4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
31 #include <trace/events/f2fs.h>
33 static bool __is_cp_guaranteed(struct page
*page
)
35 struct address_space
*mapping
= page
->mapping
;
37 struct f2fs_sb_info
*sbi
;
42 inode
= mapping
->host
;
43 sbi
= F2FS_I_SB(inode
);
45 if (inode
->i_ino
== F2FS_META_INO(sbi
) ||
46 inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
47 S_ISDIR(inode
->i_mode
) ||
53 static void f2fs_read_end_io(struct bio
*bio
)
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio
->bi_io_vec
->bv_page
), FAULT_IO
)) {
60 f2fs_show_injection_info(FAULT_IO
);
61 bio
->bi_status
= BLK_STS_IOERR
;
65 if (f2fs_bio_encrypted(bio
)) {
67 fscrypt_release_ctx(bio
->bi_private
);
69 fscrypt_decrypt_bio_pages(bio
->bi_private
, bio
);
74 bio_for_each_segment_all(bvec
, bio
, i
) {
75 struct page
*page
= bvec
->bv_page
;
77 if (!bio
->bi_status
) {
78 if (!PageUptodate(page
))
79 SetPageUptodate(page
);
81 ClearPageUptodate(page
);
89 static void f2fs_write_end_io(struct bio
*bio
)
91 struct f2fs_sb_info
*sbi
= bio
->bi_private
;
95 bio_for_each_segment_all(bvec
, bio
, i
) {
96 struct page
*page
= bvec
->bv_page
;
97 enum count_type type
= WB_DATA_TYPE(page
);
99 if (IS_DUMMY_WRITTEN_PAGE(page
)) {
100 set_page_private(page
, (unsigned long)NULL
);
101 ClearPagePrivate(page
);
103 mempool_free(page
, sbi
->write_io_dummy
);
105 if (unlikely(bio
->bi_status
))
106 f2fs_stop_checkpoint(sbi
, true);
110 fscrypt_pullback_bio_page(&page
, true);
112 if (unlikely(bio
->bi_status
)) {
113 mapping_set_error(page
->mapping
, -EIO
);
114 f2fs_stop_checkpoint(sbi
, true);
116 dec_page_count(sbi
, type
);
117 clear_cold_data(page
);
118 end_page_writeback(page
);
120 if (!get_pages(sbi
, F2FS_WB_CP_DATA
) &&
121 wq_has_sleeper(&sbi
->cp_wait
))
122 wake_up(&sbi
->cp_wait
);
128 * Return true, if pre_bio's bdev is same as its target device.
130 struct block_device
*f2fs_target_device(struct f2fs_sb_info
*sbi
,
131 block_t blk_addr
, struct bio
*bio
)
133 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
136 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
137 if (FDEV(i
).start_blk
<= blk_addr
&&
138 FDEV(i
).end_blk
>= blk_addr
) {
139 blk_addr
-= FDEV(i
).start_blk
;
145 bio_set_dev(bio
, bdev
);
146 bio
->bi_iter
.bi_sector
= SECTOR_FROM_BLOCK(blk_addr
);
151 int f2fs_target_device_index(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
155 for (i
= 0; i
< sbi
->s_ndevs
; i
++)
156 if (FDEV(i
).start_blk
<= blkaddr
&& FDEV(i
).end_blk
>= blkaddr
)
161 static bool __same_bdev(struct f2fs_sb_info
*sbi
,
162 block_t blk_addr
, struct bio
*bio
)
164 struct block_device
*b
= f2fs_target_device(sbi
, blk_addr
, NULL
);
165 return bio
->bi_disk
== b
->bd_disk
&& bio
->bi_partno
== b
->bd_partno
;
169 * Low-level block read/write IO operations.
171 static struct bio
*__bio_alloc(struct f2fs_sb_info
*sbi
, block_t blk_addr
,
172 int npages
, bool is_read
)
176 bio
= f2fs_bio_alloc(npages
);
178 f2fs_target_device(sbi
, blk_addr
, bio
);
179 bio
->bi_end_io
= is_read
? f2fs_read_end_io
: f2fs_write_end_io
;
180 bio
->bi_private
= is_read
? NULL
: sbi
;
185 static inline void __submit_bio(struct f2fs_sb_info
*sbi
,
186 struct bio
*bio
, enum page_type type
)
188 if (!is_read_io(bio_op(bio
))) {
191 if (f2fs_sb_mounted_blkzoned(sbi
->sb
) &&
192 current
->plug
&& (type
== DATA
|| type
== NODE
))
193 blk_finish_plug(current
->plug
);
195 if (type
!= DATA
&& type
!= NODE
)
198 start
= bio
->bi_iter
.bi_size
>> F2FS_BLKSIZE_BITS
;
199 start
%= F2FS_IO_SIZE(sbi
);
204 /* fill dummy pages */
205 for (; start
< F2FS_IO_SIZE(sbi
); start
++) {
207 mempool_alloc(sbi
->write_io_dummy
,
208 GFP_NOIO
| __GFP_ZERO
| __GFP_NOFAIL
);
209 f2fs_bug_on(sbi
, !page
);
211 SetPagePrivate(page
);
212 set_page_private(page
, (unsigned long)DUMMY_WRITTEN_PAGE
);
214 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
)
218 * In the NODE case, we lose next block address chain. So, we
219 * need to do checkpoint in f2fs_sync_file.
222 set_sbi_flag(sbi
, SBI_NEED_CP
);
225 if (is_read_io(bio_op(bio
)))
226 trace_f2fs_submit_read_bio(sbi
->sb
, type
, bio
);
228 trace_f2fs_submit_write_bio(sbi
->sb
, type
, bio
);
232 static void __submit_merged_bio(struct f2fs_bio_info
*io
)
234 struct f2fs_io_info
*fio
= &io
->fio
;
239 bio_set_op_attrs(io
->bio
, fio
->op
, fio
->op_flags
);
241 if (is_read_io(fio
->op
))
242 trace_f2fs_prepare_read_bio(io
->sbi
->sb
, fio
->type
, io
->bio
);
244 trace_f2fs_prepare_write_bio(io
->sbi
->sb
, fio
->type
, io
->bio
);
246 __submit_bio(io
->sbi
, io
->bio
, fio
->type
);
250 static bool __has_merged_page(struct f2fs_bio_info
*io
,
251 struct inode
*inode
, nid_t ino
, pgoff_t idx
)
253 struct bio_vec
*bvec
;
263 bio_for_each_segment_all(bvec
, io
->bio
, i
) {
265 if (bvec
->bv_page
->mapping
)
266 target
= bvec
->bv_page
;
268 target
= fscrypt_control_page(bvec
->bv_page
);
270 if (idx
!= target
->index
)
273 if (inode
&& inode
== target
->mapping
->host
)
275 if (ino
&& ino
== ino_of_node(target
))
282 static bool has_merged_page(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
283 nid_t ino
, pgoff_t idx
, enum page_type type
)
285 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
287 struct f2fs_bio_info
*io
;
290 for (temp
= HOT
; temp
< NR_TEMP_TYPE
; temp
++) {
291 io
= sbi
->write_io
[btype
] + temp
;
293 down_read(&io
->io_rwsem
);
294 ret
= __has_merged_page(io
, inode
, ino
, idx
);
295 up_read(&io
->io_rwsem
);
297 /* TODO: use HOT temp only for meta pages now. */
298 if (ret
|| btype
== META
)
304 static void __f2fs_submit_merged_write(struct f2fs_sb_info
*sbi
,
305 enum page_type type
, enum temp_type temp
)
307 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
308 struct f2fs_bio_info
*io
= sbi
->write_io
[btype
] + temp
;
310 down_write(&io
->io_rwsem
);
312 /* change META to META_FLUSH in the checkpoint procedure */
313 if (type
>= META_FLUSH
) {
314 io
->fio
.type
= META_FLUSH
;
315 io
->fio
.op
= REQ_OP_WRITE
;
316 io
->fio
.op_flags
= REQ_META
| REQ_PRIO
| REQ_SYNC
;
317 if (!test_opt(sbi
, NOBARRIER
))
318 io
->fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
320 __submit_merged_bio(io
);
321 up_write(&io
->io_rwsem
);
324 static void __submit_merged_write_cond(struct f2fs_sb_info
*sbi
,
325 struct inode
*inode
, nid_t ino
, pgoff_t idx
,
326 enum page_type type
, bool force
)
330 if (!force
&& !has_merged_page(sbi
, inode
, ino
, idx
, type
))
333 for (temp
= HOT
; temp
< NR_TEMP_TYPE
; temp
++) {
335 __f2fs_submit_merged_write(sbi
, type
, temp
);
337 /* TODO: use HOT temp only for meta pages now. */
343 void f2fs_submit_merged_write(struct f2fs_sb_info
*sbi
, enum page_type type
)
345 __submit_merged_write_cond(sbi
, NULL
, 0, 0, type
, true);
348 void f2fs_submit_merged_write_cond(struct f2fs_sb_info
*sbi
,
349 struct inode
*inode
, nid_t ino
, pgoff_t idx
,
352 __submit_merged_write_cond(sbi
, inode
, ino
, idx
, type
, false);
355 void f2fs_flush_merged_writes(struct f2fs_sb_info
*sbi
)
357 f2fs_submit_merged_write(sbi
, DATA
);
358 f2fs_submit_merged_write(sbi
, NODE
);
359 f2fs_submit_merged_write(sbi
, META
);
363 * Fill the locked page with data located in the block address.
