2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
46 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
47 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
49 STATIC
void xlog_recover_check_summary(xlog_t
*);
51 #define xlog_recover_check_summary(log)
55 * This structure is used during recovery to record the buf log items which
56 * have been canceled and should not be replayed.
58 struct xfs_buf_cancel
{
62 struct list_head bc_list
;
66 * Sector aligned buffer routines for buffer create/read/write/access
70 * Verify the given count of basic blocks is valid number of blocks
71 * to specify for an operation involving the given XFS log buffer.
72 * Returns nonzero if the count is valid, 0 otherwise.
76 xlog_buf_bbcount_valid(
80 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
84 * Allocate a buffer to hold log data. The buffer needs to be able
85 * to map to a range of nbblks basic blocks at any valid (basic
86 * block) offset within the log.
95 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
96 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
98 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
103 * We do log I/O in units of log sectors (a power-of-2
104 * multiple of the basic block size), so we round up the
105 * requested size to accommodate the basic blocks required
106 * for complete log sectors.
108 * In addition, the buffer may be used for a non-sector-
109 * aligned block offset, in which case an I/O of the
110 * requested size could extend beyond the end of the
111 * buffer. If the requested size is only 1 basic block it
112 * will never straddle a sector boundary, so this won't be
113 * an issue. Nor will this be a problem if the log I/O is
114 * done in basic blocks (sector size 1). But otherwise we
115 * extend the buffer by one extra log sector to ensure
116 * there's space to accommodate this possibility.
118 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
119 nbblks
+= log
->l_sectBBsize
;
120 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
122 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
136 * Return the address of the start of the given block number's data
137 * in a log buffer. The buffer covers a log sector-aligned region.
146 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
148 ASSERT(offset
+ nbblks
<= bp
->b_length
);
149 return bp
->b_addr
+ BBTOB(offset
);
154 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
165 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
166 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
168 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
172 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
173 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
176 ASSERT(nbblks
<= bp
->b_length
);
178 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
180 bp
->b_io_length
= nbblks
;
183 xfsbdstrat(log
->l_mp
, bp
);
184 error
= xfs_buf_iowait(bp
);
186 xfs_buf_ioerror_alert(bp
, __func__
);
200 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
204 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
209 * Read at an offset into the buffer. Returns with the buffer in it's original
210 * state regardless of the result of the read.
215 xfs_daddr_t blk_no
, /* block to read from */
216 int nbblks
, /* blocks to read */
220 xfs_caddr_t orig_offset
= bp
->b_addr
;
221 int orig_len
= BBTOB(bp
->b_length
);
224 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
228 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
230 /* must reset buffer pointer even on error */
231 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
238 * Write out the buffer at the given block for the given number of blocks.
239 * The buffer is kept locked across the write and is returned locked.
240 * This can only be used for synchronous log writes.
251 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
252 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
254 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
258 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
259 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
262 ASSERT(nbblks
<= bp
->b_length
);
264 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
265 XFS_BUF_ZEROFLAGS(bp
);
268 bp
->b_io_length
= nbblks
;
271 error
= xfs_bwrite(bp
);
273 xfs_buf_ioerror_alert(bp
, __func__
);
280 * dump debug superblock and log record information
283 xlog_header_check_dump(
285 xlog_rec_header_t
*head
)
287 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d\n",
288 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
289 xfs_debug(mp
, " log : uuid = %pU, fmt = %d\n",
290 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
293 #define xlog_header_check_dump(mp, head)
297 * check log record header for recovery
300 xlog_header_check_recover(
302 xlog_rec_header_t
*head
)
304 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
307 * IRIX doesn't write the h_fmt field and leaves it zeroed
308 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
309 * a dirty log created in IRIX.
311 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
313 "dirty log written in incompatible format - can't recover");
314 xlog_header_check_dump(mp
, head
);
315 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
316 XFS_ERRLEVEL_HIGH
, mp
);
317 return XFS_ERROR(EFSCORRUPTED
);
318 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
320 "dirty log entry has mismatched uuid - can't recover");
321 xlog_header_check_dump(mp
, head
);
322 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
323 XFS_ERRLEVEL_HIGH
, mp
);
324 return XFS_ERROR(EFSCORRUPTED
);
330 * read the head block of the log and check the header
333 xlog_header_check_mount(
335 xlog_rec_header_t
*head
)
337 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
339 if (uuid_is_nil(&head
->h_fs_uuid
)) {
341 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
342 * h_fs_uuid is nil, we assume this log was last mounted
343 * by IRIX and continue.
345 xfs_warn(mp
, "nil uuid in log - IRIX style log");
346 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
347 xfs_warn(mp
, "log has mismatched uuid - can't recover");
348 xlog_header_check_dump(mp
, head
);
349 XFS_ERROR_REPORT("xlog_header_check_mount",
350 XFS_ERRLEVEL_HIGH
, mp
);
351 return XFS_ERROR(EFSCORRUPTED
);
362 * We're not going to bother about retrying
363 * this during recovery. One strike!
365 xfs_buf_ioerror_alert(bp
, __func__
);
366 xfs_force_shutdown(bp
->b_target
->bt_mount
,
367 SHUTDOWN_META_IO_ERROR
);
370 xfs_buf_ioend(bp
, 0);
374 * This routine finds (to an approximation) the first block in the physical
375 * log which contains the given cycle. It uses a binary search algorithm.
376 * Note that the algorithm can not be perfect because the disk will not
377 * necessarily be perfect.
380 xlog_find_cycle_start(
383 xfs_daddr_t first_blk
,
384 xfs_daddr_t
*last_blk
,
394 mid_blk
= BLK_AVG(first_blk
, end_blk
);
395 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
396 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
399 mid_cycle
= xlog_get_cycle(offset
);
400 if (mid_cycle
== cycle
)
401 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
403 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
404 mid_blk
= BLK_AVG(first_blk
, end_blk
);
406 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
407 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
415 * Check that a range of blocks does not contain stop_on_cycle_no.
416 * Fill in *new_blk with the block offset where such a block is
417 * found, or with -1 (an invalid block number) if there is no such
418 * block in the range. The scan needs to occur from front to back
419 * and the pointer into the region must be updated since a later
420 * routine will need to perform another test.
423 xlog_find_verify_cycle(
425 xfs_daddr_t start_blk
,
427 uint stop_on_cycle_no
,
428 xfs_daddr_t
*new_blk
)
434 xfs_caddr_t buf
= NULL
;
438 * Greedily allocate a buffer big enough to handle the full
439 * range of basic blocks we'll be examining. If that fails,
440 * try a smaller size. We need to be able to read at least
441 * a log sector, or we're out of luck.
443 bufblks
= 1 << ffs(nbblks
);
444 while (bufblks
> log
->l_logBBsize
)
446 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
448 if (bufblks
< log
->l_sectBBsize
)
452 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
455 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
457 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
461 for (j
= 0; j
< bcount
; j
++) {
462 cycle
= xlog_get_cycle(buf
);
463 if (cycle
== stop_on_cycle_no
) {
480 * Potentially backup over partial log record write.
482 * In the typical case, last_blk is the number of the block directly after
483 * a good log record. Therefore, we subtract one to get the block number
484 * of the last block in the given buffer. extra_bblks contains the number
485 * of blocks we would have read on a previous read. This happens when the
486 * last log record is split over the end of the physical log.
488 * extra_bblks is the number of blocks potentially verified on a previous
489 * call to this routine.
492 xlog_find_verify_log_record(
494 xfs_daddr_t start_blk
,
495 xfs_daddr_t
*last_blk
,
500 xfs_caddr_t offset
= NULL
;
501 xlog_rec_header_t
*head
= NULL
;
504 int num_blks
= *last_blk
- start_blk
;
507 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
509 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
510 if (!(bp
= xlog_get_bp(log
, 1)))
514 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
517 offset
+= ((num_blks
- 1) << BBSHIFT
);
520 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
522 /* valid log record not found */
524 "Log inconsistent (didn't find previous header)");
526 error
= XFS_ERROR(EIO
);
531 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
536 head
= (xlog_rec_header_t
*)offset
;
538 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
546 * We hit the beginning of the physical log & still no header. Return
547 * to caller. If caller can handle a return of -1, then this routine
548 * will be called again for the end of the physical log.
556 * We have the final block of the good log (the first block
557 * of the log record _before_ the head. So we check the uuid.
559 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
563 * We may have found a log record header before we expected one.
564 * last_blk will be the 1st block # with a given cycle #. We may end
565 * up reading an entire log record. In this case, we don't want to
566 * reset last_blk. Only when last_blk points in the middle of a log
567 * record do we update last_blk.
569 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
570 uint h_size
= be32_to_cpu(head
->h_size
);
572 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
573 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
579 if (*last_blk
- i
+ extra_bblks
!=
580 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
589 * Head is defined to be the point of the log where the next log write
590 * write could go. This means that incomplete LR writes at the end are
591 * eliminated when calculating the head. We aren't guaranteed that previous
592 * LR have complete transactions. We only know that a cycle number of
593 * current cycle number -1 won't be present in the log if we start writing
594 * from our current block number.
596 * last_blk contains the block number of the first block with a given
599 * Return: zero if normal, non-zero if error.
604 xfs_daddr_t
*return_head_blk
)
608 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
610 uint first_half_cycle
, last_half_cycle
;
612 int error
, log_bbnum
= log
->l_logBBsize
;
614 /* Is the end of the log device zeroed? */
615 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
616 *return_head_blk
= first_blk
;
618 /* Is the whole lot zeroed? */
620 /* Linux XFS shouldn't generate totally zeroed logs -
621 * mkfs etc write a dummy unmount record to a fresh
622 * log so we can store the uuid in there
624 xfs_warn(log
->l_mp
, "totally zeroed log");
629 xfs_warn(log
->l_mp
, "empty log check failed");
633 first_blk
= 0; /* get cycle # of 1st block */
634 bp
= xlog_get_bp(log
, 1);
638 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
642 first_half_cycle
= xlog_get_cycle(offset
);
644 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
645 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
649 last_half_cycle
= xlog_get_cycle(offset
);
650 ASSERT(last_half_cycle
!= 0);
653 * If the 1st half cycle number is equal to the last half cycle number,
654 * then the entire log is stamped with the same cycle number. In this
655 * case, head_blk can't be set to zero (which makes sense). The below
656 * math doesn't work out properly with head_blk equal to zero. Instead,
657 * we set it to log_bbnum which is an invalid block number, but this
658 * value makes the math correct. If head_blk doesn't changed through
659 * all the tests below, *head_blk is set to zero at the very end rather
660 * than log_bbnum. In a sense, log_bbnum and zero are the same block
661 * in a circular file.
