hfs: get rid of hfs_sync_super
[linux/fpc-iii.git] / fs / xfs / xfs_log_recover.c
bloba7be98abd6a90327ae9a0993ef65f2bc7f005e1c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
46 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
47 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
48 #if defined(DEBUG)
49 STATIC void xlog_recover_check_summary(xlog_t *);
50 #else
51 #define xlog_recover_check_summary(log)
52 #endif
55 * This structure is used during recovery to record the buf log items which
56 * have been canceled and should not be replayed.
58 struct xfs_buf_cancel {
59 xfs_daddr_t bc_blkno;
60 uint bc_len;
61 int bc_refcount;
62 struct list_head bc_list;
66 * Sector aligned buffer routines for buffer create/read/write/access
70 * Verify the given count of basic blocks is valid number of blocks
71 * to specify for an operation involving the given XFS log buffer.
72 * Returns nonzero if the count is valid, 0 otherwise.
75 static inline int
76 xlog_buf_bbcount_valid(
77 xlog_t *log,
78 int bbcount)
80 return bbcount > 0 && bbcount <= log->l_logBBsize;
84 * Allocate a buffer to hold log data. The buffer needs to be able
85 * to map to a range of nbblks basic blocks at any valid (basic
86 * block) offset within the log.
88 STATIC xfs_buf_t *
89 xlog_get_bp(
90 xlog_t *log,
91 int nbblks)
93 struct xfs_buf *bp;
95 if (!xlog_buf_bbcount_valid(log, nbblks)) {
96 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
97 nbblks);
98 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
99 return NULL;
103 * We do log I/O in units of log sectors (a power-of-2
104 * multiple of the basic block size), so we round up the
105 * requested size to accommodate the basic blocks required
106 * for complete log sectors.
108 * In addition, the buffer may be used for a non-sector-
109 * aligned block offset, in which case an I/O of the
110 * requested size could extend beyond the end of the
111 * buffer. If the requested size is only 1 basic block it
112 * will never straddle a sector boundary, so this won't be
113 * an issue. Nor will this be a problem if the log I/O is
114 * done in basic blocks (sector size 1). But otherwise we
115 * extend the buffer by one extra log sector to ensure
116 * there's space to accommodate this possibility.
118 if (nbblks > 1 && log->l_sectBBsize > 1)
119 nbblks += log->l_sectBBsize;
120 nbblks = round_up(nbblks, log->l_sectBBsize);
122 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
123 if (bp)
124 xfs_buf_unlock(bp);
125 return bp;
128 STATIC void
129 xlog_put_bp(
130 xfs_buf_t *bp)
132 xfs_buf_free(bp);
136 * Return the address of the start of the given block number's data
137 * in a log buffer. The buffer covers a log sector-aligned region.
139 STATIC xfs_caddr_t
140 xlog_align(
141 xlog_t *log,
142 xfs_daddr_t blk_no,
143 int nbblks,
144 xfs_buf_t *bp)
146 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
148 ASSERT(offset + nbblks <= bp->b_length);
149 return bp->b_addr + BBTOB(offset);
154 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
156 STATIC int
157 xlog_bread_noalign(
158 xlog_t *log,
159 xfs_daddr_t blk_no,
160 int nbblks,
161 xfs_buf_t *bp)
163 int error;
165 if (!xlog_buf_bbcount_valid(log, nbblks)) {
166 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
167 nbblks);
168 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
169 return EFSCORRUPTED;
172 blk_no = round_down(blk_no, log->l_sectBBsize);
173 nbblks = round_up(nbblks, log->l_sectBBsize);
175 ASSERT(nbblks > 0);
176 ASSERT(nbblks <= bp->b_length);
178 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
179 XFS_BUF_READ(bp);
180 bp->b_io_length = nbblks;
181 bp->b_error = 0;
183 xfsbdstrat(log->l_mp, bp);
184 error = xfs_buf_iowait(bp);
185 if (error)
186 xfs_buf_ioerror_alert(bp, __func__);
187 return error;
190 STATIC int
191 xlog_bread(
192 xlog_t *log,
193 xfs_daddr_t blk_no,
194 int nbblks,
195 xfs_buf_t *bp,
196 xfs_caddr_t *offset)
198 int error;
200 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
201 if (error)
202 return error;
204 *offset = xlog_align(log, blk_no, nbblks, bp);
205 return 0;
209 * Read at an offset into the buffer. Returns with the buffer in it's original
210 * state regardless of the result of the read.
212 STATIC int
213 xlog_bread_offset(
214 xlog_t *log,
215 xfs_daddr_t blk_no, /* block to read from */
216 int nbblks, /* blocks to read */
217 xfs_buf_t *bp,
218 xfs_caddr_t offset)
220 xfs_caddr_t orig_offset = bp->b_addr;
221 int orig_len = BBTOB(bp->b_length);
222 int error, error2;
224 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
225 if (error)
226 return error;
228 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
230 /* must reset buffer pointer even on error */
231 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
232 if (error)
233 return error;
234 return error2;
238 * Write out the buffer at the given block for the given number of blocks.
239 * The buffer is kept locked across the write and is returned locked.
240 * This can only be used for synchronous log writes.
242 STATIC int
243 xlog_bwrite(
244 xlog_t *log,
245 xfs_daddr_t blk_no,
246 int nbblks,
247 xfs_buf_t *bp)
249 int error;
251 if (!xlog_buf_bbcount_valid(log, nbblks)) {
252 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
253 nbblks);
254 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
255 return EFSCORRUPTED;
258 blk_no = round_down(blk_no, log->l_sectBBsize);
259 nbblks = round_up(nbblks, log->l_sectBBsize);
261 ASSERT(nbblks > 0);
262 ASSERT(nbblks <= bp->b_length);
264 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
265 XFS_BUF_ZEROFLAGS(bp);
266 xfs_buf_hold(bp);
267 xfs_buf_lock(bp);
268 bp->b_io_length = nbblks;
269 bp->b_error = 0;
271 error = xfs_bwrite(bp);
272 if (error)
273 xfs_buf_ioerror_alert(bp, __func__);
274 xfs_buf_relse(bp);
275 return error;
278 #ifdef DEBUG
280 * dump debug superblock and log record information
282 STATIC void
283 xlog_header_check_dump(
284 xfs_mount_t *mp,
285 xlog_rec_header_t *head)
287 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
288 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
289 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
290 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
292 #else
293 #define xlog_header_check_dump(mp, head)
294 #endif
297 * check log record header for recovery
299 STATIC int
300 xlog_header_check_recover(
301 xfs_mount_t *mp,
302 xlog_rec_header_t *head)
304 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
307 * IRIX doesn't write the h_fmt field and leaves it zeroed
308 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
309 * a dirty log created in IRIX.
311 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
312 xfs_warn(mp,
313 "dirty log written in incompatible format - can't recover");
314 xlog_header_check_dump(mp, head);
315 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
316 XFS_ERRLEVEL_HIGH, mp);
317 return XFS_ERROR(EFSCORRUPTED);
318 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
319 xfs_warn(mp,
320 "dirty log entry has mismatched uuid - can't recover");
321 xlog_header_check_dump(mp, head);
322 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
323 XFS_ERRLEVEL_HIGH, mp);
324 return XFS_ERROR(EFSCORRUPTED);
326 return 0;
330 * read the head block of the log and check the header
332 STATIC int
333 xlog_header_check_mount(
334 xfs_mount_t *mp,
335 xlog_rec_header_t *head)
337 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
339 if (uuid_is_nil(&head->h_fs_uuid)) {
341 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
342 * h_fs_uuid is nil, we assume this log was last mounted
343 * by IRIX and continue.
345 xfs_warn(mp, "nil uuid in log - IRIX style log");
346 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
347 xfs_warn(mp, "log has mismatched uuid - can't recover");
348 xlog_header_check_dump(mp, head);
349 XFS_ERROR_REPORT("xlog_header_check_mount",
350 XFS_ERRLEVEL_HIGH, mp);
351 return XFS_ERROR(EFSCORRUPTED);
353 return 0;
356 STATIC void
357 xlog_recover_iodone(
358 struct xfs_buf *bp)
360 if (bp->b_error) {
362 * We're not going to bother about retrying
363 * this during recovery. One strike!
365 xfs_buf_ioerror_alert(bp, __func__);
366 xfs_force_shutdown(bp->b_target->bt_mount,
367 SHUTDOWN_META_IO_ERROR);
369 bp->b_iodone = NULL;
370 xfs_buf_ioend(bp, 0);
374 * This routine finds (to an approximation) the first block in the physical
375 * log which contains the given cycle. It uses a binary search algorithm.
376 * Note that the algorithm can not be perfect because the disk will not
377 * necessarily be perfect.
379 STATIC int
380 xlog_find_cycle_start(
381 xlog_t *log,
382 xfs_buf_t *bp,
383 xfs_daddr_t first_blk,
384 xfs_daddr_t *last_blk,
385 uint cycle)
387 xfs_caddr_t offset;
388 xfs_daddr_t mid_blk;
389 xfs_daddr_t end_blk;
390 uint mid_cycle;
391 int error;
393 end_blk = *last_blk;
394 mid_blk = BLK_AVG(first_blk, end_blk);
395 while (mid_blk != first_blk && mid_blk != end_blk) {
396 error = xlog_bread(log, mid_blk, 1, bp, &offset);
397 if (error)
398 return error;
399 mid_cycle = xlog_get_cycle(offset);
400 if (mid_cycle == cycle)
401 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
402 else
403 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
404 mid_blk = BLK_AVG(first_blk, end_blk);
406 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
407 (mid_blk == end_blk && mid_blk-1 == first_blk));
409 *last_blk = end_blk;
411 return 0;
415 * Check that a range of blocks does not contain stop_on_cycle_no.
416 * Fill in *new_blk with the block offset where such a block is
417 * found, or with -1 (an invalid block number) if there is no such
418 * block in the range. The scan needs to occur from front to back
419 * and the pointer into the region must be updated since a later
420 * routine will need to perform another test.
422 STATIC int
423 xlog_find_verify_cycle(
424 xlog_t *log,
425 xfs_daddr_t start_blk,
426 int nbblks,
427 uint stop_on_cycle_no,
428 xfs_daddr_t *new_blk)
430 xfs_daddr_t i, j;
431 uint cycle;
432 xfs_buf_t *bp;
433 xfs_daddr_t bufblks;
434 xfs_caddr_t buf = NULL;
435 int error = 0;
438 * Greedily allocate a buffer big enough to handle the full
439 * range of basic blocks we'll be examining. If that fails,
440 * try a smaller size. We need to be able to read at least
441 * a log sector, or we're out of luck.
443 bufblks = 1 << ffs(nbblks);
444 while (bufblks > log->l_logBBsize)
445 bufblks >>= 1;
446 while (!(bp = xlog_get_bp(log, bufblks))) {
447 bufblks >>= 1;
448 if (bufblks < log->l_sectBBsize)
449 return ENOMEM;
452 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
453 int bcount;
455 bcount = min(bufblks, (start_blk + nbblks - i));
457 error = xlog_bread(log, i, bcount, bp, &buf);
458 if (error)
459 goto out;
461 for (j = 0; j < bcount; j++) {
462 cycle = xlog_get_cycle(buf);
463 if (cycle == stop_on_cycle_no) {
464 *new_blk = i+j;
465 goto out;
468 buf += BBSIZE;
472 *new_blk = -1;
474 out:
475 xlog_put_bp(bp);
476 return error;
480 * Potentially backup over partial log record write.
482 * In the typical case, last_blk is the number of the block directly after
483 * a good log record. Therefore, we subtract one to get the block number
484 * of the last block in the given buffer. extra_bblks contains the number
485 * of blocks we would have read on a previous read. This happens when the
486 * last log record is split over the end of the physical log.
488 * extra_bblks is the number of blocks potentially verified on a previous
489 * call to this routine.
491 STATIC int
492 xlog_find_verify_log_record(
493 xlog_t *log,
494 xfs_daddr_t start_blk,
495 xfs_daddr_t *last_blk,
496 int extra_bblks)
498 xfs_daddr_t i;
499 xfs_buf_t *bp;
500 xfs_caddr_t offset = NULL;
501 xlog_rec_header_t *head = NULL;
502 int error = 0;
503 int smallmem = 0;
504 int num_blks = *last_blk - start_blk;
505 int xhdrs;
507 ASSERT(start_blk != 0 || *last_blk != start_blk);
509 if (!(bp = xlog_get_bp(log, num_blks))) {
510 if (!(bp = xlog_get_bp(log, 1)))
511 return ENOMEM;
512 smallmem = 1;
513 } else {
514 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
515 if (error)
516 goto out;
517 offset += ((num_blks - 1) << BBSHIFT);
520 for (i = (*last_blk) - 1; i >= 0; i--) {
521 if (i < start_blk) {
522 /* valid log record not found */
523 xfs_warn(log->l_mp,
524 "Log inconsistent (didn't find previous header)");
525 ASSERT(0);
526 error = XFS_ERROR(EIO);
527 goto out;
530 if (smallmem) {
531 error = xlog_bread(log, i, 1, bp, &offset);
532 if (error)
533 goto out;
536 head = (xlog_rec_header_t *)offset;
538 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
539 break;
541 if (!smallmem)
542 offset -= BBSIZE;
546 * We hit the beginning of the physical log & still no header. Return
547 * to caller. If caller can handle a return of -1, then this routine
548 * will be called again for the end of the physical log.
550 if (i == -1) {
551 error = -1;
552 goto out;
556 * We have the final block of the good log (the first block
557 * of the log record _before_ the head. So we check the uuid.