364 * A caller needs to unlock the page on failure.
366 int f2fs_submit_page_bio(struct f2fs_io_info
*fio
)
369 struct page
*page
= fio
->encrypted_page
?
370 fio
->encrypted_page
: fio
->page
;
372 trace_f2fs_submit_page_bio(page
, fio
);
373 f2fs_trace_ios(fio
, 0);
375 /* Allocate a new bio */
376 bio
= __bio_alloc(fio
->sbi
, fio
->new_blkaddr
, 1, is_read_io(fio
->op
));
378 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
382 bio_set_op_attrs(bio
, fio
->op
, fio
->op_flags
);
384 __submit_bio(fio
->sbi
, bio
, fio
->type
);
386 if (!is_read_io(fio
->op
))
387 inc_page_count(fio
->sbi
, WB_DATA_TYPE(fio
->page
));
391 int f2fs_submit_page_write(struct f2fs_io_info
*fio
)
393 struct f2fs_sb_info
*sbi
= fio
->sbi
;
394 enum page_type btype
= PAGE_TYPE_OF_BIO(fio
->type
);
395 struct f2fs_bio_info
*io
= sbi
->write_io
[btype
] + fio
->temp
;
396 struct page
*bio_page
;
399 f2fs_bug_on(sbi
, is_read_io(fio
->op
));
401 down_write(&io
->io_rwsem
);
404 spin_lock(&io
->io_lock
);
405 if (list_empty(&io
->io_list
)) {
406 spin_unlock(&io
->io_lock
);
409 fio
= list_first_entry(&io
->io_list
,
410 struct f2fs_io_info
, list
);
411 list_del(&fio
->list
);
412 spin_unlock(&io
->io_lock
);
415 if (fio
->old_blkaddr
!= NEW_ADDR
)
416 verify_block_addr(sbi
, fio
->old_blkaddr
);
417 verify_block_addr(sbi
, fio
->new_blkaddr
);
419 bio_page
= fio
->encrypted_page
? fio
->encrypted_page
: fio
->page
;
421 /* set submitted = 1 as a return value */
424 inc_page_count(sbi
, WB_DATA_TYPE(bio_page
));
426 if (io
->bio
&& (io
->last_block_in_bio
!= fio
->new_blkaddr
- 1 ||
427 (io
->fio
.op
!= fio
->op
|| io
->fio
.op_flags
!= fio
->op_flags
) ||
428 !__same_bdev(sbi
, fio
->new_blkaddr
, io
->bio
)))
429 __submit_merged_bio(io
);
431 if (io
->bio
== NULL
) {
432 if ((fio
->type
== DATA
|| fio
->type
== NODE
) &&
433 fio
->new_blkaddr
& F2FS_IO_SIZE_MASK(sbi
)) {
435 dec_page_count(sbi
, WB_DATA_TYPE(bio_page
));
438 io
->bio
= __bio_alloc(sbi
, fio
->new_blkaddr
,
439 BIO_MAX_PAGES
, false);
443 if (bio_add_page(io
->bio
, bio_page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
444 __submit_merged_bio(io
);
448 io
->last_block_in_bio
= fio
->new_blkaddr
;
449 f2fs_trace_ios(fio
, 0);
451 trace_f2fs_submit_page_write(fio
->page
, fio
);
456 up_write(&io
->io_rwsem
);
460 static struct bio
*f2fs_grab_read_bio(struct inode
*inode
, block_t blkaddr
,
463 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
464 struct fscrypt_ctx
*ctx
= NULL
;
467 if (f2fs_encrypted_file(inode
)) {
468 ctx
= fscrypt_get_ctx(inode
, GFP_NOFS
);
470 return ERR_CAST(ctx
);
472 /* wait the page to be moved by cleaning */
473 f2fs_wait_on_block_writeback(sbi
, blkaddr
);
476 bio
= bio_alloc(GFP_KERNEL
, min_t(int, nr_pages
, BIO_MAX_PAGES
));
479 fscrypt_release_ctx(ctx
);
480 return ERR_PTR(-ENOMEM
);
482 f2fs_target_device(sbi
, blkaddr
, bio
);
483 bio
->bi_end_io
= f2fs_read_end_io
;
484 bio
->bi_private
= ctx
;
485 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
490 /* This can handle encryption stuffs */
491 static int f2fs_submit_page_read(struct inode
*inode
, struct page
*page
,
494 struct bio
*bio
= f2fs_grab_read_bio(inode
, blkaddr
, 1);
499 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
503 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
507 static void __set_data_blkaddr(struct dnode_of_data
*dn
)
509 struct f2fs_node
*rn
= F2FS_NODE(dn
->node_page
);
513 if (IS_INODE(dn
->node_page
) && f2fs_has_extra_attr(dn
->inode
))
514 base
= get_extra_isize(dn
->inode
);
516 /* Get physical address of data block */
517 addr_array
= blkaddr_in_node(rn
);
518 addr_array
[base
+ dn
->ofs_in_node
] = cpu_to_le32(dn
->data_blkaddr
);
522 * Lock ordering for the change of data block address:
525 * update block addresses in the node page
527 void set_data_blkaddr(struct dnode_of_data
*dn
)
529 f2fs_wait_on_page_writeback(dn
->node_page
, NODE
, true);
530 __set_data_blkaddr(dn
);
531 if (set_page_dirty(dn
->node_page
))
532 dn
->node_changed
= true;
535 void f2fs_update_data_blkaddr(struct dnode_of_data
*dn
, block_t blkaddr
)
537 dn
->data_blkaddr
= blkaddr
;
538 set_data_blkaddr(dn
);
539 f2fs_update_extent_cache(dn
);
542 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
543 int reserve_new_blocks(struct dnode_of_data
*dn
, blkcnt_t count
)
545 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
551 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
553 if (unlikely((err
= inc_valid_block_count(sbi
, dn
->inode
, &count
))))
556 trace_f2fs_reserve_new_blocks(dn
->inode
, dn
->nid
,
557 dn
->ofs_in_node
, count
);
559 f2fs_wait_on_page_writeback(dn
->node_page
, NODE
, true);
561 for (; count
> 0; dn
->ofs_in_node
++) {
562 block_t blkaddr
= datablock_addr(dn
->inode
,
563 dn
->node_page
, dn
->ofs_in_node
);
564 if (blkaddr
== NULL_ADDR
) {
565 dn
->data_blkaddr
= NEW_ADDR
;
566 __set_data_blkaddr(dn
);
571 if (set_page_dirty(dn
->node_page
))
572 dn
->node_changed
= true;
576 /* Should keep dn->ofs_in_node unchanged */
577 int reserve_new_block(struct dnode_of_data
*dn
)
579 unsigned int ofs_in_node
= dn
->ofs_in_node
;
582 ret
= reserve_new_blocks(dn
, 1);
583 dn
->ofs_in_node
= ofs_in_node
;
587 int f2fs_reserve_block(struct dnode_of_data
*dn
, pgoff_t index
)
589 bool need_put
= dn
->inode_page
? false : true;
592 err
= get_dnode_of_data(dn
, index
, ALLOC_NODE
);
596 if (dn
->data_blkaddr
== NULL_ADDR
)
597 err
= reserve_new_block(dn
);
603 int f2fs_get_block(struct dnode_of_data
*dn
, pgoff_t index
)
605 struct extent_info ei
= {0,0,0};
606 struct inode
*inode
= dn
->inode
;
608 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
609 dn
->data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
613 return f2fs_reserve_block(dn
, index
);
616 struct page
*get_read_data_page(struct inode
*inode
, pgoff_t index
,
617 int op_flags
, bool for_write
)
619 struct address_space
*mapping
= inode
->i_mapping
;
620 struct dnode_of_data dn
;
622 struct extent_info ei
= {0,0,0};
625 page
= f2fs_grab_cache_page(mapping
, index
, for_write
);
627 return ERR_PTR(-ENOMEM
);
629 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
630 dn
.data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
634 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
635 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
640 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
645 if (PageUptodate(page
)) {
651 * A new dentry page is allocated but not able to be written, since its
652 * new inode page couldn't be allocated due to -ENOSPC.
