scp
->device
->host
, exe_unknown
);
9487 scp
->result
= HOST_BYTE(DID_ERROR
);
9491 ASC_DBG(1, "end\n");
9496 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9498 * This function always returns 0. Command return status is saved
9499 * in the 'scp' result field.
9502 advansys_queuecommand_lck(struct scsi_cmnd
*scp
, void (*done
)(struct scsi_cmnd
*))
9504 struct Scsi_Host
*shost
= scp
->device
->host
;
9505 int asc_res
, result
= 0;
9507 ASC_STATS(shost
, queuecommand
);
9508 scp
->scsi_done
= done
;
9510 asc_res
= asc_execute_scsi_cmnd(scp
);
9516 result
= SCSI_MLQUEUE_HOST_BUSY
;
9527 static DEF_SCSI_QCMD(advansys_queuecommand
)
9529 static ushort __devinit
AscGetEisaChipCfg(PortAddr iop_base
)
9531 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9532 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
9533 return inpw(eisa_cfg_iop
);
9537 * Return the BIOS address of the adapter at the specified
9538 * I/O port and with the specified bus type.
9540 static unsigned short __devinit
9541 AscGetChipBiosAddress(PortAddr iop_base
, unsigned short bus_type
)
9543 unsigned short cfg_lsw
;
9544 unsigned short bios_addr
;
9547 * The PCI BIOS is re-located by the motherboard BIOS. Because
9548 * of this the driver can not determine where a PCI BIOS is
9549 * loaded and executes.
9551 if (bus_type
& ASC_IS_PCI
)
9554 if ((bus_type
& ASC_IS_EISA
) != 0) {
9555 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
9557 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
9561 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9564 * ISA PnP uses the top bit as the 32K BIOS flag
9566 if (bus_type
== ASC_IS_ISAPNP
)
9568 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
9572 static uchar __devinit
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
9576 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
9577 return (new_host_id
);
9579 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9581 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
9582 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9583 return (AscGetChipScsiID(iop_base
));
9586 static unsigned char __devinit
AscGetChipScsiCtrl(PortAddr iop_base
)
9590 AscSetBank(iop_base
, 1);
9591 sc
= inp(iop_base
+ IOP_REG_SC
);
9592 AscSetBank(iop_base
, 0);
9596 static unsigned char __devinit
9597 AscGetChipVersion(PortAddr iop_base
, unsigned short bus_type
)
9599 if (bus_type
& ASC_IS_EISA
) {
9601 unsigned char revision
;
9602 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9603 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
9604 revision
= inp(eisa_iop
);
9605 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
9607 return AscGetChipVerNo(iop_base
);
9611 static void __devinit
AscEnableIsaDma(uchar dma_channel
)
9613 if (dma_channel
< 4) {
9614 outp(0x000B, (ushort
)(0xC0 | dma_channel
));
9615 outp(0x000A, dma_channel
);
9616 } else if (dma_channel
< 8) {
9617 outp(0x00D6, (ushort
)(0xC0 | (dma_channel
- 4)));
9618 outp(0x00D4, (ushort
)(dma_channel
- 4));
9621 #endif /* CONFIG_ISA */
9623 static int AscStopQueueExe(PortAddr iop_base
)
9627 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
9628 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
9629 ASC_STOP_REQ_RISC_STOP
);
9631 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
9632 ASC_STOP_ACK_RISC_STOP
) {
9636 } while (count
++ < 20);
9641 static ASC_DCNT __devinit
AscGetMaxDmaCount(ushort bus_type
)
9643 if (bus_type
& ASC_IS_ISA
)
9644 return ASC_MAX_ISA_DMA_COUNT
;
9645 else if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
9646 return ASC_MAX_VL_DMA_COUNT
;
9647 return ASC_MAX_PCI_DMA_COUNT
;
9651 static ushort __devinit
AscGetIsaDmaChannel(PortAddr iop_base
)
9655 channel
= AscGetChipCfgLsw(iop_base
) & 0x0003;
9656 if (channel
== 0x03)
9658 else if (channel
== 0x00)
9660 return (channel
+ 4);
9663 static ushort __devinit
AscSetIsaDmaChannel(PortAddr iop_base
, ushort dma_channel
)
9668 if ((dma_channel
>= 5) && (dma_channel
<= 7)) {
9669 if (dma_channel
== 7)
9672 value
= dma_channel
- 4;
9673 cfg_lsw
= AscGetChipCfgLsw(iop_base
) & 0xFFFC;
9675 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9676 return (AscGetIsaDmaChannel(iop_base
));
9681 static uchar __devinit
AscGetIsaDmaSpeed(PortAddr iop_base
)
9685 AscSetBank(iop_base
, 1);
9686 speed_value
= AscReadChipDmaSpeed(iop_base
);
9687 speed_value
&= 0x07;
9688 AscSetBank(iop_base
, 0);
9692 static uchar __devinit
AscSetIsaDmaSpeed(PortAddr iop_base
, uchar speed_value
)
9694 speed_value
&= 0x07;
9695 AscSetBank(iop_base
, 1);
9696 AscWriteChipDmaSpeed(iop_base
, speed_value
);
9697 AscSetBank(iop_base
, 0);
9698 return AscGetIsaDmaSpeed(iop_base
);
9700 #endif /* CONFIG_ISA */
9702 static ushort __devinit
AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
9709 iop_base
= asc_dvc
->iop_base
;
9711 asc_dvc
->err_code
= 0;
9712 if ((asc_dvc
->bus_type
&
9713 (ASC_IS_ISA
| ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
9714 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
9716 AscSetChipControl(iop_base
, CC_HALT
);
9717 AscSetChipStatus(iop_base
, 0);
9718 asc_dvc
->bug_fix_cntl
= 0;
9719 asc_dvc
->pci_fix_asyn_xfer
= 0;
9720 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
9721 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9722 asc_dvc
->sdtr_done
= 0;
9723 asc_dvc
->cur_total_qng
= 0;
9724 asc_dvc
->is_in_int
= 0;
9725 asc_dvc
->in_critical_cnt
= 0;
9726 asc_dvc
->last_q_shortage
= 0;
9727 asc_dvc
->use_tagged_qng
= 0;
9728 asc_dvc
->no_scam
= 0;
9729 asc_dvc
->unit_not_ready
= 0;
9730 asc_dvc
->queue_full_or_busy
= 0;
9731 asc_dvc
->redo_scam
= 0;
9733 asc_dvc
->min_sdtr_index
= 0;
9734 asc_dvc
->cfg
->can_tagged_qng
= 0;
9735 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
9736 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
9737 asc_dvc
->init_sdtr
= 0;
9738 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
9739 asc_dvc
->scsi_reset_wait
= 3;
9740 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
9741 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
9742 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9743 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9744 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
9745 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
9746 asc_dvc
->cfg
->chip_version
= chip_version
;
9747 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
9748 asc_dvc
->max_sdtr_index
= 7;
9749 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
9750 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
9751 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
9752 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
9753 asc_dvc
->max_sdtr_index
= 15;
9754 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
9755 AscSetExtraControl(iop_base
,
9756 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9757 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
9758 AscSetExtraControl(iop_base
,
9759 (SEC_ACTIVE_NEGATE
|
9760 SEC_ENABLE_FILTER
));
9763 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
9764 AscSetExtraControl(iop_base
,
9765 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9768 asc_dvc
->cfg
->isa_dma_speed
= ASC_DEF_ISA_DMA_SPEED
;
9770 if ((asc_dvc
->bus_type
& ASC_IS_ISA
) != 0) {
9771 if (chip_version
>= ASC_CHIP_MIN_VER_ISA_PNP
) {
9772 AscSetChipIFC(iop_base
, IFC_INIT_DEFAULT
);
9773 asc_dvc
->bus_type
= ASC_IS_ISAPNP
;
9775 asc_dvc
->cfg
->isa_dma_channel
=
9776 (uchar
)AscGetIsaDmaChannel(iop_base
);
9778 #endif /* CONFIG_ISA */
9779 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9780 asc_dvc
->cur_dvc_qng
[i
] = 0;
9781 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
9782 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
9783 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
9784 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
9789 static int __devinit
AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
9793 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
9794 unsigned char read_back
;
9795 AscSetChipEEPCmd(iop_base
, cmd_reg
);
9797 read_back
= AscGetChipEEPCmd(iop_base
);
9798 if (read_back
== cmd_reg
)
9804 static void __devinit
AscWaitEEPRead(void)
9809 static ushort __devinit
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
9814 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9816 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
9817 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
9819 read_wval
= AscGetChipEEPData(iop_base
);
9824 static ushort __devinit
9825 AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
9832 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9835 wbuf
= (ushort
*)cfg_buf
;
9837 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9838 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9839 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9842 if (bus_type
& ASC_IS_VL
) {
9843 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9844 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9846 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9847 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9849 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9850 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9851 if (s_addr
<= uchar_end_in_config
) {
9853 * Swap all char fields - must unswap bytes already swapped
9854 * by AscReadEEPWord().
9856 *wbuf
= le16_to_cpu(wval
);
9858 /* Don't swap word field at the end - cntl field. */
9861 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
9864 * Read the checksum word which will be compared against 'sum'
9865 * by the caller. Word field already swapped.
9867 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9871 static int __devinit
AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
9878 iop_base
= asc_dvc
->iop_base
;
9880 q_addr
= ASC_QNO_TO_QADDR(241);
9881 saved_word
= AscReadLramWord(iop_base
, q_addr
);
9882 AscSetChipLramAddr(iop_base
, q_addr
);
9883 AscSetChipLramData(iop_base
, 0x55AA);
9885 AscSetChipLramAddr(iop_base
, q_addr
);
9886 if (AscGetChipLramData(iop_base
) == 0x55AA) {
9888 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
9893 static void __devinit
AscWaitEEPWrite(void)
9898 static int __devinit
AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
9905 AscSetChipEEPData(iop_base
, data_reg
);
9907 read_back
= AscGetChipEEPData(iop_base
);
9908 if (read_back
== data_reg
) {
9911 if (retry
++ > ASC_EEP_MAX_RETRY
) {
9917 static ushort __devinit
9918 AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
9922 read_wval
= AscReadEEPWord(iop_base
, addr
);
9923 if (read_wval
!= word_val
) {
9924 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
9926 AscWriteEEPDataReg(iop_base
, word_val
);
9928 AscWriteEEPCmdReg(iop_base
,
9929 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
9931 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9933 return (AscReadEEPWord(iop_base
, addr
));
9938 static int __devinit
9939 AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
9948 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9950 wbuf
= (ushort
*)cfg_buf
;
9953 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9954 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9956 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9960 if (bus_type
& ASC_IS_VL
) {
9961 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9962 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9964 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9965 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9967 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9968 if (s_addr
<= uchar_end_in_config
) {
9970 * This is a char field. Swap char fields before they are
9971 * swapped again by AscWriteEEPWord().