663 if (first_half_cycle
== last_half_cycle
) {
665 * In this case we believe that the entire log should have
666 * cycle number last_half_cycle. We need to scan backwards
667 * from the end verifying that there are no holes still
668 * containing last_half_cycle - 1. If we find such a hole,
669 * then the start of that hole will be the new head. The
670 * simple case looks like
671 * x | x ... | x - 1 | x
672 * Another case that fits this picture would be
673 * x | x + 1 | x ... | x
674 * In this case the head really is somewhere at the end of the
675 * log, as one of the latest writes at the beginning was
678 * x | x + 1 | x ... | x - 1 | x
679 * This is really the combination of the above two cases, and
680 * the head has to end up at the start of the x-1 hole at the
683 * In the 256k log case, we will read from the beginning to the
684 * end of the log and search for cycle numbers equal to x-1.
685 * We don't worry about the x+1 blocks that we encounter,
686 * because we know that they cannot be the head since the log
689 head_blk
= log_bbnum
;
690 stop_on_cycle
= last_half_cycle
- 1;
693 * In this case we want to find the first block with cycle
694 * number matching last_half_cycle. We expect the log to be
696 * x + 1 ... | x ... | x
697 * The first block with cycle number x (last_half_cycle) will
698 * be where the new head belongs. First we do a binary search
699 * for the first occurrence of last_half_cycle. The binary
700 * search may not be totally accurate, so then we scan back
701 * from there looking for occurrences of last_half_cycle before
702 * us. If that backwards scan wraps around the beginning of
703 * the log, then we look for occurrences of last_half_cycle - 1
704 * at the end of the log. The cases we're looking for look
706 * v binary search stopped here
707 * x + 1 ... | x | x + 1 | x ... | x
708 * ^ but we want to locate this spot
710 * <---------> less than scan distance
711 * x + 1 ... | x ... | x - 1 | x
712 * ^ we want to locate this spot
714 stop_on_cycle
= last_half_cycle
;
715 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
716 &head_blk
, last_half_cycle
)))
721 * Now validate the answer. Scan back some number of maximum possible
722 * blocks and make sure each one has the expected cycle number. The
723 * maximum is determined by the total possible amount of buffering
724 * in the in-core log. The following number can be made tighter if
725 * we actually look at the block size of the filesystem.
727 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
728 if (head_blk
>= num_scan_bblks
) {
730 * We are guaranteed that the entire check can be performed
733 start_blk
= head_blk
- num_scan_bblks
;
734 if ((error
= xlog_find_verify_cycle(log
,
735 start_blk
, num_scan_bblks
,
736 stop_on_cycle
, &new_blk
)))
740 } else { /* need to read 2 parts of log */
742 * We are going to scan backwards in the log in two parts.
743 * First we scan the physical end of the log. In this part
744 * of the log, we are looking for blocks with cycle number
745 * last_half_cycle - 1.
746 * If we find one, then we know that the log starts there, as
747 * we've found a hole that didn't get written in going around
748 * the end of the physical log. The simple case for this is
749 * x + 1 ... | x ... | x - 1 | x
750 * <---------> less than scan distance
751 * If all of the blocks at the end of the log have cycle number
752 * last_half_cycle, then we check the blocks at the start of
753 * the log looking for occurrences of last_half_cycle. If we
754 * find one, then our current estimate for the location of the
755 * first occurrence of last_half_cycle is wrong and we move
756 * back to the hole we've found. This case looks like
757 * x + 1 ... | x | x + 1 | x ...
758 * ^ binary search stopped here
759 * Another case we need to handle that only occurs in 256k
761 * x + 1 ... | x ... | x+1 | x ...
762 * ^ binary search stops here
763 * In a 256k log, the scan at the end of the log will see the
764 * x + 1 blocks. We need to skip past those since that is
765 * certainly not the head of the log. By searching for
766 * last_half_cycle-1 we accomplish that.
768 ASSERT(head_blk
<= INT_MAX
&&
769 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
770 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
771 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
772 num_scan_bblks
- (int)head_blk
,
773 (stop_on_cycle
- 1), &new_blk
)))
781 * Scan beginning of log now. The last part of the physical
782 * log is good. This scan needs to verify that it doesn't find
783 * the last_half_cycle.
786 ASSERT(head_blk
<= INT_MAX
);
787 if ((error
= xlog_find_verify_cycle(log
,
788 start_blk
, (int)head_blk
,
789 stop_on_cycle
, &new_blk
)))
797 * Now we need to make sure head_blk is not pointing to a block in
798 * the middle of a log record.
800 num_scan_bblks
= XLOG_REC_SHIFT(log
);
801 if (head_blk
>= num_scan_bblks
) {
802 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
804 /* start ptr at last block ptr before head_blk */
805 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
806 &head_blk
, 0)) == -1) {
807 error
= XFS_ERROR(EIO
);
813 ASSERT(head_blk
<= INT_MAX
);
814 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
815 &head_blk
, 0)) == -1) {
816 /* We hit the beginning of the log during our search */
817 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
819 ASSERT(start_blk
<= INT_MAX
&&
820 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
821 ASSERT(head_blk
<= INT_MAX
);
822 if ((error
= xlog_find_verify_log_record(log
,
824 (int)head_blk
)) == -1) {
825 error
= XFS_ERROR(EIO
);
829 if (new_blk
!= log_bbnum
)
836 if (head_blk
== log_bbnum
)
837 *return_head_blk
= 0;
839 *return_head_blk
= head_blk
;
841 * When returning here, we have a good block number. Bad block
842 * means that during a previous crash, we didn't have a clean break
843 * from cycle number N to cycle number N-1. In this case, we need
844 * to find the first block with cycle number N-1.
852 xfs_warn(log
->l_mp
, "failed to find log head");
857 * Find the sync block number or the tail of the log.
859 * This will be the block number of the last record to have its
860 * associated buffers synced to disk. Every log record header has
861 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
862 * to get a sync block number. The only concern is to figure out which
863 * log record header to believe.
865 * The following algorithm uses the log record header with the largest
866 * lsn. The entire log record does not need to be valid. We only care
867 * that the header is valid.
869 * We could speed up search by using current head_blk buffer, but it is not
875 xfs_daddr_t
*head_blk
,
876 xfs_daddr_t
*tail_blk
)
878 xlog_rec_header_t
*rhead
;
879 xlog_op_header_t
*op_head
;
880 xfs_caddr_t offset
= NULL
;
883 xfs_daddr_t umount_data_blk
;
884 xfs_daddr_t after_umount_blk
;
891 * Find previous log record
893 if ((error
= xlog_find_head(log
, head_blk
)))
896 bp
= xlog_get_bp(log
, 1);
899 if (*head_blk
== 0) { /* special case */
900 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
904 if (xlog_get_cycle(offset
) == 0) {
906 /* leave all other log inited values alone */
912 * Search backwards looking for log record header block
914 ASSERT(*head_blk
< INT_MAX
);
915 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
916 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
920 if (*(__be32
*)offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
926 * If we haven't found the log record header block, start looking
927 * again from the end of the physical log. XXXmiken: There should be
928 * a check here to make sure we didn't search more than N blocks in
932 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
933 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
937 if (*(__be32
*)offset
==
938 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
945 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
947 return XFS_ERROR(EIO
);
950 /* find blk_no of tail of log */
951 rhead
= (xlog_rec_header_t
*)offset
;
952 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
955 * Reset log values according to the state of the log when we
956 * crashed. In the case where head_blk == 0, we bump curr_cycle
957 * one because the next write starts a new cycle rather than
958 * continuing the cycle of the last good log record. At this
959 * point we have guaranteed that all partial log records have been
960 * accounted for. Therefore, we know that the last good log record
961 * written was complete and ended exactly on the end boundary
962 * of the physical log.
964 log
->l_prev_block
= i
;
965 log
->l_curr_block
= (int)*head_blk
;
966 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
969 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
970 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
971 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
972 BBTOB(log
->l_curr_block
));
973 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
974 BBTOB(log
->l_curr_block
));
977 * Look for unmount record. If we find it, then we know there
978 * was a clean unmount. Since 'i' could be the last block in
979 * the physical log, we convert to a log block before comparing
982 * Save the current tail lsn to use to pass to
983 * xlog_clear_stale_blocks() below. We won't want to clear the
984 * unmount record if there is one, so we pass the lsn of the
985 * unmount record rather than the block after it.
987 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
988 int h_size
= be32_to_cpu(rhead
->h_size
);
989 int h_version
= be32_to_cpu(rhead
->h_version
);
991 if ((h_version
& XLOG_VERSION_2
) &&
992 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
993 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
994 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1002 after_umount_blk
= (i
+ hblks
+ (int)
1003 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
1004 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1005 if (*head_blk
== after_umount_blk
&&
1006 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1007 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
1008 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1012 op_head
= (xlog_op_header_t
*)offset
;
1013 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1015 * Set tail and last sync so that newly written
1016 * log records will point recovery to after the
1017 * current unmount record.
1019 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1020 log
->l_curr_cycle
, after_umount_blk
);
1021 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1022 log
->l_curr_cycle
, after_umount_blk
);
1023 *tail_blk
= after_umount_blk
;
1026 * Note that the unmount was clean. If the unmount
1027 * was not clean, we need to know this to rebuild the
1028 * superblock counters from the perag headers if we
1029 * have a filesystem using non-persistent counters.