653 * In such the case, its blkaddr can be remained as NEW_ADDR.
654 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
656 if (dn
.data_blkaddr
== NEW_ADDR
) {
657 zero_user_segment(page
, 0, PAGE_SIZE
);
658 if (!PageUptodate(page
))
659 SetPageUptodate(page
);
664 err
= f2fs_submit_page_read(inode
, page
, dn
.data_blkaddr
);
670 f2fs_put_page(page
, 1);
674 struct page
*find_data_page(struct inode
*inode
, pgoff_t index
)
676 struct address_space
*mapping
= inode
->i_mapping
;
679 page
= find_get_page(mapping
, index
);
680 if (page
&& PageUptodate(page
))
682 f2fs_put_page(page
, 0);
684 page
= get_read_data_page(inode
, index
, 0, false);
688 if (PageUptodate(page
))
691 wait_on_page_locked(page
);
692 if (unlikely(!PageUptodate(page
))) {
693 f2fs_put_page(page
, 0);
694 return ERR_PTR(-EIO
);
700 * If it tries to access a hole, return an error.
701 * Because, the callers, functions in dir.c and GC, should be able to know
702 * whether this page exists or not.
704 struct page
*get_lock_data_page(struct inode
*inode
, pgoff_t index
,
707 struct address_space
*mapping
= inode
->i_mapping
;
710 page
= get_read_data_page(inode
, index
, 0, for_write
);
714 /* wait for read completion */
716 if (unlikely(page
->mapping
!= mapping
)) {
717 f2fs_put_page(page
, 1);
720 if (unlikely(!PageUptodate(page
))) {
721 f2fs_put_page(page
, 1);
722 return ERR_PTR(-EIO
);
728 * Caller ensures that this data page is never allocated.
729 * A new zero-filled data page is allocated in the page cache.
731 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
733 * Note that, ipage is set only by make_empty_dir, and if any error occur,
734 * ipage should be released by this function.
736 struct page
*get_new_data_page(struct inode
*inode
,
737 struct page
*ipage
, pgoff_t index
, bool new_i_size
)
739 struct address_space
*mapping
= inode
->i_mapping
;
741 struct dnode_of_data dn
;
744 page
= f2fs_grab_cache_page(mapping
, index
, true);
747 * before exiting, we should make sure ipage will be released
748 * if any error occur.
750 f2fs_put_page(ipage
, 1);
751 return ERR_PTR(-ENOMEM
);
754 set_new_dnode(&dn
, inode
, ipage
, NULL
, 0);
755 err
= f2fs_reserve_block(&dn
, index
);
757 f2fs_put_page(page
, 1);
763 if (PageUptodate(page
))
766 if (dn
.data_blkaddr
== NEW_ADDR
) {
767 zero_user_segment(page
, 0, PAGE_SIZE
);
768 if (!PageUptodate(page
))
769 SetPageUptodate(page
);
771 f2fs_put_page(page
, 1);
773 /* if ipage exists, blkaddr should be NEW_ADDR */
774 f2fs_bug_on(F2FS_I_SB(inode
), ipage
);
775 page
= get_lock_data_page(inode
, index
, true);
780 if (new_i_size
&& i_size_read(inode
) <
781 ((loff_t
)(index
+ 1) << PAGE_SHIFT
))
782 f2fs_i_size_write(inode
, ((loff_t
)(index
+ 1) << PAGE_SHIFT
));
786 static int __allocate_data_block(struct dnode_of_data
*dn
)
788 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
789 struct f2fs_summary sum
;
795 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
798 dn
->data_blkaddr
= datablock_addr(dn
->inode
,
799 dn
->node_page
, dn
->ofs_in_node
);
800 if (dn
->data_blkaddr
== NEW_ADDR
)
803 if (unlikely((err
= inc_valid_block_count(sbi
, dn
->inode
, &count
))))
807 get_node_info(sbi
, dn
->nid
, &ni
);
808 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
810 allocate_data_block(sbi
, NULL
, dn
->data_blkaddr
, &dn
->data_blkaddr
,
811 &sum
, CURSEG_WARM_DATA
, NULL
, false);
812 set_data_blkaddr(dn
);
815 fofs
= start_bidx_of_node(ofs_of_node(dn
->node_page
), dn
->inode
) +
817 if (i_size_read(dn
->inode
) < ((loff_t
)(fofs
+ 1) << PAGE_SHIFT
))
818 f2fs_i_size_write(dn
->inode
,
819 ((loff_t
)(fofs
+ 1) << PAGE_SHIFT
));
823 static inline bool __force_buffered_io(struct inode
*inode
, int rw
)
825 return (f2fs_encrypted_file(inode
) ||
826 (rw
== WRITE
&& test_opt(F2FS_I_SB(inode
), LFS
)) ||
827 F2FS_I_SB(inode
)->s_ndevs
);
830 int f2fs_preallocate_blocks(struct kiocb
*iocb
, struct iov_iter
*from
)
832 struct inode
*inode
= file_inode(iocb
->ki_filp
);
833 struct f2fs_map_blocks map
;
836 if (is_inode_flag_set(inode
, FI_NO_PREALLOC
))
839 map
.m_lblk
= F2FS_BLK_ALIGN(iocb
->ki_pos
);
840 map
.m_len
= F2FS_BYTES_TO_BLK(iocb
->ki_pos
+ iov_iter_count(from
));
841 if (map
.m_len
> map
.m_lblk
)
842 map
.m_len
-= map
.m_lblk
;
846 map
.m_next_pgofs
= NULL
;
848 if (iocb
->ki_flags
& IOCB_DIRECT
) {
849 err
= f2fs_convert_inline_inode(inode
);
852 return f2fs_map_blocks(inode
, &map
, 1,
853 __force_buffered_io(inode
, WRITE
) ?
854 F2FS_GET_BLOCK_PRE_AIO
:
855 F2FS_GET_BLOCK_PRE_DIO
);
857 if (iocb
->ki_pos
+ iov_iter_count(from
) > MAX_INLINE_DATA(inode
)) {
858 err
= f2fs_convert_inline_inode(inode
);
862 if (!f2fs_has_inline_data(inode
))
863 return f2fs_map_blocks(inode
, &map
, 1, F2FS_GET_BLOCK_PRE_AIO
);
867 static inline void __do_map_lock(struct f2fs_sb_info
*sbi
, int flag
, bool lock
)
869 if (flag
== F2FS_GET_BLOCK_PRE_AIO
) {
871 down_read(&sbi
->node_change
);
873 up_read(&sbi
->node_change
);
883 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
884 * f2fs_map_blocks structure.