559 if ((error = xlog_header_check_mount(log->l_mp, head)))
560 goto out;
563 * We may have found a log record header before we expected one.
564 * last_blk will be the 1st block # with a given cycle #. We may end
565 * up reading an entire log record. In this case, we don't want to
566 * reset last_blk. Only when last_blk points in the middle of a log
567 * record do we update last_blk.
569 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
570 uint h_size = be32_to_cpu(head->h_size);
572 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
573 if (h_size % XLOG_HEADER_CYCLE_SIZE)
574 xhdrs++;
575 } else {
576 xhdrs = 1;
579 if (*last_blk - i + extra_bblks !=
580 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
581 *last_blk = i;
583 out:
584 xlog_put_bp(bp);
585 return error;
589 * Head is defined to be the point of the log where the next log write
590 * write could go. This means that incomplete LR writes at the end are
591 * eliminated when calculating the head. We aren't guaranteed that previous
592 * LR have complete transactions. We only know that a cycle number of
593 * current cycle number -1 won't be present in the log if we start writing
594 * from our current block number.
596 * last_blk contains the block number of the first block with a given
597 * cycle number.
599 * Return: zero if normal, non-zero if error.
601 STATIC int
602 xlog_find_head(
603 xlog_t *log,
604 xfs_daddr_t *return_head_blk)
606 xfs_buf_t *bp;
607 xfs_caddr_t offset;
608 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
609 int num_scan_bblks;
610 uint first_half_cycle, last_half_cycle;
611 uint stop_on_cycle;
612 int error, log_bbnum = log->l_logBBsize;
614 /* Is the end of the log device zeroed? */
615 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
616 *return_head_blk = first_blk;
618 /* Is the whole lot zeroed? */
619 if (!first_blk) {
620 /* Linux XFS shouldn't generate totally zeroed logs -
621 * mkfs etc write a dummy unmount record to a fresh
622 * log so we can store the uuid in there
624 xfs_warn(log->l_mp, "totally zeroed log");
627 return 0;
628 } else if (error) {
629 xfs_warn(log->l_mp, "empty log check failed");
630 return error;
633 first_blk = 0; /* get cycle # of 1st block */
634 bp = xlog_get_bp(log, 1);
635 if (!bp)
636 return ENOMEM;
638 error = xlog_bread(log, 0, 1, bp, &offset);
639 if (error)
640 goto bp_err;
642 first_half_cycle = xlog_get_cycle(offset);
644 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
645 error = xlog_bread(log, last_blk, 1, bp, &offset);
646 if (error)
647 goto bp_err;
649 last_half_cycle = xlog_get_cycle(offset);
650 ASSERT(last_half_cycle != 0);
653 * If the 1st half cycle number is equal to the last half cycle number,
654 * then the entire log is stamped with the same cycle number. In this
655 * case, head_blk can't be set to zero (which makes sense). The below
656 * math doesn't work out properly with head_blk equal to zero. Instead,
657 * we set it to log_bbnum which is an invalid block number, but this
658 * value makes the math correct. If head_blk doesn't changed through
659 * all the tests below, *head_blk is set to zero at the very end rather
660 * than log_bbnum. In a sense, log_bbnum and zero are the same block
661 * in a circular file.
663 if (first_half_cycle == last_half_cycle) {
665 * In this case we believe that the entire log should have
666 * cycle number last_half_cycle. We need to scan backwards
667 * from the end verifying that there are no holes still
668 * containing last_half_cycle - 1. If we find such a hole,
669 * then the start of that hole will be the new head. The
670 * simple case looks like
671 * x | x ... | x - 1 | x
672 * Another case that fits this picture would be
673 * x | x + 1 | x ... | x
674 * In this case the head really is somewhere at the end of the
675 * log, as one of the latest writes at the beginning was
676 * incomplete.
677 * One more case is
678 * x | x + 1 | x ... | x - 1 | x
679 * This is really the combination of the above two cases, and
680 * the head has to end up at the start of the x-1 hole at the
681 * end of the log.
683 * In the 256k log case, we will read from the beginning to the
684 * end of the log and search for cycle numbers equal to x-1.
685 * We don't worry about the x+1 blocks that we encounter,
686 * because we know that they cannot be the head since the log
687 * started with x.
689 head_blk = log_bbnum;
690 stop_on_cycle = last_half_cycle - 1;
691 } else {
693 * In this case we want to find the first block with cycle
694 * number matching last_half_cycle. We expect the log to be
695 * some variation on
696 * x + 1 ... | x ... | x
697 * The first block with cycle number x (last_half_cycle) will
698 * be where the new head belongs. First we do a binary search
699 * for the first occurrence of last_half_cycle. The binary
700 * search may not be totally accurate, so then we scan back
701 * from there looking for occurrences of last_half_cycle before
702 * us. If that backwards scan wraps around the beginning of
703 * the log, then we look for occurrences of last_half_cycle - 1
704 * at the end of the log. The cases we're looking for look
705 * like
706 * v binary search stopped here
707 * x + 1 ... | x | x + 1 | x ... | x
708 * ^ but we want to locate this spot
709 * or
710 * <---------> less than scan distance
711 * x + 1 ... | x ... | x - 1 | x
712 * ^ we want to locate this spot
714 stop_on_cycle = last_half_cycle;
715 if ((error = xlog_find_cycle_start(log, bp, first_blk,
716 &head_blk, last_half_cycle)))
717 goto bp_err;
721 * Now validate the answer. Scan back some number of maximum possible
722 * blocks and make sure each one has the expected cycle number. The
723 * maximum is determined by the total possible amount of buffering
724 * in the in-core log. The following number can be made tighter if
725 * we actually look at the block size of the filesystem.
727 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
728 if (head_blk >= num_scan_bblks) {
730 * We are guaranteed that the entire check can be performed
731 * in one buffer.
733 start_blk = head_blk - num_scan_bblks;
734 if ((error = xlog_find_verify_cycle(log,
735 start_blk, num_scan_bblks,
736 stop_on_cycle, &new_blk)))
737 goto bp_err;
738 if (new_blk != -1)
739 head_blk = new_blk;
740 } else { /* need to read 2 parts of log */
742 * We are going to scan backwards in the log in two parts.
743 * First we scan the physical end of the log. In this part
744 * of the log, we are looking for blocks with cycle number
745 * last_half_cycle - 1.
746 * If we find one, then we know that the log starts there, as
747 * we've found a hole that didn't get written in going around
748 * the end of the physical log. The simple case for this is
749 * x + 1 ... | x ... | x - 1 | x
750 * <---------> less than scan distance
751 * If all of the blocks at the end of the log have cycle number
752 * last_half_cycle, then we check the blocks at the start of
753 * the log looking for occurrences of last_half_cycle. If we
754 * find one, then our current estimate for the location of the
755 * first occurrence of last_half_cycle is wrong and we move
756 * back to the hole we've found. This case looks like
757 * x + 1 ... | x | x + 1 | x ...
758 * ^ binary search stopped here
759 * Another case we need to handle that only occurs in 256k
760 * logs is
761 * x + 1 ... | x ... | x+1 | x ...
762 * ^ binary search stops here
763 * In a 256k log, the scan at the end of the log will see the
764 * x + 1 blocks. We need to skip past those since that is
765 * certainly not the head of the log. By searching for
766 * last_half_cycle-1 we accomplish that.
768 ASSERT(head_blk <= INT_MAX &&
769 (xfs_daddr_t) num_scan_bblks >= head_blk);
770 start_blk = log_bbnum - (num_scan_bblks - head_blk);
771 if ((error = xlog_find_verify_cycle(log, start_blk,
772 num_scan_bblks - (int)head_blk,
773 (stop_on_cycle - 1), &new_blk)))
774 goto bp_err;
775 if (new_blk != -1) {
776 head_blk = new_blk;
777 goto validate_head;
781 * Scan beginning of log now. The last part of the physical
782 * log is good. This scan needs to verify that it doesn't find
783 * the last_half_cycle.
785 start_blk = 0;
786 ASSERT(head_blk <= INT_MAX);
787 if ((error = xlog_find_verify_cycle(log,
788 start_blk, (int)head_blk,
789 stop_on_cycle, &new_blk)))
790 goto bp_err;
791 if (new_blk != -1)
792 head_blk = new_blk;
795 validate_head:
797 * Now we need to make sure head_blk is not pointing to a block in
798 * the middle of a log record.
800 num_scan_bblks = XLOG_REC_SHIFT(log);
801 if (head_blk >= num_scan_bblks) {
802 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
804 /* start ptr at last block ptr before head_blk */
805 if ((error = xlog_find_verify_log_record(log, start_blk,
806 &head_blk, 0)) == -1) {
807 error = XFS_ERROR(EIO);
808 goto bp_err;
809 } else if (error)
810 goto bp_err;
811 } else {
812 start_blk = 0;
813 ASSERT(head_blk <= INT_MAX);
814 if ((error = xlog_find_verify_log_record(log, start_blk,
815 &head_blk, 0)) == -1) {
816 /* We hit the beginning of the log during our search */
817 start_blk = log_bbnum - (num_scan_bblks - head_blk);
818 new_blk = log_bbnum;
819 ASSERT(start_blk <= INT_MAX &&
820 (xfs_daddr_t) log_bbnum-start_blk >= 0);
821 ASSERT(head_blk <= INT_MAX);
822 if ((error = xlog_find_verify_log_record(log,
823 start_blk, &new_blk,
824 (int)head_blk)) == -1) {
825 error = XFS_ERROR(EIO);
826 goto bp_err;
827 } else if (error)
828 goto bp_err;
829 if (new_blk != log_bbnum)
830 head_blk = new_blk;
831 } else if (error)
832 goto bp_err;
835 xlog_put_bp(bp);
836 if (head_blk == log_bbnum)
837 *return_head_blk = 0;
838 else
839 *return_head_blk = head_blk;
841 * When returning here, we have a good block number. Bad block
842 * means that during a previous crash, we didn't have a clean break
843 * from cycle number N to cycle number N-1. In this case, we need
844 * to find the first block with cycle number N-1.
846 return 0;
848 bp_err:
849 xlog_put_bp(bp);
851 if (error)
852 xfs_warn(log->l_mp, "failed to find log head");
853 return error;
857 * Find the sync block number or the tail of the log.
859 * This will be the block number of the last record to have its
860 * associated buffers synced to disk. Every log record header has
861 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
862 * to get a sync block number. The only concern is to figure out which
863 * log record header to believe.
865 * The following algorithm uses the log record header with the largest
866 * lsn. The entire log record does not need to be valid. We only care
867 * that the header is valid.
869 * We could speed up search by using current head_blk buffer, but it is not
870 * available.
872 STATIC int
873 xlog_find_tail(
874 xlog_t *log,
875 xfs_daddr_t *head_blk,
876 xfs_daddr_t *tail_blk)
878 xlog_rec_header_t *rhead;
879 xlog_op_header_t *op_head;
880 xfs_caddr_t offset = NULL;
881 xfs_buf_t *bp;
882 int error, i, found;
883 xfs_daddr_t umount_data_blk;
884 xfs_daddr_t after_umount_blk;
885 xfs_lsn_t tail_lsn;
886 int hblks;
888 found = 0;
891 * Find previous log record
893 if ((error = xlog_find_head(log, head_blk)))
894 return error;
896 bp = xlog_get_bp(log, 1);
897 if (!bp)
898 return ENOMEM;
899 if (*head_blk == 0) { /* special case */
900 error = xlog_bread(log, 0, 1, bp, &offset);
901 if (error)
902 goto done;
904 if (xlog_get_cycle(offset) == 0) {
905 *tail_blk = 0;
906 /* leave all other log inited values alone */
907 goto done;
912 * Search backwards looking for log record header block
914 ASSERT(*head_blk < INT_MAX);
915 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
916 error = xlog_bread(log, i, 1, bp, &offset);
917 if (error)
918 goto done;
920 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
921 found = 1;
922 break;
926 * If we haven't found the log record header block, start looking
927 * again from the end of the physical log. XXXmiken: There should be
928 * a check here to make sure we didn't search more than N blocks in
929 * the previous code.
931 if (!found) {
932 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
933 error = xlog_bread(log, i, 1, bp, &offset);
934 if (error)
935 goto done;
937 if (*(__be32 *)offset ==
938 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
939 found = 2;
940 break;
944 if (!found) {
945 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
946 ASSERT(0);
947 return XFS_ERROR(EIO);
950 /* find blk_no of tail of log */
951 rhead = (xlog_rec_header_t *)offset;
952 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
955 * Reset log values according to the state of the log when we
956 * crashed. In the case where head_blk == 0, we bump curr_cycle
957 * one because the next write starts a new cycle rather than
958 * continuing the cycle of the last good log record. At this
959 * point we have guaranteed that all partial log records have been
960 * accounted for. Therefore, we know that the last good log record
961 * written was complete and ended exactly on the end boundary
962 * of the physical log.
964 log->l_prev_block = i;
965 log->l_curr_block = (int)*head_blk;
966 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
967 if (found == 2)
968 log->l_curr_cycle++;
969 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
970 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
971 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
972 BBTOB(log->l_curr_block));
973 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
974 BBTOB(log->l_curr_block));
977 * Look for unmount record. If we find it, then we know there
978 * was a clean unmount. Since 'i' could be the last block in
979 * the physical log, we convert to a log block before comparing
980 * to the head_blk.
982 * Save the current tail lsn to use to pass to
983 * xlog_clear_stale_blocks() below. We won't want to clear the
984 * unmount record if there is one, so we pass the lsn of the
985 * unmount record rather than the block after it.
