1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
21 #include <trace/events/block.h>
23 #include "blk-rq-qos.h"
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
29 #define BIO_INLINE_VECS 4
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES
, max
),
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
46 struct bio_set fs_bio_set
;
47 EXPORT_SYMBOL(fs_bio_set
);
50 * Our slab pool management
53 struct kmem_cache
*slab
;
54 unsigned int slab_ref
;
55 unsigned int slab_size
;
58 static DEFINE_MUTEX(bio_slab_lock
);
59 static struct bio_slab
*bio_slabs
;
60 static unsigned int bio_slab_nr
, bio_slab_max
;
62 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
64 unsigned int sz
= sizeof(struct bio
) + extra_size
;
65 struct kmem_cache
*slab
= NULL
;
66 struct bio_slab
*bslab
, *new_bio_slabs
;
67 unsigned int new_bio_slab_max
;
68 unsigned int i
, entry
= -1;
70 mutex_lock(&bio_slab_lock
);
73 while (i
< bio_slab_nr
) {
74 bslab
= &bio_slabs
[i
];
76 if (!bslab
->slab
&& entry
== -1)
78 else if (bslab
->slab_size
== sz
) {
89 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
90 new_bio_slab_max
= bio_slab_max
<< 1;
91 new_bio_slabs
= krealloc(bio_slabs
,
92 new_bio_slab_max
* sizeof(struct bio_slab
),
96 bio_slab_max
= new_bio_slab_max
;
97 bio_slabs
= new_bio_slabs
;
100 entry
= bio_slab_nr
++;
102 bslab
= &bio_slabs
[entry
];
104 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
105 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
106 SLAB_HWCACHE_ALIGN
, NULL
);
112 bslab
->slab_size
= sz
;
114 mutex_unlock(&bio_slab_lock
);
118 static void bio_put_slab(struct bio_set
*bs
)
120 struct bio_slab
*bslab
= NULL
;
123 mutex_lock(&bio_slab_lock
);
125 for (i
= 0; i
< bio_slab_nr
; i
++) {
126 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
127 bslab
= &bio_slabs
[i
];
132 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
135 WARN_ON(!bslab
->slab_ref
);
137 if (--bslab
->slab_ref
)
140 kmem_cache_destroy(bslab
->slab
);
144 mutex_unlock(&bio_slab_lock
);
147 unsigned int bvec_nr_vecs(unsigned short idx
)
149 return bvec_slabs
[--idx
].nr_vecs
;
152 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
158 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
160 if (idx
== BVEC_POOL_MAX
) {
161 mempool_free(bv
, pool
);
163 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
165 kmem_cache_free(bvs
->slab
, bv
);
169 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
175 * see comment near bvec_array define!
193 case 129 ... BIO_MAX_PAGES
:
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
204 if (*idx
== BVEC_POOL_MAX
) {
206 bvl
= mempool_alloc(pool
, gfp_mask
);
208 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
209 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
216 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 * is set, retry with the 1-entry mempool
222 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
223 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
224 *idx
= BVEC_POOL_MAX
;
233 void bio_uninit(struct bio
*bio
)
235 bio_disassociate_blkg(bio
);
237 if (bio_integrity(bio
))
238 bio_integrity_free(bio
);
240 EXPORT_SYMBOL(bio_uninit
);
242 static void bio_free(struct bio
*bio
)
244 struct bio_set
*bs
= bio
->bi_pool
;
250 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
253 * If we have front padding, adjust the bio pointer before freeing
258 mempool_free(p
, &bs
->bio_pool
);
260 /* Bio was allocated by bio_kmalloc() */
266 * Users of this function have their own bio allocation. Subsequently,
267 * they must remember to pair any call to bio_init() with bio_uninit()
268 * when IO has completed, or when the bio is released.
270 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
271 unsigned short max_vecs
)
273 memset(bio
, 0, sizeof(*bio
));
274 atomic_set(&bio
->__bi_remaining
, 1);
275 atomic_set(&bio
->__bi_cnt
, 1);
277 bio
->bi_io_vec
= table
;
278 bio
->bi_max_vecs
= max_vecs
;
280 EXPORT_SYMBOL(bio_init
);
283 * bio_reset - reinitialize a bio
287 * After calling bio_reset(), @bio will be in the same state as a freshly
288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
289 * preserved are the ones that are initialized by bio_alloc_bioset(). See
290 * comment in struct bio.