885 * If original data blocks are allocated, then give them to blockdev.
887 * a. preallocate requested block addresses
888 * b. do not use extent cache for better performance
889 * c. give the block addresses to blockdev
891 int f2fs_map_blocks(struct inode
*inode
, struct f2fs_map_blocks
*map
,
892 int create
, int flag
)
894 unsigned int maxblocks
= map
->m_len
;
895 struct dnode_of_data dn
;
896 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
897 int mode
= create
? ALLOC_NODE
: LOOKUP_NODE
;
898 pgoff_t pgofs
, end_offset
, end
;
899 int err
= 0, ofs
= 1;
900 unsigned int ofs_in_node
, last_ofs_in_node
;
902 struct extent_info ei
= {0,0,0};
911 /* it only supports block size == page size */
912 pgofs
= (pgoff_t
)map
->m_lblk
;
913 end
= pgofs
+ maxblocks
;
915 if (!create
&& f2fs_lookup_extent_cache(inode
, pgofs
, &ei
)) {
916 map
->m_pblk
= ei
.blk
+ pgofs
- ei
.fofs
;
917 map
->m_len
= min((pgoff_t
)maxblocks
, ei
.fofs
+ ei
.len
- pgofs
);
918 map
->m_flags
= F2FS_MAP_MAPPED
;
924 __do_map_lock(sbi
, flag
, true);
926 /* When reading holes, we need its node page */
927 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
928 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
930 if (flag
== F2FS_GET_BLOCK_BMAP
)
932 if (err
== -ENOENT
) {
934 if (map
->m_next_pgofs
)
936 get_next_page_offset(&dn
, pgofs
);
942 last_ofs_in_node
= ofs_in_node
= dn
.ofs_in_node
;
943 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, inode
);
946 blkaddr
= datablock_addr(dn
.inode
, dn
.node_page
, dn
.ofs_in_node
);
948 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
) {
950 if (unlikely(f2fs_cp_error(sbi
))) {
954 if (flag
== F2FS_GET_BLOCK_PRE_AIO
) {
955 if (blkaddr
== NULL_ADDR
) {
957 last_ofs_in_node
= dn
.ofs_in_node
;
960 err
= __allocate_data_block(&dn
);
962 set_inode_flag(inode
, FI_APPEND_WRITE
);
966 map
->m_flags
|= F2FS_MAP_NEW
;
967 blkaddr
= dn
.data_blkaddr
;
969 if (flag
== F2FS_GET_BLOCK_BMAP
) {
973 if (flag
== F2FS_GET_BLOCK_FIEMAP
&&
974 blkaddr
== NULL_ADDR
) {
975 if (map
->m_next_pgofs
)
976 *map
->m_next_pgofs
= pgofs
+ 1;
978 if (flag
!= F2FS_GET_BLOCK_FIEMAP
||
984 if (flag
== F2FS_GET_BLOCK_PRE_AIO
)
987 if (map
->m_len
== 0) {
988 /* preallocated unwritten block should be mapped for fiemap. */
989 if (blkaddr
== NEW_ADDR
)
990 map
->m_flags
|= F2FS_MAP_UNWRITTEN
;
991 map
->m_flags
|= F2FS_MAP_MAPPED
;
993 map
->m_pblk
= blkaddr
;
995 } else if ((map
->m_pblk
!= NEW_ADDR
&&
996 blkaddr
== (map
->m_pblk
+ ofs
)) ||
997 (map
->m_pblk
== NEW_ADDR
&& blkaddr
== NEW_ADDR
) ||
998 flag
== F2FS_GET_BLOCK_PRE_DIO
) {
1009 /* preallocate blocks in batch for one dnode page */
1010 if (flag
== F2FS_GET_BLOCK_PRE_AIO
&&
1011 (pgofs
== end
|| dn
.ofs_in_node
== end_offset
)) {
1013 dn
.ofs_in_node
= ofs_in_node
;
1014 err
= reserve_new_blocks(&dn
, prealloc
);
1018 map
->m_len
+= dn
.ofs_in_node
- ofs_in_node
;
1019 if (prealloc
&& dn
.ofs_in_node
!= last_ofs_in_node
+ 1) {
1023 dn
.ofs_in_node
= end_offset
;
1028 else if (dn
.ofs_in_node
< end_offset
)
1031 f2fs_put_dnode(&dn
);
1034 __do_map_lock(sbi
, flag
, false);
1035 f2fs_balance_fs(sbi
, dn
.node_changed
);
1040 f2fs_put_dnode(&dn
);
1043 __do_map_lock(sbi
, flag
, false);
1044 f2fs_balance_fs(sbi
, dn
.node_changed
);
1047 trace_f2fs_map_blocks(inode
, map
, err
);
1051 static int __get_data_block(struct inode
*inode
, sector_t iblock
,
1052 struct buffer_head
*bh
, int create
, int flag
,
1053 pgoff_t
*next_pgofs
)
1055 struct f2fs_map_blocks map
;
1058 map
.m_lblk
= iblock
;
1059 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
1060 map
.m_next_pgofs
= next_pgofs
;
1062 err
= f2fs_map_blocks(inode
, &map
, create
, flag
);
1064 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1065 bh
->b_state
= (bh
->b_state
& ~F2FS_MAP_FLAGS
) | map
.m_flags
;
1066 bh
->b_size
= (u64
)map
.m_len
<< inode
->i_blkbits
;
1071 static int get_data_block(struct inode
*inode
, sector_t iblock
,
1072 struct buffer_head
*bh_result
, int create
, int flag
,
1073 pgoff_t
*next_pgofs
)
1075 return __get_data_block(inode
, iblock
, bh_result
, create
,
1079 static int get_data_block_dio(struct inode
*inode
, sector_t iblock
,
1080 struct buffer_head
*bh_result
, int create
)
1082 return __get_data_block(inode
, iblock
, bh_result
, create
,
1083 F2FS_GET_BLOCK_DEFAULT
, NULL
);
1086 static int get_data_block_bmap(struct inode
*inode
, sector_t iblock
,
1087 struct buffer_head
*bh_result
, int create
)
1089 /* Block number less than F2FS MAX BLOCKS */
1090 if (unlikely(iblock
>= F2FS_I_SB(inode
)->max_file_blocks
))
1093 return __get_data_block(inode
, iblock
, bh_result
, create
,
1094 F2FS_GET_BLOCK_BMAP
, NULL
);
1097 static inline sector_t
logical_to_blk(struct inode
*inode
, loff_t offset
)
1099 return (offset
>> inode
->i_blkbits
);
1102 static inline loff_t
blk_to_logical(struct inode
*inode
, sector_t blk
)
1104 return (blk
<< inode
->i_blkbits
);
1107 int f2fs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1110 struct buffer_head map_bh
;
1111 sector_t start_blk
, last_blk
;
1113 u64 logical
= 0, phys
= 0, size
= 0;
1117 ret
= fiemap_check_flags(fieinfo
, FIEMAP_FLAG_SYNC
);
1121 if (f2fs_has_inline_data(inode
)) {
1122 ret
= f2fs_inline_data_fiemap(inode
, fieinfo
, start
, len
);
1129 if (logical_to_blk(inode
, len
) == 0)
1130 len
= blk_to_logical(inode
, 1);
1132 start_blk
= logical_to_blk(inode
, start
);
1133 last_blk
= logical_to_blk(inode
, start
+ len
- 1);
1136 memset(&map_bh
, 0, sizeof(struct buffer_head
));
1137 map_bh
.b_size
= len
;
1139 ret
= get_data_block(inode
, start_blk
, &map_bh
, 0,
1140 F2FS_GET_BLOCK_FIEMAP
, &next_pgofs
);
1145 if (!buffer_mapped(&map_bh
)) {
1146 start_blk
= next_pgofs
;
1148 if (blk_to_logical(inode
, start_blk
) < blk_to_logical(inode
,
1149 F2FS_I_SB(inode
)->max_file_blocks
))
1152 flags
|= FIEMAP_EXTENT_LAST
;
1156 if (f2fs_encrypted_inode(inode
))
1157 flags
|= FIEMAP_EXTENT_DATA_ENCRYPTED
;
1159 ret
= fiemap_fill_next_extent(fieinfo
, logical
,
1163 if (start_blk
> last_blk
|| ret
)
1166 logical
= blk_to_logical(inode
, start_blk
);
1167 phys
= blk_to_logical(inode
, map_bh
.b_blocknr
);
1168 size
= map_bh
.b_size
;
1170 if (buffer_unwritten(&map_bh
))
1171 flags
= FIEMAP_EXTENT_UNWRITTEN
;
1173 start_blk
+= logical_to_blk(inode
, size
);
1177 if (fatal_signal_pending(current
))
1185 inode_unlock(inode
);
1190 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1191 * Major change was from block_size == page_size in f2fs by default.