9973 word
= cpu_to_le16(*wbuf
);
9975 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
9979 /* Don't swap word field at the end - cntl field. */
9981 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9985 sum
+= *wbuf
; /* Checksum calculated from word values. */
9987 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9989 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
9993 /* Read EEPROM back again. */
9994 wbuf
= (ushort
*)cfg_buf
;
9996 * Read two config words; Byte-swapping done by AscReadEEPWord().
9998 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9999 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
10003 if (bus_type
& ASC_IS_VL
) {
10004 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
10005 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
10007 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
10008 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
10010 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
10011 if (s_addr
<= uchar_end_in_config
) {
10013 * Swap all char fields. Must unswap bytes already swapped
10014 * by AscReadEEPWord().
10017 le16_to_cpu(AscReadEEPWord
10018 (iop_base
, (uchar
)s_addr
));
10020 /* Don't swap word field at the end - cntl field. */
10021 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
10023 if (*wbuf
!= word
) {
10027 /* Read checksum; Byte swapping not needed. */
10028 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
10034 static int __devinit
10035 AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
10042 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
10046 if (++retry
> ASC_EEP_MAX_RETRY
) {
10053 static ushort __devinit
AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
10055 ASCEEP_CONFIG eep_config_buf
;
10056 ASCEEP_CONFIG
*eep_config
;
10060 ushort cfg_msw
, cfg_lsw
;
10064 iop_base
= asc_dvc
->iop_base
;
10066 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
10067 AscStopQueueExe(iop_base
);
10068 if ((AscStopChip(iop_base
) == FALSE
) ||
10069 (AscGetChipScsiCtrl(iop_base
) != 0)) {
10070 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
10071 AscResetChipAndScsiBus(asc_dvc
);
10072 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
10074 if (AscIsChipHalted(iop_base
) == FALSE
) {
10075 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
10076 return (warn_code
);
10078 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
10079 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
10080 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
10081 return (warn_code
);
10083 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
10084 cfg_msw
= AscGetChipCfgMsw(iop_base
);
10085 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
10086 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
10087 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10088 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
10089 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10091 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
10092 ASC_DBG(1, "chksum 0x%x\n", chksum
);
10096 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
10097 warn_code
|= ASC_WARN_AUTO_CONFIG
;
10098 if (asc_dvc
->cfg
->chip_version
== 3) {
10099 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
10100 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
10101 eep_config
->cfg_lsw
=
10102 AscGetChipCfgLsw(iop_base
);
10104 if (eep_config
->cfg_msw
!= cfg_msw
) {
10105 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
10106 eep_config
->cfg_msw
=
10107 AscGetChipCfgMsw(iop_base
);
10111 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10112 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
10113 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
10114 if (chksum
!= eep_config
->chksum
) {
10115 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
10116 ASC_CHIP_VER_PCI_ULTRA_3050
) {
10117 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10118 eep_config
->init_sdtr
= 0xFF;
10119 eep_config
->disc_enable
= 0xFF;
10120 eep_config
->start_motor
= 0xFF;
10121 eep_config
->use_cmd_qng
= 0;
10122 eep_config
->max_total_qng
= 0xF0;
10123 eep_config
->max_tag_qng
= 0x20;
10124 eep_config
->cntl
= 0xBFFF;
10125 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
10126 eep_config
->no_scam
= 0;
10127 eep_config
->adapter_info
[0] = 0;
10128 eep_config
->adapter_info
[1] = 0;
10129 eep_config
->adapter_info
[2] = 0;
10130 eep_config
->adapter_info
[3] = 0;
10131 eep_config
->adapter_info
[4] = 0;
10132 /* Indicate EEPROM-less board. */
10133 eep_config
->adapter_info
[5] = 0xBB;
10136 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10138 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10141 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
10142 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
10143 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
10144 asc_dvc
->cfg
->isa_dma_speed
= ASC_EEP_GET_DMA_SPD(eep_config
);
10145 asc_dvc
->start_motor
= eep_config
->start_motor
;
10146 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
10147 asc_dvc
->no_scam
= eep_config
->no_scam
;
10148 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
10149 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
10150 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
10151 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
10152 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
10153 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
10154 if (!AscTestExternalLram(asc_dvc
)) {
10155 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
10156 ASC_IS_PCI_ULTRA
)) {
10157 eep_config
->max_total_qng
=
10158 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
10159 eep_config
->max_tag_qng
=
10160 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
10162 eep_config
->cfg_msw
|= 0x0800;
10164 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10165 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
10166 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
10170 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
10171 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
10173 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
10174 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
10176 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
10177 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
10179 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
10180 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
10182 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
10183 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
10184 eep_config
->use_cmd_qng
) {
10185 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
10186 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
10188 ASC_EEP_SET_CHIP_ID(eep_config
,
10189 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
10190 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
10191 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
10192 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
10193 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
10196 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
10197 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
10198 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
10199 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
10200 (uchar
)(ASC_DEF_SDTR_OFFSET
|
10201 (asc_dvc
->min_sdtr_index
<< 4));
10203 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
10205 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
10206 asc_dvc
->bus_type
)) != 0) {
10208 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10212 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10215 return (warn_code
);
10218 static int __devinit
AscInitGetConfig(struct Scsi_Host
*shost
)
10220 struct asc_board
*board
= shost_priv(shost
);
10221 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
10222 unsigned short warn_code
= 0;
10224 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
10225 if (asc_dvc
->err_code
!= 0)
10226 return asc_dvc
->err_code
;
10228 if (AscFindSignature(asc_dvc
->iop_base
)) {
10229 warn_code
|= AscInitAscDvcVar(asc_dvc
);
10230 warn_code
|= AscInitFromEEP(asc_dvc
);
10231 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
10232 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
10233 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
10235 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10238 switch (warn_code
) {
10239 case 0: /* No error */
10241 case ASC_WARN_IO_PORT_ROTATE
:
10242 shost_printk(KERN_WARNING
, shost
, "I/O port address "
10245 case ASC_WARN_AUTO_CONFIG
:
10246 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
10249 case ASC_WARN_EEPROM_CHKSUM
:
10250 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
10252 case ASC_WARN_IRQ_MODIFIED
:
10253 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
10255 case ASC_WARN_CMD_QNG_CONFLICT
:
10256 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
10260 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
10265 if (asc_dvc
->err_code
!= 0)
10266 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
10267 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
10269 return asc_dvc
->err_code
;
10272 static int __devinit
AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
10274 struct asc_board
*board
= shost_priv(shost
);
10275 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
10276 PortAddr iop_base
= asc_dvc
->iop_base
;
10277 unsigned short cfg_msw
;
10278 unsigned short warn_code
= 0;
10280 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
10281 if (asc_dvc
->err_code
!= 0)
10282 return asc_dvc
->err_code
;
10283 if (!AscFindSignature(asc_dvc
->iop_base
)) {
10284 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10285 return asc_dvc
->err_code
;
10288 cfg_msw
= AscGetChipCfgMsw(iop_base
);
10289 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
10290 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10291 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
10292 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10294 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
10295 asc_dvc
->cfg
->cmd_qng_enabled
) {
10296 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
10297 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
10299 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
10300 warn_code
|= ASC_WARN_AUTO_CONFIG
;
10303 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
10305 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10306 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
10308 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
10309 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
10310 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
10311 asc_dvc
->bug_fix_cntl
|=
10312 ASC_BUG_FIX_ASYN_USE_SYN
;
10316 #endif /* CONFIG_PCI */
10317 if (asc_dvc
->bus_type
== ASC_IS_ISAPNP
) {
10318 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
)
10319 == ASC_CHIP_VER_ASYN_BUG
) {
10320 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_ASYN_USE_SYN
;
10323 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
10324 asc_dvc
->cfg
->chip_scsi_id
) {
10325 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
10328 if (asc_dvc
->bus_type
& ASC_IS_ISA
) {
10329 AscSetIsaDmaChannel(iop_base
, asc_dvc
->cfg
->isa_dma_channel
);
10330 AscSetIsaDmaSpeed(iop_base
, asc_dvc
->cfg
->isa_dma_speed
);
10332 #endif /* CONFIG_ISA */
10334 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
10336 switch (warn_code
) {
10337 case 0: /* No error. */
10339 case ASC_WARN_IO_PORT_ROTATE
:
10340 shost_printk(KERN_WARNING
, shost
, "I/O port address "
10343 case ASC_WARN_AUTO_CONFIG
:
10344 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
10347 case ASC_WARN_EEPROM_CHKSUM
:
10348 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
10350 case ASC_WARN_IRQ_MODIFIED
:
10351 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
10353 case ASC_WARN_CMD_QNG_CONFLICT
:
10354 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
10358 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
10363 if (asc_dvc
->err_code
!= 0)
10364 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
10365 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
10367 return asc_dvc
->err_code
;
10371 * EEPROM Configuration.
10373 * All drivers should use this structure to set the default EEPROM
10374 * configuration. The BIOS now uses this structure when it is built.
10375 * Additional structure information can be found in a_condor.h where
10376 * the structure is defined.
10378 * The *_Field_IsChar structs are needed to correct for endianness.
10379 * These values are read from the board 16 bits at a time directly
10380 * into the structs. Because some fields are char, the values will be
10381 * in the wrong order. The *_Field_IsChar tells when to flip the
10382 * bytes. Data read and written to PCI memory is automatically swapped
10383 * on big-endian platforms so char fields read as words are actually being
10384 * unswapped on big-endian platforms.