987 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
988 int h_size = be32_to_cpu(rhead->h_size);
989 int h_version = be32_to_cpu(rhead->h_version);
991 if ((h_version & XLOG_VERSION_2) &&
992 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
993 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
994 if (h_size % XLOG_HEADER_CYCLE_SIZE)
995 hblks++;
996 } else {
997 hblks = 1;
999 } else {
1000 hblks = 1;
1002 after_umount_blk = (i + hblks + (int)
1003 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1004 tail_lsn = atomic64_read(&log->l_tail_lsn);
1005 if (*head_blk == after_umount_blk &&
1006 be32_to_cpu(rhead->h_num_logops) == 1) {
1007 umount_data_blk = (i + hblks) % log->l_logBBsize;
1008 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1009 if (error)
1010 goto done;
1012 op_head = (xlog_op_header_t *)offset;
1013 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1015 * Set tail and last sync so that newly written
1016 * log records will point recovery to after the
1017 * current unmount record.
1019 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1020 log->l_curr_cycle, after_umount_blk);
1021 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1022 log->l_curr_cycle, after_umount_blk);
1023 *tail_blk = after_umount_blk;
1026 * Note that the unmount was clean. If the unmount
1027 * was not clean, we need to know this to rebuild the
1028 * superblock counters from the perag headers if we
1029 * have a filesystem using non-persistent counters.
1031 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1036 * Make sure that there are no blocks in front of the head
1037 * with the same cycle number as the head. This can happen
1038 * because we allow multiple outstanding log writes concurrently,
1039 * and the later writes might make it out before earlier ones.
1041 * We use the lsn from before modifying it so that we'll never
1042 * overwrite the unmount record after a clean unmount.
1044 * Do this only if we are going to recover the filesystem
1046 * NOTE: This used to say "if (!readonly)"
1047 * However on Linux, we can & do recover a read-only filesystem.
1048 * We only skip recovery if NORECOVERY is specified on mount,
1049 * in which case we would not be here.
1051 * But... if the -device- itself is readonly, just skip this.
1052 * We can't recover this device anyway, so it won't matter.
1054 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1055 error = xlog_clear_stale_blocks(log, tail_lsn);
1057 done:
1058 xlog_put_bp(bp);
1060 if (error)
1061 xfs_warn(log->l_mp, "failed to locate log tail");
1062 return error;
1066 * Is the log zeroed at all?
1068 * The last binary search should be changed to perform an X block read
1069 * once X becomes small enough. You can then search linearly through
1070 * the X blocks. This will cut down on the number of reads we need to do.
1072 * If the log is partially zeroed, this routine will pass back the blkno
1073 * of the first block with cycle number 0. It won't have a complete LR
1074 * preceding it.
1076 * Return:
1077 * 0 => the log is completely written to
1078 * -1 => use *blk_no as the first block of the log
1079 * >0 => error has occurred
1081 STATIC int
1082 xlog_find_zeroed(
1083 xlog_t *log,
1084 xfs_daddr_t *blk_no)
1086 xfs_buf_t *bp;
1087 xfs_caddr_t offset;
1088 uint first_cycle, last_cycle;
1089 xfs_daddr_t new_blk, last_blk, start_blk;
1090 xfs_daddr_t num_scan_bblks;
1091 int error, log_bbnum = log->l_logBBsize;
1093 *blk_no = 0;
1095 /* check totally zeroed log */
1096 bp = xlog_get_bp(log, 1);
1097 if (!bp)
1098 return ENOMEM;
1099 error = xlog_bread(log, 0, 1, bp, &offset);
1100 if (error)
1101 goto bp_err;
1103 first_cycle = xlog_get_cycle(offset);
1104 if (first_cycle == 0) { /* completely zeroed log */
1105 *blk_no = 0;
1106 xlog_put_bp(bp);
1107 return -1;
1110 /* check partially zeroed log */
1111 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1112 if (error)
1113 goto bp_err;
1115 last_cycle = xlog_get_cycle(offset);
1116 if (last_cycle != 0) { /* log completely written to */
1117 xlog_put_bp(bp);
1118 return 0;
1119 } else if (first_cycle != 1) {
1121 * If the cycle of the last block is zero, the cycle of
1122 * the first block must be 1. If it's not, maybe we're
1123 * not looking at a log... Bail out.
1125 xfs_warn(log->l_mp,
1126 "Log inconsistent or not a log (last==0, first!=1)");
1127 return XFS_ERROR(EINVAL);
1130 /* we have a partially zeroed log */
1131 last_blk = log_bbnum-1;
1132 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1133 goto bp_err;
1136 * Validate the answer. Because there is no way to guarantee that
1137 * the entire log is made up of log records which are the same size,
1138 * we scan over the defined maximum blocks. At this point, the maximum
1139 * is not chosen to mean anything special. XXXmiken
1141 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1142 ASSERT(num_scan_bblks <= INT_MAX);
1144 if (last_blk < num_scan_bblks)
1145 num_scan_bblks = last_blk;
1146 start_blk = last_blk - num_scan_bblks;
1149 * We search for any instances of cycle number 0 that occur before
1150 * our current estimate of the head. What we're trying to detect is
1151 * 1 ... | 0 | 1 | 0...
1152 * ^ binary search ends here
1154 if ((error = xlog_find_verify_cycle(log, start_blk,
1155 (int)num_scan_bblks, 0, &new_blk)))
1156 goto bp_err;
1157 if (new_blk != -1)
1158 last_blk = new_blk;
1161 * Potentially backup over partial log record write. We don't need
1162 * to search the end of the log because we know it is zero.
1164 if ((error = xlog_find_verify_log_record(log, start_blk,
1165 &last_blk, 0)) == -1) {
1166 error = XFS_ERROR(EIO);
1167 goto bp_err;
1168 } else if (error)
1169 goto bp_err;
1171 *blk_no = last_blk;
1172 bp_err:
1173 xlog_put_bp(bp);
1174 if (error)
1175 return error;
1176 return -1;
1180 * These are simple subroutines used by xlog_clear_stale_blocks() below
1181 * to initialize a buffer full of empty log record headers and write
1182 * them into the log.
1184 STATIC void
1185 xlog_add_record(
1186 xlog_t *log,
1187 xfs_caddr_t buf,
1188 int cycle,
1189 int block,
1190 int tail_cycle,
1191 int tail_block)
1193 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1195 memset(buf, 0, BBSIZE);
1196 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1197 recp->h_cycle = cpu_to_be32(cycle);
1198 recp->h_version = cpu_to_be32(
1199 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1200 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1201 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1202 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1203 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1206 STATIC int
1207 xlog_write_log_records(
1208 xlog_t *log,
1209 int cycle,
1210 int start_block,
1211 int blocks,
1212 int tail_cycle,
1213 int tail_block)
1215 xfs_caddr_t offset;
1216 xfs_buf_t *bp;
1217 int balign, ealign;
1218 int sectbb = log->l_sectBBsize;
1219 int end_block = start_block + blocks;
1220 int bufblks;
1221 int error = 0;
1222 int i, j = 0;
1225 * Greedily allocate a buffer big enough to handle the full
1226 * range of basic blocks to be written. If that fails, try
1227 * a smaller size. We need to be able to write at least a
1228 * log sector, or we're out of luck.
1230 bufblks = 1 << ffs(blocks);
1231 while (bufblks > log->l_logBBsize)
1232 bufblks >>= 1;
1233 while (!(bp = xlog_get_bp(log, bufblks))) {
1234 bufblks >>= 1;
1235 if (bufblks < sectbb)
1236 return ENOMEM;
1239 /* We may need to do a read at the start to fill in part of
1240 * the buffer in the starting sector not covered by the first
1241 * write below.
1243 balign = round_down(start_block, sectbb);
1244 if (balign != start_block) {
1245 error = xlog_bread_noalign(log, start_block, 1, bp);
1246 if (error)
1247 goto out_put_bp;
1249 j = start_block - balign;
1252 for (i = start_block; i < end_block; i += bufblks) {
1253 int bcount, endcount;
1255 bcount = min(bufblks, end_block - start_block);
1256 endcount = bcount - j;
1258 /* We may need to do a read at the end to fill in part of
1259 * the buffer in the final sector not covered by the write.
1260 * If this is the same sector as the above read, skip it.
1262 ealign = round_down(end_block, sectbb);
1263 if (j == 0 && (start_block + endcount > ealign)) {
1264 offset = bp->b_addr + BBTOB(ealign - start_block);
1265 error = xlog_bread_offset(log, ealign, sectbb,
1266 bp, offset);
1267 if (error)
1268 break;
1272 offset = xlog_align(log, start_block, endcount, bp);
1273 for (; j < endcount; j++) {
1274 xlog_add_record(log, offset, cycle, i+j,
1275 tail_cycle, tail_block);
1276 offset += BBSIZE;
1278 error = xlog_bwrite(log, start_block, endcount, bp);
1279 if (error)
1280 break;
1281 start_block += endcount;
1282 j = 0;
1285 out_put_bp:
1286 xlog_put_bp(bp);
1287 return error;
1291 * This routine is called to blow away any incomplete log writes out
1292 * in front of the log head. We do this so that we won't become confused
1293 * if we come up, write only a little bit more, and then crash again.
1294 * If we leave the partial log records out there, this situation could
1295 * cause us to think those partial writes are valid blocks since they
1296 * have the current cycle number. We get rid of them by overwriting them
1297 * with empty log records with the old cycle number rather than the
1298 * current one.
1300 * The tail lsn is passed in rather than taken from
1301 * the log so that we will not write over the unmount record after a
1302 * clean unmount in a 512 block log. Doing so would leave the log without
1303 * any valid log records in it until a new one was written. If we crashed
1304 * during that time we would not be able to recover.
1306 STATIC int
1307 xlog_clear_stale_blocks(
1308 xlog_t *log,
1309 xfs_lsn_t tail_lsn)
1311 int tail_cycle, head_cycle;
1312 int tail_block, head_block;
1313 int tail_distance, max_distance;
1314 int distance;
1315 int error;
1317 tail_cycle = CYCLE_LSN(tail_lsn);
1318 tail_block = BLOCK_LSN(tail_lsn);
1319 head_cycle = log->l_curr_cycle;
1320 head_block = log->l_curr_block;
1323 * Figure out the distance between the new head of the log
1324 * and the tail. We want to write over any blocks beyond the
1325 * head that we may have written just before the crash, but
1326 * we don't want to overwrite the tail of the log.
1328 if (head_cycle == tail_cycle) {
1330 * The tail is behind the head in the physical log,
1331 * so the distance from the head to the tail is the
1332 * distance from the head to the end of the log plus
1333 * the distance from the beginning of the log to the
1334 * tail.
1336 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1337 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1338 XFS_ERRLEVEL_LOW, log->l_mp);
1339 return XFS_ERROR(EFSCORRUPTED);
1341 tail_distance = tail_block + (log->l_logBBsize - head_block);
1342 } else {
1344 * The head is behind the tail in the physical log,
1345 * so the distance from the head to the tail is just
1346 * the tail block minus the head block.
1348 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1349 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1350 XFS_ERRLEVEL_LOW, log->l_mp);
1351 return XFS_ERROR(EFSCORRUPTED);
1353 tail_distance = tail_block - head_block;
1357 * If the head is right up against the tail, we can't clear
1358 * anything.
1360 if (tail_distance <= 0) {
1361 ASSERT(tail_distance == 0);
1362 return 0;
1365 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1367 * Take the smaller of the maximum amount of outstanding I/O
1368 * we could have and the distance to the tail to clear out.
1369 * We take the smaller so that we don't overwrite the tail and
1370 * we don't waste all day writing from the head to the tail
1371 * for no reason.
1373 max_distance = MIN(max_distance, tail_distance);
1375 if ((head_block + max_distance) <= log->l_logBBsize) {
1377 * We can stomp all the blocks we need to without
1378 * wrapping around the end of the log. Just do it
1379 * in a single write. Use the cycle number of the
1380 * current cycle minus one so that the log will look like:
1381 * n ... | n - 1 ...
1383 error = xlog_write_log_records(log, (head_cycle - 1),
1384 head_block, max_distance, tail_cycle,
1385 tail_block);
1386 if (error)
1387 return error;
1388 } else {
1390 * We need to wrap around the end of the physical log in
1391 * order to clear all the blocks. Do it in two separate
1392 * I/Os. The first write should be from the head to the
1393 * end of the physical log, and it should use the current
1394 * cycle number minus one just like above.
1396 distance = log->l_logBBsize - head_block;
1397 error = xlog_write_log_records(log, (head_cycle - 1),
1398 head_block, distance, tail_cycle,
1399 tail_block);
1401 if (error)
1402 return error;
1405 * Now write the blocks at the start of the physical log.
1406 * This writes the remainder of the blocks we want to clear.
1407 * It uses the current cycle number since we're now on the
1408 * same cycle as the head so that we get:
1409 * n ... n ... | n - 1 ...