1193 static int f2fs_mpage_readpages(struct address_space
*mapping
,
1194 struct list_head
*pages
, struct page
*page
,
1197 struct bio
*bio
= NULL
;
1199 sector_t last_block_in_bio
= 0;
1200 struct inode
*inode
= mapping
->host
;
1201 const unsigned blkbits
= inode
->i_blkbits
;
1202 const unsigned blocksize
= 1 << blkbits
;
1203 sector_t block_in_file
;
1204 sector_t last_block
;
1205 sector_t last_block_in_file
;
1207 struct f2fs_map_blocks map
;
1213 map
.m_next_pgofs
= NULL
;
1215 for (page_idx
= 0; nr_pages
; page_idx
++, nr_pages
--) {
1218 page
= list_last_entry(pages
, struct page
, lru
);
1220 prefetchw(&page
->flags
);
1221 list_del(&page
->lru
);
1222 if (add_to_page_cache_lru(page
, mapping
,
1224 readahead_gfp_mask(mapping
)))
1228 block_in_file
= (sector_t
)page
->index
;
1229 last_block
= block_in_file
+ nr_pages
;
1230 last_block_in_file
= (i_size_read(inode
) + blocksize
- 1) >>
1232 if (last_block
> last_block_in_file
)
1233 last_block
= last_block_in_file
;
1236 * Map blocks using the previous result first.
1238 if ((map
.m_flags
& F2FS_MAP_MAPPED
) &&
1239 block_in_file
> map
.m_lblk
&&
1240 block_in_file
< (map
.m_lblk
+ map
.m_len
))
1244 * Then do more f2fs_map_blocks() calls until we are
1245 * done with this page.
1249 if (block_in_file
< last_block
) {
1250 map
.m_lblk
= block_in_file
;
1251 map
.m_len
= last_block
- block_in_file
;
1253 if (f2fs_map_blocks(inode
, &map
, 0,
1254 F2FS_GET_BLOCK_DEFAULT
))
1255 goto set_error_page
;
1258 if ((map
.m_flags
& F2FS_MAP_MAPPED
)) {
1259 block_nr
= map
.m_pblk
+ block_in_file
- map
.m_lblk
;
1260 SetPageMappedToDisk(page
);
1262 if (!PageUptodate(page
) && !cleancache_get_page(page
)) {
1263 SetPageUptodate(page
);
1267 zero_user_segment(page
, 0, PAGE_SIZE
);
1268 if (!PageUptodate(page
))
1269 SetPageUptodate(page
);
1275 * This page will go to BIO. Do we need to send this
1278 if (bio
&& (last_block_in_bio
!= block_nr
- 1 ||
1279 !__same_bdev(F2FS_I_SB(inode
), block_nr
, bio
))) {
1281 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
1285 bio
= f2fs_grab_read_bio(inode
, block_nr
, nr_pages
);
1288 goto set_error_page
;
1292 if (bio_add_page(bio
, page
, blocksize
, 0) < blocksize
)
1293 goto submit_and_realloc
;
1295 last_block_in_bio
= block_nr
;
1299 zero_user_segment(page
, 0, PAGE_SIZE
);
1304 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
1312 BUG_ON(pages
&& !list_empty(pages
));
1314 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
1318 static int f2fs_read_data_page(struct file
*file
, struct page
*page
)
1320 struct inode
*inode
= page
->mapping
->host
;
1323 trace_f2fs_readpage(page
, DATA
);
1325 /* If the file has inline data, try to read it directly */
1326 if (f2fs_has_inline_data(inode
))
1327 ret
= f2fs_read_inline_data(inode
, page
);
1329 ret
= f2fs_mpage_readpages(page
->mapping
, NULL
, page
, 1);
1333 static int f2fs_read_data_pages(struct file
*file
,
1334 struct address_space
*mapping
,
1335 struct list_head
*pages
, unsigned nr_pages
)
1337 struct inode
*inode
= file
->f_mapping
->host
;
1338 struct page
*page
= list_last_entry(pages
, struct page
, lru
);
1340 trace_f2fs_readpages(inode
, page
, nr_pages
);
1342 /* If the file has inline data, skip readpages */
1343 if (f2fs_has_inline_data(inode
))
1346 return f2fs_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
1349 static int encrypt_one_page(struct f2fs_io_info
*fio
)
1351 struct inode
*inode
= fio
->page
->mapping
->host
;
1352 gfp_t gfp_flags
= GFP_NOFS
;
1354 if (!f2fs_encrypted_file(inode
))
1357 /* wait for GCed encrypted page writeback */
1358 f2fs_wait_on_block_writeback(fio
->sbi
, fio
->old_blkaddr
);
1361 fio
->encrypted_page
= fscrypt_encrypt_page(inode
, fio
->page
,
1362 PAGE_SIZE
, 0, fio
->page
->index
, gfp_flags
);
1363 if (!IS_ERR(fio
->encrypted_page
))
1366 /* flush pending IOs and wait for a while in the ENOMEM case */
1367 if (PTR_ERR(fio
->encrypted_page
) == -ENOMEM
) {
1368 f2fs_flush_merged_writes(fio
->sbi
);
1369 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1370 gfp_flags
|= __GFP_NOFAIL
;
1373 return PTR_ERR(fio
->encrypted_page
);
1376 static inline bool need_inplace_update(struct f2fs_io_info
*fio
)
1378 struct inode
*inode
= fio
->page
->mapping
->host
;
1380 if (S_ISDIR(inode
->i_mode
) || f2fs_is_atomic_file(inode
))
1382 if (is_cold_data(fio
->page
))
1384 if (IS_ATOMIC_WRITTEN_PAGE(fio
->page
))
1387 return need_inplace_update_policy(inode
, fio
);
1390 static inline bool valid_ipu_blkaddr(struct f2fs_io_info
*fio
)
1392 if (fio
->old_blkaddr
== NEW_ADDR
)
1394 if (fio
->old_blkaddr
== NULL_ADDR
)
1399 int do_write_data_page(struct f2fs_io_info
*fio
)
1401 struct page
*page
= fio
->page
;
1402 struct inode
*inode
= page
->mapping
->host
;
1403 struct dnode_of_data dn
;
1404 struct extent_info ei
= {0,0,0};
1405 bool ipu_force
= false;
1408 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1409 if (need_inplace_update(fio
) &&
1410 f2fs_lookup_extent_cache(inode
, page
->index
, &ei
)) {
1411 fio
->old_blkaddr
= ei
.blk
+ page
->index
- ei
.fofs
;
1413 if (valid_ipu_blkaddr(fio
)) {
1415 fio
->need_lock
= LOCK_DONE
;
1420 /* Deadlock due to between page->lock and f2fs_lock_op */
1421 if (fio
->need_lock
== LOCK_REQ
&& !f2fs_trylock_op(fio
->sbi
))
1424 err
= get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
);
1428 fio
->old_blkaddr
= dn
.data_blkaddr
;
1430 /* This page is already truncated */
1431 if (fio
->old_blkaddr
== NULL_ADDR
) {
1432 ClearPageUptodate(page
);
1437 * If current allocation needs SSR,
1438 * it had better in-place writes for updated data.