1031 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1036 * Make sure that there are no blocks in front of the head
1037 * with the same cycle number as the head. This can happen
1038 * because we allow multiple outstanding log writes concurrently,
1039 * and the later writes might make it out before earlier ones.
1041 * We use the lsn from before modifying it so that we'll never
1042 * overwrite the unmount record after a clean unmount.
1044 * Do this only if we are going to recover the filesystem
1046 * NOTE: This used to say "if (!readonly)"
1047 * However on Linux, we can & do recover a read-only filesystem.
1048 * We only skip recovery if NORECOVERY is specified on mount,
1049 * in which case we would not be here.
1051 * But... if the -device- itself is readonly, just skip this.
1052 * We can't recover this device anyway, so it won't matter.
1054 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1055 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1061 xfs_warn(log
->l_mp
, "failed to locate log tail");
1066 * Is the log zeroed at all?
1068 * The last binary search should be changed to perform an X block read
1069 * once X becomes small enough. You can then search linearly through
1070 * the X blocks. This will cut down on the number of reads we need to do.
1072 * If the log is partially zeroed, this routine will pass back the blkno
1073 * of the first block with cycle number 0. It won't have a complete LR
1077 * 0 => the log is completely written to
1078 * -1 => use *blk_no as the first block of the log
1079 * >0 => error has occurred
1084 xfs_daddr_t
*blk_no
)
1088 uint first_cycle
, last_cycle
;
1089 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1090 xfs_daddr_t num_scan_bblks
;
1091 int error
, log_bbnum
= log
->l_logBBsize
;
1095 /* check totally zeroed log */
1096 bp
= xlog_get_bp(log
, 1);
1099 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1103 first_cycle
= xlog_get_cycle(offset
);
1104 if (first_cycle
== 0) { /* completely zeroed log */
1110 /* check partially zeroed log */
1111 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1115 last_cycle
= xlog_get_cycle(offset
);
1116 if (last_cycle
!= 0) { /* log completely written to */
1119 } else if (first_cycle
!= 1) {
1121 * If the cycle of the last block is zero, the cycle of
1122 * the first block must be 1. If it's not, maybe we're
1123 * not looking at a log... Bail out.
1126 "Log inconsistent or not a log (last==0, first!=1)");
1127 return XFS_ERROR(EINVAL
);
1130 /* we have a partially zeroed log */
1131 last_blk
= log_bbnum
-1;
1132 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1136 * Validate the answer. Because there is no way to guarantee that
1137 * the entire log is made up of log records which are the same size,
1138 * we scan over the defined maximum blocks. At this point, the maximum
1139 * is not chosen to mean anything special. XXXmiken
1141 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1142 ASSERT(num_scan_bblks
<= INT_MAX
);
1144 if (last_blk
< num_scan_bblks
)
1145 num_scan_bblks
= last_blk
;
1146 start_blk
= last_blk
- num_scan_bblks
;
1149 * We search for any instances of cycle number 0 that occur before
1150 * our current estimate of the head. What we're trying to detect is
1151 * 1 ... | 0 | 1 | 0...
1152 * ^ binary search ends here
1154 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1155 (int)num_scan_bblks
, 0, &new_blk
)))
1161 * Potentially backup over partial log record write. We don't need
1162 * to search the end of the log because we know it is zero.
1164 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1165 &last_blk
, 0)) == -1) {
1166 error
= XFS_ERROR(EIO
);
1180 * These are simple subroutines used by xlog_clear_stale_blocks() below
1181 * to initialize a buffer full of empty log record headers and write
1182 * them into the log.
1193 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1195 memset(buf
, 0, BBSIZE
);
1196 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1197 recp
->h_cycle
= cpu_to_be32(cycle
);
1198 recp
->h_version
= cpu_to_be32(
1199 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1200 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1201 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1202 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1203 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1207 xlog_write_log_records(
1218 int sectbb
= log
->l_sectBBsize
;
1219 int end_block
= start_block
+ blocks
;
1225 * Greedily allocate a buffer big enough to handle the full
1226 * range of basic blocks to be written. If that fails, try
1227 * a smaller size. We need to be able to write at least a
1228 * log sector, or we're out of luck.
1230 bufblks
= 1 << ffs(blocks
);
1231 while (bufblks
> log
->l_logBBsize
)
1233 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1235 if (bufblks
< sectbb
)
1239 /* We may need to do a read at the start to fill in part of
1240 * the buffer in the starting sector not covered by the first
1243 balign
= round_down(start_block
, sectbb
);
1244 if (balign
!= start_block
) {
1245 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1249 j
= start_block
- balign
;
1252 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1253 int bcount
, endcount
;
1255 bcount
= min(bufblks
, end_block
- start_block
);
1256 endcount
= bcount
- j
;
1258 /* We may need to do a read at the end to fill in part of
1259 * the buffer in the final sector not covered by the write.
1260 * If this is the same sector as the above read, skip it.
1262 ealign
= round_down(end_block
, sectbb
);
1263 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1264 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1265 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1272 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1273 for (; j
< endcount
; j
++) {
1274 xlog_add_record(log
, offset
, cycle
, i
+j
,
1275 tail_cycle
, tail_block
);
1278 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1281 start_block
+= endcount
;
1291 * This routine is called to blow away any incomplete log writes out
1292 * in front of the log head. We do this so that we won't become confused
1293 * if we come up, write only a little bit more, and then crash again.
1294 * If we leave the partial log records out there, this situation could
1295 * cause us to think those partial writes are valid blocks since they
1296 * have the current cycle number. We get rid of them by overwriting them
1297 * with empty log records with the old cycle number rather than the
1300 * The tail lsn is passed in rather than taken from
1301 * the log so that we will not write over the unmount record after a
1302 * clean unmount in a 512 block log. Doing so would leave the log without
1303 * any valid log records in it until a new one was written. If we crashed
1304 * during that time we would not be able to recover.
1307 xlog_clear_stale_blocks(
1311 int tail_cycle
, head_cycle
;
1312 int tail_block
, head_block
;
1313 int tail_distance
, max_distance
;
1317 tail_cycle
= CYCLE_LSN(tail_lsn
);
1318 tail_block
= BLOCK_LSN(tail_lsn
);
1319 head_cycle
= log
->l_curr_cycle
;
1320 head_block
= log
->l_curr_block
;
1323 * Figure out the distance between the new head of the log
1324 * and the tail. We want to write over any blocks beyond the
1325 * head that we may have written just before the crash, but
1326 * we don't want to overwrite the tail of the log.
1328 if (head_cycle
== tail_cycle
) {
1330 * The tail is behind the head in the physical log,
1331 * so the distance from the head to the tail is the
1332 * distance from the head to the end of the log plus
1333 * the distance from the beginning of the log to the
1336 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1337 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1338 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1339 return XFS_ERROR(EFSCORRUPTED
);
1341 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1344 * The head is behind the tail in the physical log,
1345 * so the distance from the head to the tail is just
1346 * the tail block minus the head block.
1348 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1349 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1350 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1351 return XFS_ERROR(EFSCORRUPTED
);
1353 tail_distance
= tail_block
- head_block
;
1357 * If the head is right up against the tail, we can't clear
1360 if (tail_distance
<= 0) {
1361 ASSERT(tail_distance
== 0);
1365 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1367 * Take the smaller of the maximum amount of outstanding I/O
1368 * we could have and the distance to the tail to clear out.
1369 * We take the smaller so that we don't overwrite the tail and
1370 * we don't waste all day writing from the head to the tail
1373 max_distance
= MIN(max_distance
, tail_distance
);
1375 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1377 * We can stomp all the blocks we need to without
1378 * wrapping around the end of the log. Just do it
1379 * in a single write. Use the cycle number of the
1380 * current cycle minus one so that the log will look like:
1383 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1384 head_block
, max_distance
, tail_cycle
,
1390 * We need to wrap around the end of the physical log in
1391 * order to clear all the blocks. Do it in two separate
1392 * I/Os. The first write should be from the head to the
1393 * end of the physical log, and it should use the current
1394 * cycle number minus one just like above.
1396 distance
= log
->l_logBBsize
- head_block
;
1397 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1398 head_block
, distance
, tail_cycle
,
1405 * Now write the blocks at the start of the physical log.
1406 * This writes the remainder of the blocks we want to clear.
1407 * It uses the current cycle number since we're now on the
1408 * same cycle as the head so that we get:
1409 * n ... n ... | n - 1 ...
1410 * ^^^^^ blocks we're writing
1412 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1413 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1414 tail_cycle
, tail_block
);
1422 /******************************************************************************
1424 * Log recover routines
1426 ******************************************************************************
1429 STATIC xlog_recover_t
*
1430 xlog_recover_find_tid(
1431 struct hlist_head
*head
,
1434 xlog_recover_t
*trans
;
1435 struct hlist_node
*n
;
1437 hlist_for_each_entry(trans
, n
, head
, r_list
) {
1438 if (trans
->r_log_tid
== tid
)
1445 xlog_recover_new_tid(
1446 struct hlist_head
*head
,
1450 xlog_recover_t
*trans
;
1452 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1453 trans
->r_log_tid
= tid
;
1455 INIT_LIST_HEAD(&trans
->r_itemq
);
1457 INIT_HLIST_NODE(&trans
->r_list
);
1458 hlist_add_head(&trans
->r_list
, head
);
1462 xlog_recover_add_item(
1463 struct list_head
*head
)
1465 xlog_recover_item_t
*item
;
1467 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1468 INIT_LIST_HEAD(&item
->ri_list
);
1469 list_add_tail(&item
->ri_list
, head
);
1473 xlog_recover_add_to_cont_trans(
1475 struct xlog_recover
*trans
,
1479 xlog_recover_item_t
*item
;
1480 xfs_caddr_t ptr
, old_ptr
;
1483 if (list_empty(&trans
->r_itemq
)) {
1484 /* finish copying rest of trans header */
1485 xlog_recover_add_item(&trans
->r_itemq
);
1486 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1487 sizeof(xfs_trans_header_t
) - len
;
1488 memcpy(ptr
, dp
, len
); /* d, s, l */
1491 /* take the tail entry */
1492 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1494 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1495 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1497 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, KM_SLEEP
);
1498 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1499 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1500 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1501 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
1506 * The next region to add is the start of a new region. It could be
1507 * a whole region or it could be the first part of a new region. Because
1508 * of this, the assumption here is that the type and size fields of all
1509 * format structures fit into the first 32 bits of the structure.