1410 * ^^^^^ blocks we're writing
1412 distance = max_distance - (log->l_logBBsize - head_block);
1413 error = xlog_write_log_records(log, head_cycle, 0, distance,
1414 tail_cycle, tail_block);
1415 if (error)
1416 return error;
1419 return 0;
1422 /******************************************************************************
1424 * Log recover routines
1426 ******************************************************************************
1429 STATIC xlog_recover_t *
1430 xlog_recover_find_tid(
1431 struct hlist_head *head,
1432 xlog_tid_t tid)
1434 xlog_recover_t *trans;
1435 struct hlist_node *n;
1437 hlist_for_each_entry(trans, n, head, r_list) {
1438 if (trans->r_log_tid == tid)
1439 return trans;
1441 return NULL;
1444 STATIC void
1445 xlog_recover_new_tid(
1446 struct hlist_head *head,
1447 xlog_tid_t tid,
1448 xfs_lsn_t lsn)
1450 xlog_recover_t *trans;
1452 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1453 trans->r_log_tid = tid;
1454 trans->r_lsn = lsn;
1455 INIT_LIST_HEAD(&trans->r_itemq);
1457 INIT_HLIST_NODE(&trans->r_list);
1458 hlist_add_head(&trans->r_list, head);
1461 STATIC void
1462 xlog_recover_add_item(
1463 struct list_head *head)
1465 xlog_recover_item_t *item;
1467 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1468 INIT_LIST_HEAD(&item->ri_list);
1469 list_add_tail(&item->ri_list, head);
1472 STATIC int
1473 xlog_recover_add_to_cont_trans(
1474 struct xlog *log,
1475 struct xlog_recover *trans,
1476 xfs_caddr_t dp,
1477 int len)
1479 xlog_recover_item_t *item;
1480 xfs_caddr_t ptr, old_ptr;
1481 int old_len;
1483 if (list_empty(&trans->r_itemq)) {
1484 /* finish copying rest of trans header */
1485 xlog_recover_add_item(&trans->r_itemq);
1486 ptr = (xfs_caddr_t) &trans->r_theader +
1487 sizeof(xfs_trans_header_t) - len;
1488 memcpy(ptr, dp, len); /* d, s, l */
1489 return 0;
1491 /* take the tail entry */
1492 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1494 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1495 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1497 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1498 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1499 item->ri_buf[item->ri_cnt-1].i_len += len;
1500 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1501 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1502 return 0;
1506 * The next region to add is the start of a new region. It could be
1507 * a whole region or it could be the first part of a new region. Because
1508 * of this, the assumption here is that the type and size fields of all
1509 * format structures fit into the first 32 bits of the structure.
1511 * This works because all regions must be 32 bit aligned. Therefore, we
1512 * either have both fields or we have neither field. In the case we have
1513 * neither field, the data part of the region is zero length. We only have
1514 * a log_op_header and can throw away the header since a new one will appear
1515 * later. If we have at least 4 bytes, then we can determine how many regions
1516 * will appear in the current log item.
1518 STATIC int
1519 xlog_recover_add_to_trans(
1520 struct xlog *log,
1521 struct xlog_recover *trans,
1522 xfs_caddr_t dp,
1523 int len)
1525 xfs_inode_log_format_t *in_f; /* any will do */
1526 xlog_recover_item_t *item;
1527 xfs_caddr_t ptr;
1529 if (!len)
1530 return 0;
1531 if (list_empty(&trans->r_itemq)) {
1532 /* we need to catch log corruptions here */
1533 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1534 xfs_warn(log->l_mp, "%s: bad header magic number",
1535 __func__);
1536 ASSERT(0);
1537 return XFS_ERROR(EIO);
1539 if (len == sizeof(xfs_trans_header_t))
1540 xlog_recover_add_item(&trans->r_itemq);
1541 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1542 return 0;
1545 ptr = kmem_alloc(len, KM_SLEEP);
1546 memcpy(ptr, dp, len);
1547 in_f = (xfs_inode_log_format_t *)ptr;
1549 /* take the tail entry */
1550 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1551 if (item->ri_total != 0 &&
1552 item->ri_total == item->ri_cnt) {
1553 /* tail item is in use, get a new one */
1554 xlog_recover_add_item(&trans->r_itemq);
1555 item = list_entry(trans->r_itemq.prev,
1556 xlog_recover_item_t, ri_list);
1559 if (item->ri_total == 0) { /* first region to be added */
1560 if (in_f->ilf_size == 0 ||
1561 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1562 xfs_warn(log->l_mp,
1563 "bad number of regions (%d) in inode log format",
1564 in_f->ilf_size);
1565 ASSERT(0);
1566 return XFS_ERROR(EIO);
1569 item->ri_total = in_f->ilf_size;
1570 item->ri_buf =
1571 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1572 KM_SLEEP);
1574 ASSERT(item->ri_total > item->ri_cnt);
1575 /* Description region is ri_buf[0] */
1576 item->ri_buf[item->ri_cnt].i_addr = ptr;
1577 item->ri_buf[item->ri_cnt].i_len = len;
1578 item->ri_cnt++;
1579 trace_xfs_log_recover_item_add(log, trans, item, 0);
1580 return 0;
1584 * Sort the log items in the transaction. Cancelled buffers need
1585 * to be put first so they are processed before any items that might
1586 * modify the buffers. If they are cancelled, then the modifications
1587 * don't need to be replayed.
1589 STATIC int
1590 xlog_recover_reorder_trans(
1591 struct xlog *log,
1592 struct xlog_recover *trans,
1593 int pass)
1595 xlog_recover_item_t *item, *n;
1596 LIST_HEAD(sort_list);
1598 list_splice_init(&trans->r_itemq, &sort_list);
1599 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1600 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1602 switch (ITEM_TYPE(item)) {
1603 case XFS_LI_BUF:
1604 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1605 trace_xfs_log_recover_item_reorder_head(log,
1606 trans, item, pass);
1607 list_move(&item->ri_list, &trans->r_itemq);
1608 break;
1610 case XFS_LI_INODE:
1611 case XFS_LI_DQUOT:
1612 case XFS_LI_QUOTAOFF:
1613 case XFS_LI_EFD:
1614 case XFS_LI_EFI:
1615 trace_xfs_log_recover_item_reorder_tail(log,
1616 trans, item, pass);
1617 list_move_tail(&item->ri_list, &trans->r_itemq);
1618 break;
1619 default:
1620 xfs_warn(log->l_mp,
1621 "%s: unrecognized type of log operation",
1622 __func__);
1623 ASSERT(0);
1624 return XFS_ERROR(EIO);
1627 ASSERT(list_empty(&sort_list));
1628 return 0;
1632 * Build up the table of buf cancel records so that we don't replay
1633 * cancelled data in the second pass. For buffer records that are
1634 * not cancel records, there is nothing to do here so we just return.
1636 * If we get a cancel record which is already in the table, this indicates
1637 * that the buffer was cancelled multiple times. In order to ensure
1638 * that during pass 2 we keep the record in the table until we reach its
1639 * last occurrence in the log, we keep a reference count in the cancel
1640 * record in the table to tell us how many times we expect to see this
1641 * record during the second pass.
1643 STATIC int
1644 xlog_recover_buffer_pass1(
1645 struct xlog *log,
1646 struct xlog_recover_item *item)
1648 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1649 struct list_head *bucket;
1650 struct xfs_buf_cancel *bcp;
1653 * If this isn't a cancel buffer item, then just return.
1655 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1656 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1657 return 0;
1661 * Insert an xfs_buf_cancel record into the hash table of them.
1662 * If there is already an identical record, bump its reference count.
1664 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1665 list_for_each_entry(bcp, bucket, bc_list) {
1666 if (bcp->bc_blkno == buf_f->blf_blkno &&
1667 bcp->bc_len == buf_f->blf_len) {
1668 bcp->bc_refcount++;
1669 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1670 return 0;
1674 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1675 bcp->bc_blkno = buf_f->blf_blkno;
1676 bcp->bc_len = buf_f->blf_len;
1677 bcp->bc_refcount = 1;
1678 list_add_tail(&bcp->bc_list, bucket);
1680 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1681 return 0;
1685 * Check to see whether the buffer being recovered has a corresponding
1686 * entry in the buffer cancel record table. If it does then return 1
1687 * so that it will be cancelled, otherwise return 0. If the buffer is
1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1689 * the refcount on the entry in the table and remove it from the table
1690 * if this is the last reference.
1692 * We remove the cancel record from the table when we encounter its
1693 * last occurrence in the log so that if the same buffer is re-used
1694 * again after its last cancellation we actually replay the changes
1695 * made at that point.
1697 STATIC int
1698 xlog_check_buffer_cancelled(
1699 struct xlog *log,
1700 xfs_daddr_t blkno,
1701 uint len,
1702 ushort flags)
1704 struct list_head *bucket;
1705 struct xfs_buf_cancel *bcp;
1707 if (log->l_buf_cancel_table == NULL) {
1709 * There is nothing in the table built in pass one,
1710 * so this buffer must not be cancelled.
1712 ASSERT(!(flags & XFS_BLF_CANCEL));
1713 return 0;
1717 * Search for an entry in the cancel table that matches our buffer.
1719 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1720 list_for_each_entry(bcp, bucket, bc_list) {
1721 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1722 goto found;
1726 * We didn't find a corresponding entry in the table, so return 0 so
1727 * that the buffer is NOT cancelled.
1729 ASSERT(!(flags & XFS_BLF_CANCEL));
1730 return 0;
1732 found:
1734 * We've go a match, so return 1 so that the recovery of this buffer
1735 * is cancelled. If this buffer is actually a buffer cancel log
1736 * item, then decrement the refcount on the one in the table and
1737 * remove it if this is the last reference.
1739 if (flags & XFS_BLF_CANCEL) {
1740 if (--bcp->bc_refcount == 0) {
1741 list_del(&bcp->bc_list);
1742 kmem_free(bcp);
1745 return 1;
1749 * Perform recovery for a buffer full of inodes. In these buffers, the only
1750 * data which should be recovered is that which corresponds to the
1751 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1752 * data for the inodes is always logged through the inodes themselves rather
1753 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1755 * The only time when buffers full of inodes are fully recovered is when the
1756 * buffer is full of newly allocated inodes. In this case the buffer will
1757 * not be marked as an inode buffer and so will be sent to
1758 * xlog_recover_do_reg_buffer() below during recovery.
1760 STATIC int
1761 xlog_recover_do_inode_buffer(
1762 struct xfs_mount *mp,
1763 xlog_recover_item_t *item,
1764 struct xfs_buf *bp,
1765 xfs_buf_log_format_t *buf_f)
1767 int i;
1768 int item_index = 0;
1769 int bit = 0;
1770 int nbits = 0;
1771 int reg_buf_offset = 0;
1772 int reg_buf_bytes = 0;
1773 int next_unlinked_offset;
1774 int inodes_per_buf;
1775 xfs_agino_t *logged_nextp;
1776 xfs_agino_t *buffer_nextp;
1778 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1780 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1781 for (i = 0; i < inodes_per_buf; i++) {
1782 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1783 offsetof(xfs_dinode_t, di_next_unlinked);
1785 while (next_unlinked_offset >=
1786 (reg_buf_offset + reg_buf_bytes)) {
1788 * The next di_next_unlinked field is beyond
1789 * the current logged region. Find the next
1790 * logged region that contains or is beyond
1791 * the current di_next_unlinked field.
1793 bit += nbits;
1794 bit = xfs_next_bit(buf_f->blf_data_map,
1795 buf_f->blf_map_size, bit);
1798 * If there are no more logged regions in the
1799 * buffer, then we're done.
1801 if (bit == -1)
1802 return 0;
1804 nbits = xfs_contig_bits(buf_f->blf_data_map,
1805 buf_f->blf_map_size, bit);
1806 ASSERT(nbits > 0);
1807 reg_buf_offset = bit << XFS_BLF_SHIFT;
1808 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1809 item_index++;
1813 * If the current logged region starts after the current
1814 * di_next_unlinked field, then move on to the next
1815 * di_next_unlinked field.
1817 if (next_unlinked_offset < reg_buf_offset)
1818 continue;
1820 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1821 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1822 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1823 BBTOB(bp->b_io_length));
1826 * The current logged region contains a copy of the
1827 * current di_next_unlinked field. Extract its value
1828 * and copy it to the buffer copy.
1830 logged_nextp = item->ri_buf[item_index].i_addr +
1831 next_unlinked_offset - reg_buf_offset;
1832 if (unlikely(*logged_nextp == 0)) {
1833 xfs_alert(mp,
1834 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1835 "Trying to replay bad (0) inode di_next_unlinked field.",
1836 item, bp);
1837 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1838 XFS_ERRLEVEL_LOW, mp);
1839 return XFS_ERROR(EFSCORRUPTED);
1842 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1843 next_unlinked_offset);
1844 *buffer_nextp = *logged_nextp;
1847 return 0;
1851 * Perform a 'normal' buffer recovery. Each logged region of the
1852 * buffer should be copied over the corresponding region in the
1853 * given buffer. The bitmap in the buf log format structure indicates
1854 * where to place the logged data.
1856 STATIC void
1857 xlog_recover_do_reg_buffer(
1858 struct xfs_mount *mp,
1859 xlog_recover_item_t *item,
1860 struct xfs_buf *bp,
1861 xfs_buf_log_format_t *buf_f)
1863 int i;
1864 int bit;
1865 int nbits;
1866 int error;
1868 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1870 bit = 0;
1871 i = 1; /* 0 is the buf format structure */
1872 while (1) {
1873 bit = xfs_next_bit(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1875 if (bit == -1)
1876 break;
1877 nbits = xfs_contig_bits(buf_f->blf_data_map,
1878 buf_f->blf_map_size, bit);
1879 ASSERT(nbits > 0);
1880 ASSERT(item->ri_buf[i].i_addr != NULL);
1881 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1882 ASSERT(BBTOB(bp->b_io_length) >=
1883 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1886 * Do a sanity check if this is a dquot buffer. Just checking
1887 * the first dquot in the buffer should do. XXXThis is
1888 * probably a good thing to do for other buf types also.