10386 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata
= {
10387 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
10388 0x0000, /* cfg_msw */
10389 0xFFFF, /* disc_enable */
10390 0xFFFF, /* wdtr_able */
10391 0xFFFF, /* sdtr_able */
10392 0xFFFF, /* start_motor */
10393 0xFFFF, /* tagqng_able */
10394 0xFFFF, /* bios_scan */
10395 0, /* scam_tolerant */
10396 7, /* adapter_scsi_id */
10397 0, /* bios_boot_delay */
10398 3, /* scsi_reset_delay */
10399 0, /* bios_id_lun */
10400 0, /* termination */
10402 0xFFE7, /* bios_ctrl */
10403 0xFFFF, /* ultra_able */
10405 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
10406 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10409 0, /* serial_number_word1 */
10410 0, /* serial_number_word2 */
10411 0, /* serial_number_word3 */
10413 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10414 , /* oem_name[16] */
10415 0, /* dvc_err_code */
10416 0, /* adv_err_code */
10417 0, /* adv_err_addr */
10418 0, /* saved_dvc_err_code */
10419 0, /* saved_adv_err_code */
10420 0, /* saved_adv_err_addr */
10424 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata
= {
10427 0, /* -disc_enable */
10430 0, /* start_motor */
10431 0, /* tagqng_able */
10433 0, /* scam_tolerant */
10434 1, /* adapter_scsi_id */
10435 1, /* bios_boot_delay */
10436 1, /* scsi_reset_delay */
10437 1, /* bios_id_lun */
10438 1, /* termination */
10441 0, /* ultra_able */
10443 1, /* max_host_qng */
10444 1, /* max_dvc_qng */
10447 0, /* serial_number_word1 */
10448 0, /* serial_number_word2 */
10449 0, /* serial_number_word3 */
10451 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10452 , /* oem_name[16] */
10453 0, /* dvc_err_code */
10454 0, /* adv_err_code */
10455 0, /* adv_err_addr */
10456 0, /* saved_dvc_err_code */
10457 0, /* saved_adv_err_code */
10458 0, /* saved_adv_err_addr */
10462 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata
= {
10463 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10464 0x0000, /* 01 cfg_msw */
10465 0xFFFF, /* 02 disc_enable */
10466 0xFFFF, /* 03 wdtr_able */
10467 0x4444, /* 04 sdtr_speed1 */
10468 0xFFFF, /* 05 start_motor */
10469 0xFFFF, /* 06 tagqng_able */
10470 0xFFFF, /* 07 bios_scan */
10471 0, /* 08 scam_tolerant */
10472 7, /* 09 adapter_scsi_id */
10473 0, /* bios_boot_delay */
10474 3, /* 10 scsi_reset_delay */
10475 0, /* bios_id_lun */
10476 0, /* 11 termination_se */
10477 0, /* termination_lvd */
10478 0xFFE7, /* 12 bios_ctrl */
10479 0x4444, /* 13 sdtr_speed2 */
10480 0x4444, /* 14 sdtr_speed3 */
10481 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10482 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10483 0, /* 16 dvc_cntl */
10484 0x4444, /* 17 sdtr_speed4 */
10485 0, /* 18 serial_number_word1 */
10486 0, /* 19 serial_number_word2 */
10487 0, /* 20 serial_number_word3 */
10488 0, /* 21 check_sum */
10489 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10490 , /* 22-29 oem_name[16] */
10491 0, /* 30 dvc_err_code */
10492 0, /* 31 adv_err_code */
10493 0, /* 32 adv_err_addr */
10494 0, /* 33 saved_dvc_err_code */
10495 0, /* 34 saved_adv_err_code */
10496 0, /* 35 saved_adv_err_addr */
10497 0, /* 36 reserved */
10498 0, /* 37 reserved */
10499 0, /* 38 reserved */
10500 0, /* 39 reserved */
10501 0, /* 40 reserved */
10502 0, /* 41 reserved */
10503 0, /* 42 reserved */
10504 0, /* 43 reserved */
10505 0, /* 44 reserved */
10506 0, /* 45 reserved */
10507 0, /* 46 reserved */
10508 0, /* 47 reserved */
10509 0, /* 48 reserved */
10510 0, /* 49 reserved */
10511 0, /* 50 reserved */
10512 0, /* 51 reserved */
10513 0, /* 52 reserved */
10514 0, /* 53 reserved */
10515 0, /* 54 reserved */
10516 0, /* 55 reserved */
10517 0, /* 56 cisptr_lsw */
10518 0, /* 57 cisprt_msw */
10519 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10520 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
10521 0, /* 60 reserved */
10522 0, /* 61 reserved */
10523 0, /* 62 reserved */
10524 0 /* 63 reserved */
10527 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata
= {
10528 0, /* 00 cfg_lsw */
10529 0, /* 01 cfg_msw */
10530 0, /* 02 disc_enable */
10531 0, /* 03 wdtr_able */
10532 0, /* 04 sdtr_speed1 */
10533 0, /* 05 start_motor */
10534 0, /* 06 tagqng_able */
10535 0, /* 07 bios_scan */
10536 0, /* 08 scam_tolerant */
10537 1, /* 09 adapter_scsi_id */
10538 1, /* bios_boot_delay */
10539 1, /* 10 scsi_reset_delay */
10540 1, /* bios_id_lun */
10541 1, /* 11 termination_se */
10542 1, /* termination_lvd */
10543 0, /* 12 bios_ctrl */
10544 0, /* 13 sdtr_speed2 */
10545 0, /* 14 sdtr_speed3 */
10546 1, /* 15 max_host_qng */
10547 1, /* max_dvc_qng */
10548 0, /* 16 dvc_cntl */
10549 0, /* 17 sdtr_speed4 */
10550 0, /* 18 serial_number_word1 */
10551 0, /* 19 serial_number_word2 */
10552 0, /* 20 serial_number_word3 */
10553 0, /* 21 check_sum */
10554 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10555 , /* 22-29 oem_name[16] */
10556 0, /* 30 dvc_err_code */
10557 0, /* 31 adv_err_code */
10558 0, /* 32 adv_err_addr */
10559 0, /* 33 saved_dvc_err_code */
10560 0, /* 34 saved_adv_err_code */
10561 0, /* 35 saved_adv_err_addr */
10562 0, /* 36 reserved */
10563 0, /* 37 reserved */
10564 0, /* 38 reserved */
10565 0, /* 39 reserved */
10566 0, /* 40 reserved */
10567 0, /* 41 reserved */
10568 0, /* 42 reserved */
10569 0, /* 43 reserved */
10570 0, /* 44 reserved */
10571 0, /* 45 reserved */
10572 0, /* 46 reserved */
10573 0, /* 47 reserved */
10574 0, /* 48 reserved */
10575 0, /* 49 reserved */
10576 0, /* 50 reserved */
10577 0, /* 51 reserved */
10578 0, /* 52 reserved */
10579 0, /* 53 reserved */
10580 0, /* 54 reserved */
10581 0, /* 55 reserved */
10582 0, /* 56 cisptr_lsw */
10583 0, /* 57 cisprt_msw */
10584 0, /* 58 subsysvid */
10585 0, /* 59 subsysid */
10586 0, /* 60 reserved */
10587 0, /* 61 reserved */
10588 0, /* 62 reserved */
10589 0 /* 63 reserved */
10592 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata
= {
10593 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10594 0x0000, /* 01 cfg_msw */
10595 0xFFFF, /* 02 disc_enable */
10596 0xFFFF, /* 03 wdtr_able */
10597 0x5555, /* 04 sdtr_speed1 */
10598 0xFFFF, /* 05 start_motor */
10599 0xFFFF, /* 06 tagqng_able */
10600 0xFFFF, /* 07 bios_scan */
10601 0, /* 08 scam_tolerant */
10602 7, /* 09 adapter_scsi_id */
10603 0, /* bios_boot_delay */
10604 3, /* 10 scsi_reset_delay */
10605 0, /* bios_id_lun */
10606 0, /* 11 termination_se */
10607 0, /* termination_lvd */
10608 0xFFE7, /* 12 bios_ctrl */
10609 0x5555, /* 13 sdtr_speed2 */
10610 0x5555, /* 14 sdtr_speed3 */
10611 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10612 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10613 0, /* 16 dvc_cntl */
10614 0x5555, /* 17 sdtr_speed4 */
10615 0, /* 18 serial_number_word1 */
10616 0, /* 19 serial_number_word2 */
10617 0, /* 20 serial_number_word3 */
10618 0, /* 21 check_sum */
10619 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10620 , /* 22-29 oem_name[16] */
10621 0, /* 30 dvc_err_code */
10622 0, /* 31 adv_err_code */
10623 0, /* 32 adv_err_addr */
10624 0, /* 33 saved_dvc_err_code */
10625 0, /* 34 saved_adv_err_code */
10626 0, /* 35 saved_adv_err_addr */
10627 0, /* 36 reserved */
10628 0, /* 37 reserved */
10629 0, /* 38 reserved */
10630 0, /* 39 reserved */
10631 0, /* 40 reserved */
10632 0, /* 41 reserved */
10633 0, /* 42 reserved */
10634 0, /* 43 reserved */
10635 0, /* 44 reserved */
10636 0, /* 45 reserved */
10637 0, /* 46 reserved */
10638 0, /* 47 reserved */
10639 0, /* 48 reserved */
10640 0, /* 49 reserved */
10641 0, /* 50 reserved */
10642 0, /* 51 reserved */
10643 0, /* 52 reserved */
10644 0, /* 53 reserved */
10645 0, /* 54 reserved */
10646 0, /* 55 reserved */
10647 0, /* 56 cisptr_lsw */
10648 0, /* 57 cisprt_msw */
10649 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10650 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
10651 0, /* 60 reserved */
10652 0, /* 61 reserved */
10653 0, /* 62 reserved */
10654 0 /* 63 reserved */
10657 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata
= {
10658 0, /* 00 cfg_lsw */
10659 0, /* 01 cfg_msw */
10660 0, /* 02 disc_enable */
10661 0, /* 03 wdtr_able */
10662 0, /* 04 sdtr_speed1 */
10663 0, /* 05 start_motor */
10664 0, /* 06 tagqng_able */
10665 0, /* 07 bios_scan */
10666 0, /* 08 scam_tolerant */
10667 1, /* 09 adapter_scsi_id */
10668 1, /* bios_boot_delay */
10669 1, /* 10 scsi_reset_delay */
10670 1, /* bios_id_lun */
10671 1, /* 11 termination_se */
10672 1, /* termination_lvd */
10673 0, /* 12 bios_ctrl */
10674 0, /* 13 sdtr_speed2 */
10675 0, /* 14 sdtr_speed3 */
10676 1, /* 15 max_host_qng */
10677 1, /* max_dvc_qng */
10678 0, /* 16 dvc_cntl */
10679 0, /* 17 sdtr_speed4 */
10680 0, /* 18 serial_number_word1 */
10681 0, /* 19 serial_number_word2 */
10682 0, /* 20 serial_number_word3 */
10683 0, /* 21 check_sum */
10684 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10685 , /* 22-29 oem_name[16] */
10686 0, /* 30 dvc_err_code */
10687 0, /* 31 adv_err_code */
10688 0, /* 32 adv_err_addr */
10689 0, /* 33 saved_dvc_err_code */
10690 0, /* 34 saved_adv_err_code */
10691 0, /* 35 saved_adv_err_addr */
10692 0, /* 36 reserved */
10693 0, /* 37 reserved */
10694 0, /* 38 reserved */
10695 0, /* 39 reserved */
10696 0, /* 40 reserved */
10697 0, /* 41 reserved */
10698 0, /* 42 reserved */
10699 0, /* 43 reserved */
10700 0, /* 44 reserved */
10701 0, /* 45 reserved */
10702 0, /* 46 reserved */
10703 0, /* 47 reserved */
10704 0, /* 48 reserved */
10705 0, /* 49 reserved */
10706 0, /* 50 reserved */
10707 0, /* 51 reserved */
10708 0, /* 52 reserved */
10709 0, /* 53 reserved */
10710 0, /* 54 reserved */
10711 0, /* 55 reserved */
10712 0, /* 56 cisptr_lsw */
10713 0, /* 57 cisprt_msw */
10714 0, /* 58 subsysvid */
10715 0, /* 59 subsysid */