1511 * This works because all regions must be 32 bit aligned. Therefore, we
1512 * either have both fields or we have neither field. In the case we have
1513 * neither field, the data part of the region is zero length. We only have
1514 * a log_op_header and can throw away the header since a new one will appear
1515 * later. If we have at least 4 bytes, then we can determine how many regions
1516 * will appear in the current log item.
1519 xlog_recover_add_to_trans(
1521 struct xlog_recover
*trans
,
1525 xfs_inode_log_format_t
*in_f
; /* any will do */
1526 xlog_recover_item_t
*item
;
1531 if (list_empty(&trans
->r_itemq
)) {
1532 /* we need to catch log corruptions here */
1533 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1534 xfs_warn(log
->l_mp
, "%s: bad header magic number",
1537 return XFS_ERROR(EIO
);
1539 if (len
== sizeof(xfs_trans_header_t
))
1540 xlog_recover_add_item(&trans
->r_itemq
);
1541 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1545 ptr
= kmem_alloc(len
, KM_SLEEP
);
1546 memcpy(ptr
, dp
, len
);
1547 in_f
= (xfs_inode_log_format_t
*)ptr
;
1549 /* take the tail entry */
1550 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1551 if (item
->ri_total
!= 0 &&
1552 item
->ri_total
== item
->ri_cnt
) {
1553 /* tail item is in use, get a new one */
1554 xlog_recover_add_item(&trans
->r_itemq
);
1555 item
= list_entry(trans
->r_itemq
.prev
,
1556 xlog_recover_item_t
, ri_list
);
1559 if (item
->ri_total
== 0) { /* first region to be added */
1560 if (in_f
->ilf_size
== 0 ||
1561 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1563 "bad number of regions (%d) in inode log format",
1566 return XFS_ERROR(EIO
);
1569 item
->ri_total
= in_f
->ilf_size
;
1571 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1574 ASSERT(item
->ri_total
> item
->ri_cnt
);
1575 /* Description region is ri_buf[0] */
1576 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1577 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1579 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
1584 * Sort the log items in the transaction. Cancelled buffers need
1585 * to be put first so they are processed before any items that might
1586 * modify the buffers. If they are cancelled, then the modifications
1587 * don't need to be replayed.
1590 xlog_recover_reorder_trans(
1592 struct xlog_recover
*trans
,
1595 xlog_recover_item_t
*item
, *n
;
1596 LIST_HEAD(sort_list
);
1598 list_splice_init(&trans
->r_itemq
, &sort_list
);
1599 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1600 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1602 switch (ITEM_TYPE(item
)) {
1604 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1605 trace_xfs_log_recover_item_reorder_head(log
,
1607 list_move(&item
->ri_list
, &trans
->r_itemq
);
1612 case XFS_LI_QUOTAOFF
:
1615 trace_xfs_log_recover_item_reorder_tail(log
,
1617 list_move_tail(&item
->ri_list
, &trans
->r_itemq
);
1621 "%s: unrecognized type of log operation",
1624 return XFS_ERROR(EIO
);
1627 ASSERT(list_empty(&sort_list
));
1632 * Build up the table of buf cancel records so that we don't replay
1633 * cancelled data in the second pass. For buffer records that are
1634 * not cancel records, there is nothing to do here so we just return.
1636 * If we get a cancel record which is already in the table, this indicates
1637 * that the buffer was cancelled multiple times. In order to ensure
1638 * that during pass 2 we keep the record in the table until we reach its
1639 * last occurrence in the log, we keep a reference count in the cancel
1640 * record in the table to tell us how many times we expect to see this
1641 * record during the second pass.
1644 xlog_recover_buffer_pass1(
1646 struct xlog_recover_item
*item
)
1648 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1649 struct list_head
*bucket
;
1650 struct xfs_buf_cancel
*bcp
;
1653 * If this isn't a cancel buffer item, then just return.
1655 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1656 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1661 * Insert an xfs_buf_cancel record into the hash table of them.
1662 * If there is already an identical record, bump its reference count.
1664 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1665 list_for_each_entry(bcp
, bucket
, bc_list
) {
1666 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1667 bcp
->bc_len
== buf_f
->blf_len
) {
1669 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1674 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1675 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1676 bcp
->bc_len
= buf_f
->blf_len
;
1677 bcp
->bc_refcount
= 1;
1678 list_add_tail(&bcp
->bc_list
, bucket
);
1680 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1685 * Check to see whether the buffer being recovered has a corresponding
1686 * entry in the buffer cancel record table. If it does then return 1
1687 * so that it will be cancelled, otherwise return 0. If the buffer is
1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1689 * the refcount on the entry in the table and remove it from the table
1690 * if this is the last reference.
1692 * We remove the cancel record from the table when we encounter its
1693 * last occurrence in the log so that if the same buffer is re-used
1694 * again after its last cancellation we actually replay the changes
1695 * made at that point.
1698 xlog_check_buffer_cancelled(
1704 struct list_head
*bucket
;
1705 struct xfs_buf_cancel
*bcp
;
1707 if (log
->l_buf_cancel_table
== NULL
) {
1709 * There is nothing in the table built in pass one,
1710 * so this buffer must not be cancelled.
1712 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1717 * Search for an entry in the cancel table that matches our buffer.
1719 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1720 list_for_each_entry(bcp
, bucket
, bc_list
) {
1721 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1726 * We didn't find a corresponding entry in the table, so return 0 so
1727 * that the buffer is NOT cancelled.
1729 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1734 * We've go a match, so return 1 so that the recovery of this buffer
1735 * is cancelled. If this buffer is actually a buffer cancel log
1736 * item, then decrement the refcount on the one in the table and
1737 * remove it if this is the last reference.
1739 if (flags
& XFS_BLF_CANCEL
) {
1740 if (--bcp
->bc_refcount
== 0) {
1741 list_del(&bcp
->bc_list
);
1749 * Perform recovery for a buffer full of inodes. In these buffers, the only
1750 * data which should be recovered is that which corresponds to the
1751 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1752 * data for the inodes is always logged through the inodes themselves rather
1753 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1755 * The only time when buffers full of inodes are fully recovered is when the
1756 * buffer is full of newly allocated inodes. In this case the buffer will
1757 * not be marked as an inode buffer and so will be sent to
1758 * xlog_recover_do_reg_buffer() below during recovery.
1761 xlog_recover_do_inode_buffer(
1762 struct xfs_mount
*mp
,
1763 xlog_recover_item_t
*item
,
1765 xfs_buf_log_format_t
*buf_f
)
1771 int reg_buf_offset
= 0;
1772 int reg_buf_bytes
= 0;
1773 int next_unlinked_offset
;
1775 xfs_agino_t
*logged_nextp
;
1776 xfs_agino_t
*buffer_nextp
;
1778 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1780 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
1781 for (i
= 0; i
< inodes_per_buf
; i
++) {
1782 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1783 offsetof(xfs_dinode_t
, di_next_unlinked
);
1785 while (next_unlinked_offset
>=
1786 (reg_buf_offset
+ reg_buf_bytes
)) {
1788 * The next di_next_unlinked field is beyond
1789 * the current logged region. Find the next
1790 * logged region that contains or is beyond
1791 * the current di_next_unlinked field.
1794 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1795 buf_f
->blf_map_size
, bit
);
1798 * If there are no more logged regions in the
1799 * buffer, then we're done.
1804 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1805 buf_f
->blf_map_size
, bit
);
1807 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1808 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1813 * If the current logged region starts after the current
1814 * di_next_unlinked field, then move on to the next
1815 * di_next_unlinked field.
1817 if (next_unlinked_offset
< reg_buf_offset
)
1820 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1821 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1822 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
1823 BBTOB(bp
->b_io_length
));
1826 * The current logged region contains a copy of the
1827 * current di_next_unlinked field. Extract its value
1828 * and copy it to the buffer copy.
1830 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1831 next_unlinked_offset
- reg_buf_offset
;
1832 if (unlikely(*logged_nextp
== 0)) {
1834 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1835 "Trying to replay bad (0) inode di_next_unlinked field.",
1837 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1838 XFS_ERRLEVEL_LOW
, mp
);
1839 return XFS_ERROR(EFSCORRUPTED
);
1842 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1843 next_unlinked_offset
);
1844 *buffer_nextp
= *logged_nextp
;
1851 * Perform a 'normal' buffer recovery. Each logged region of the
1852 * buffer should be copied over the corresponding region in the
1853 * given buffer. The bitmap in the buf log format structure indicates
1854 * where to place the logged data.
1857 xlog_recover_do_reg_buffer(
1858 struct xfs_mount
*mp
,
1859 xlog_recover_item_t
*item
,
1861 xfs_buf_log_format_t
*buf_f
)
1868 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
1871 i
= 1; /* 0 is the buf format structure */
1873 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1874 buf_f
->blf_map_size
, bit
);
1877 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1878 buf_f
->blf_map_size
, bit
);
1880 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1881 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
1882 ASSERT(BBTOB(bp
->b_io_length
) >=
1883 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
1886 * Do a sanity check if this is a dquot buffer. Just checking
1887 * the first dquot in the buffer should do. XXXThis is
1888 * probably a good thing to do for other buf types also.
1891 if (buf_f
->blf_flags
&
1892 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
1893 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1895 "XFS: NULL dquot in %s.", __func__
);
1898 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
1900 "XFS: dquot too small (%d) in %s.",
1901 item
->ri_buf
[i
].i_len
, __func__
);
1904 error
= xfs_qm_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
1905 -1, 0, XFS_QMOPT_DOWARN
,
1906 "dquot_buf_recover");
1911 memcpy(xfs_buf_offset(bp
,
1912 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
1913 item
->ri_buf
[i
].i_addr
, /* source */
1914 nbits
<<XFS_BLF_SHIFT
); /* length */
1920 /* Shouldn't be any more regions */
1921 ASSERT(i
== item
->ri_total
);
1925 * Do some primitive error checking on ondisk dquot data structures.