1890 error = 0;
1891 if (buf_f->blf_flags &
1892 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1893 if (item->ri_buf[i].i_addr == NULL) {
1894 xfs_alert(mp,
1895 "XFS: NULL dquot in %s.", __func__);
1896 goto next;
1898 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1899 xfs_alert(mp,
1900 "XFS: dquot too small (%d) in %s.",
1901 item->ri_buf[i].i_len, __func__);
1902 goto next;
1904 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1905 -1, 0, XFS_QMOPT_DOWARN,
1906 "dquot_buf_recover");
1907 if (error)
1908 goto next;
1911 memcpy(xfs_buf_offset(bp,
1912 (uint)bit << XFS_BLF_SHIFT), /* dest */
1913 item->ri_buf[i].i_addr, /* source */
1914 nbits<<XFS_BLF_SHIFT); /* length */
1915 next:
1916 i++;
1917 bit += nbits;
1920 /* Shouldn't be any more regions */
1921 ASSERT(i == item->ri_total);
1925 * Do some primitive error checking on ondisk dquot data structures.
1928 xfs_qm_dqcheck(
1929 struct xfs_mount *mp,
1930 xfs_disk_dquot_t *ddq,
1931 xfs_dqid_t id,
1932 uint type, /* used only when IO_dorepair is true */
1933 uint flags,
1934 char *str)
1936 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1937 int errs = 0;
1940 * We can encounter an uninitialized dquot buffer for 2 reasons:
1941 * 1. If we crash while deleting the quotainode(s), and those blks got
1942 * used for user data. This is because we take the path of regular
1943 * file deletion; however, the size field of quotainodes is never
1944 * updated, so all the tricks that we play in itruncate_finish
1945 * don't quite matter.
1947 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1948 * But the allocation will be replayed so we'll end up with an
1949 * uninitialized quota block.
1951 * This is all fine; things are still consistent, and we haven't lost
1952 * any quota information. Just don't complain about bad dquot blks.
1954 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1955 if (flags & XFS_QMOPT_DOWARN)
1956 xfs_alert(mp,
1957 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1958 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1959 errs++;
1961 if (ddq->d_version != XFS_DQUOT_VERSION) {
1962 if (flags & XFS_QMOPT_DOWARN)
1963 xfs_alert(mp,
1964 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1965 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1966 errs++;
1969 if (ddq->d_flags != XFS_DQ_USER &&
1970 ddq->d_flags != XFS_DQ_PROJ &&
1971 ddq->d_flags != XFS_DQ_GROUP) {
1972 if (flags & XFS_QMOPT_DOWARN)
1973 xfs_alert(mp,
1974 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1975 str, id, ddq->d_flags);
1976 errs++;
1979 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1980 if (flags & XFS_QMOPT_DOWARN)
1981 xfs_alert(mp,
1982 "%s : ondisk-dquot 0x%p, ID mismatch: "
1983 "0x%x expected, found id 0x%x",
1984 str, ddq, id, be32_to_cpu(ddq->d_id));
1985 errs++;
1988 if (!errs && ddq->d_id) {
1989 if (ddq->d_blk_softlimit &&
1990 be64_to_cpu(ddq->d_bcount) >
1991 be64_to_cpu(ddq->d_blk_softlimit)) {
1992 if (!ddq->d_btimer) {
1993 if (flags & XFS_QMOPT_DOWARN)
1994 xfs_alert(mp,
1995 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1996 str, (int)be32_to_cpu(ddq->d_id), ddq);
1997 errs++;
2000 if (ddq->d_ino_softlimit &&
2001 be64_to_cpu(ddq->d_icount) >
2002 be64_to_cpu(ddq->d_ino_softlimit)) {
2003 if (!ddq->d_itimer) {
2004 if (flags & XFS_QMOPT_DOWARN)
2005 xfs_alert(mp,
2006 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2007 str, (int)be32_to_cpu(ddq->d_id), ddq);
2008 errs++;
2011 if (ddq->d_rtb_softlimit &&
2012 be64_to_cpu(ddq->d_rtbcount) >
2013 be64_to_cpu(ddq->d_rtb_softlimit)) {
2014 if (!ddq->d_rtbtimer) {
2015 if (flags & XFS_QMOPT_DOWARN)
2016 xfs_alert(mp,
2017 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2018 str, (int)be32_to_cpu(ddq->d_id), ddq);
2019 errs++;
2024 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2025 return errs;
2027 if (flags & XFS_QMOPT_DOWARN)
2028 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2031 * Typically, a repair is only requested by quotacheck.
2033 ASSERT(id != -1);
2034 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2035 memset(d, 0, sizeof(xfs_dqblk_t));
2037 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2038 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2039 d->dd_diskdq.d_flags = type;
2040 d->dd_diskdq.d_id = cpu_to_be32(id);
2042 return errs;
2046 * Perform a dquot buffer recovery.
2047 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2048 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2049 * Else, treat it as a regular buffer and do recovery.
2051 STATIC void
2052 xlog_recover_do_dquot_buffer(
2053 xfs_mount_t *mp,
2054 xlog_t *log,
2055 xlog_recover_item_t *item,
2056 xfs_buf_t *bp,
2057 xfs_buf_log_format_t *buf_f)
2059 uint type;
2061 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2064 * Filesystems are required to send in quota flags at mount time.
2066 if (mp->m_qflags == 0) {
2067 return;
2070 type = 0;
2071 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2072 type |= XFS_DQ_USER;
2073 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2074 type |= XFS_DQ_PROJ;
2075 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2076 type |= XFS_DQ_GROUP;
2078 * This type of quotas was turned off, so ignore this buffer
2080 if (log->l_quotaoffs_flag & type)
2081 return;
2083 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2087 * This routine replays a modification made to a buffer at runtime.
2088 * There are actually two types of buffer, regular and inode, which
2089 * are handled differently. Inode buffers are handled differently
2090 * in that we only recover a specific set of data from them, namely
2091 * the inode di_next_unlinked fields. This is because all other inode
2092 * data is actually logged via inode records and any data we replay
2093 * here which overlaps that may be stale.
2095 * When meta-data buffers are freed at run time we log a buffer item
2096 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2097 * of the buffer in the log should not be replayed at recovery time.
2098 * This is so that if the blocks covered by the buffer are reused for
2099 * file data before we crash we don't end up replaying old, freed
2100 * meta-data into a user's file.
2102 * To handle the cancellation of buffer log items, we make two passes
2103 * over the log during recovery. During the first we build a table of
2104 * those buffers which have been cancelled, and during the second we
2105 * only replay those buffers which do not have corresponding cancel
2106 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2107 * for more details on the implementation of the table of cancel records.
2109 STATIC int
2110 xlog_recover_buffer_pass2(
2111 xlog_t *log,
2112 struct list_head *buffer_list,
2113 xlog_recover_item_t *item)
2115 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2116 xfs_mount_t *mp = log->l_mp;
2117 xfs_buf_t *bp;
2118 int error;
2119 uint buf_flags;
2122 * In this pass we only want to recover all the buffers which have
2123 * not been cancelled and are not cancellation buffers themselves.
2125 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2126 buf_f->blf_len, buf_f->blf_flags)) {
2127 trace_xfs_log_recover_buf_cancel(log, buf_f);
2128 return 0;
2131 trace_xfs_log_recover_buf_recover(log, buf_f);
2133 buf_flags = 0;
2134 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2135 buf_flags |= XBF_UNMAPPED;
2137 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2138 buf_flags);
2139 if (!bp)
2140 return XFS_ERROR(ENOMEM);
2141 error = bp->b_error;
2142 if (error) {
2143 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2144 xfs_buf_relse(bp);
2145 return error;
2148 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2149 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2150 } else if (buf_f->blf_flags &
2151 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2152 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2153 } else {
2154 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2156 if (error)
2157 return XFS_ERROR(error);
2160 * Perform delayed write on the buffer. Asynchronous writes will be
2161 * slower when taking into account all the buffers to be flushed.
2163 * Also make sure that only inode buffers with good sizes stay in
2164 * the buffer cache. The kernel moves inodes in buffers of 1 block
2165 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2166 * buffers in the log can be a different size if the log was generated
2167 * by an older kernel using unclustered inode buffers or a newer kernel
2168 * running with a different inode cluster size. Regardless, if the
2169 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2170 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2171 * the buffer out of the buffer cache so that the buffer won't
2172 * overlap with future reads of those inodes.
2174 if (XFS_DINODE_MAGIC ==
2175 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2176 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2177 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2178 xfs_buf_stale(bp);
2179 error = xfs_bwrite(bp);
2180 } else {
2181 ASSERT(bp->b_target->bt_mount == mp);
2182 bp->b_iodone = xlog_recover_iodone;
2183 xfs_buf_delwri_queue(bp, buffer_list);
2186 xfs_buf_relse(bp);
2187 return error;
2190 STATIC int
2191 xlog_recover_inode_pass2(
2192 xlog_t *log,
2193 struct list_head *buffer_list,
2194 xlog_recover_item_t *item)
2196 xfs_inode_log_format_t *in_f;
2197 xfs_mount_t *mp = log->l_mp;
2198 xfs_buf_t *bp;
2199 xfs_dinode_t *dip;
2200 int len;
2201 xfs_caddr_t src;
2202 xfs_caddr_t dest;
2203 int error;
2204 int attr_index;
2205 uint fields;
2206 xfs_icdinode_t *dicp;
2207 int need_free = 0;
2209 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2210 in_f = item->ri_buf[0].i_addr;
2211 } else {
2212 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2213 need_free = 1;
2214 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2215 if (error)
2216 goto error;
2220 * Inode buffers can be freed, look out for it,
2221 * and do not replay the inode.
2223 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2224 in_f->ilf_len, 0)) {
2225 error = 0;
2226 trace_xfs_log_recover_inode_cancel(log, in_f);
2227 goto error;
2229 trace_xfs_log_recover_inode_recover(log, in_f);
2231 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
2232 if (!bp) {
2233 error = ENOMEM;
2234 goto error;
2236 error = bp->b_error;
2237 if (error) {
2238 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2239 xfs_buf_relse(bp);
2240 goto error;
2242 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2243 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2246 * Make sure the place we're flushing out to really looks
2247 * like an inode!
2249 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2250 xfs_buf_relse(bp);
2251 xfs_alert(mp,
2252 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2253 __func__, dip, bp, in_f->ilf_ino);
2254 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2255 XFS_ERRLEVEL_LOW, mp);
2256 error = EFSCORRUPTED;
2257 goto error;
2259 dicp = item->ri_buf[1].i_addr;
2260 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2261 xfs_buf_relse(bp);
2262 xfs_alert(mp,
2263 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2264 __func__, item, in_f->ilf_ino);
2265 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2266 XFS_ERRLEVEL_LOW, mp);
2267 error = EFSCORRUPTED;
2268 goto error;
2271 /* Skip replay when the on disk inode is newer than the log one */
2272 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2274 * Deal with the wrap case, DI_MAX_FLUSH is less
2275 * than smaller numbers
2277 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2278 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2279 /* do nothing */
2280 } else {
2281 xfs_buf_relse(bp);
2282 trace_xfs_log_recover_inode_skip(log, in_f);
2283 error = 0;
2284 goto error;
2287 /* Take the opportunity to reset the flush iteration count */
2288 dicp->di_flushiter = 0;
2290 if (unlikely(S_ISREG(dicp->di_mode))) {
2291 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2292 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2293 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2294 XFS_ERRLEVEL_LOW, mp, dicp);
2295 xfs_buf_relse(bp);
2296 xfs_alert(mp,
2297 "%s: Bad regular inode log record, rec ptr 0x%p, "
2298 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2299 __func__, item, dip, bp, in_f->ilf_ino);
2300 error = EFSCORRUPTED;
2301 goto error;
2303 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2304 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2305 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2306 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2307 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2308 XFS_ERRLEVEL_LOW, mp, dicp);
2309 xfs_buf_relse(bp);
2310 xfs_alert(mp,
2311 "%s: Bad dir inode log record, rec ptr 0x%p, "
2312 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2313 __func__, item, dip, bp, in_f->ilf_ino);
2314 error = EFSCORRUPTED;
2315 goto error;
2318 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2319 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2320 XFS_ERRLEVEL_LOW, mp, dicp);
2321 xfs_buf_relse(bp);
2322 xfs_alert(mp,
2323 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2324 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2325 __func__, item, dip, bp, in_f->ilf_ino,
2326 dicp->di_nextents + dicp->di_anextents,
2327 dicp->di_nblocks);
2328 error = EFSCORRUPTED;
2329 goto error;
2331 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2332 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2333 XFS_ERRLEVEL_LOW, mp, dicp);
2334 xfs_buf_relse(bp);
2335 xfs_alert(mp,
2336 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2337 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2338 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2339 error = EFSCORRUPTED;
2340 goto error;
2342 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2343 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2344 XFS_ERRLEVEL_LOW, mp, dicp);
2345 xfs_buf_relse(bp);
2346 xfs_alert(mp,
2347 "%s: Bad inode log record length %d, rec ptr 0x%p",
2348 __func__, item->ri_buf[1].i_len, item);
2349 error = EFSCORRUPTED;
2350 goto error;
2353 /* The core is in in-core format */
2354 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2356 /* the rest is in on-disk format */
2357 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2358 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2359 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2360 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2363 fields = in_f->ilf_fields;
2364 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2365 case XFS_ILOG_DEV:
2366 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2367 break;
2368 case XFS_ILOG_UUID:
2369 memcpy(XFS_DFORK_DPTR(dip),
2370 &in_f->ilf_u.ilfu_uuid,
2371 sizeof(uuid_t));
2372 break;
2375 if (in_f->ilf_size == 2)
2376 goto write_inode_buffer;
2377 len = item->ri_buf[2].i_len;
2378 src = item->ri_buf[2].i_addr;
2379 ASSERT(in_f->ilf_size <= 4);
2380 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2381 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2382 (len == in_f->ilf_dsize));
2384 switch (fields & XFS_ILOG_DFORK) {
2385 case XFS_ILOG_DDATA:
2386 case XFS_ILOG_DEXT:
2387 memcpy(XFS_DFORK_DPTR(dip), src, len);
2388 break;
2390 case XFS_ILOG_DBROOT:
2391 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2392 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2393 XFS_DFORK_DSIZE(dip, mp));
2394 break;
2396 default:
2398 * There are no data fork flags set.