1440 if (ipu_force
|| (valid_ipu_blkaddr(fio
) && need_inplace_update(fio
))) {
1441 err
= encrypt_one_page(fio
);
1445 set_page_writeback(page
);
1446 f2fs_put_dnode(&dn
);
1447 if (fio
->need_lock
== LOCK_REQ
)
1448 f2fs_unlock_op(fio
->sbi
);
1449 err
= rewrite_data_page(fio
);
1450 trace_f2fs_do_write_data_page(fio
->page
, IPU
);
1451 set_inode_flag(inode
, FI_UPDATE_WRITE
);
1455 if (fio
->need_lock
== LOCK_RETRY
) {
1456 if (!f2fs_trylock_op(fio
->sbi
)) {
1460 fio
->need_lock
= LOCK_REQ
;
1463 err
= encrypt_one_page(fio
);
1467 set_page_writeback(page
);
1469 /* LFS mode write path */
1470 write_data_page(&dn
, fio
);
1471 trace_f2fs_do_write_data_page(page
, OPU
);
1472 set_inode_flag(inode
, FI_APPEND_WRITE
);
1473 if (page
->index
== 0)
1474 set_inode_flag(inode
, FI_FIRST_BLOCK_WRITTEN
);
1476 f2fs_put_dnode(&dn
);
1478 if (fio
->need_lock
== LOCK_REQ
)
1479 f2fs_unlock_op(fio
->sbi
);
1483 static int __write_data_page(struct page
*page
, bool *submitted
,
1484 struct writeback_control
*wbc
,
1485 enum iostat_type io_type
)
1487 struct inode
*inode
= page
->mapping
->host
;
1488 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1489 loff_t i_size
= i_size_read(inode
);
1490 const pgoff_t end_index
= ((unsigned long long) i_size
)
1492 loff_t psize
= (page
->index
+ 1) << PAGE_SHIFT
;
1493 unsigned offset
= 0;
1494 bool need_balance_fs
= false;
1496 struct f2fs_io_info fio
= {
1500 .op_flags
= wbc_to_write_flags(wbc
),
1501 .old_blkaddr
= NULL_ADDR
,
1503 .encrypted_page
= NULL
,
1505 .need_lock
= LOCK_RETRY
,
1509 trace_f2fs_writepage(page
, DATA
);
1511 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1514 if (page
->index
< end_index
)
1518 * If the offset is out-of-range of file size,
1519 * this page does not have to be written to disk.
1521 offset
= i_size
& (PAGE_SIZE
- 1);
1522 if ((page
->index
>= end_index
+ 1) || !offset
)
1525 zero_user_segment(page
, offset
, PAGE_SIZE
);
1527 if (f2fs_is_drop_cache(inode
))
1529 /* we should not write 0'th page having journal header */
1530 if (f2fs_is_volatile_file(inode
) && (!page
->index
||
1531 (!wbc
->for_reclaim
&&
1532 available_free_memory(sbi
, BASE_CHECK
))))
1535 /* we should bypass data pages to proceed the kworkder jobs */
1536 if (unlikely(f2fs_cp_error(sbi
))) {
1537 mapping_set_error(page
->mapping
, -EIO
);
1541 /* Dentry blocks are controlled by checkpoint */
1542 if (S_ISDIR(inode
->i_mode
)) {
1543 fio
.need_lock
= LOCK_DONE
;
1544 err
= do_write_data_page(&fio
);
1548 if (!wbc
->for_reclaim
)
1549 need_balance_fs
= true;
1550 else if (has_not_enough_free_secs(sbi
, 0, 0))
1553 set_inode_flag(inode
, FI_HOT_DATA
);
1556 if (f2fs_has_inline_data(inode
)) {
1557 err
= f2fs_write_inline_data(inode
, page
);
1562 if (err
== -EAGAIN
) {
1563 err
= do_write_data_page(&fio
);
1564 if (err
== -EAGAIN
) {
1565 fio
.need_lock
= LOCK_REQ
;
1566 err
= do_write_data_page(&fio
);
1569 if (F2FS_I(inode
)->last_disk_size
< psize
)
1570 F2FS_I(inode
)->last_disk_size
= psize
;
1573 if (err
&& err
!= -ENOENT
)
1577 inode_dec_dirty_pages(inode
);
1579 ClearPageUptodate(page
);
1581 if (wbc
->for_reclaim
) {
1582 f2fs_submit_merged_write_cond(sbi
, inode
, 0, page
->index
, DATA
);
1583 clear_inode_flag(inode
, FI_HOT_DATA
);
1584 remove_dirty_inode(inode
);
1589 if (!S_ISDIR(inode
->i_mode
))
1590 f2fs_balance_fs(sbi
, need_balance_fs
);
1592 if (unlikely(f2fs_cp_error(sbi
))) {
1593 f2fs_submit_merged_write(sbi
, DATA
);
1598 *submitted
= fio
.submitted
;
1603 redirty_page_for_writepage(wbc
, page
);
1605 return AOP_WRITEPAGE_ACTIVATE
;
1610 static int f2fs_write_data_page(struct page
*page
,
1611 struct writeback_control
*wbc
)
1613 return __write_data_page(page
, NULL
, wbc
, FS_DATA_IO
);
1617 * This function was copied from write_cche_pages from mm/page-writeback.c.
1618 * The major change is making write step of cold data page separately from
1619 * warm/hot data page.
1621 static int f2fs_write_cache_pages(struct address_space
*mapping
,
1622 struct writeback_control
*wbc
,
1623 enum iostat_type io_type
)
1627 struct pagevec pvec
;
1629 pgoff_t
uninitialized_var(writeback_index
);
1631 pgoff_t end
; /* Inclusive */
1633 pgoff_t last_idx
= ULONG_MAX
;
1635 int range_whole
= 0;
1638 pagevec_init(&pvec
, 0);
1640 if (get_dirty_pages(mapping
->host
) <=
1641 SM_I(F2FS_M_SB(mapping
))->min_hot_blocks
)
1642 set_inode_flag(mapping
->host
, FI_HOT_DATA
);
1644 clear_inode_flag(mapping
->host
, FI_HOT_DATA
);
1646 if (wbc
->range_cyclic
) {
1647 writeback_index
= mapping
->writeback_index
; /* prev offset */
1648 index
= writeback_index
;
1655 index
= wbc
->range_start
>> PAGE_SHIFT
;
1656 end
= wbc
->range_end
>> PAGE_SHIFT
;
1657 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1659 cycled
= 1; /* ignore range_cyclic tests */
1661 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1662 tag
= PAGECACHE_TAG_TOWRITE
;
1664 tag
= PAGECACHE_TAG_DIRTY
;
1666 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1667 tag_pages_for_writeback(mapping
, index
, end
);
1669 while (!done
&& (index
<= end
)) {
1672 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1673 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1);
1677 for (i
= 0; i
< nr_pages
; i
++) {
1678 struct page
*page
= pvec
.pages
[i
];
1679 bool submitted
= false;
1681 if (page
->index
> end
) {
1686 done_index
= page
->index
;
1690 if (unlikely(page
->mapping
!= mapping
)) {
1696 if (!PageDirty(page
)) {
1697 /* someone wrote it for us */
1698 goto continue_unlock
;
1701 if (PageWriteback(page
)) {
1702 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1703 f2fs_wait_on_page_writeback(page
,
1706 goto continue_unlock
;
1709 BUG_ON(PageWriteback(page
));
1710 if (!clear_page_dirty_for_io(page
))
1711 goto continue_unlock
;
1713 ret
= __write_data_page(page
, &submitted
, wbc
, io_type
);
1714 if (unlikely(ret
)) {
1716 * keep nr_to_write, since vfs uses this to
1717 * get # of written pages.