10716 0, /* 60 reserved */
10717 0, /* 61 reserved */
10718 0, /* 62 reserved */
10719 0 /* 63 reserved */
10724 * Wait for EEPROM command to complete
10726 static void __devinit
AdvWaitEEPCmd(AdvPortAddr iop_base
)
10730 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
10731 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
10732 ASC_EEP_CMD_DONE
) {
10737 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
10743 * Read the EEPROM from specified location
10745 static ushort __devinit
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
10747 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10748 ASC_EEP_CMD_READ
| eep_word_addr
);
10749 AdvWaitEEPCmd(iop_base
);
10750 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
10754 * Write the EEPROM from 'cfg_buf'.
10756 static void __devinit
10757 AdvSet3550EEPConfig(AdvPortAddr iop_base
, ADVEEP_3550_CONFIG
*cfg_buf
)
10760 ushort addr
, chksum
;
10761 ushort
*charfields
;
10763 wbuf
= (ushort
*)cfg_buf
;
10764 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10767 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10768 AdvWaitEEPCmd(iop_base
);
10771 * Write EEPROM from word 0 to word 20.
10773 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10774 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10777 if (*charfields
++) {
10778 word
= cpu_to_le16(*wbuf
);
10782 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10783 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10784 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10785 ASC_EEP_CMD_WRITE
| addr
);
10786 AdvWaitEEPCmd(iop_base
);
10787 mdelay(ADV_EEP_DELAY_MS
);
10791 * Write EEPROM checksum at word 21.
10793 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10794 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10795 AdvWaitEEPCmd(iop_base
);
10800 * Write EEPROM OEM name at words 22 to 29.
10802 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10803 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10806 if (*charfields
++) {
10807 word
= cpu_to_le16(*wbuf
);
10811 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10812 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10813 ASC_EEP_CMD_WRITE
| addr
);
10814 AdvWaitEEPCmd(iop_base
);
10816 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10817 AdvWaitEEPCmd(iop_base
);
10821 * Write the EEPROM from 'cfg_buf'.
10823 static void __devinit
10824 AdvSet38C0800EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C0800_CONFIG
*cfg_buf
)
10827 ushort
*charfields
;
10828 ushort addr
, chksum
;
10830 wbuf
= (ushort
*)cfg_buf
;
10831 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10834 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10835 AdvWaitEEPCmd(iop_base
);
10838 * Write EEPROM from word 0 to word 20.
10840 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10841 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10844 if (*charfields
++) {
10845 word
= cpu_to_le16(*wbuf
);
10849 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10850 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10851 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10852 ASC_EEP_CMD_WRITE
| addr
);
10853 AdvWaitEEPCmd(iop_base
);
10854 mdelay(ADV_EEP_DELAY_MS
);
10858 * Write EEPROM checksum at word 21.
10860 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10861 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10862 AdvWaitEEPCmd(iop_base
);
10867 * Write EEPROM OEM name at words 22 to 29.
10869 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10870 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10873 if (*charfields
++) {
10874 word
= cpu_to_le16(*wbuf
);
10878 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10879 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10880 ASC_EEP_CMD_WRITE
| addr
);
10881 AdvWaitEEPCmd(iop_base
);
10883 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10884 AdvWaitEEPCmd(iop_base
);
10888 * Write the EEPROM from 'cfg_buf'.
10890 static void __devinit
10891 AdvSet38C1600EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C1600_CONFIG
*cfg_buf
)
10894 ushort
*charfields
;
10895 ushort addr
, chksum
;
10897 wbuf
= (ushort
*)cfg_buf
;
10898 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10901 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10902 AdvWaitEEPCmd(iop_base
);
10905 * Write EEPROM from word 0 to word 20.
10907 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10908 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10911 if (*charfields
++) {
10912 word
= cpu_to_le16(*wbuf
);
10916 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10917 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10918 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10919 ASC_EEP_CMD_WRITE
| addr
);
10920 AdvWaitEEPCmd(iop_base
);
10921 mdelay(ADV_EEP_DELAY_MS
);
10925 * Write EEPROM checksum at word 21.
10927 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10928 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10929 AdvWaitEEPCmd(iop_base
);
10934 * Write EEPROM OEM name at words 22 to 29.
10936 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10937 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10940 if (*charfields
++) {
10941 word
= cpu_to_le16(*wbuf
);
10945 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10946 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10947 ASC_EEP_CMD_WRITE
| addr
);
10948 AdvWaitEEPCmd(iop_base
);
10950 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10951 AdvWaitEEPCmd(iop_base
);
10955 * Read EEPROM configuration into the specified buffer.
10957 * Return a checksum based on the EEPROM configuration read.
10959 static ushort __devinit
10960 AdvGet3550EEPConfig(AdvPortAddr iop_base
, ADVEEP_3550_CONFIG
*cfg_buf
)
10962 ushort wval
, chksum
;
10965 ushort
*charfields
;
10967 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10968 wbuf
= (ushort
*)cfg_buf
;
10971 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10972 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10973 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10974 chksum
+= wval
; /* Checksum is calculated from word values. */
10975 if (*charfields
++) {
10976 *wbuf
= le16_to_cpu(wval
);
10981 /* Read checksum word. */
10982 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10986 /* Read rest of EEPROM not covered by the checksum. */
10987 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10988 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10989 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10990 if (*charfields
++) {
10991 *wbuf
= le16_to_cpu(*wbuf
);
10998 * Read EEPROM configuration into the specified buffer.
11000 * Return a checksum based on the EEPROM configuration read.
11002 static ushort __devinit
11003 AdvGet38C0800EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C0800_CONFIG
*cfg_buf
)
11005 ushort wval
, chksum
;
11008 ushort
*charfields
;
11010 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
11011 wbuf
= (ushort
*)cfg_buf
;
11014 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
11015 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
11016 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
11017 chksum
+= wval
; /* Checksum is calculated from word values. */
11018 if (*charfields
++) {
11019 *wbuf
= le16_to_cpu(wval
);
11024 /* Read checksum word. */
11025 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11029 /* Read rest of EEPROM not covered by the checksum. */
11030 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
11031 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
11032 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11033 if (*charfields
++) {
11034 *wbuf
= le16_to_cpu(*wbuf
);
11041 * Read EEPROM configuration into the specified buffer.
11043 * Return a checksum based on the EEPROM configuration read.
11045 static ushort __devinit
11046 AdvGet38C1600EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C1600_CONFIG
*cfg_buf
)
11048 ushort wval
, chksum
;
11051 ushort
*charfields
;
11053 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
11054 wbuf
= (ushort
*)cfg_buf
;
11057 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
11058 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
11059 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
11060 chksum
+= wval
; /* Checksum is calculated from word values. */
11061 if (*charfields
++) {
11062 *wbuf
= le16_to_cpu(wval
);
11067 /* Read checksum word. */
11068 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11072 /* Read rest of EEPROM not covered by the checksum. */
11073 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
11074 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
11075 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11076 if (*charfields
++) {
11077 *wbuf
= le16_to_cpu(*wbuf
);
11084 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11085 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11086 * all of this is done.
11088 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11090 * For a non-fatal error return a warning code. If there are no warnings
11091 * then 0 is returned.
11093 * Note: Chip is stopped on entry.
11095 static int __devinit
AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
11097 AdvPortAddr iop_base
;
11099 ADVEEP_3550_CONFIG eep_config
;
11101 iop_base
= asc_dvc
->iop_base
;
11106 * Read the board's EEPROM configuration.
11108 * Set default values if a bad checksum is found.
11110 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
11111 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11114 * Set EEPROM default values.
11116 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
11117 sizeof(ADVEEP_3550_CONFIG
));
11120 * Assume the 6 byte board serial number that was read from
11121 * EEPROM is correct even if the EEPROM checksum failed.