1929 struct xfs_mount
*mp
,
1930 xfs_disk_dquot_t
*ddq
,
1932 uint type
, /* used only when IO_dorepair is true */
1936 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1940 * We can encounter an uninitialized dquot buffer for 2 reasons:
1941 * 1. If we crash while deleting the quotainode(s), and those blks got
1942 * used for user data. This is because we take the path of regular
1943 * file deletion; however, the size field of quotainodes is never
1944 * updated, so all the tricks that we play in itruncate_finish
1945 * don't quite matter.
1947 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1948 * But the allocation will be replayed so we'll end up with an
1949 * uninitialized quota block.
1951 * This is all fine; things are still consistent, and we haven't lost
1952 * any quota information. Just don't complain about bad dquot blks.
1954 if (ddq
->d_magic
!= cpu_to_be16(XFS_DQUOT_MAGIC
)) {
1955 if (flags
& XFS_QMOPT_DOWARN
)
1957 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1958 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1961 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1962 if (flags
& XFS_QMOPT_DOWARN
)
1964 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1965 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1969 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1970 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1971 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1972 if (flags
& XFS_QMOPT_DOWARN
)
1974 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1975 str
, id
, ddq
->d_flags
);
1979 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
1980 if (flags
& XFS_QMOPT_DOWARN
)
1982 "%s : ondisk-dquot 0x%p, ID mismatch: "
1983 "0x%x expected, found id 0x%x",
1984 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
1988 if (!errs
&& ddq
->d_id
) {
1989 if (ddq
->d_blk_softlimit
&&
1990 be64_to_cpu(ddq
->d_bcount
) >
1991 be64_to_cpu(ddq
->d_blk_softlimit
)) {
1992 if (!ddq
->d_btimer
) {
1993 if (flags
& XFS_QMOPT_DOWARN
)
1995 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1996 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2000 if (ddq
->d_ino_softlimit
&&
2001 be64_to_cpu(ddq
->d_icount
) >
2002 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2003 if (!ddq
->d_itimer
) {
2004 if (flags
& XFS_QMOPT_DOWARN
)
2006 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2007 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2011 if (ddq
->d_rtb_softlimit
&&
2012 be64_to_cpu(ddq
->d_rtbcount
) >
2013 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2014 if (!ddq
->d_rtbtimer
) {
2015 if (flags
& XFS_QMOPT_DOWARN
)
2017 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2018 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2024 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2027 if (flags
& XFS_QMOPT_DOWARN
)
2028 xfs_notice(mp
, "Re-initializing dquot ID 0x%x", id
);
2031 * Typically, a repair is only requested by quotacheck.
2034 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2035 memset(d
, 0, sizeof(xfs_dqblk_t
));
2037 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2038 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2039 d
->dd_diskdq
.d_flags
= type
;
2040 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2046 * Perform a dquot buffer recovery.
2047 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2048 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2049 * Else, treat it as a regular buffer and do recovery.
2052 xlog_recover_do_dquot_buffer(
2055 xlog_recover_item_t
*item
,
2057 xfs_buf_log_format_t
*buf_f
)
2061 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2064 * Filesystems are required to send in quota flags at mount time.
2066 if (mp
->m_qflags
== 0) {
2071 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2072 type
|= XFS_DQ_USER
;
2073 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2074 type
|= XFS_DQ_PROJ
;
2075 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2076 type
|= XFS_DQ_GROUP
;
2078 * This type of quotas was turned off, so ignore this buffer
2080 if (log
->l_quotaoffs_flag
& type
)
2083 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2087 * This routine replays a modification made to a buffer at runtime.
2088 * There are actually two types of buffer, regular and inode, which
2089 * are handled differently. Inode buffers are handled differently
2090 * in that we only recover a specific set of data from them, namely
2091 * the inode di_next_unlinked fields. This is because all other inode
2092 * data is actually logged via inode records and any data we replay
2093 * here which overlaps that may be stale.
2095 * When meta-data buffers are freed at run time we log a buffer item
2096 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2097 * of the buffer in the log should not be replayed at recovery time.
2098 * This is so that if the blocks covered by the buffer are reused for
2099 * file data before we crash we don't end up replaying old, freed
2100 * meta-data into a user's file.
2102 * To handle the cancellation of buffer log items, we make two passes
2103 * over the log during recovery. During the first we build a table of
2104 * those buffers which have been cancelled, and during the second we
2105 * only replay those buffers which do not have corresponding cancel
2106 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2107 * for more details on the implementation of the table of cancel records.
2110 xlog_recover_buffer_pass2(
2112 struct list_head
*buffer_list
,
2113 xlog_recover_item_t
*item
)
2115 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2116 xfs_mount_t
*mp
= log
->l_mp
;
2122 * In this pass we only want to recover all the buffers which have
2123 * not been cancelled and are not cancellation buffers themselves.
2125 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2126 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2127 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2131 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2134 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2135 buf_flags
|= XBF_UNMAPPED
;
2137 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2140 return XFS_ERROR(ENOMEM
);
2141 error
= bp
->b_error
;
2143 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2148 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2149 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2150 } else if (buf_f
->blf_flags
&
2151 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2152 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2154 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2157 return XFS_ERROR(error
);
2160 * Perform delayed write on the buffer. Asynchronous writes will be
2161 * slower when taking into account all the buffers to be flushed.
2163 * Also make sure that only inode buffers with good sizes stay in
2164 * the buffer cache. The kernel moves inodes in buffers of 1 block
2165 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2166 * buffers in the log can be a different size if the log was generated
2167 * by an older kernel using unclustered inode buffers or a newer kernel
2168 * running with a different inode cluster size. Regardless, if the
2169 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2170 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2171 * the buffer out of the buffer cache so that the buffer won't
2172 * overlap with future reads of those inodes.
2174 if (XFS_DINODE_MAGIC
==
2175 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2176 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2177 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2179 error
= xfs_bwrite(bp
);
2181 ASSERT(bp
->b_target
->bt_mount
== mp
);
2182 bp
->b_iodone
= xlog_recover_iodone
;
2183 xfs_buf_delwri_queue(bp
, buffer_list
);
2191 xlog_recover_inode_pass2(
2193 struct list_head
*buffer_list
,
2194 xlog_recover_item_t
*item
)
2196 xfs_inode_log_format_t
*in_f
;
2197 xfs_mount_t
*mp
= log
->l_mp
;
2206 xfs_icdinode_t
*dicp
;
2209 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2210 in_f
= item
->ri_buf
[0].i_addr
;
2212 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2214 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2220 * Inode buffers can be freed, look out for it,
2221 * and do not replay the inode.
2223 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2224 in_f
->ilf_len
, 0)) {
2226 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2229 trace_xfs_log_recover_inode_recover(log
, in_f
);
2231 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0);
2236 error
= bp
->b_error
;
2238 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2242 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2243 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2246 * Make sure the place we're flushing out to really looks
2249 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2252 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2253 __func__
, dip
, bp
, in_f
->ilf_ino
);
2254 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2255 XFS_ERRLEVEL_LOW
, mp
);
2256 error
= EFSCORRUPTED
;
2259 dicp
= item
->ri_buf
[1].i_addr
;
2260 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2263 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2264 __func__
, item
, in_f
->ilf_ino
);
2265 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2266 XFS_ERRLEVEL_LOW
, mp
);
2267 error
= EFSCORRUPTED
;
2271 /* Skip replay when the on disk inode is newer than the log one */
2272 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2274 * Deal with the wrap case, DI_MAX_FLUSH is less
2275 * than smaller numbers
2277 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2278 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2282 trace_xfs_log_recover_inode_skip(log
, in_f
);
2287 /* Take the opportunity to reset the flush iteration count */
2288 dicp
->di_flushiter
= 0;
2290 if (unlikely(S_ISREG(dicp
->di_mode
))) {
2291 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2292 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2293 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2294 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2297 "%s: Bad regular inode log record, rec ptr 0x%p, "
2298 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2299 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2300 error
= EFSCORRUPTED
;
2303 } else if (unlikely(S_ISDIR(dicp
->di_mode
))) {
2304 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2305 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2306 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2307 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2308 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2311 "%s: Bad dir inode log record, rec ptr 0x%p, "
2312 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2313 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2314 error
= EFSCORRUPTED
;
2318 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2319 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2320 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2323 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2324 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2325 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2326 dicp
->di_nextents
+ dicp
->di_anextents
,
2328 error
= EFSCORRUPTED
;
2331 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2332 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2333 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2336 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2337 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2338 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2339 error
= EFSCORRUPTED
;
2342 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2343 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2344 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2347 "%s: Bad inode log record length %d, rec ptr 0x%p",
2348 __func__
, item
->ri_buf
[1].i_len
, item
);
2349 error
= EFSCORRUPTED
;
2353 /* The core is in in-core format */
2354 xfs_dinode_to_disk(dip
, item
->ri_buf
[1].i_addr
);
2356 /* the rest is in on-disk format */
2357 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2358 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2359 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2360 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2363 fields
= in_f
->ilf_fields
;
2364 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2366 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2369 memcpy(XFS_DFORK_DPTR(dip
),
2370 &in_f
->ilf_u
.ilfu_uuid
,
2375 if (in_f
->ilf_size
== 2)
2376 goto write_inode_buffer
;
2377 len
= item
->ri_buf
[2].i_len
;
2378 src
= item
->ri_buf
[2].i_addr
;
2379 ASSERT(in_f
->ilf_size
<= 4);
2380 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2381 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2382 (len
== in_f
->ilf_dsize
));
2384 switch (fields
& XFS_ILOG_DFORK
) {
2385 case XFS_ILOG_DDATA
:
2387 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2390 case XFS_ILOG_DBROOT
:
2391 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2392 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2393 XFS_DFORK_DSIZE(dip
, mp
));
2398 * There are no data fork flags set.