292 void bio_reset(struct bio
*bio
)
294 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
298 memset(bio
, 0, BIO_RESET_BYTES
);
299 bio
->bi_flags
= flags
;
300 atomic_set(&bio
->__bi_remaining
, 1);
302 EXPORT_SYMBOL(bio_reset
);
304 static struct bio
*__bio_chain_endio(struct bio
*bio
)
306 struct bio
*parent
= bio
->bi_private
;
308 if (!parent
->bi_status
)
309 parent
->bi_status
= bio
->bi_status
;
314 static void bio_chain_endio(struct bio
*bio
)
316 bio_endio(__bio_chain_endio(bio
));
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
328 * The caller must not set bi_private or bi_end_io in @bio.
330 void bio_chain(struct bio
*bio
, struct bio
*parent
)
332 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
334 bio
->bi_private
= parent
;
335 bio
->bi_end_io
= bio_chain_endio
;
336 bio_inc_remaining(parent
);
338 EXPORT_SYMBOL(bio_chain
);
340 static void bio_alloc_rescue(struct work_struct
*work
)
342 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
346 spin_lock(&bs
->rescue_lock
);
347 bio
= bio_list_pop(&bs
->rescue_list
);
348 spin_unlock(&bs
->rescue_lock
);
353 generic_make_request(bio
);
357 static void punt_bios_to_rescuer(struct bio_set
*bs
)
359 struct bio_list punt
, nopunt
;
362 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
365 * In order to guarantee forward progress we must punt only bios that
366 * were allocated from this bio_set; otherwise, if there was a bio on
367 * there for a stacking driver higher up in the stack, processing it
368 * could require allocating bios from this bio_set, and doing that from
369 * our own rescuer would be bad.
371 * Since bio lists are singly linked, pop them all instead of trying to
372 * remove from the middle of the list:
375 bio_list_init(&punt
);
376 bio_list_init(&nopunt
);
378 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
379 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
380 current
->bio_list
[0] = nopunt
;
382 bio_list_init(&nopunt
);
383 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
384 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
385 current
->bio_list
[1] = nopunt
;
387 spin_lock(&bs
->rescue_lock
);
388 bio_list_merge(&bs
->rescue_list
, &punt
);
389 spin_unlock(&bs
->rescue_lock
);
391 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_* mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
427 * Pointer to new bio on success, NULL on failure.
429 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, unsigned int nr_iovecs
,
432 gfp_t saved_gfp
= gfp_mask
;
434 unsigned inline_vecs
;
435 struct bio_vec
*bvl
= NULL
;
440 if (nr_iovecs
> UIO_MAXIOV
)
443 p
= kmalloc(sizeof(struct bio
) +
444 nr_iovecs
* sizeof(struct bio_vec
),
447 inline_vecs
= nr_iovecs
;
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) &&
454 * generic_make_request() converts recursion to iteration; this
455 * means if we're running beneath it, any bios we allocate and
456 * submit will not be submitted (and thus freed) until after we
459 * This exposes us to a potential deadlock if we allocate
460 * multiple bios from the same bio_set() while running
461 * underneath generic_make_request(). If we were to allocate
462 * multiple bios (say a stacking block driver that was splitting
463 * bios), we would deadlock if we exhausted the mempool's
466 * We solve this, and guarantee forward progress, with a rescuer
467 * workqueue per bio_set. If we go to allocate and there are
468 * bios on current->bio_list, we first try the allocation
469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 * bios we would be blocking to the rescuer workqueue before
471 * we retry with the original gfp_flags.
474 if (current
->bio_list
&&
475 (!bio_list_empty(¤t
->bio_list
[0]) ||
476 !bio_list_empty(¤t
->bio_list
[1])) &&
477 bs
->rescue_workqueue
)
478 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
480 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
481 if (!p
&& gfp_mask
!= saved_gfp
) {
482 punt_bios_to_rescuer(bs
);
483 gfp_mask
= saved_gfp
;
484 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
487 front_pad
= bs
->front_pad
;
488 inline_vecs
= BIO_INLINE_VECS
;
495 bio_init(bio
, NULL
, 0);
497 if (nr_iovecs
> inline_vecs
) {
498 unsigned long idx
= 0;
500 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
501 if (!bvl
&& gfp_mask
!= saved_gfp
) {
502 punt_bios_to_rescuer(bs
);
503 gfp_mask
= saved_gfp
;
504 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
510 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
511 } else if (nr_iovecs
) {
512 bvl
= bio
->bi_inline_vecs
;
516 bio
->bi_max_vecs
= nr_iovecs
;
517 bio
->bi_io_vec
= bvl
;
521 mempool_free(p
, &bs
->bio_pool
);
524 EXPORT_SYMBOL(bio_alloc_bioset
);
526 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
530 struct bvec_iter iter
;
532 __bio_for_each_segment(bv
, bio
, iter
, start
) {
533 char *data
= bvec_kmap_irq(&bv
, &flags
);
534 memset(data
, 0, bv
.bv_len
);
535 flush_dcache_page(bv
.bv_page
);
536 bvec_kunmap_irq(data
, &flags
);
539 EXPORT_SYMBOL(zero_fill_bio_iter
);
542 * bio_truncate - truncate the bio to small size of @new_size
543 * @bio: the bio to be truncated
544 * @new_size: new size for truncating the bio
547 * Truncate the bio to new size of @new_size. If bio_op(bio) is
548 * REQ_OP_READ, zero the truncated part. This function should only
549 * be used for handling corner cases, such as bio eod.