11123 eep_config
.serial_number_word3
=
11124 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11126 eep_config
.serial_number_word2
=
11127 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11129 eep_config
.serial_number_word1
=
11130 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11132 AdvSet3550EEPConfig(iop_base
, &eep_config
);
11135 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11136 * EEPROM configuration that was read.
11138 * This is the mapping of EEPROM fields to Adv Library fields.
11140 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11141 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
11142 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
11143 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11144 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11145 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11146 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11147 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
11148 asc_dvc
->start_motor
= eep_config
.start_motor
;
11149 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11150 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11151 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11152 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
11153 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
11154 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
11157 * Set the host maximum queuing (max. 253, min. 16) and the per device
11158 * maximum queuing (max. 63, min. 4).
11160 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11161 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11162 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11163 /* If the value is zero, assume it is uninitialized. */
11164 if (eep_config
.max_host_qng
== 0) {
11165 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11167 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11171 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11172 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11173 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11174 /* If the value is zero, assume it is uninitialized. */
11175 if (eep_config
.max_dvc_qng
== 0) {
11176 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11178 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11183 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11184 * set 'max_dvc_qng' to 'max_host_qng'.
11186 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11187 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11191 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11192 * values based on possibly adjusted EEPROM values.
11194 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11195 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11198 * If the EEPROM 'termination' field is set to automatic (0), then set
11199 * the ADV_DVC_CFG 'termination' field to automatic also.
11201 * If the termination is specified with a non-zero 'termination'
11202 * value check that a legal value is set and set the ADV_DVC_CFG
11203 * 'termination' field appropriately.
11205 if (eep_config
.termination
== 0) {
11206 asc_dvc
->cfg
->termination
= 0; /* auto termination */
11208 /* Enable manual control with low off / high off. */
11209 if (eep_config
.termination
== 1) {
11210 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
11212 /* Enable manual control with low off / high on. */
11213 } else if (eep_config
.termination
== 2) {
11214 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
11216 /* Enable manual control with low on / high on. */
11217 } else if (eep_config
.termination
== 3) {
11218 asc_dvc
->cfg
->termination
=
11219 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
11222 * The EEPROM 'termination' field contains a bad value. Use
11223 * automatic termination instead.
11225 asc_dvc
->cfg
->termination
= 0;
11226 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11234 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11235 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11236 * all of this is done.
11238 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11240 * For a non-fatal error return a warning code. If there are no warnings
11241 * then 0 is returned.
11243 * Note: Chip is stopped on entry.
11245 static int __devinit
AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
11247 AdvPortAddr iop_base
;
11249 ADVEEP_38C0800_CONFIG eep_config
;
11250 uchar tid
, termination
;
11251 ushort sdtr_speed
= 0;
11253 iop_base
= asc_dvc
->iop_base
;
11258 * Read the board's EEPROM configuration.
11260 * Set default values if a bad checksum is found.
11262 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
11263 eep_config
.check_sum
) {
11264 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11267 * Set EEPROM default values.
11269 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
11270 sizeof(ADVEEP_38C0800_CONFIG
));
11273 * Assume the 6 byte board serial number that was read from
11274 * EEPROM is correct even if the EEPROM checksum failed.
11276 eep_config
.serial_number_word3
=
11277 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11279 eep_config
.serial_number_word2
=
11280 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11282 eep_config
.serial_number_word1
=
11283 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11285 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
11288 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11289 * EEPROM configuration that was read.
11291 * This is the mapping of EEPROM fields to Adv Library fields.
11293 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11294 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11295 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11296 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11297 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11298 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11299 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11300 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11301 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11302 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
11303 asc_dvc
->start_motor
= eep_config
.start_motor
;
11304 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11305 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11306 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11307 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
11308 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
11309 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
11312 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11313 * are set, then set an 'sdtr_able' bit for it.
11315 asc_dvc
->sdtr_able
= 0;
11316 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
11318 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11319 } else if (tid
== 4) {
11320 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11321 } else if (tid
== 8) {
11322 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11323 } else if (tid
== 12) {
11324 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11326 if (sdtr_speed
& ADV_MAX_TID
) {
11327 asc_dvc
->sdtr_able
|= (1 << tid
);
11333 * Set the host maximum queuing (max. 253, min. 16) and the per device
11334 * maximum queuing (max. 63, min. 4).
11336 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11337 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11338 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11339 /* If the value is zero, assume it is uninitialized. */
11340 if (eep_config
.max_host_qng
== 0) {
11341 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11343 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11347 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11348 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11349 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11350 /* If the value is zero, assume it is uninitialized. */
11351 if (eep_config
.max_dvc_qng
== 0) {
11352 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11354 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11359 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11360 * set 'max_dvc_qng' to 'max_host_qng'.
11362 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11363 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11367 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11368 * values based on possibly adjusted EEPROM values.
11370 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11371 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11374 * If the EEPROM 'termination' field is set to automatic (0), then set
11375 * the ADV_DVC_CFG 'termination' field to automatic also.
11377 * If the termination is specified with a non-zero 'termination'
11378 * value check that a legal value is set and set the ADV_DVC_CFG
11379 * 'termination' field appropriately.
11381 if (eep_config
.termination_se
== 0) {
11382 termination
= 0; /* auto termination for SE */
11384 /* Enable manual control with low off / high off. */
11385 if (eep_config
.termination_se
== 1) {
11388 /* Enable manual control with low off / high on. */
11389 } else if (eep_config
.termination_se
== 2) {
11390 termination
= TERM_SE_HI
;
11392 /* Enable manual control with low on / high on. */
11393 } else if (eep_config
.termination_se
== 3) {
11394 termination
= TERM_SE
;
11397 * The EEPROM 'termination_se' field contains a bad value.
11398 * Use automatic termination instead.
11401 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11405 if (eep_config
.termination_lvd
== 0) {
11406 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11408 /* Enable manual control with low off / high off. */
11409 if (eep_config
.termination_lvd
== 1) {
11410 asc_dvc
->cfg
->termination
= termination
;
11412 /* Enable manual control with low off / high on. */
11413 } else if (eep_config
.termination_lvd
== 2) {
11414 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11416 /* Enable manual control with low on / high on. */
11417 } else if (eep_config
.termination_lvd
== 3) {
11418 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11421 * The EEPROM 'termination_lvd' field contains a bad value.
11422 * Use automatic termination instead.
11424 asc_dvc
->cfg
->termination
= termination
;
11425 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11433 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11434 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11435 * all of this is done.
11437 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11439 * For a non-fatal error return a warning code. If there are no warnings
11440 * then 0 is returned.
11442 * Note: Chip is stopped on entry.
11444 static int __devinit
AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
11446 AdvPortAddr iop_base
;
11448 ADVEEP_38C1600_CONFIG eep_config
;
11449 uchar tid
, termination
;
11450 ushort sdtr_speed
= 0;
11452 iop_base
= asc_dvc
->iop_base
;
11457 * Read the board's EEPROM configuration.
11459 * Set default values if a bad checksum is found.
11461 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
11462 eep_config
.check_sum
) {
11463 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
11464 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11467 * Set EEPROM default values.
11469 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
11470 sizeof(ADVEEP_38C1600_CONFIG
));
11472 if (PCI_FUNC(pdev
->devfn
) != 0) {
11475 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11476 * and old Mac system booting problem. The Expansion
11477 * ROM must be disabled in Function 1 for these systems
11479 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
11481 * Clear the INTAB (bit 11) if the GPIO 0 input
11482 * indicates the Function 1 interrupt line is wired
11485 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11486 * 1 - Function 1 interrupt line wired to INT A.
11487 * 0 - Function 1 interrupt line wired to INT B.
11489 * Note: Function 0 is always wired to INTA.
11490 * Put all 5 GPIO bits in input mode and then read
11491 * their input values.
11493 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
11494 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
11495 if ((ints
& 0x01) == 0)
11496 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
11500 * Assume the 6 byte board serial number that was read from
11501 * EEPROM is correct even if the EEPROM checksum failed.
11503 eep_config
.serial_number_word3
=
11504 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11505 eep_config
.serial_number_word2
=
11506 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11507 eep_config
.serial_number_word1
=
11508 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11510 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
11514 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11515 * EEPROM configuration that was read.
11517 * This is the mapping of EEPROM fields to Adv Library fields.
11519 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11520 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11521 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11522 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11523 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11524 asc_dvc
->ppr_able
= 0;
11525 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11526 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11527 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11528 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11529 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
11530 asc_dvc
->start_motor
= eep_config
.start_motor
;
11531 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11532 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11533 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11536 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11537 * are set, then set an 'sdtr_able' bit for it.
11539 asc_dvc
->sdtr_able
= 0;
11540 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
11542 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11543 } else if (tid
== 4) {
11544 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11545 } else if (tid
== 8) {
11546 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11547 } else if (tid
== 12) {
11548 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11550 if (sdtr_speed
& ASC_MAX_TID
) {
11551 asc_dvc
->sdtr_able
|= (1 << tid
);
11557 * Set the host maximum queuing (max. 253, min. 16) and the per device
11558 * maximum queuing (max. 63, min. 4).
11560 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11561 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11562 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11563 /* If the value is zero, assume it is uninitialized. */
11564 if (eep_config
.max_host_qng
== 0) {
11565 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11567 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11571 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11572 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11573 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11574 /* If the value is zero, assume it is uninitialized. */
11575 if (eep_config
.max_dvc_qng
== 0) {
11576 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11578 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11583 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11584 * set 'max_dvc_qng' to 'max_host_qng'.
11586 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11587 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11591 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11592 * values based on possibly adjusted EEPROM values.
11594 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11595 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11598 * If the EEPROM 'termination' field is set to automatic (0), then set
11599 * the ASC_DVC_CFG 'termination' field to automatic also.
11601 * If the termination is specified with a non-zero 'termination'
11602 * value check that a legal value is set and set the ASC_DVC_CFG
11603 * 'termination' field appropriately.