1719 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1723 } else if (ret
== -EAGAIN
) {
1725 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
1727 congestion_wait(BLK_RW_ASYNC
,
1733 done_index
= page
->index
+ 1;
1736 } else if (submitted
) {
1737 last_idx
= page
->index
;
1740 /* give a priority to WB_SYNC threads */
1741 if ((atomic_read(&F2FS_M_SB(mapping
)->wb_sync_req
) ||
1742 --wbc
->nr_to_write
<= 0) &&
1743 wbc
->sync_mode
== WB_SYNC_NONE
) {
1748 pagevec_release(&pvec
);
1752 if (!cycled
&& !done
) {
1755 end
= writeback_index
- 1;
1758 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1759 mapping
->writeback_index
= done_index
;
1761 if (last_idx
!= ULONG_MAX
)
1762 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping
), mapping
->host
,
1768 int __f2fs_write_data_pages(struct address_space
*mapping
,
1769 struct writeback_control
*wbc
,
1770 enum iostat_type io_type
)
1772 struct inode
*inode
= mapping
->host
;
1773 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1774 struct blk_plug plug
;
1777 /* deal with chardevs and other special file */
1778 if (!mapping
->a_ops
->writepage
)
1781 /* skip writing if there is no dirty page in this inode */
1782 if (!get_dirty_pages(inode
) && wbc
->sync_mode
== WB_SYNC_NONE
)
1785 /* during POR, we don't need to trigger writepage at all. */
1786 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1789 if (S_ISDIR(inode
->i_mode
) && wbc
->sync_mode
== WB_SYNC_NONE
&&
1790 get_dirty_pages(inode
) < nr_pages_to_skip(sbi
, DATA
) &&
1791 available_free_memory(sbi
, DIRTY_DENTS
))
1794 /* skip writing during file defragment */
1795 if (is_inode_flag_set(inode
, FI_DO_DEFRAG
))
1798 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
1800 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1801 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1802 atomic_inc(&sbi
->wb_sync_req
);
1803 else if (atomic_read(&sbi
->wb_sync_req
))
1806 blk_start_plug(&plug
);
1807 ret
= f2fs_write_cache_pages(mapping
, wbc
, io_type
);
1808 blk_finish_plug(&plug
);
1810 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1811 atomic_dec(&sbi
->wb_sync_req
);
1813 * if some pages were truncated, we cannot guarantee its mapping->host
1814 * to detect pending bios.
1817 remove_dirty_inode(inode
);
1821 wbc
->pages_skipped
+= get_dirty_pages(inode
);
1822 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
1826 static int f2fs_write_data_pages(struct address_space
*mapping
,
1827 struct writeback_control
*wbc
)
1829 struct inode
*inode
= mapping
->host
;
1831 return __f2fs_write_data_pages(mapping
, wbc
,
1832 F2FS_I(inode
)->cp_task
== current
?
1833 FS_CP_DATA_IO
: FS_DATA_IO
);
1836 static void f2fs_write_failed(struct address_space
*mapping
, loff_t to
)
1838 struct inode
*inode
= mapping
->host
;
1839 loff_t i_size
= i_size_read(inode
);
1842 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1843 truncate_pagecache(inode
, i_size
);
1844 truncate_blocks(inode
, i_size
, true);
1845 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1849 static int prepare_write_begin(struct f2fs_sb_info
*sbi
,
1850 struct page
*page
, loff_t pos
, unsigned len
,
1851 block_t
*blk_addr
, bool *node_changed
)
1853 struct inode
*inode
= page
->mapping
->host
;
1854 pgoff_t index
= page
->index
;
1855 struct dnode_of_data dn
;
1857 bool locked
= false;
1858 struct extent_info ei
= {0,0,0};
1862 * we already allocated all the blocks, so we don't need to get
1863 * the block addresses when there is no need to fill the page.
1865 if (!f2fs_has_inline_data(inode
) && len
== PAGE_SIZE
&&
1866 !is_inode_flag_set(inode
, FI_NO_PREALLOC
))
1869 if (f2fs_has_inline_data(inode
) ||
1870 (pos
& PAGE_MASK
) >= i_size_read(inode
)) {
1871 __do_map_lock(sbi
, F2FS_GET_BLOCK_PRE_AIO
, true);
1875 /* check inline_data */
1876 ipage
= get_node_page(sbi
, inode
->i_ino
);
1877 if (IS_ERR(ipage
)) {
1878 err
= PTR_ERR(ipage
);
1882 set_new_dnode(&dn
, inode
, ipage
, ipage
, 0);
1884 if (f2fs_has_inline_data(inode
)) {
1885 if (pos
+ len
<= MAX_INLINE_DATA(inode
)) {
1886 read_inline_data(page
, ipage
);
1887 set_inode_flag(inode
, FI_DATA_EXIST
);
1889 set_inline_node(ipage
);
1891 err
= f2fs_convert_inline_page(&dn
, page
);
1894 if (dn
.data_blkaddr
== NULL_ADDR
)
1895 err
= f2fs_get_block(&dn
, index
);
1897 } else if (locked
) {
1898 err
= f2fs_get_block(&dn
, index
);
1900 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
1901 dn
.data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
1904 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
1905 if (err
|| dn
.data_blkaddr
== NULL_ADDR
) {
1906 f2fs_put_dnode(&dn
);
1907 __do_map_lock(sbi
, F2FS_GET_BLOCK_PRE_AIO
,
1915 /* convert_inline_page can make node_changed */
1916 *blk_addr
= dn
.data_blkaddr
;
1917 *node_changed
= dn
.node_changed
;
1919 f2fs_put_dnode(&dn
);
1922 __do_map_lock(sbi
, F2FS_GET_BLOCK_PRE_AIO
, false);
1926 static int f2fs_write_begin(struct file
*file
, struct address_space
*mapping
,
1927 loff_t pos
, unsigned len
, unsigned flags
,
1928 struct page
**pagep
, void **fsdata
)
1930 struct inode
*inode
= mapping
->host
;
1931 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1932 struct page
*page
= NULL
;
1933 pgoff_t index
= ((unsigned long long) pos
) >> PAGE_SHIFT
;
1934 bool need_balance
= false;
1935 block_t blkaddr
= NULL_ADDR
;
1938 trace_f2fs_write_begin(inode
, pos
, len
, flags
);
1941 * We should check this at this moment to avoid deadlock on inode page
1942 * and #0 page. The locking rule for inline_data conversion should be:
1943 * lock_page(page #0) -> lock_page(inode_page)
1946 err
= f2fs_convert_inline_inode(inode
);
1952 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1953 * wait_for_stable_page. Will wait that below with our IO control.
1955 page
= pagecache_get_page(mapping
, index
,
1956 FGP_LOCK
| FGP_WRITE
| FGP_CREAT
, GFP_NOFS
);
1964 err
= prepare_write_begin(sbi
, page
, pos
, len
,
1965 &blkaddr
, &need_balance
);
1969 if (need_balance
&& has_not_enough_free_secs(sbi
, 0, 0)) {
1971 f2fs_balance_fs(sbi
, true);
1973 if (page
->mapping
!= mapping
) {
1974 /* The page got truncated from under us */
1975 f2fs_put_page(page
, 1);
1980 f2fs_wait_on_page_writeback(page
, DATA
, false);
1982 /* wait for GCed encrypted page writeback */
1983 if (f2fs_encrypted_file(inode
))
1984 f2fs_wait_on_block_writeback(sbi
, blkaddr
);
1986 if (len
== PAGE_SIZE
|| PageUptodate(page
))
1989 if (!(pos
& (PAGE_SIZE
- 1)) && (pos
+ len
) >= i_size_read(inode
)) {
1990 zero_user_segment(page
, len
, PAGE_SIZE
);
1994 if (blkaddr
== NEW_ADDR
) {
1995 zero_user_segment(page
, 0, PAGE_SIZE
);
1996 SetPageUptodate(page
);
1998 err
= f2fs_submit_page_read(inode
, page
, blkaddr
);
2003 if (unlikely(page
->mapping
!= mapping
)) {
2004 f2fs_put_page(page
, 1);
2007 if (unlikely(!PageUptodate(page
))) {
2015 f2fs_put_page(page
, 1);
2016 f2fs_write_failed(mapping
, pos
+ len
);
2020 static int f2fs_write_end(struct file
*file
,
2021 struct address_space
*mapping
,
2022 loff_t pos
, unsigned len
, unsigned copied
,
2023 struct page
*page
, void *fsdata
)
2025 struct inode
*inode
= page
->mapping
->host
;
2027 trace_f2fs_write_end(inode
, pos
, len
, copied
);
2030 * This should be come from len == PAGE_SIZE, and we expect copied
2031 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2032 * let generic_perform_write() try to copy data again through copied=0.