551 void bio_truncate(struct bio
*bio
, unsigned new_size
)
554 struct bvec_iter iter
;
555 unsigned int done
= 0;
556 bool truncated
= false;
558 if (new_size
>= bio
->bi_iter
.bi_size
)
561 if (bio_op(bio
) != REQ_OP_READ
)
564 bio_for_each_segment(bv
, bio
, iter
) {
565 if (done
+ bv
.bv_len
> new_size
) {
569 offset
= new_size
- done
;
572 zero_user(bv
.bv_page
, offset
, bv
.bv_len
- offset
);
580 * Don't touch bvec table here and make it really immutable, since
581 * fs bio user has to retrieve all pages via bio_for_each_segment_all
582 * in its .end_bio() callback.
584 * It is enough to truncate bio by updating .bi_size since we can make
585 * correct bvec with the updated .bi_size for drivers.
587 bio
->bi_iter
.bi_size
= new_size
;
591 * bio_put - release a reference to a bio
592 * @bio: bio to release reference to
595 * Put a reference to a &struct bio, either one you have gotten with
596 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
598 void bio_put(struct bio
*bio
)
600 if (!bio_flagged(bio
, BIO_REFFED
))
603 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
608 if (atomic_dec_and_test(&bio
->__bi_cnt
))
612 EXPORT_SYMBOL(bio_put
);
615 * __bio_clone_fast - clone a bio that shares the original bio's biovec
616 * @bio: destination bio
617 * @bio_src: bio to clone
619 * Clone a &bio. Caller will own the returned bio, but not
620 * the actual data it points to. Reference count of returned
623 * Caller must ensure that @bio_src is not freed before @bio.
625 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
627 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
630 * most users will be overriding ->bi_disk with a new target,
631 * so we don't set nor calculate new physical/hw segment counts here
633 bio
->bi_disk
= bio_src
->bi_disk
;
634 bio
->bi_partno
= bio_src
->bi_partno
;
635 bio_set_flag(bio
, BIO_CLONED
);
636 if (bio_flagged(bio_src
, BIO_THROTTLED
))
637 bio_set_flag(bio
, BIO_THROTTLED
);
638 bio
->bi_opf
= bio_src
->bi_opf
;
639 bio
->bi_ioprio
= bio_src
->bi_ioprio
;
640 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
641 bio
->bi_iter
= bio_src
->bi_iter
;
642 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
644 bio_clone_blkg_association(bio
, bio_src
);
645 blkcg_bio_issue_init(bio
);
647 EXPORT_SYMBOL(__bio_clone_fast
);
650 * bio_clone_fast - clone a bio that shares the original bio's biovec
652 * @gfp_mask: allocation priority
653 * @bs: bio_set to allocate from
655 * Like __bio_clone_fast, only also allocates the returned bio
657 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
661 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
665 __bio_clone_fast(b
, bio
);
667 if (bio_integrity(bio
)) {
670 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
680 EXPORT_SYMBOL(bio_clone_fast
);
682 static inline bool page_is_mergeable(const struct bio_vec
*bv
,
683 struct page
*page
, unsigned int len
, unsigned int off
,
686 size_t bv_end
= bv
->bv_offset
+ bv
->bv_len
;
687 phys_addr_t vec_end_addr
= page_to_phys(bv
->bv_page
) + bv_end
- 1;
688 phys_addr_t page_addr
= page_to_phys(page
);
690 if (vec_end_addr
+ 1 != page_addr
+ off
)
692 if (xen_domain() && !xen_biovec_phys_mergeable(bv
, page
))
695 *same_page
= ((vec_end_addr
& PAGE_MASK
) == page_addr
);
698 return (bv
->bv_page
+ bv_end
/ PAGE_SIZE
) == (page
+ off
/ PAGE_SIZE
);
701 static bool bio_try_merge_pc_page(struct request_queue
*q
, struct bio
*bio
,
702 struct page
*page
, unsigned len
, unsigned offset
,
705 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
706 unsigned long mask
= queue_segment_boundary(q
);
707 phys_addr_t addr1
= page_to_phys(bv
->bv_page
) + bv
->bv_offset
;
708 phys_addr_t addr2
= page_to_phys(page
) + offset
+ len
- 1;
710 if ((addr1
| mask
) != (addr2
| mask
))
712 if (bv
->bv_len
+ len
> queue_max_segment_size(q
))
714 return __bio_try_merge_page(bio
, page
, len
, offset
, same_page
);
718 * __bio_add_pc_page - attempt to add page to passthrough bio
719 * @q: the target queue
720 * @bio: destination bio
722 * @len: vec entry length
723 * @offset: vec entry offset
724 * @same_page: return if the merge happen inside the same page
726 * Attempt to add a page to the bio_vec maplist. This can fail for a
727 * number of reasons, such as the bio being full or target block device
728 * limitations. The target block device must allow bio's up to PAGE_SIZE,
729 * so it is always possible to add a single page to an empty bio.