11605 if (eep_config
.termination_se
== 0) {
11606 termination
= 0; /* auto termination for SE */
11608 /* Enable manual control with low off / high off. */
11609 if (eep_config
.termination_se
== 1) {
11612 /* Enable manual control with low off / high on. */
11613 } else if (eep_config
.termination_se
== 2) {
11614 termination
= TERM_SE_HI
;
11616 /* Enable manual control with low on / high on. */
11617 } else if (eep_config
.termination_se
== 3) {
11618 termination
= TERM_SE
;
11621 * The EEPROM 'termination_se' field contains a bad value.
11622 * Use automatic termination instead.
11625 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11629 if (eep_config
.termination_lvd
== 0) {
11630 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11632 /* Enable manual control with low off / high off. */
11633 if (eep_config
.termination_lvd
== 1) {
11634 asc_dvc
->cfg
->termination
= termination
;
11636 /* Enable manual control with low off / high on. */
11637 } else if (eep_config
.termination_lvd
== 2) {
11638 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11640 /* Enable manual control with low on / high on. */
11641 } else if (eep_config
.termination_lvd
== 3) {
11642 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11645 * The EEPROM 'termination_lvd' field contains a bad value.
11646 * Use automatic termination instead.
11648 asc_dvc
->cfg
->termination
= termination
;
11649 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11657 * Initialize the ADV_DVC_VAR structure.
11659 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11661 * For a non-fatal error return a warning code. If there are no warnings
11662 * then 0 is returned.
11664 static int __devinit
11665 AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
11667 struct asc_board
*board
= shost_priv(shost
);
11668 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
11669 unsigned short warn_code
= 0;
11670 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
11674 asc_dvc
->err_code
= 0;
11677 * Save the state of the PCI Configuration Command Register
11678 * "Parity Error Response Control" Bit. If the bit is clear (0),
11679 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11680 * DMA parity errors.
11682 asc_dvc
->cfg
->control_flag
= 0;
11683 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
11684 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
11685 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
11687 asc_dvc
->cfg
->chip_version
=
11688 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
11690 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11691 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
11692 (ushort
)ADV_CHIP_ID_BYTE
);
11694 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11695 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
11696 (ushort
)ADV_CHIP_ID_WORD
);
11699 * Reset the chip to start and allow register writes.
11701 if (AdvFindSignature(iop_base
) == 0) {
11702 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
11706 * The caller must set 'chip_type' to a valid setting.
11708 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
11709 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
11710 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
11711 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
11718 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11719 ADV_CTRL_REG_CMD_RESET
);
11721 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11722 ADV_CTRL_REG_CMD_WR_IO_REG
);
11724 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
11725 status
= AdvInitFrom38C1600EEP(asc_dvc
);
11726 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11727 status
= AdvInitFrom38C0800EEP(asc_dvc
);
11729 status
= AdvInitFrom3550EEP(asc_dvc
);
11731 warn_code
|= status
;
11734 if (warn_code
!= 0)
11735 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
11737 if (asc_dvc
->err_code
)
11738 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
11739 asc_dvc
->err_code
);
11741 return asc_dvc
->err_code
;
11745 static struct scsi_host_template advansys_template
= {
11746 .proc_name
= DRV_NAME
,
11747 #ifdef CONFIG_PROC_FS
11748 .proc_info
= advansys_proc_info
,
11751 .info
= advansys_info
,
11752 .queuecommand
= advansys_queuecommand
,
11753 .eh_bus_reset_handler
= advansys_reset
,
11754 .bios_param
= advansys_biosparam
,
11755 .slave_configure
= advansys_slave_configure
,
11757 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11758 * must be set. The flag will be cleared in advansys_board_found
11759 * for non-ISA adapters.
11761 .unchecked_isa_dma
= 1,
11763 * All adapters controlled by this driver are capable of large
11764 * scatter-gather lists. According to the mid-level SCSI documentation
11765 * this obviates any performance gain provided by setting
11766 * 'use_clustering'. But empirically while CPU utilization is increased
11767 * by enabling clustering, I/O throughput increases as well.
11769 .use_clustering
= ENABLE_CLUSTERING
,
11772 static int __devinit
advansys_wide_init_chip(struct Scsi_Host
*shost
)
11774 struct asc_board
*board
= shost_priv(shost
);
11775 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11777 adv_req_t
*reqp
= NULL
;
11780 int warn_code
, err_code
;
11783 * Allocate buffer carrier structures. The total size
11784 * is about 4 KB, so allocate all at once.
11786 adv_dvc
->carrier_buf
= kmalloc(ADV_CARRIER_BUFSIZE
, GFP_KERNEL
);
11787 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc
->carrier_buf
);
11789 if (!adv_dvc
->carrier_buf
)
11790 goto kmalloc_failed
;
11793 * Allocate up to 'max_host_qng' request structures for the Wide
11794 * board. The total size is about 16 KB, so allocate all at once.
11795 * If the allocation fails decrement and try again.
11797 for (req_cnt
= adv_dvc
->max_host_qng
; req_cnt
> 0; req_cnt
--) {
11798 reqp
= kmalloc(sizeof(adv_req_t
) * req_cnt
, GFP_KERNEL
);
11800 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp
, req_cnt
,
11801 (ulong
)sizeof(adv_req_t
) * req_cnt
);
11808 goto kmalloc_failed
;
11810 adv_dvc
->orig_reqp
= reqp
;
11813 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11814 * the Wide board. Each structure is about 136 bytes.
11816 board
->adv_sgblkp
= NULL
;
11817 for (sg_cnt
= 0; sg_cnt
< ADV_TOT_SG_BLOCK
; sg_cnt
++) {
11818 sgp
= kmalloc(sizeof(adv_sgblk_t
), GFP_KERNEL
);
11823 sgp
->next_sgblkp
= board
->adv_sgblkp
;
11824 board
->adv_sgblkp
= sgp
;
11828 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt
, sizeof(adv_sgblk_t
),
11829 sizeof(adv_sgblk_t
) * sg_cnt
);
11831 if (!board
->adv_sgblkp
)
11832 goto kmalloc_failed
;
11835 * Point 'adv_reqp' to the request structures and
11836 * link them together.
11839 reqp
[req_cnt
].next_reqp
= NULL
;
11840 for (; req_cnt
> 0; req_cnt
--) {
11841 reqp
[req_cnt
- 1].next_reqp
= &reqp
[req_cnt
];
11843 board
->adv_reqp
= &reqp
[0];
11845 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
11846 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11847 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
11848 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11849 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11850 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
11852 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11853 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
11855 err_code
= adv_dvc
->err_code
;
11857 if (warn_code
|| err_code
) {
11858 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
11859 "0x%x\n", warn_code
, err_code
);
11865 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
11866 err_code
= ADV_ERROR
;
11871 static void advansys_wide_free_mem(struct asc_board
*board
)
11873 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11874 kfree(adv_dvc
->carrier_buf
);
11875 adv_dvc
->carrier_buf
= NULL
;
11876 kfree(adv_dvc
->orig_reqp
);
11877 adv_dvc
->orig_reqp
= board
->adv_reqp
= NULL
;
11878 while (board
->adv_sgblkp
) {
11879 adv_sgblk_t
*sgp
= board
->adv_sgblkp
;
11880 board
->adv_sgblkp
= sgp
->next_sgblkp
;
11885 static int __devinit
advansys_board_found(struct Scsi_Host
*shost
,
11886 unsigned int iop
, int bus_type
)
11888 struct pci_dev
*pdev
;
11889 struct asc_board
*boardp
= shost_priv(shost
);
11890 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
11891 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
11892 int share_irq
, warn_code
, ret
;
11894 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
11896 if (ASC_NARROW_BOARD(boardp
)) {
11897 ASC_DBG(1, "narrow board\n");
11898 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
11899 asc_dvc_varp
->bus_type
= bus_type
;
11900 asc_dvc_varp
->drv_ptr
= boardp
;
11901 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
11902 asc_dvc_varp
->iop_base
= iop
;
11905 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
11906 adv_dvc_varp
->drv_ptr
= boardp
;
11907 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
11908 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
11909 ASC_DBG(1, "wide board ASC-3550\n");
11910 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
11911 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
11912 ASC_DBG(1, "wide board ASC-38C0800\n");
11913 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
11915 ASC_DBG(1, "wide board ASC-38C1600\n");
11916 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
11919 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
11920 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
11921 if (!boardp
->ioremap_addr
) {
11922 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
11924 (long)pci_resource_start(pdev
, 1),
11925 boardp
->asc_n_io_port
);
11929 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
11930 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
11933 * Even though it isn't used to access wide boards, other
11934 * than for the debug line below, save I/O Port address so
11935 * that it can be reported.
11937 boardp
->ioport
= iop
;
11939 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11940 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
11941 #endif /* CONFIG_PCI */
11944 #ifdef CONFIG_PROC_FS
11946 * Allocate buffer for printing information from
11947 * /proc/scsi/advansys/[0...].
11949 boardp
->prtbuf
= kmalloc(ASC_PRTBUF_SIZE
, GFP_KERNEL
);
11950 if (!boardp
->prtbuf
) {
11951 shost_printk(KERN_ERR
, shost
, "kmalloc(%d) returned NULL\n",
11956 #endif /* CONFIG_PROC_FS */
11958 if (ASC_NARROW_BOARD(boardp
)) {
11960 * Set the board bus type and PCI IRQ before
11961 * calling AscInitGetConfig().
11963 switch (asc_dvc_varp
->bus_type
) {
11966 shost
->unchecked_isa_dma
= TRUE
;
11970 shost
->unchecked_isa_dma
= FALSE
;
11974 shost
->unchecked_isa_dma
= FALSE
;
11975 share_irq
= IRQF_SHARED
;
11977 #endif /* CONFIG_ISA */
11980 shost
->unchecked_isa_dma
= FALSE
;
11981 share_irq
= IRQF_SHARED
;
11983 #endif /* CONFIG_PCI */
11985 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
11986 "%d\n", asc_dvc_varp
->bus_type
);
11987 shost
->unchecked_isa_dma
= TRUE
;
11993 * NOTE: AscInitGetConfig() may change the board's
11994 * bus_type value. The bus_type value should no
11995 * longer be used. If the bus_type field must be
11996 * referenced only use the bit-wise AND operator "&".