2400 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2401 break;
2405 * If we logged any attribute data, recover it. There may or
2406 * may not have been any other non-core data logged in this
2407 * transaction.
2409 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2410 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2411 attr_index = 3;
2412 } else {
2413 attr_index = 2;
2415 len = item->ri_buf[attr_index].i_len;
2416 src = item->ri_buf[attr_index].i_addr;
2417 ASSERT(len == in_f->ilf_asize);
2419 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2420 case XFS_ILOG_ADATA:
2421 case XFS_ILOG_AEXT:
2422 dest = XFS_DFORK_APTR(dip);
2423 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2424 memcpy(dest, src, len);
2425 break;
2427 case XFS_ILOG_ABROOT:
2428 dest = XFS_DFORK_APTR(dip);
2429 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2430 len, (xfs_bmdr_block_t*)dest,
2431 XFS_DFORK_ASIZE(dip, mp));
2432 break;
2434 default:
2435 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2436 ASSERT(0);
2437 xfs_buf_relse(bp);
2438 error = EIO;
2439 goto error;
2443 write_inode_buffer:
2444 ASSERT(bp->b_target->bt_mount == mp);
2445 bp->b_iodone = xlog_recover_iodone;
2446 xfs_buf_delwri_queue(bp, buffer_list);
2447 xfs_buf_relse(bp);
2448 error:
2449 if (need_free)
2450 kmem_free(in_f);
2451 return XFS_ERROR(error);
2455 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2456 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2457 * of that type.
2459 STATIC int
2460 xlog_recover_quotaoff_pass1(
2461 xlog_t *log,
2462 xlog_recover_item_t *item)
2464 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2465 ASSERT(qoff_f);
2468 * The logitem format's flag tells us if this was user quotaoff,
2469 * group/project quotaoff or both.
2471 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2472 log->l_quotaoffs_flag |= XFS_DQ_USER;
2473 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2474 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2475 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2476 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2478 return (0);
2482 * Recover a dquot record
2484 STATIC int
2485 xlog_recover_dquot_pass2(
2486 xlog_t *log,
2487 struct list_head *buffer_list,
2488 xlog_recover_item_t *item)
2490 xfs_mount_t *mp = log->l_mp;
2491 xfs_buf_t *bp;
2492 struct xfs_disk_dquot *ddq, *recddq;
2493 int error;
2494 xfs_dq_logformat_t *dq_f;
2495 uint type;
2499 * Filesystems are required to send in quota flags at mount time.
2501 if (mp->m_qflags == 0)
2502 return (0);
2504 recddq = item->ri_buf[1].i_addr;
2505 if (recddq == NULL) {
2506 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2507 return XFS_ERROR(EIO);
2509 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2510 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2511 item->ri_buf[1].i_len, __func__);
2512 return XFS_ERROR(EIO);
2516 * This type of quotas was turned off, so ignore this record.
2518 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2519 ASSERT(type);
2520 if (log->l_quotaoffs_flag & type)
2521 return (0);
2524 * At this point we know that quota was _not_ turned off.
2525 * Since the mount flags are not indicating to us otherwise, this
2526 * must mean that quota is on, and the dquot needs to be replayed.
2527 * Remember that we may not have fully recovered the superblock yet,
2528 * so we can't do the usual trick of looking at the SB quota bits.
2530 * The other possibility, of course, is that the quota subsystem was
2531 * removed since the last mount - ENOSYS.
2533 dq_f = item->ri_buf[0].i_addr;
2534 ASSERT(dq_f);
2535 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2536 "xlog_recover_dquot_pass2 (log copy)");
2537 if (error)
2538 return XFS_ERROR(EIO);
2539 ASSERT(dq_f->qlf_len == 1);
2541 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2542 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
2543 if (error)
2544 return error;
2546 ASSERT(bp);
2547 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2550 * At least the magic num portion should be on disk because this
2551 * was among a chunk of dquots created earlier, and we did some
2552 * minimal initialization then.
2554 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2555 "xlog_recover_dquot_pass2");
2556 if (error) {
2557 xfs_buf_relse(bp);
2558 return XFS_ERROR(EIO);
2561 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2563 ASSERT(dq_f->qlf_size == 2);
2564 ASSERT(bp->b_target->bt_mount == mp);
2565 bp->b_iodone = xlog_recover_iodone;
2566 xfs_buf_delwri_queue(bp, buffer_list);
2567 xfs_buf_relse(bp);
2569 return (0);
2573 * This routine is called to create an in-core extent free intent
2574 * item from the efi format structure which was logged on disk.
2575 * It allocates an in-core efi, copies the extents from the format
2576 * structure into it, and adds the efi to the AIL with the given
2577 * LSN.
2579 STATIC int
2580 xlog_recover_efi_pass2(
2581 xlog_t *log,
2582 xlog_recover_item_t *item,
2583 xfs_lsn_t lsn)
2585 int error;
2586 xfs_mount_t *mp = log->l_mp;
2587 xfs_efi_log_item_t *efip;
2588 xfs_efi_log_format_t *efi_formatp;
2590 efi_formatp = item->ri_buf[0].i_addr;
2592 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2593 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2594 &(efip->efi_format)))) {
2595 xfs_efi_item_free(efip);
2596 return error;
2598 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2600 spin_lock(&log->l_ailp->xa_lock);
2602 * xfs_trans_ail_update() drops the AIL lock.
2604 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2605 return 0;
2610 * This routine is called when an efd format structure is found in
2611 * a committed transaction in the log. It's purpose is to cancel
2612 * the corresponding efi if it was still in the log. To do this
2613 * it searches the AIL for the efi with an id equal to that in the
2614 * efd format structure. If we find it, we remove the efi from the
2615 * AIL and free it.
2617 STATIC int
2618 xlog_recover_efd_pass2(
2619 xlog_t *log,
2620 xlog_recover_item_t *item)
2622 xfs_efd_log_format_t *efd_formatp;
2623 xfs_efi_log_item_t *efip = NULL;
2624 xfs_log_item_t *lip;
2625 __uint64_t efi_id;
2626 struct xfs_ail_cursor cur;
2627 struct xfs_ail *ailp = log->l_ailp;
2629 efd_formatp = item->ri_buf[0].i_addr;
2630 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2631 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2632 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2633 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2634 efi_id = efd_formatp->efd_efi_id;
2637 * Search for the efi with the id in the efd format structure
2638 * in the AIL.
2640 spin_lock(&ailp->xa_lock);
2641 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2642 while (lip != NULL) {
2643 if (lip->li_type == XFS_LI_EFI) {
2644 efip = (xfs_efi_log_item_t *)lip;
2645 if (efip->efi_format.efi_id == efi_id) {
2647 * xfs_trans_ail_delete() drops the
2648 * AIL lock.
2650 xfs_trans_ail_delete(ailp, lip,
2651 SHUTDOWN_CORRUPT_INCORE);
2652 xfs_efi_item_free(efip);
2653 spin_lock(&ailp->xa_lock);
2654 break;
2657 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2659 xfs_trans_ail_cursor_done(ailp, &cur);
2660 spin_unlock(&ailp->xa_lock);
2662 return 0;
2666 * Free up any resources allocated by the transaction
2668 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2670 STATIC void
2671 xlog_recover_free_trans(
2672 struct xlog_recover *trans)
2674 xlog_recover_item_t *item, *n;
2675 int i;
2677 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2678 /* Free the regions in the item. */
2679 list_del(&item->ri_list);
2680 for (i = 0; i < item->ri_cnt; i++)
2681 kmem_free(item->ri_buf[i].i_addr);
2682 /* Free the item itself */
2683 kmem_free(item->ri_buf);
2684 kmem_free(item);
2686 /* Free the transaction recover structure */
2687 kmem_free(trans);
2690 STATIC int
2691 xlog_recover_commit_pass1(
2692 struct xlog *log,
2693 struct xlog_recover *trans,
2694 struct xlog_recover_item *item)
2696 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2698 switch (ITEM_TYPE(item)) {
2699 case XFS_LI_BUF:
2700 return xlog_recover_buffer_pass1(log, item);
2701 case XFS_LI_QUOTAOFF:
2702 return xlog_recover_quotaoff_pass1(log, item);
2703 case XFS_LI_INODE:
2704 case XFS_LI_EFI:
2705 case XFS_LI_EFD:
2706 case XFS_LI_DQUOT:
2707 /* nothing to do in pass 1 */
2708 return 0;
2709 default:
2710 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2711 __func__, ITEM_TYPE(item));
2712 ASSERT(0);
2713 return XFS_ERROR(EIO);
2717 STATIC int
2718 xlog_recover_commit_pass2(
2719 struct xlog *log,
2720 struct xlog_recover *trans,
2721 struct list_head *buffer_list,
2722 struct xlog_recover_item *item)
2724 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2726 switch (ITEM_TYPE(item)) {
2727 case XFS_LI_BUF:
2728 return xlog_recover_buffer_pass2(log, buffer_list, item);
2729 case XFS_LI_INODE:
2730 return xlog_recover_inode_pass2(log, buffer_list, item);
2731 case XFS_LI_EFI:
2732 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2733 case XFS_LI_EFD:
2734 return xlog_recover_efd_pass2(log, item);
2735 case XFS_LI_DQUOT:
2736 return xlog_recover_dquot_pass2(log, buffer_list, item);
2737 case XFS_LI_QUOTAOFF:
2738 /* nothing to do in pass2 */
2739 return 0;
2740 default:
2741 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2742 __func__, ITEM_TYPE(item));
2743 ASSERT(0);
2744 return XFS_ERROR(EIO);
2749 * Perform the transaction.
2751 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2752 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2754 STATIC int
2755 xlog_recover_commit_trans(
2756 struct xlog *log,
2757 struct xlog_recover *trans,
2758 int pass)
2760 int error = 0, error2;
2761 xlog_recover_item_t *item;
2762 LIST_HEAD (buffer_list);
2764 hlist_del(&trans->r_list);
2766 error = xlog_recover_reorder_trans(log, trans, pass);
2767 if (error)
2768 return error;
2770 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2771 switch (pass) {
2772 case XLOG_RECOVER_PASS1:
2773 error = xlog_recover_commit_pass1(log, trans, item);
2774 break;
2775 case XLOG_RECOVER_PASS2:
2776 error = xlog_recover_commit_pass2(log, trans,
2777 &buffer_list, item);
2778 break;
2779 default:
2780 ASSERT(0);
2783 if (error)
2784 goto out;
2787 xlog_recover_free_trans(trans);
2789 out:
2790 error2 = xfs_buf_delwri_submit(&buffer_list);
2791 return error ? error : error2;
2794 STATIC int
2795 xlog_recover_unmount_trans(
2796 struct xlog *log,
2797 struct xlog_recover *trans)
2799 /* Do nothing now */
2800 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2801 return 0;
2805 * There are two valid states of the r_state field. 0 indicates that the
2806 * transaction structure is in a normal state. We have either seen the
2807 * start of the transaction or the last operation we added was not a partial
2808 * operation. If the last operation we added to the transaction was a
2809 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2811 * NOTE: skip LRs with 0 data length.
2813 STATIC int
2814 xlog_recover_process_data(
2815 xlog_t *log,
2816 struct hlist_head rhash[],
2817 xlog_rec_header_t *rhead,
2818 xfs_caddr_t dp,
2819 int pass)
2821 xfs_caddr_t lp;
2822 int num_logops;
2823 xlog_op_header_t *ohead;
2824 xlog_recover_t *trans;
2825 xlog_tid_t tid;
2826 int error;
2827 unsigned long hash;
2828 uint flags;
2830 lp = dp + be32_to_cpu(rhead->h_len);
2831 num_logops = be32_to_cpu(rhead->h_num_logops);
2833 /* check the log format matches our own - else we can't recover */
2834 if (xlog_header_check_recover(log->l_mp, rhead))
2835 return (XFS_ERROR(EIO));
2837 while ((dp < lp) && num_logops) {
2838 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2839 ohead = (xlog_op_header_t *)dp;
2840 dp += sizeof(xlog_op_header_t);
2841 if (ohead->oh_clientid != XFS_TRANSACTION &&
2842 ohead->oh_clientid != XFS_LOG) {
2843 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2844 __func__, ohead->oh_clientid);
2845 ASSERT(0);
2846 return (XFS_ERROR(EIO));
2848 tid = be32_to_cpu(ohead->oh_tid);
2849 hash = XLOG_RHASH(tid);
2850 trans = xlog_recover_find_tid(&rhash[hash], tid);
2851 if (trans == NULL) { /* not found; add new tid */
2852 if (ohead->oh_flags & XLOG_START_TRANS)
2853 xlog_recover_new_tid(&rhash[hash], tid,
2854 be64_to_cpu(rhead->h_lsn));
2855 } else {
2856 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2857 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2858 __func__, be32_to_cpu(ohead->oh_len));
2859 WARN_ON(1);
2860 return (XFS_ERROR(EIO));
2862 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2863 if (flags & XLOG_WAS_CONT_TRANS)
2864 flags &= ~XLOG_CONTINUE_TRANS;
2865 switch (flags) {
2866 case XLOG_COMMIT_TRANS:
2867 error = xlog_recover_commit_trans(log,
2868 trans, pass);
2869 break;
2870 case XLOG_UNMOUNT_TRANS:
2871 error = xlog_recover_unmount_trans(log, trans);
2872 break;
2873 case XLOG_WAS_CONT_TRANS:
2874 error = xlog_recover_add_to_cont_trans(log,
2875 trans, dp,
2876 be32_to_cpu(ohead->oh_len));
2877 break;
2878 case XLOG_START_TRANS:
2879 xfs_warn(log->l_mp, "%s: bad transaction",
2880 __func__);
2881 ASSERT(0);
2882 error = XFS_ERROR(EIO);
2883 break;
2884 case 0:
2885 case XLOG_CONTINUE_TRANS:
2886 error = xlog_recover_add_to_trans(log, trans,
2887 dp, be32_to_cpu(ohead->oh_len));
2888 break;
2889 default:
2890 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2891 __func__, flags);
2892 ASSERT(0);
2893 error = XFS_ERROR(EIO);
2894 break;
2896 if (error)
2897 return error;
2899 dp += be32_to_cpu(ohead->oh_len);
2900 num_logops--;
2902 return 0;
2906 * Process an extent free intent item that was recovered from
2907 * the log. We need to free the extents that it describes.