2400 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2405 * If we logged any attribute data, recover it. There may or
2406 * may not have been any other non-core data logged in this
2409 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2410 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2415 len
= item
->ri_buf
[attr_index
].i_len
;
2416 src
= item
->ri_buf
[attr_index
].i_addr
;
2417 ASSERT(len
== in_f
->ilf_asize
);
2419 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2420 case XFS_ILOG_ADATA
:
2422 dest
= XFS_DFORK_APTR(dip
);
2423 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2424 memcpy(dest
, src
, len
);
2427 case XFS_ILOG_ABROOT
:
2428 dest
= XFS_DFORK_APTR(dip
);
2429 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2430 len
, (xfs_bmdr_block_t
*)dest
,
2431 XFS_DFORK_ASIZE(dip
, mp
));
2435 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2444 ASSERT(bp
->b_target
->bt_mount
== mp
);
2445 bp
->b_iodone
= xlog_recover_iodone
;
2446 xfs_buf_delwri_queue(bp
, buffer_list
);
2451 return XFS_ERROR(error
);
2455 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2456 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2460 xlog_recover_quotaoff_pass1(
2462 xlog_recover_item_t
*item
)
2464 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2468 * The logitem format's flag tells us if this was user quotaoff,
2469 * group/project quotaoff or both.
2471 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2472 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2473 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2474 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2475 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2476 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2482 * Recover a dquot record
2485 xlog_recover_dquot_pass2(
2487 struct list_head
*buffer_list
,
2488 xlog_recover_item_t
*item
)
2490 xfs_mount_t
*mp
= log
->l_mp
;
2492 struct xfs_disk_dquot
*ddq
, *recddq
;
2494 xfs_dq_logformat_t
*dq_f
;
2499 * Filesystems are required to send in quota flags at mount time.
2501 if (mp
->m_qflags
== 0)
2504 recddq
= item
->ri_buf
[1].i_addr
;
2505 if (recddq
== NULL
) {
2506 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2507 return XFS_ERROR(EIO
);
2509 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2510 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2511 item
->ri_buf
[1].i_len
, __func__
);
2512 return XFS_ERROR(EIO
);
2516 * This type of quotas was turned off, so ignore this record.
2518 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2520 if (log
->l_quotaoffs_flag
& type
)
2524 * At this point we know that quota was _not_ turned off.
2525 * Since the mount flags are not indicating to us otherwise, this
2526 * must mean that quota is on, and the dquot needs to be replayed.
2527 * Remember that we may not have fully recovered the superblock yet,
2528 * so we can't do the usual trick of looking at the SB quota bits.
2530 * The other possibility, of course, is that the quota subsystem was
2531 * removed since the last mount - ENOSYS.
2533 dq_f
= item
->ri_buf
[0].i_addr
;
2535 error
= xfs_qm_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2536 "xlog_recover_dquot_pass2 (log copy)");
2538 return XFS_ERROR(EIO
);
2539 ASSERT(dq_f
->qlf_len
== 1);
2541 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
2542 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
);
2547 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2550 * At least the magic num portion should be on disk because this
2551 * was among a chunk of dquots created earlier, and we did some
2552 * minimal initialization then.
2554 error
= xfs_qm_dqcheck(mp
, ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2555 "xlog_recover_dquot_pass2");
2558 return XFS_ERROR(EIO
);
2561 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2563 ASSERT(dq_f
->qlf_size
== 2);
2564 ASSERT(bp
->b_target
->bt_mount
== mp
);
2565 bp
->b_iodone
= xlog_recover_iodone
;
2566 xfs_buf_delwri_queue(bp
, buffer_list
);
2573 * This routine is called to create an in-core extent free intent
2574 * item from the efi format structure which was logged on disk.
2575 * It allocates an in-core efi, copies the extents from the format
2576 * structure into it, and adds the efi to the AIL with the given
2580 xlog_recover_efi_pass2(
2582 xlog_recover_item_t
*item
,
2586 xfs_mount_t
*mp
= log
->l_mp
;
2587 xfs_efi_log_item_t
*efip
;
2588 xfs_efi_log_format_t
*efi_formatp
;
2590 efi_formatp
= item
->ri_buf
[0].i_addr
;
2592 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2593 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2594 &(efip
->efi_format
)))) {
2595 xfs_efi_item_free(efip
);
2598 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2600 spin_lock(&log
->l_ailp
->xa_lock
);
2602 * xfs_trans_ail_update() drops the AIL lock.
2604 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2610 * This routine is called when an efd format structure is found in
2611 * a committed transaction in the log. It's purpose is to cancel
2612 * the corresponding efi if it was still in the log. To do this
2613 * it searches the AIL for the efi with an id equal to that in the
2614 * efd format structure. If we find it, we remove the efi from the
2618 xlog_recover_efd_pass2(
2620 xlog_recover_item_t
*item
)
2622 xfs_efd_log_format_t
*efd_formatp
;
2623 xfs_efi_log_item_t
*efip
= NULL
;
2624 xfs_log_item_t
*lip
;
2626 struct xfs_ail_cursor cur
;
2627 struct xfs_ail
*ailp
= log
->l_ailp
;
2629 efd_formatp
= item
->ri_buf
[0].i_addr
;
2630 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2631 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2632 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2633 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2634 efi_id
= efd_formatp
->efd_efi_id
;
2637 * Search for the efi with the id in the efd format structure
2640 spin_lock(&ailp
->xa_lock
);
2641 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2642 while (lip
!= NULL
) {
2643 if (lip
->li_type
== XFS_LI_EFI
) {
2644 efip
= (xfs_efi_log_item_t
*)lip
;
2645 if (efip
->efi_format
.efi_id
== efi_id
) {
2647 * xfs_trans_ail_delete() drops the
2650 xfs_trans_ail_delete(ailp
, lip
,
2651 SHUTDOWN_CORRUPT_INCORE
);
2652 xfs_efi_item_free(efip
);
2653 spin_lock(&ailp
->xa_lock
);
2657 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2659 xfs_trans_ail_cursor_done(ailp
, &cur
);
2660 spin_unlock(&ailp
->xa_lock
);
2666 * Free up any resources allocated by the transaction
2668 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2671 xlog_recover_free_trans(
2672 struct xlog_recover
*trans
)
2674 xlog_recover_item_t
*item
, *n
;
2677 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
2678 /* Free the regions in the item. */
2679 list_del(&item
->ri_list
);
2680 for (i
= 0; i
< item
->ri_cnt
; i
++)
2681 kmem_free(item
->ri_buf
[i
].i_addr
);
2682 /* Free the item itself */
2683 kmem_free(item
->ri_buf
);
2686 /* Free the transaction recover structure */
2691 xlog_recover_commit_pass1(
2693 struct xlog_recover
*trans
,
2694 struct xlog_recover_item
*item
)
2696 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
2698 switch (ITEM_TYPE(item
)) {
2700 return xlog_recover_buffer_pass1(log
, item
);
2701 case XFS_LI_QUOTAOFF
:
2702 return xlog_recover_quotaoff_pass1(log
, item
);
2707 /* nothing to do in pass 1 */
2710 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2711 __func__
, ITEM_TYPE(item
));
2713 return XFS_ERROR(EIO
);
2718 xlog_recover_commit_pass2(
2720 struct xlog_recover
*trans
,
2721 struct list_head
*buffer_list
,
2722 struct xlog_recover_item
*item
)
2724 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
2726 switch (ITEM_TYPE(item
)) {
2728 return xlog_recover_buffer_pass2(log
, buffer_list
, item
);
2730 return xlog_recover_inode_pass2(log
, buffer_list
, item
);
2732 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
2734 return xlog_recover_efd_pass2(log
, item
);
2736 return xlog_recover_dquot_pass2(log
, buffer_list
, item
);
2737 case XFS_LI_QUOTAOFF
:
2738 /* nothing to do in pass2 */
2741 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2742 __func__
, ITEM_TYPE(item
));
2744 return XFS_ERROR(EIO
);
2749 * Perform the transaction.
2751 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2752 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2755 xlog_recover_commit_trans(
2757 struct xlog_recover
*trans
,
2760 int error
= 0, error2
;
2761 xlog_recover_item_t
*item
;
2762 LIST_HEAD (buffer_list
);
2764 hlist_del(&trans
->r_list
);
2766 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
2770 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
2772 case XLOG_RECOVER_PASS1
:
2773 error
= xlog_recover_commit_pass1(log
, trans
, item
);
2775 case XLOG_RECOVER_PASS2
:
2776 error
= xlog_recover_commit_pass2(log
, trans
,
2777 &buffer_list
, item
);
2787 xlog_recover_free_trans(trans
);
2790 error2
= xfs_buf_delwri_submit(&buffer_list
);
2791 return error
? error
: error2
;
2795 xlog_recover_unmount_trans(
2797 struct xlog_recover
*trans
)
2799 /* Do nothing now */
2800 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
2805 * There are two valid states of the r_state field. 0 indicates that the
2806 * transaction structure is in a normal state. We have either seen the
2807 * start of the transaction or the last operation we added was not a partial
2808 * operation. If the last operation we added to the transaction was a
2809 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2811 * NOTE: skip LRs with 0 data length.