11998 ASC_DBG(2, "AscInitGetConfig()\n");
11999 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
12003 * For Wide boards set PCI information before calling
12004 * AdvInitGetConfig().
12006 shost
->unchecked_isa_dma
= FALSE
;
12007 share_irq
= IRQF_SHARED
;
12008 ASC_DBG(2, "AdvInitGetConfig()\n");
12010 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
12011 #endif /* CONFIG_PCI */
12015 goto err_free_proc
;
12018 * Save the EEPROM configuration so that it can be displayed
12019 * from /proc/scsi/advansys/[0...].
12021 if (ASC_NARROW_BOARD(boardp
)) {
12026 * Set the adapter's target id bit in the 'init_tidmask' field.
12028 boardp
->init_tidmask
|=
12029 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
12032 * Save EEPROM settings for the board.
12034 ep
= &boardp
->eep_config
.asc_eep
;
12036 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
12037 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
12038 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
12039 ASC_EEP_SET_DMA_SPD(ep
, asc_dvc_varp
->cfg
->isa_dma_speed
);
12040 ep
->start_motor
= asc_dvc_varp
->start_motor
;
12041 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
12042 ep
->no_scam
= asc_dvc_varp
->no_scam
;
12043 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
12044 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
12045 /* 'max_tag_qng' is set to the same value for every device. */
12046 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
12047 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
12048 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
12049 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
12050 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
12051 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
12052 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
12055 * Modify board configuration.
12057 ASC_DBG(2, "AscInitSetConfig()\n");
12058 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
12060 goto err_free_proc
;
12062 ADVEEP_3550_CONFIG
*ep_3550
;
12063 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
12064 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
12067 * Save Wide EEP Configuration Information.
12069 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
12070 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
12072 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
12073 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12074 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12075 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
12076 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
12077 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12078 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12079 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
12080 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
12081 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12082 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
12083 ep_3550
->scsi_reset_delay
=
12084 adv_dvc_varp
->scsi_reset_wait
;
12085 ep_3550
->serial_number_word1
=
12086 adv_dvc_varp
->cfg
->serial1
;
12087 ep_3550
->serial_number_word2
=
12088 adv_dvc_varp
->cfg
->serial2
;
12089 ep_3550
->serial_number_word3
=
12090 adv_dvc_varp
->cfg
->serial3
;
12091 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
12092 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
12094 ep_38C0800
->adapter_scsi_id
=
12095 adv_dvc_varp
->chip_scsi_id
;
12096 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12097 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12098 ep_38C0800
->termination_lvd
=
12099 adv_dvc_varp
->cfg
->termination
;
12100 ep_38C0800
->disc_enable
=
12101 adv_dvc_varp
->cfg
->disc_enable
;
12102 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12103 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12104 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12105 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
12106 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
12107 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
12108 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
12109 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12110 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
12111 ep_38C0800
->scsi_reset_delay
=
12112 adv_dvc_varp
->scsi_reset_wait
;
12113 ep_38C0800
->serial_number_word1
=
12114 adv_dvc_varp
->cfg
->serial1
;
12115 ep_38C0800
->serial_number_word2
=
12116 adv_dvc_varp
->cfg
->serial2
;
12117 ep_38C0800
->serial_number_word3
=
12118 adv_dvc_varp
->cfg
->serial3
;
12120 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
12122 ep_38C1600
->adapter_scsi_id
=
12123 adv_dvc_varp
->chip_scsi_id
;
12124 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12125 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12126 ep_38C1600
->termination_lvd
=
12127 adv_dvc_varp
->cfg
->termination
;
12128 ep_38C1600
->disc_enable
=
12129 adv_dvc_varp
->cfg
->disc_enable
;
12130 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12131 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12132 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12133 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
12134 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
12135 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
12136 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
12137 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12138 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
12139 ep_38C1600
->scsi_reset_delay
=
12140 adv_dvc_varp
->scsi_reset_wait
;
12141 ep_38C1600
->serial_number_word1
=
12142 adv_dvc_varp
->cfg
->serial1
;
12143 ep_38C1600
->serial_number_word2
=
12144 adv_dvc_varp
->cfg
->serial2
;
12145 ep_38C1600
->serial_number_word3
=
12146 adv_dvc_varp
->cfg
->serial3
;
12150 * Set the adapter's target id bit in the 'init_tidmask' field.
12152 boardp
->init_tidmask
|=
12153 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
12157 * Channels are numbered beginning with 0. For AdvanSys one host
12158 * structure supports one channel. Multi-channel boards have a
12159 * separate host structure for each channel.
12161 shost
->max_channel
= 0;
12162 if (ASC_NARROW_BOARD(boardp
)) {
12163 shost
->max_id
= ASC_MAX_TID
+ 1;
12164 shost
->max_lun
= ASC_MAX_LUN
+ 1;
12165 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
12167 shost
->io_port
= asc_dvc_varp
->iop_base
;
12168 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
12169 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
12171 /* Set maximum number of queues the adapter can handle. */
12172 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
12174 shost
->max_id
= ADV_MAX_TID
+ 1;
12175 shost
->max_lun
= ADV_MAX_LUN
+ 1;
12176 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
12179 * Save the I/O Port address and length even though
12180 * I/O ports are not used to access Wide boards.
12181 * Instead the Wide boards are accessed with
12182 * PCI Memory Mapped I/O.
12184 shost
->io_port
= iop
;
12186 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
12188 /* Set maximum number of queues the adapter can handle. */
12189 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
12193 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12194 * and should be set to zero.
12196 * But because of a bug introduced in v1.3.89 if the driver is
12197 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12198 * SCSI function 'allocate_device' will panic. To allow the driver
12199 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12201 * Note: This is wrong. cmd_per_lun should be set to the depth
12202 * you want on untagged devices always.
12205 shost
->cmd_per_lun
= 1;
12207 shost->cmd_per_lun = 0;
12211 * Set the maximum number of scatter-gather elements the
12212 * adapter can handle.
12214 if (ASC_NARROW_BOARD(boardp
)) {
12216 * Allow two commands with 'sg_tablesize' scatter-gather
12217 * elements to be executed simultaneously. This value is
12218 * the theoretical hardware limit. It may be decreased
12221 shost
->sg_tablesize
=
12222 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
12223 ASC_SG_LIST_PER_Q
) + 1;
12225 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
12229 * The value of 'sg_tablesize' can not exceed the SCSI
12230 * mid-level driver definition of SG_ALL. SG_ALL also
12231 * must not be exceeded, because it is used to define the
12232 * size of the scatter-gather table in 'struct asc_sg_head'.
12234 if (shost
->sg_tablesize
> SG_ALL
) {
12235 shost
->sg_tablesize
= SG_ALL
;
12238 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
12240 /* BIOS start address. */
12241 if (ASC_NARROW_BOARD(boardp
)) {
12242 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
12243 asc_dvc_varp
->bus_type
);
12246 * Fill-in BIOS board variables. The Wide BIOS saves
12247 * information in LRAM that is used by the driver.
12249 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12250 BIOS_SIGNATURE
, boardp
->bios_signature
);
12251 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12252 BIOS_VERSION
, boardp
->bios_version
);
12253 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12254 BIOS_CODESEG
, boardp
->bios_codeseg
);
12255 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12256 BIOS_CODELEN
, boardp
->bios_codelen
);
12258 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12259 boardp
->bios_signature
, boardp
->bios_version
);
12261 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12262 boardp
->bios_codeseg
, boardp
->bios_codelen
);
12265 * If the BIOS saved a valid signature, then fill in
12266 * the BIOS code segment base address.
12268 if (boardp
->bios_signature
== 0x55AA) {
12270 * Convert x86 realmode code segment to a linear
12271 * address by shifting left 4.
12273 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
12280 * Register Board Resources - I/O Port, DMA, IRQ
12283 /* Register DMA Channel for Narrow boards. */
12284 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
12286 if (ASC_NARROW_BOARD(boardp
)) {
12287 /* Register DMA channel for ISA bus. */
12288 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
12289 shost
->dma_channel
= asc_dvc_varp
->cfg
->isa_dma_channel
;
12290 ret
= request_dma(shost
->dma_channel
, DRV_NAME
);
12292 shost_printk(KERN_ERR
, shost
, "request_dma() "
12294 shost
->dma_channel
, ret
);
12295 goto err_free_proc
;
12297 AscEnableIsaDma(shost
->dma_channel
);
12300 #endif /* CONFIG_ISA */
12302 /* Register IRQ Number. */
12303 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
12305 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
12309 if (ret
== -EBUSY
) {
12310 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12311 "already in use\n", boardp
->irq
);
12312 } else if (ret
== -EINVAL
) {
12313 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12314 "not valid\n", boardp
->irq
);
12316 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12317 "failed with %d\n", boardp
->irq
, ret
);
12323 * Initialize board RISC chip and enable interrupts.
12325 if (ASC_NARROW_BOARD(boardp
)) {
12326 ASC_DBG(2, "AscInitAsc1000Driver()\n");
12328 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
12329 if (!asc_dvc_varp
->overrun_buf
) {
12333 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
12335 if (warn_code
|| asc_dvc_varp
->err_code
) {
12336 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
12337 "warn 0x%x, error 0x%x\n",
12338 asc_dvc_varp
->init_state
, warn_code
,
12339 asc_dvc_varp
->err_code
);
12340 if (!asc_dvc_varp
->overrun_dma
) {
12346 if (advansys_wide_init_chip(shost
)) {
12352 ASC_DBG_PRT_SCSI_HOST(2, shost
);
12354 ret
= scsi_add_host(shost
, boardp
->dev
);
12358 scsi_scan_host(shost
);
12362 if (ASC_NARROW_BOARD(boardp
)) {
12363 if (asc_dvc_varp
->overrun_dma
)
12364 dma_unmap_single(boardp
->dev
, asc_dvc_varp
->overrun_dma
,
12365 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
12366 kfree(asc_dvc_varp
->overrun_buf
);
12368 advansys_wide_free_mem(boardp
);
12370 free_irq(boardp
->irq
, shost
);
12373 if (shost
->dma_channel
!= NO_ISA_DMA
)
12374 free_dma(shost
->dma_channel
);
12377 kfree(boardp
->prtbuf
);
12379 if (boardp
->ioremap_addr
)
12380 iounmap(boardp
->ioremap_addr
);
12386 * advansys_release()
12388 * Release resources allocated for a single AdvanSys adapter.