2909 STATIC int
2910 xlog_recover_process_efi(
2911 xfs_mount_t *mp,
2912 xfs_efi_log_item_t *efip)
2914 xfs_efd_log_item_t *efdp;
2915 xfs_trans_t *tp;
2916 int i;
2917 int error = 0;
2918 xfs_extent_t *extp;
2919 xfs_fsblock_t startblock_fsb;
2921 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2924 * First check the validity of the extents described by the
2925 * EFI. If any are bad, then assume that all are bad and
2926 * just toss the EFI.
2928 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2929 extp = &(efip->efi_format.efi_extents[i]);
2930 startblock_fsb = XFS_BB_TO_FSB(mp,
2931 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2932 if ((startblock_fsb == 0) ||
2933 (extp->ext_len == 0) ||
2934 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2935 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2937 * This will pull the EFI from the AIL and
2938 * free the memory associated with it.
2940 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2941 return XFS_ERROR(EIO);
2945 tp = xfs_trans_alloc(mp, 0);
2946 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2947 if (error)
2948 goto abort_error;
2949 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2951 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2952 extp = &(efip->efi_format.efi_extents[i]);
2953 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2954 if (error)
2955 goto abort_error;
2956 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2957 extp->ext_len);
2960 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2961 error = xfs_trans_commit(tp, 0);
2962 return error;
2964 abort_error:
2965 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2966 return error;
2970 * When this is called, all of the EFIs which did not have
2971 * corresponding EFDs should be in the AIL. What we do now
2972 * is free the extents associated with each one.
2974 * Since we process the EFIs in normal transactions, they
2975 * will be removed at some point after the commit. This prevents
2976 * us from just walking down the list processing each one.
2977 * We'll use a flag in the EFI to skip those that we've already
2978 * processed and use the AIL iteration mechanism's generation
2979 * count to try to speed this up at least a bit.
2981 * When we start, we know that the EFIs are the only things in
2982 * the AIL. As we process them, however, other items are added
2983 * to the AIL. Since everything added to the AIL must come after
2984 * everything already in the AIL, we stop processing as soon as
2985 * we see something other than an EFI in the AIL.
2987 STATIC int
2988 xlog_recover_process_efis(
2989 xlog_t *log)
2991 xfs_log_item_t *lip;
2992 xfs_efi_log_item_t *efip;
2993 int error = 0;
2994 struct xfs_ail_cursor cur;
2995 struct xfs_ail *ailp;
2997 ailp = log->l_ailp;
2998 spin_lock(&ailp->xa_lock);
2999 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3000 while (lip != NULL) {
3002 * We're done when we see something other than an EFI.
3003 * There should be no EFIs left in the AIL now.
3005 if (lip->li_type != XFS_LI_EFI) {
3006 #ifdef DEBUG
3007 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3008 ASSERT(lip->li_type != XFS_LI_EFI);
3009 #endif
3010 break;
3014 * Skip EFIs that we've already processed.
3016 efip = (xfs_efi_log_item_t *)lip;
3017 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3018 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3019 continue;
3022 spin_unlock(&ailp->xa_lock);
3023 error = xlog_recover_process_efi(log->l_mp, efip);
3024 spin_lock(&ailp->xa_lock);
3025 if (error)
3026 goto out;
3027 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3029 out:
3030 xfs_trans_ail_cursor_done(ailp, &cur);
3031 spin_unlock(&ailp->xa_lock);
3032 return error;
3036 * This routine performs a transaction to null out a bad inode pointer
3037 * in an agi unlinked inode hash bucket.
3039 STATIC void
3040 xlog_recover_clear_agi_bucket(
3041 xfs_mount_t *mp,
3042 xfs_agnumber_t agno,
3043 int bucket)
3045 xfs_trans_t *tp;
3046 xfs_agi_t *agi;
3047 xfs_buf_t *agibp;
3048 int offset;
3049 int error;
3051 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3052 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3053 0, 0, 0);
3054 if (error)
3055 goto out_abort;
3057 error = xfs_read_agi(mp, tp, agno, &agibp);
3058 if (error)
3059 goto out_abort;
3061 agi = XFS_BUF_TO_AGI(agibp);
3062 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3063 offset = offsetof(xfs_agi_t, agi_unlinked) +
3064 (sizeof(xfs_agino_t) * bucket);
3065 xfs_trans_log_buf(tp, agibp, offset,
3066 (offset + sizeof(xfs_agino_t) - 1));
3068 error = xfs_trans_commit(tp, 0);
3069 if (error)
3070 goto out_error;
3071 return;
3073 out_abort:
3074 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3075 out_error:
3076 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3077 return;
3080 STATIC xfs_agino_t
3081 xlog_recover_process_one_iunlink(
3082 struct xfs_mount *mp,
3083 xfs_agnumber_t agno,
3084 xfs_agino_t agino,
3085 int bucket)
3087 struct xfs_buf *ibp;
3088 struct xfs_dinode *dip;
3089 struct xfs_inode *ip;
3090 xfs_ino_t ino;
3091 int error;
3093 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3094 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3095 if (error)
3096 goto fail;
3099 * Get the on disk inode to find the next inode in the bucket.
3101 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, 0);
3102 if (error)
3103 goto fail_iput;
3105 ASSERT(ip->i_d.di_nlink == 0);
3106 ASSERT(ip->i_d.di_mode != 0);
3108 /* setup for the next pass */
3109 agino = be32_to_cpu(dip->di_next_unlinked);
3110 xfs_buf_relse(ibp);
3113 * Prevent any DMAPI event from being sent when the reference on
3114 * the inode is dropped.
3116 ip->i_d.di_dmevmask = 0;
3118 IRELE(ip);
3119 return agino;
3121 fail_iput:
3122 IRELE(ip);
3123 fail:
3125 * We can't read in the inode this bucket points to, or this inode
3126 * is messed up. Just ditch this bucket of inodes. We will lose
3127 * some inodes and space, but at least we won't hang.
3129 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3130 * clear the inode pointer in the bucket.
3132 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3133 return NULLAGINO;
3137 * xlog_iunlink_recover
3139 * This is called during recovery to process any inodes which
3140 * we unlinked but not freed when the system crashed. These
3141 * inodes will be on the lists in the AGI blocks. What we do
3142 * here is scan all the AGIs and fully truncate and free any
3143 * inodes found on the lists. Each inode is removed from the
3144 * lists when it has been fully truncated and is freed. The
3145 * freeing of the inode and its removal from the list must be
3146 * atomic.
3148 STATIC void
3149 xlog_recover_process_iunlinks(
3150 xlog_t *log)
3152 xfs_mount_t *mp;
3153 xfs_agnumber_t agno;
3154 xfs_agi_t *agi;
3155 xfs_buf_t *agibp;
3156 xfs_agino_t agino;
3157 int bucket;
3158 int error;
3159 uint mp_dmevmask;
3161 mp = log->l_mp;
3164 * Prevent any DMAPI event from being sent while in this function.
3166 mp_dmevmask = mp->m_dmevmask;
3167 mp->m_dmevmask = 0;
3169 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3171 * Find the agi for this ag.
3173 error = xfs_read_agi(mp, NULL, agno, &agibp);
3174 if (error) {
3176 * AGI is b0rked. Don't process it.
3178 * We should probably mark the filesystem as corrupt
3179 * after we've recovered all the ag's we can....
3181 continue;
3184 * Unlock the buffer so that it can be acquired in the normal
3185 * course of the transaction to truncate and free each inode.
3186 * Because we are not racing with anyone else here for the AGI
3187 * buffer, we don't even need to hold it locked to read the
3188 * initial unlinked bucket entries out of the buffer. We keep
3189 * buffer reference though, so that it stays pinned in memory
3190 * while we need the buffer.
3192 agi = XFS_BUF_TO_AGI(agibp);
3193 xfs_buf_unlock(agibp);
3195 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3196 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3197 while (agino != NULLAGINO) {
3198 agino = xlog_recover_process_one_iunlink(mp,
3199 agno, agino, bucket);
3202 xfs_buf_rele(agibp);
3205 mp->m_dmevmask = mp_dmevmask;
3209 #ifdef DEBUG
3210 STATIC void
3211 xlog_pack_data_checksum(
3212 xlog_t *log,
3213 xlog_in_core_t *iclog,
3214 int size)
3216 int i;
3217 __be32 *up;
3218 uint chksum = 0;
3220 up = (__be32 *)iclog->ic_datap;
3221 /* divide length by 4 to get # words */
3222 for (i = 0; i < (size >> 2); i++) {
3223 chksum ^= be32_to_cpu(*up);
3224 up++;
3226 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3228 #else
3229 #define xlog_pack_data_checksum(log, iclog, size)
3230 #endif
3233 * Stamp cycle number in every block
3235 void
3236 xlog_pack_data(
3237 xlog_t *log,
3238 xlog_in_core_t *iclog,
3239 int roundoff)
3241 int i, j, k;
3242 int size = iclog->ic_offset + roundoff;
3243 __be32 cycle_lsn;
3244 xfs_caddr_t dp;
3246 xlog_pack_data_checksum(log, iclog, size);
3248 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3250 dp = iclog->ic_datap;
3251 for (i = 0; i < BTOBB(size) &&
3252 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3253 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3254 *(__be32 *)dp = cycle_lsn;
3255 dp += BBSIZE;
3258 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3259 xlog_in_core_2_t *xhdr = iclog->ic_data;
3261 for ( ; i < BTOBB(size); i++) {
3262 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3263 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3264 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3265 *(__be32 *)dp = cycle_lsn;
3266 dp += BBSIZE;
3269 for (i = 1; i < log->l_iclog_heads; i++) {
3270 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3275 STATIC void
3276 xlog_unpack_data(
3277 xlog_rec_header_t *rhead,
3278 xfs_caddr_t dp,
3279 xlog_t *log)
3281 int i, j, k;
3283 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3284 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3285 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3286 dp += BBSIZE;
3289 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3290 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3291 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3292 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3293 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3294 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3295 dp += BBSIZE;
3300 STATIC int
3301 xlog_valid_rec_header(
3302 xlog_t *log,
3303 xlog_rec_header_t *rhead,
3304 xfs_daddr_t blkno)
3306 int hlen;
3308 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3309 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3310 XFS_ERRLEVEL_LOW, log->l_mp);
3311 return XFS_ERROR(EFSCORRUPTED);
3313 if (unlikely(
3314 (!rhead->h_version ||
3315 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3316 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3317 __func__, be32_to_cpu(rhead->h_version));
3318 return XFS_ERROR(EIO);
3321 /* LR body must have data or it wouldn't have been written */
3322 hlen = be32_to_cpu(rhead->h_len);
3323 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3324 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3325 XFS_ERRLEVEL_LOW, log->l_mp);
3326 return XFS_ERROR(EFSCORRUPTED);
3328 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3329 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3330 XFS_ERRLEVEL_LOW, log->l_mp);
3331 return XFS_ERROR(EFSCORRUPTED);
3333 return 0;
3337 * Read the log from tail to head and process the log records found.
3338 * Handle the two cases where the tail and head are in the same cycle
3339 * and where the active portion of the log wraps around the end of
3340 * the physical log separately. The pass parameter is passed through
3341 * to the routines called to process the data and is not looked at
3342 * here.
3344 STATIC int
3345 xlog_do_recovery_pass(
3346 xlog_t *log,
3347 xfs_daddr_t head_blk,
3348 xfs_daddr_t tail_blk,
3349 int pass)
3351 xlog_rec_header_t *rhead;
3352 xfs_daddr_t blk_no;
3353 xfs_caddr_t offset;
3354 xfs_buf_t *hbp, *dbp;
3355 int error = 0, h_size;
3356 int bblks, split_bblks;
3357 int hblks, split_hblks, wrapped_hblks;
3358 struct hlist_head rhash[XLOG_RHASH_SIZE];
3360 ASSERT(head_blk != tail_blk);
3363 * Read the header of the tail block and get the iclog buffer size from
3364 * h_size. Use this to tell how many sectors make up the log header.
3366 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3368 * When using variable length iclogs, read first sector of
3369 * iclog header and extract the header size from it. Get a
3370 * new hbp that is the correct size.