2814 xlog_recover_process_data(
2816 struct hlist_head rhash
[],
2817 xlog_rec_header_t
*rhead
,
2823 xlog_op_header_t
*ohead
;
2824 xlog_recover_t
*trans
;
2830 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2831 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2833 /* check the log format matches our own - else we can't recover */
2834 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2835 return (XFS_ERROR(EIO
));
2837 while ((dp
< lp
) && num_logops
) {
2838 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2839 ohead
= (xlog_op_header_t
*)dp
;
2840 dp
+= sizeof(xlog_op_header_t
);
2841 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2842 ohead
->oh_clientid
!= XFS_LOG
) {
2843 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
2844 __func__
, ohead
->oh_clientid
);
2846 return (XFS_ERROR(EIO
));
2848 tid
= be32_to_cpu(ohead
->oh_tid
);
2849 hash
= XLOG_RHASH(tid
);
2850 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
2851 if (trans
== NULL
) { /* not found; add new tid */
2852 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2853 xlog_recover_new_tid(&rhash
[hash
], tid
,
2854 be64_to_cpu(rhead
->h_lsn
));
2856 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2857 xfs_warn(log
->l_mp
, "%s: bad length 0x%x",
2858 __func__
, be32_to_cpu(ohead
->oh_len
));
2860 return (XFS_ERROR(EIO
));
2862 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2863 if (flags
& XLOG_WAS_CONT_TRANS
)
2864 flags
&= ~XLOG_CONTINUE_TRANS
;
2866 case XLOG_COMMIT_TRANS
:
2867 error
= xlog_recover_commit_trans(log
,
2870 case XLOG_UNMOUNT_TRANS
:
2871 error
= xlog_recover_unmount_trans(log
, trans
);
2873 case XLOG_WAS_CONT_TRANS
:
2874 error
= xlog_recover_add_to_cont_trans(log
,
2876 be32_to_cpu(ohead
->oh_len
));
2878 case XLOG_START_TRANS
:
2879 xfs_warn(log
->l_mp
, "%s: bad transaction",
2882 error
= XFS_ERROR(EIO
);
2885 case XLOG_CONTINUE_TRANS
:
2886 error
= xlog_recover_add_to_trans(log
, trans
,
2887 dp
, be32_to_cpu(ohead
->oh_len
));
2890 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x",
2893 error
= XFS_ERROR(EIO
);
2899 dp
+= be32_to_cpu(ohead
->oh_len
);
2906 * Process an extent free intent item that was recovered from
2907 * the log. We need to free the extents that it describes.
2910 xlog_recover_process_efi(
2912 xfs_efi_log_item_t
*efip
)
2914 xfs_efd_log_item_t
*efdp
;
2919 xfs_fsblock_t startblock_fsb
;
2921 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
2924 * First check the validity of the extents described by the
2925 * EFI. If any are bad, then assume that all are bad and
2926 * just toss the EFI.
2928 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2929 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2930 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2931 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2932 if ((startblock_fsb
== 0) ||
2933 (extp
->ext_len
== 0) ||
2934 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
2935 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
2937 * This will pull the EFI from the AIL and
2938 * free the memory associated with it.
2940 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
2941 return XFS_ERROR(EIO
);
2945 tp
= xfs_trans_alloc(mp
, 0);
2946 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
2949 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
2951 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2952 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2953 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
2956 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
2960 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
2961 error
= xfs_trans_commit(tp
, 0);
2965 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
2970 * When this is called, all of the EFIs which did not have
2971 * corresponding EFDs should be in the AIL. What we do now
2972 * is free the extents associated with each one.
2974 * Since we process the EFIs in normal transactions, they
2975 * will be removed at some point after the commit. This prevents
2976 * us from just walking down the list processing each one.
2977 * We'll use a flag in the EFI to skip those that we've already
2978 * processed and use the AIL iteration mechanism's generation
2979 * count to try to speed this up at least a bit.
2981 * When we start, we know that the EFIs are the only things in
2982 * the AIL. As we process them, however, other items are added
2983 * to the AIL. Since everything added to the AIL must come after
2984 * everything already in the AIL, we stop processing as soon as
2985 * we see something other than an EFI in the AIL.
2988 xlog_recover_process_efis(
2991 xfs_log_item_t
*lip
;
2992 xfs_efi_log_item_t
*efip
;
2994 struct xfs_ail_cursor cur
;
2995 struct xfs_ail
*ailp
;
2998 spin_lock(&ailp
->xa_lock
);
2999 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3000 while (lip
!= NULL
) {
3002 * We're done when we see something other than an EFI.
3003 * There should be no EFIs left in the AIL now.
3005 if (lip
->li_type
!= XFS_LI_EFI
) {
3007 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3008 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3014 * Skip EFIs that we've already processed.
3016 efip
= (xfs_efi_log_item_t
*)lip
;
3017 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
3018 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3022 spin_unlock(&ailp
->xa_lock
);
3023 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3024 spin_lock(&ailp
->xa_lock
);
3027 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3030 xfs_trans_ail_cursor_done(ailp
, &cur
);
3031 spin_unlock(&ailp
->xa_lock
);
3036 * This routine performs a transaction to null out a bad inode pointer
3037 * in an agi unlinked inode hash bucket.
3040 xlog_recover_clear_agi_bucket(
3042 xfs_agnumber_t agno
,
3051 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3052 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3057 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3061 agi
= XFS_BUF_TO_AGI(agibp
);
3062 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3063 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3064 (sizeof(xfs_agino_t
) * bucket
);
3065 xfs_trans_log_buf(tp
, agibp
, offset
,
3066 (offset
+ sizeof(xfs_agino_t
) - 1));
3068 error
= xfs_trans_commit(tp
, 0);
3074 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3076 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3081 xlog_recover_process_one_iunlink(
3082 struct xfs_mount
*mp
,
3083 xfs_agnumber_t agno
,
3087 struct xfs_buf
*ibp
;
3088 struct xfs_dinode
*dip
;
3089 struct xfs_inode
*ip
;
3093 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3094 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3099 * Get the on disk inode to find the next inode in the bucket.
3101 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, 0);
3105 ASSERT(ip
->i_d
.di_nlink
== 0);
3106 ASSERT(ip
->i_d
.di_mode
!= 0);
3108 /* setup for the next pass */
3109 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3113 * Prevent any DMAPI event from being sent when the reference on
3114 * the inode is dropped.
3116 ip
->i_d
.di_dmevmask
= 0;
3125 * We can't read in the inode this bucket points to, or this inode
3126 * is messed up. Just ditch this bucket of inodes. We will lose
3127 * some inodes and space, but at least we won't hang.
3129 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3130 * clear the inode pointer in the bucket.
3132 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3137 * xlog_iunlink_recover
3139 * This is called during recovery to process any inodes which
3140 * we unlinked but not freed when the system crashed. These
3141 * inodes will be on the lists in the AGI blocks. What we do
3142 * here is scan all the AGIs and fully truncate and free any
3143 * inodes found on the lists. Each inode is removed from the
3144 * lists when it has been fully truncated and is freed. The
3145 * freeing of the inode and its removal from the list must be
3149 xlog_recover_process_iunlinks(
3153 xfs_agnumber_t agno
;
3164 * Prevent any DMAPI event from being sent while in this function.
3166 mp_dmevmask
= mp
->m_dmevmask
;
3169 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3171 * Find the agi for this ag.
3173 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3176 * AGI is b0rked. Don't process it.
3178 * We should probably mark the filesystem as corrupt
3179 * after we've recovered all the ag's we can....
3184 * Unlock the buffer so that it can be acquired in the normal
3185 * course of the transaction to truncate and free each inode.
3186 * Because we are not racing with anyone else here for the AGI
3187 * buffer, we don't even need to hold it locked to read the
3188 * initial unlinked bucket entries out of the buffer. We keep
3189 * buffer reference though, so that it stays pinned in memory
3190 * while we need the buffer.
3192 agi
= XFS_BUF_TO_AGI(agibp
);
3193 xfs_buf_unlock(agibp
);
3195 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3196 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3197 while (agino
!= NULLAGINO
) {
3198 agino
= xlog_recover_process_one_iunlink(mp
,
3199 agno
, agino
, bucket
);
3202 xfs_buf_rele(agibp
);
3205 mp
->m_dmevmask
= mp_dmevmask
;
3211 xlog_pack_data_checksum(
3213 xlog_in_core_t
*iclog
,
3220 up
= (__be32
*)iclog
->ic_datap
;
3221 /* divide length by 4 to get # words */
3222 for (i
= 0; i
< (size
>> 2); i
++) {
3223 chksum
^= be32_to_cpu(*up
);
3226 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3229 #define xlog_pack_data_checksum(log, iclog, size)
3233 * Stamp cycle number in every block
3238 xlog_in_core_t
*iclog
,
3242 int size
= iclog
->ic_offset
+ roundoff
;
3246 xlog_pack_data_checksum(log
, iclog
, size
);
3248 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3250 dp
= iclog
->ic_datap
;
3251 for (i
= 0; i
< BTOBB(size
) &&
3252 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3253 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3254 *(__be32
*)dp
= cycle_lsn
;
3258 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3259 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3261 for ( ; i
< BTOBB(size
); i
++) {
3262 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3263 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3264 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3265 *(__be32
*)dp
= cycle_lsn
;
3269 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3270 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3277 xlog_rec_header_t
*rhead
,
3283 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3284 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3285 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3289 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3290 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3291 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3292 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3293 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3294 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3301 xlog_valid_rec_header(
3303 xlog_rec_header_t
*rhead
,
3308 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
3309 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3310 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3311 return XFS_ERROR(EFSCORRUPTED
);
3314 (!rhead
->h_version
||
3315 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3316 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
3317 __func__
, be32_to_cpu(rhead
->h_version
));
3318 return XFS_ERROR(EIO
);
3321 /* LR body must have data or it wouldn't have been written */
3322 hlen
= be32_to_cpu(rhead
->h_len
);
3323 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3324 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3325 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3326 return XFS_ERROR(EFSCORRUPTED
);
3328 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3329 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3330 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3331 return XFS_ERROR(EFSCORRUPTED
);
3337 * Read the log from tail to head and process the log records found.
3338 * Handle the two cases where the tail and head are in the same cycle
3339 * and where the active portion of the log wraps around the end of
3340 * the physical log separately. The pass parameter is passed through
3341 * to the routines called to process the data and is not looked at
3345 xlog_do_recovery_pass(
3347 xfs_daddr_t head_blk
,
3348 xfs_daddr_t tail_blk
,
3351 xlog_rec_header_t
*rhead
;
3354 xfs_buf_t
*hbp
, *dbp
;
3355 int error
= 0, h_size
;
3356 int bblks
, split_bblks
;
3357 int hblks
, split_hblks
, wrapped_hblks
;
3358 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3360 ASSERT(head_blk
!= tail_blk
);
3363 * Read the header of the tail block and get the iclog buffer size from
3364 * h_size. Use this to tell how many sectors make up the log header.