12390 static int advansys_release(struct Scsi_Host
*shost
)
12392 struct asc_board
*board
= shost_priv(shost
);
12393 ASC_DBG(1, "begin\n");
12394 scsi_remove_host(shost
);
12395 free_irq(board
->irq
, shost
);
12397 if (shost
->dma_channel
!= NO_ISA_DMA
) {
12398 ASC_DBG(1, "free_dma()\n");
12399 free_dma(shost
->dma_channel
);
12402 if (ASC_NARROW_BOARD(board
)) {
12403 dma_unmap_single(board
->dev
,
12404 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
12405 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
12406 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
12408 iounmap(board
->ioremap_addr
);
12409 advansys_wide_free_mem(board
);
12411 kfree(board
->prtbuf
);
12412 scsi_host_put(shost
);
12413 ASC_DBG(1, "end\n");
12417 #define ASC_IOADR_TABLE_MAX_IX 11
12419 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
12420 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12421 0x0210, 0x0230, 0x0250, 0x0330
12425 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12431 static unsigned int __devinit
advansys_isa_irq_no(PortAddr iop_base
)
12433 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
12434 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x03) + 10;
12435 if (chip_irq
== 13)
12440 static int __devinit
advansys_isa_probe(struct device
*dev
, unsigned int id
)
12443 PortAddr iop_base
= _asc_def_iop_base
[id
];
12444 struct Scsi_Host
*shost
;
12445 struct asc_board
*board
;
12447 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12448 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12451 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12452 if (!AscFindSignature(iop_base
))
12453 goto release_region
;
12454 if (!(AscGetChipVersion(iop_base
, ASC_IS_ISA
) & ASC_CHIP_VER_ISA_BIT
))
12455 goto release_region
;
12458 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12460 goto release_region
;
12462 board
= shost_priv(shost
);
12463 board
->irq
= advansys_isa_irq_no(iop_base
);
12466 err
= advansys_board_found(shost
, iop_base
, ASC_IS_ISA
);
12470 dev_set_drvdata(dev
, shost
);
12474 scsi_host_put(shost
);
12476 release_region(iop_base
, ASC_IOADR_GAP
);
12480 static int __devexit
advansys_isa_remove(struct device
*dev
, unsigned int id
)
12482 int ioport
= _asc_def_iop_base
[id
];
12483 advansys_release(dev_get_drvdata(dev
));
12484 release_region(ioport
, ASC_IOADR_GAP
);
12488 static struct isa_driver advansys_isa_driver
= {
12489 .probe
= advansys_isa_probe
,
12490 .remove
= __devexit_p(advansys_isa_remove
),
12492 .owner
= THIS_MODULE
,
12498 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12508 static unsigned int __devinit
advansys_vlb_irq_no(PortAddr iop_base
)
12510 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
12511 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
12512 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
12517 static int __devinit
advansys_vlb_probe(struct device
*dev
, unsigned int id
)
12520 PortAddr iop_base
= _asc_def_iop_base
[id
];
12521 struct Scsi_Host
*shost
;
12522 struct asc_board
*board
;
12524 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12525 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12528 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12529 if (!AscFindSignature(iop_base
))
12530 goto release_region
;
12532 * I don't think this condition can actually happen, but the old
12533 * driver did it, and the chances of finding a VLB setup in 2007
12534 * to do testing with is slight to none.
12536 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
12537 goto release_region
;
12540 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12542 goto release_region
;
12544 board
= shost_priv(shost
);
12545 board
->irq
= advansys_vlb_irq_no(iop_base
);
12548 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
12552 dev_set_drvdata(dev
, shost
);
12556 scsi_host_put(shost
);
12558 release_region(iop_base
, ASC_IOADR_GAP
);
12562 static struct isa_driver advansys_vlb_driver
= {
12563 .probe
= advansys_vlb_probe
,
12564 .remove
= __devexit_p(advansys_isa_remove
),
12566 .owner
= THIS_MODULE
,
12567 .name
= "advansys_vlb",
12571 static struct eisa_device_id advansys_eisa_table
[] __devinitdata
= {
12577 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
12580 * EISA is a little more tricky than PCI; each EISA device may have two
12581 * channels, and this driver is written to make each channel its own Scsi_Host
12583 struct eisa_scsi_data
{
12584 struct Scsi_Host
*host
[2];
12588 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12598 static unsigned int __devinit
advansys_eisa_irq_no(struct eisa_device
*edev
)
12600 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
12601 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
12602 if ((chip_irq
== 13) || (chip_irq
> 15))
12607 static int __devinit
advansys_eisa_probe(struct device
*dev
)
12609 int i
, ioport
, irq
= 0;
12611 struct eisa_device
*edev
= to_eisa_device(dev
);
12612 struct eisa_scsi_data
*data
;
12615 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
12618 ioport
= edev
->base_addr
+ 0xc30;
12621 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
12622 struct asc_board
*board
;
12623 struct Scsi_Host
*shost
;
12624 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
12625 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
12626 ioport
+ ASC_IOADR_GAP
- 1);
12629 if (!AscFindSignature(ioport
)) {
12630 release_region(ioport
, ASC_IOADR_GAP
);
12635 * I don't know why we need to do this for EISA chips, but
12636 * not for any others. It looks to be equivalent to
12637 * AscGetChipCfgMsw, but I may have overlooked something,
12638 * so I'm not converting it until I get an EISA board to
12644 irq
= advansys_eisa_irq_no(edev
);
12647 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12649 goto release_region
;
12651 board
= shost_priv(shost
);
12655 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
12657 data
->host
[i
] = shost
;
12661 scsi_host_put(shost
);
12663 release_region(ioport
, ASC_IOADR_GAP
);
12669 dev_set_drvdata(dev
, data
);
12673 kfree(data
->host
[0]);
12674 kfree(data
->host
[1]);
12680 static __devexit
int advansys_eisa_remove(struct device
*dev
)
12683 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
12685 for (i
= 0; i
< 2; i
++) {
12687 struct Scsi_Host
*shost
= data
->host
[i
];
12690 ioport
= shost
->io_port
;
12691 advansys_release(shost
);
12692 release_region(ioport
, ASC_IOADR_GAP
);
12699 static struct eisa_driver advansys_eisa_driver
= {
12700 .id_table
= advansys_eisa_table
,
12703 .probe
= advansys_eisa_probe
,
12704 .remove
= __devexit_p(advansys_eisa_remove
),
12708 /* PCI Devices supported by this driver */
12709 static struct pci_device_id advansys_pci_tbl
[] __devinitdata
= {
12710 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
12711 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12712 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
12713 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12714 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
12715 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12716 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
12717 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12718 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
12719 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12720 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
12721 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12725 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
12727 static void __devinit
advansys_set_latency(struct pci_dev
*pdev
)
12729 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
12730 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
12731 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
12734 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
12735 if (latency
< 0x20)
12736 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
12740 static int __devinit
12741 advansys_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
12744 struct Scsi_Host
*shost
;
12745 struct asc_board
*board
;
12747 err
= pci_enable_device(pdev
);
12750 err
= pci_request_regions(pdev
, DRV_NAME
);
12752 goto disable_device
;
12753 pci_set_master(pdev
);
12754 advansys_set_latency(pdev
);
12757 if (pci_resource_len(pdev
, 0) == 0)
12758 goto release_region
;
12760 ioport
= pci_resource_start(pdev
, 0);
12763 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12765 goto release_region
;
12767 board
= shost_priv(shost
);
12768 board
->irq
= pdev
->irq
;
12769 board
->dev
= &pdev
->dev
;
12771 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
12772 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
12773 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
12774 board
->flags
|= ASC_IS_WIDE_BOARD
;
12777 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
12781 pci_set_drvdata(pdev
, shost
);
12785 scsi_host_put(shost
);
12787 pci_release_regions(pdev
);
12789 pci_disable_device(pdev
);
12794 static void __devexit
advansys_pci_remove(struct pci_dev
*pdev
)
12796 advansys_release(pci_get_drvdata(pdev
));
12797 pci_release_regions(pdev
);
12798 pci_disable_device(pdev
);
12801 static struct pci_driver advansys_pci_driver
= {
12803 .id_table
= advansys_pci_tbl
,
12804 .probe
= advansys_pci_probe
,
12805 .remove
= __devexit_p(advansys_pci_remove
),
12808 static int __init
advansys_init(void)
12812 error
= isa_register_driver(&advansys_isa_driver
,
12813 ASC_IOADR_TABLE_MAX_IX
);
12817 error
= isa_register_driver(&advansys_vlb_driver
,
12818 ASC_IOADR_TABLE_MAX_IX
);
12820 goto unregister_isa
;
12822 error
= eisa_driver_register(&advansys_eisa_driver
);
12824 goto unregister_vlb
;
12826 error
= pci_register_driver(&advansys_pci_driver
);
12828 goto unregister_eisa
;
12833 eisa_driver_unregister(&advansys_eisa_driver
);
12835 isa_unregister_driver(&advansys_vlb_driver
);
12837 isa_unregister_driver(&advansys_isa_driver
);
12842 static void __exit
advansys_exit(void)
12844 pci_unregister_driver(&advansys_pci_driver
);
12845 eisa_driver_unregister(&advansys_eisa_driver
);
12846 isa_unregister_driver(&advansys_vlb_driver
);
12847 isa_unregister_driver(&advansys_isa_driver
);
12850 module_init(advansys_init
);
12851 module_exit(advansys_exit
);
12853 MODULE_LICENSE("GPL");
12854 MODULE_FIRMWARE("advansys/mcode.bin");
12855 MODULE_FIRMWARE("advansys/3550.bin");
12856 MODULE_FIRMWARE("advansys/38C0800.bin");
12857 MODULE_FIRMWARE("advansys/38C1600.bin");