3372 hbp = xlog_get_bp(log, 1);
3373 if (!hbp)
3374 return ENOMEM;
3376 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3377 if (error)
3378 goto bread_err1;
3380 rhead = (xlog_rec_header_t *)offset;
3381 error = xlog_valid_rec_header(log, rhead, tail_blk);
3382 if (error)
3383 goto bread_err1;
3384 h_size = be32_to_cpu(rhead->h_size);
3385 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3386 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3387 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3388 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3389 hblks++;
3390 xlog_put_bp(hbp);
3391 hbp = xlog_get_bp(log, hblks);
3392 } else {
3393 hblks = 1;
3395 } else {
3396 ASSERT(log->l_sectBBsize == 1);
3397 hblks = 1;
3398 hbp = xlog_get_bp(log, 1);
3399 h_size = XLOG_BIG_RECORD_BSIZE;
3402 if (!hbp)
3403 return ENOMEM;
3404 dbp = xlog_get_bp(log, BTOBB(h_size));
3405 if (!dbp) {
3406 xlog_put_bp(hbp);
3407 return ENOMEM;
3410 memset(rhash, 0, sizeof(rhash));
3411 if (tail_blk <= head_blk) {
3412 for (blk_no = tail_blk; blk_no < head_blk; ) {
3413 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3414 if (error)
3415 goto bread_err2;
3417 rhead = (xlog_rec_header_t *)offset;
3418 error = xlog_valid_rec_header(log, rhead, blk_no);
3419 if (error)
3420 goto bread_err2;
3422 /* blocks in data section */
3423 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3424 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3425 &offset);
3426 if (error)
3427 goto bread_err2;
3429 xlog_unpack_data(rhead, offset, log);
3430 if ((error = xlog_recover_process_data(log,
3431 rhash, rhead, offset, pass)))
3432 goto bread_err2;
3433 blk_no += bblks + hblks;
3435 } else {
3437 * Perform recovery around the end of the physical log.
3438 * When the head is not on the same cycle number as the tail,
3439 * we can't do a sequential recovery as above.
3441 blk_no = tail_blk;
3442 while (blk_no < log->l_logBBsize) {
3444 * Check for header wrapping around physical end-of-log
3446 offset = hbp->b_addr;
3447 split_hblks = 0;
3448 wrapped_hblks = 0;
3449 if (blk_no + hblks <= log->l_logBBsize) {
3450 /* Read header in one read */
3451 error = xlog_bread(log, blk_no, hblks, hbp,
3452 &offset);
3453 if (error)
3454 goto bread_err2;
3455 } else {
3456 /* This LR is split across physical log end */
3457 if (blk_no != log->l_logBBsize) {
3458 /* some data before physical log end */
3459 ASSERT(blk_no <= INT_MAX);
3460 split_hblks = log->l_logBBsize - (int)blk_no;
3461 ASSERT(split_hblks > 0);
3462 error = xlog_bread(log, blk_no,
3463 split_hblks, hbp,
3464 &offset);
3465 if (error)
3466 goto bread_err2;
3470 * Note: this black magic still works with
3471 * large sector sizes (non-512) only because:
3472 * - we increased the buffer size originally
3473 * by 1 sector giving us enough extra space
3474 * for the second read;
3475 * - the log start is guaranteed to be sector
3476 * aligned;
3477 * - we read the log end (LR header start)
3478 * _first_, then the log start (LR header end)
3479 * - order is important.
3481 wrapped_hblks = hblks - split_hblks;
3482 error = xlog_bread_offset(log, 0,
3483 wrapped_hblks, hbp,
3484 offset + BBTOB(split_hblks));
3485 if (error)
3486 goto bread_err2;
3488 rhead = (xlog_rec_header_t *)offset;
3489 error = xlog_valid_rec_header(log, rhead,
3490 split_hblks ? blk_no : 0);
3491 if (error)
3492 goto bread_err2;
3494 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3495 blk_no += hblks;
3497 /* Read in data for log record */
3498 if (blk_no + bblks <= log->l_logBBsize) {
3499 error = xlog_bread(log, blk_no, bblks, dbp,
3500 &offset);
3501 if (error)
3502 goto bread_err2;
3503 } else {
3504 /* This log record is split across the
3505 * physical end of log */
3506 offset = dbp->b_addr;
3507 split_bblks = 0;
3508 if (blk_no != log->l_logBBsize) {
3509 /* some data is before the physical
3510 * end of log */
3511 ASSERT(!wrapped_hblks);
3512 ASSERT(blk_no <= INT_MAX);
3513 split_bblks =
3514 log->l_logBBsize - (int)blk_no;
3515 ASSERT(split_bblks > 0);
3516 error = xlog_bread(log, blk_no,
3517 split_bblks, dbp,
3518 &offset);
3519 if (error)
3520 goto bread_err2;
3524 * Note: this black magic still works with
3525 * large sector sizes (non-512) only because:
3526 * - we increased the buffer size originally
3527 * by 1 sector giving us enough extra space
3528 * for the second read;
3529 * - the log start is guaranteed to be sector
3530 * aligned;
3531 * - we read the log end (LR header start)
3532 * _first_, then the log start (LR header end)
3533 * - order is important.
3535 error = xlog_bread_offset(log, 0,
3536 bblks - split_bblks, hbp,
3537 offset + BBTOB(split_bblks));
3538 if (error)
3539 goto bread_err2;
3541 xlog_unpack_data(rhead, offset, log);
3542 if ((error = xlog_recover_process_data(log, rhash,
3543 rhead, offset, pass)))
3544 goto bread_err2;
3545 blk_no += bblks;
3548 ASSERT(blk_no >= log->l_logBBsize);
3549 blk_no -= log->l_logBBsize;
3551 /* read first part of physical log */
3552 while (blk_no < head_blk) {
3553 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3554 if (error)
3555 goto bread_err2;
3557 rhead = (xlog_rec_header_t *)offset;
3558 error = xlog_valid_rec_header(log, rhead, blk_no);
3559 if (error)
3560 goto bread_err2;
3562 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3563 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3564 &offset);
3565 if (error)
3566 goto bread_err2;
3568 xlog_unpack_data(rhead, offset, log);
3569 if ((error = xlog_recover_process_data(log, rhash,
3570 rhead, offset, pass)))
3571 goto bread_err2;
3572 blk_no += bblks + hblks;
3576 bread_err2:
3577 xlog_put_bp(dbp);
3578 bread_err1:
3579 xlog_put_bp(hbp);
3580 return error;
3584 * Do the recovery of the log. We actually do this in two phases.
3585 * The two passes are necessary in order to implement the function
3586 * of cancelling a record written into the log. The first pass
3587 * determines those things which have been cancelled, and the
3588 * second pass replays log items normally except for those which
3589 * have been cancelled. The handling of the replay and cancellations
3590 * takes place in the log item type specific routines.
3592 * The table of items which have cancel records in the log is allocated
3593 * and freed at this level, since only here do we know when all of
3594 * the log recovery has been completed.
3596 STATIC int
3597 xlog_do_log_recovery(
3598 xlog_t *log,
3599 xfs_daddr_t head_blk,
3600 xfs_daddr_t tail_blk)
3602 int error, i;
3604 ASSERT(head_blk != tail_blk);
3607 * First do a pass to find all of the cancelled buf log items.
3608 * Store them in the buf_cancel_table for use in the second pass.
3610 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3611 sizeof(struct list_head),
3612 KM_SLEEP);
3613 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3614 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3616 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3617 XLOG_RECOVER_PASS1);
3618 if (error != 0) {
3619 kmem_free(log->l_buf_cancel_table);
3620 log->l_buf_cancel_table = NULL;
3621 return error;
3624 * Then do a second pass to actually recover the items in the log.
3625 * When it is complete free the table of buf cancel items.
3627 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3628 XLOG_RECOVER_PASS2);
3629 #ifdef DEBUG
3630 if (!error) {
3631 int i;
3633 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3634 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3636 #endif /* DEBUG */
3638 kmem_free(log->l_buf_cancel_table);
3639 log->l_buf_cancel_table = NULL;
3641 return error;
3645 * Do the actual recovery
3647 STATIC int
3648 xlog_do_recover(
3649 xlog_t *log,
3650 xfs_daddr_t head_blk,
3651 xfs_daddr_t tail_blk)
3653 int error;
3654 xfs_buf_t *bp;
3655 xfs_sb_t *sbp;
3658 * First replay the images in the log.
3660 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3661 if (error)
3662 return error;
3665 * If IO errors happened during recovery, bail out.
3667 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3668 return (EIO);
3672 * We now update the tail_lsn since much of the recovery has completed
3673 * and there may be space available to use. If there were no extent
3674 * or iunlinks, we can free up the entire log and set the tail_lsn to
3675 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3676 * lsn of the last known good LR on disk. If there are extent frees
3677 * or iunlinks they will have some entries in the AIL; so we look at
3678 * the AIL to determine how to set the tail_lsn.
3680 xlog_assign_tail_lsn(log->l_mp);
3683 * Now that we've finished replaying all buffer and inode
3684 * updates, re-read in the superblock.
3686 bp = xfs_getsb(log->l_mp, 0);
3687 XFS_BUF_UNDONE(bp);
3688 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3689 XFS_BUF_READ(bp);
3690 XFS_BUF_UNASYNC(bp);
3691 xfsbdstrat(log->l_mp, bp);
3692 error = xfs_buf_iowait(bp);
3693 if (error) {
3694 xfs_buf_ioerror_alert(bp, __func__);
3695 ASSERT(0);
3696 xfs_buf_relse(bp);
3697 return error;
3700 /* Convert superblock from on-disk format */
3701 sbp = &log->l_mp->m_sb;
3702 xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
3703 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3704 ASSERT(xfs_sb_good_version(sbp));
3705 xfs_buf_relse(bp);
3707 /* We've re-read the superblock so re-initialize per-cpu counters */
3708 xfs_icsb_reinit_counters(log->l_mp);
3710 xlog_recover_check_summary(log);
3712 /* Normal transactions can now occur */
3713 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3714 return 0;
3718 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3720 * Return error or zero.
3723 xlog_recover(
3724 xlog_t *log)
3726 xfs_daddr_t head_blk, tail_blk;
3727 int error;
3729 /* find the tail of the log */
3730 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3731 return error;
3733 if (tail_blk != head_blk) {
3734 /* There used to be a comment here:
3736 * disallow recovery on read-only mounts. note -- mount
3737 * checks for ENOSPC and turns it into an intelligent
3738 * error message.
3739 * ...but this is no longer true. Now, unless you specify
3740 * NORECOVERY (in which case this function would never be
3741 * called), we just go ahead and recover. We do this all
3742 * under the vfs layer, so we can get away with it unless
3743 * the device itself is read-only, in which case we fail.
3745 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3746 return error;
3749 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3750 log->l_mp->m_logname ? log->l_mp->m_logname
3751 : "internal");
3753 error = xlog_do_recover(log, head_blk, tail_blk);
3754 log->l_flags |= XLOG_RECOVERY_NEEDED;
3756 return error;
3760 * In the first part of recovery we replay inodes and buffers and build
3761 * up the list of extent free items which need to be processed. Here
3762 * we process the extent free items and clean up the on disk unlinked
3763 * inode lists. This is separated from the first part of recovery so
3764 * that the root and real-time bitmap inodes can be read in from disk in
3765 * between the two stages. This is necessary so that we can free space
3766 * in the real-time portion of the file system.
3769 xlog_recover_finish(
3770 xlog_t *log)
3773 * Now we're ready to do the transactions needed for the
3774 * rest of recovery. Start with completing all the extent
3775 * free intent records and then process the unlinked inode
3776 * lists. At this point, we essentially run in normal mode
3777 * except that we're still performing recovery actions
3778 * rather than accepting new requests.
3780 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3781 int error;
3782 error = xlog_recover_process_efis(log);
3783 if (error) {
3784 xfs_alert(log->l_mp, "Failed to recover EFIs");
3785 return error;
3788 * Sync the log to get all the EFIs out of the AIL.
3789 * This isn't absolutely necessary, but it helps in
3790 * case the unlink transactions would have problems
3791 * pushing the EFIs out of the way.
3793 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3795 xlog_recover_process_iunlinks(log);
3797 xlog_recover_check_summary(log);
3799 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3800 log->l_mp->m_logname ? log->l_mp->m_logname
3801 : "internal");
3802 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3803 } else {
3804 xfs_info(log->l_mp, "Ending clean mount");
3806 return 0;
3810 #if defined(DEBUG)
3812 * Read all of the agf and agi counters and check that they
3813 * are consistent with the superblock counters.
3815 void
3816 xlog_recover_check_summary(
3817 xlog_t *log)
3819 xfs_mount_t *mp;
3820 xfs_agf_t *agfp;
3821 xfs_buf_t *agfbp;
3822 xfs_buf_t *agibp;
3823 xfs_agnumber_t agno;
3824 __uint64_t freeblks;
3825 __uint64_t itotal;
3826 __uint64_t ifree;
3827 int error;
3829 mp = log->l_mp;
3831 freeblks = 0LL;
3832 itotal = 0LL;
3833 ifree = 0LL;
3834 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3835 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3836 if (error) {
3837 xfs_alert(mp, "%s agf read failed agno %d error %d",
3838 __func__, agno, error);
3839 } else {
3840 agfp = XFS_BUF_TO_AGF(agfbp);
3841 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3842 be32_to_cpu(agfp->agf_flcount);
3843 xfs_buf_relse(agfbp);
3846 error = xfs_read_agi(mp, NULL, agno, &agibp);
3847 if (error) {
3848 xfs_alert(mp, "%s agi read failed agno %d error %d",
3849 __func__, agno, error);
3850 } else {
3851 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3853 itotal += be32_to_cpu(agi->agi_count);
3854 ifree += be32_to_cpu(agi->agi_freecount);
3855 xfs_buf_relse(agibp);
3859 #endif /* DEBUG */