2034 if (!PageUptodate(page
)) {
2035 if (unlikely(copied
!= len
))
2038 SetPageUptodate(page
);
2043 set_page_dirty(page
);
2045 if (pos
+ copied
> i_size_read(inode
))
2046 f2fs_i_size_write(inode
, pos
+ copied
);
2048 f2fs_put_page(page
, 1);
2049 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
2053 static int check_direct_IO(struct inode
*inode
, struct iov_iter
*iter
,
2056 unsigned blocksize_mask
= inode
->i_sb
->s_blocksize
- 1;
2058 if (offset
& blocksize_mask
)
2061 if (iov_iter_alignment(iter
) & blocksize_mask
)
2067 static ssize_t
f2fs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2069 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
2070 struct inode
*inode
= mapping
->host
;
2071 size_t count
= iov_iter_count(iter
);
2072 loff_t offset
= iocb
->ki_pos
;
2073 int rw
= iov_iter_rw(iter
);
2076 err
= check_direct_IO(inode
, iter
, offset
);
2080 if (__force_buffered_io(inode
, rw
))
2083 trace_f2fs_direct_IO_enter(inode
, offset
, count
, rw
);
2085 down_read(&F2FS_I(inode
)->dio_rwsem
[rw
]);
2086 err
= blockdev_direct_IO(iocb
, inode
, iter
, get_data_block_dio
);
2087 up_read(&F2FS_I(inode
)->dio_rwsem
[rw
]);
2091 f2fs_update_iostat(F2FS_I_SB(inode
), APP_DIRECT_IO
,
2093 set_inode_flag(inode
, FI_UPDATE_WRITE
);
2094 } else if (err
< 0) {
2095 f2fs_write_failed(mapping
, offset
+ count
);
2099 trace_f2fs_direct_IO_exit(inode
, offset
, count
, rw
, err
);
2104 void f2fs_invalidate_page(struct page
*page
, unsigned int offset
,
2105 unsigned int length
)
2107 struct inode
*inode
= page
->mapping
->host
;
2108 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2110 if (inode
->i_ino
>= F2FS_ROOT_INO(sbi
) &&
2111 (offset
% PAGE_SIZE
|| length
!= PAGE_SIZE
))
2114 if (PageDirty(page
)) {
2115 if (inode
->i_ino
== F2FS_META_INO(sbi
)) {
2116 dec_page_count(sbi
, F2FS_DIRTY_META
);
2117 } else if (inode
->i_ino
== F2FS_NODE_INO(sbi
)) {
2118 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
2120 inode_dec_dirty_pages(inode
);
2121 remove_dirty_inode(inode
);
2125 /* This is atomic written page, keep Private */
2126 if (IS_ATOMIC_WRITTEN_PAGE(page
))
2127 return drop_inmem_page(inode
, page
);
2129 set_page_private(page
, 0);
2130 ClearPagePrivate(page
);
2133 int f2fs_release_page(struct page
*page
, gfp_t wait
)
2135 /* If this is dirty page, keep PagePrivate */
2136 if (PageDirty(page
))
2139 /* This is atomic written page, keep Private */
2140 if (IS_ATOMIC_WRITTEN_PAGE(page
))
2143 set_page_private(page
, 0);
2144 ClearPagePrivate(page
);
2149 * This was copied from __set_page_dirty_buffers which gives higher performance
2150 * in very high speed storages. (e.g., pmem)
2152 void f2fs_set_page_dirty_nobuffers(struct page
*page
)
2154 struct address_space
*mapping
= page
->mapping
;
2155 unsigned long flags
;
2157 if (unlikely(!mapping
))
2160 spin_lock(&mapping
->private_lock
);
2161 lock_page_memcg(page
);
2163 spin_unlock(&mapping
->private_lock
);
2165 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2166 WARN_ON_ONCE(!PageUptodate(page
));
2167 account_page_dirtied(page
, mapping
);
2168 radix_tree_tag_set(&mapping
->page_tree
,
2169 page_index(page
), PAGECACHE_TAG_DIRTY
);
2170 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2171 unlock_page_memcg(page
);
2173 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2177 static int f2fs_set_data_page_dirty(struct page
*page
)
2179 struct address_space
*mapping
= page
->mapping
;
2180 struct inode
*inode
= mapping
->host
;
2182 trace_f2fs_set_page_dirty(page
, DATA
);
2184 if (!PageUptodate(page
))
2185 SetPageUptodate(page
);
2187 if (f2fs_is_atomic_file(inode
) && !f2fs_is_commit_atomic_write(inode
)) {
2188 if (!IS_ATOMIC_WRITTEN_PAGE(page
)) {
2189 register_inmem_page(inode
, page
);
2193 * Previously, this page has been registered, we just
2199 if (!PageDirty(page
)) {
2200 f2fs_set_page_dirty_nobuffers(page
);
2201 update_dirty_page(inode
, page
);
2207 static sector_t
f2fs_bmap(struct address_space
*mapping
, sector_t block
)
2209 struct inode
*inode
= mapping
->host
;
2211 if (f2fs_has_inline_data(inode
))
2214 /* make sure allocating whole blocks */
2215 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2216 filemap_write_and_wait(mapping
);
2218 return generic_block_bmap(mapping
, block
, get_data_block_bmap
);
2221 #ifdef CONFIG_MIGRATION
2222 #include <linux/migrate.h>
2224 int f2fs_migrate_page(struct address_space
*mapping
,
2225 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
2227 int rc
, extra_count
;
2228 struct f2fs_inode_info
*fi
= F2FS_I(mapping
->host
);
2229 bool atomic_written
= IS_ATOMIC_WRITTEN_PAGE(page
);
2231 BUG_ON(PageWriteback(page
));
2233 /* migrating an atomic written page is safe with the inmem_lock hold */
2234 if (atomic_written
) {
2235 if (mode
!= MIGRATE_SYNC
)
2237 if (!mutex_trylock(&fi
->inmem_lock
))
2242 * A reference is expected if PagePrivate set when move mapping,
2243 * however F2FS breaks this for maintaining dirty page counts when
2244 * truncating pages. So here adjusting the 'extra_count' make it work.
2246 extra_count
= (atomic_written
? 1 : 0) - page_has_private(page
);
2247 rc
= migrate_page_move_mapping(mapping
, newpage
,
2248 page
, NULL
, mode
, extra_count
);
2249 if (rc
!= MIGRATEPAGE_SUCCESS
) {
2251 mutex_unlock(&fi
->inmem_lock
);
2255 if (atomic_written
) {
2256 struct inmem_pages
*cur
;
2257 list_for_each_entry(cur
, &fi
->inmem_pages
, list
)
2258 if (cur
->page
== page
) {
2259 cur
->page
= newpage
;
2262 mutex_unlock(&fi
->inmem_lock
);
2267 if (PagePrivate(page
))
2268 SetPagePrivate(newpage
);
2269 set_page_private(newpage
, page_private(page
));
2271 if (mode
!= MIGRATE_SYNC_NO_COPY
)
2272 migrate_page_copy(newpage
, page
);
2274 migrate_page_states(newpage
, page
);
2276 return MIGRATEPAGE_SUCCESS
;
2280 const struct address_space_operations f2fs_dblock_aops
= {
2281 .readpage
= f2fs_read_data_page
,
2282 .readpages
= f2fs_read_data_pages
,
2283 .writepage
= f2fs_write_data_page
,
2284 .writepages
= f2fs_write_data_pages
,
2285 .write_begin
= f2fs_write_begin
,
2286 .write_end
= f2fs_write_end
,
2287 .set_page_dirty
= f2fs_set_data_page_dirty
,
2288 .invalidatepage
= f2fs_invalidate_page
,
2289 .releasepage
= f2fs_release_page
,
2290 .direct_IO
= f2fs_direct_IO
,
2292 #ifdef CONFIG_MIGRATION
2293 .migratepage
= f2fs_migrate_page
,