3366 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3368 * When using variable length iclogs, read first sector of
3369 * iclog header and extract the header size from it. Get a
3370 * new hbp that is the correct size.
3372 hbp
= xlog_get_bp(log
, 1);
3376 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3380 rhead
= (xlog_rec_header_t
*)offset
;
3381 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3384 h_size
= be32_to_cpu(rhead
->h_size
);
3385 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3386 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3387 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3388 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3391 hbp
= xlog_get_bp(log
, hblks
);
3396 ASSERT(log
->l_sectBBsize
== 1);
3398 hbp
= xlog_get_bp(log
, 1);
3399 h_size
= XLOG_BIG_RECORD_BSIZE
;
3404 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3410 memset(rhash
, 0, sizeof(rhash
));
3411 if (tail_blk
<= head_blk
) {
3412 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3413 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3417 rhead
= (xlog_rec_header_t
*)offset
;
3418 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3422 /* blocks in data section */
3423 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3424 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3429 xlog_unpack_data(rhead
, offset
, log
);
3430 if ((error
= xlog_recover_process_data(log
,
3431 rhash
, rhead
, offset
, pass
)))
3433 blk_no
+= bblks
+ hblks
;
3437 * Perform recovery around the end of the physical log.
3438 * When the head is not on the same cycle number as the tail,
3439 * we can't do a sequential recovery as above.
3442 while (blk_no
< log
->l_logBBsize
) {
3444 * Check for header wrapping around physical end-of-log
3446 offset
= hbp
->b_addr
;
3449 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3450 /* Read header in one read */
3451 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3456 /* This LR is split across physical log end */
3457 if (blk_no
!= log
->l_logBBsize
) {
3458 /* some data before physical log end */
3459 ASSERT(blk_no
<= INT_MAX
);
3460 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3461 ASSERT(split_hblks
> 0);
3462 error
= xlog_bread(log
, blk_no
,
3470 * Note: this black magic still works with
3471 * large sector sizes (non-512) only because:
3472 * - we increased the buffer size originally
3473 * by 1 sector giving us enough extra space
3474 * for the second read;
3475 * - the log start is guaranteed to be sector
3477 * - we read the log end (LR header start)
3478 * _first_, then the log start (LR header end)
3479 * - order is important.
3481 wrapped_hblks
= hblks
- split_hblks
;
3482 error
= xlog_bread_offset(log
, 0,
3484 offset
+ BBTOB(split_hblks
));
3488 rhead
= (xlog_rec_header_t
*)offset
;
3489 error
= xlog_valid_rec_header(log
, rhead
,
3490 split_hblks
? blk_no
: 0);
3494 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3497 /* Read in data for log record */
3498 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3499 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3504 /* This log record is split across the
3505 * physical end of log */
3506 offset
= dbp
->b_addr
;
3508 if (blk_no
!= log
->l_logBBsize
) {
3509 /* some data is before the physical
3511 ASSERT(!wrapped_hblks
);
3512 ASSERT(blk_no
<= INT_MAX
);
3514 log
->l_logBBsize
- (int)blk_no
;
3515 ASSERT(split_bblks
> 0);
3516 error
= xlog_bread(log
, blk_no
,
3524 * Note: this black magic still works with
3525 * large sector sizes (non-512) only because:
3526 * - we increased the buffer size originally
3527 * by 1 sector giving us enough extra space
3528 * for the second read;
3529 * - the log start is guaranteed to be sector
3531 * - we read the log end (LR header start)
3532 * _first_, then the log start (LR header end)
3533 * - order is important.
3535 error
= xlog_bread_offset(log
, 0,
3536 bblks
- split_bblks
, hbp
,
3537 offset
+ BBTOB(split_bblks
));
3541 xlog_unpack_data(rhead
, offset
, log
);
3542 if ((error
= xlog_recover_process_data(log
, rhash
,
3543 rhead
, offset
, pass
)))
3548 ASSERT(blk_no
>= log
->l_logBBsize
);
3549 blk_no
-= log
->l_logBBsize
;
3551 /* read first part of physical log */
3552 while (blk_no
< head_blk
) {
3553 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3557 rhead
= (xlog_rec_header_t
*)offset
;
3558 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3562 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3563 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3568 xlog_unpack_data(rhead
, offset
, log
);
3569 if ((error
= xlog_recover_process_data(log
, rhash
,
3570 rhead
, offset
, pass
)))
3572 blk_no
+= bblks
+ hblks
;
3584 * Do the recovery of the log. We actually do this in two phases.
3585 * The two passes are necessary in order to implement the function
3586 * of cancelling a record written into the log. The first pass
3587 * determines those things which have been cancelled, and the
3588 * second pass replays log items normally except for those which
3589 * have been cancelled. The handling of the replay and cancellations
3590 * takes place in the log item type specific routines.
3592 * The table of items which have cancel records in the log is allocated
3593 * and freed at this level, since only here do we know when all of
3594 * the log recovery has been completed.
3597 xlog_do_log_recovery(
3599 xfs_daddr_t head_blk
,
3600 xfs_daddr_t tail_blk
)
3604 ASSERT(head_blk
!= tail_blk
);
3607 * First do a pass to find all of the cancelled buf log items.
3608 * Store them in the buf_cancel_table for use in the second pass.
3610 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3611 sizeof(struct list_head
),
3613 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3614 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
3616 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3617 XLOG_RECOVER_PASS1
);
3619 kmem_free(log
->l_buf_cancel_table
);
3620 log
->l_buf_cancel_table
= NULL
;
3624 * Then do a second pass to actually recover the items in the log.
3625 * When it is complete free the table of buf cancel items.
3627 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3628 XLOG_RECOVER_PASS2
);
3633 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3634 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
3638 kmem_free(log
->l_buf_cancel_table
);
3639 log
->l_buf_cancel_table
= NULL
;
3645 * Do the actual recovery
3650 xfs_daddr_t head_blk
,
3651 xfs_daddr_t tail_blk
)
3658 * First replay the images in the log.
3660 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3665 * If IO errors happened during recovery, bail out.
3667 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3672 * We now update the tail_lsn since much of the recovery has completed
3673 * and there may be space available to use. If there were no extent
3674 * or iunlinks, we can free up the entire log and set the tail_lsn to
3675 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3676 * lsn of the last known good LR on disk. If there are extent frees
3677 * or iunlinks they will have some entries in the AIL; so we look at
3678 * the AIL to determine how to set the tail_lsn.
3680 xlog_assign_tail_lsn(log
->l_mp
);
3683 * Now that we've finished replaying all buffer and inode
3684 * updates, re-read in the superblock.
3686 bp
= xfs_getsb(log
->l_mp
, 0);
3688 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3690 XFS_BUF_UNASYNC(bp
);
3691 xfsbdstrat(log
->l_mp
, bp
);
3692 error
= xfs_buf_iowait(bp
);
3694 xfs_buf_ioerror_alert(bp
, __func__
);
3700 /* Convert superblock from on-disk format */
3701 sbp
= &log
->l_mp
->m_sb
;
3702 xfs_sb_from_disk(log
->l_mp
, XFS_BUF_TO_SBP(bp
));
3703 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3704 ASSERT(xfs_sb_good_version(sbp
));
3707 /* We've re-read the superblock so re-initialize per-cpu counters */
3708 xfs_icsb_reinit_counters(log
->l_mp
);
3710 xlog_recover_check_summary(log
);
3712 /* Normal transactions can now occur */
3713 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3718 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3720 * Return error or zero.
3726 xfs_daddr_t head_blk
, tail_blk
;
3729 /* find the tail of the log */
3730 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3733 if (tail_blk
!= head_blk
) {
3734 /* There used to be a comment here:
3736 * disallow recovery on read-only mounts. note -- mount
3737 * checks for ENOSPC and turns it into an intelligent
3739 * ...but this is no longer true. Now, unless you specify
3740 * NORECOVERY (in which case this function would never be
3741 * called), we just go ahead and recover. We do this all
3742 * under the vfs layer, so we can get away with it unless
3743 * the device itself is read-only, in which case we fail.
3745 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3749 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
3750 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3753 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3754 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3760 * In the first part of recovery we replay inodes and buffers and build
3761 * up the list of extent free items which need to be processed. Here
3762 * we process the extent free items and clean up the on disk unlinked
3763 * inode lists. This is separated from the first part of recovery so
3764 * that the root and real-time bitmap inodes can be read in from disk in
3765 * between the two stages. This is necessary so that we can free space
3766 * in the real-time portion of the file system.
3769 xlog_recover_finish(
3773 * Now we're ready to do the transactions needed for the
3774 * rest of recovery. Start with completing all the extent
3775 * free intent records and then process the unlinked inode
3776 * lists. At this point, we essentially run in normal mode
3777 * except that we're still performing recovery actions
3778 * rather than accepting new requests.
3780 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3782 error
= xlog_recover_process_efis(log
);
3784 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
3788 * Sync the log to get all the EFIs out of the AIL.
3789 * This isn't absolutely necessary, but it helps in
3790 * case the unlink transactions would have problems
3791 * pushing the EFIs out of the way.
3793 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3795 xlog_recover_process_iunlinks(log
);
3797 xlog_recover_check_summary(log
);
3799 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
3800 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3802 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3804 xfs_info(log
->l_mp
, "Ending clean mount");
3812 * Read all of the agf and agi counters and check that they
3813 * are consistent with the superblock counters.
3816 xlog_recover_check_summary(
3823 xfs_agnumber_t agno
;
3824 __uint64_t freeblks
;
3834 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3835 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3837 xfs_alert(mp
, "%s agf read failed agno %d error %d",
3838 __func__
, agno
, error
);
3840 agfp
= XFS_BUF_TO_AGF(agfbp
);
3841 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3842 be32_to_cpu(agfp
->agf_flcount
);
3843 xfs_buf_relse(agfbp
);
3846 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3848 xfs_alert(mp
, "%s agi read failed agno %d error %d",
3849 __func__
, agno
, error
);
3851 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3853 itotal
+= be32_to_cpu(agi
->agi_count
);
3854 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3855 xfs_buf_relse(agibp
);