731 * This should only be used by passthrough bios.
733 static int __bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
734 struct page
*page
, unsigned int len
, unsigned int offset
,
737 struct bio_vec
*bvec
;
740 * cloned bio must not modify vec list
742 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
745 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
748 if (bio
->bi_vcnt
> 0) {
749 if (bio_try_merge_pc_page(q
, bio
, page
, len
, offset
, same_page
))
753 * If the queue doesn't support SG gaps and adding this segment
754 * would create a gap, disallow it.
756 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
757 if (bvec_gap_to_prev(q
, bvec
, offset
))
761 if (bio_full(bio
, len
))
764 if (bio
->bi_vcnt
>= queue_max_segments(q
))
767 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
768 bvec
->bv_page
= page
;
770 bvec
->bv_offset
= offset
;
772 bio
->bi_iter
.bi_size
+= len
;
776 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
777 struct page
*page
, unsigned int len
, unsigned int offset
)
779 bool same_page
= false;
780 return __bio_add_pc_page(q
, bio
, page
, len
, offset
, &same_page
);
782 EXPORT_SYMBOL(bio_add_pc_page
);
785 * __bio_try_merge_page - try appending data to an existing bvec.
786 * @bio: destination bio
787 * @page: start page to add
788 * @len: length of the data to add
789 * @off: offset of the data relative to @page
790 * @same_page: return if the segment has been merged inside the same page
792 * Try to add the data at @page + @off to the last bvec of @bio. This is a
793 * a useful optimisation for file systems with a block size smaller than the
796 * Warn if (@len, @off) crosses pages in case that @same_page is true.
798 * Return %true on success or %false on failure.
800 bool __bio_try_merge_page(struct bio
*bio
, struct page
*page
,
801 unsigned int len
, unsigned int off
, bool *same_page
)
803 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
806 if (bio
->bi_vcnt
> 0) {
807 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
809 if (page_is_mergeable(bv
, page
, len
, off
, same_page
)) {
810 if (bio
->bi_iter
.bi_size
> UINT_MAX
- len
) {
815 bio
->bi_iter
.bi_size
+= len
;
821 EXPORT_SYMBOL_GPL(__bio_try_merge_page
);
824 * __bio_add_page - add page(s) to a bio in a new segment
825 * @bio: destination bio
826 * @page: start page to add
827 * @len: length of the data to add, may cross pages
828 * @off: offset of the data relative to @page, may cross pages
830 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
831 * that @bio has space for another bvec.
833 void __bio_add_page(struct bio
*bio
, struct page
*page
,
834 unsigned int len
, unsigned int off
)
836 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
838 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
839 WARN_ON_ONCE(bio_full(bio
, len
));
845 bio
->bi_iter
.bi_size
+= len
;
848 if (!bio_flagged(bio
, BIO_WORKINGSET
) && unlikely(PageWorkingset(page
)))
849 bio_set_flag(bio
, BIO_WORKINGSET
);
851 EXPORT_SYMBOL_GPL(__bio_add_page
);
854 * bio_add_page - attempt to add page(s) to bio
855 * @bio: destination bio
856 * @page: start page to add
857 * @len: vec entry length, may cross pages
858 * @offset: vec entry offset relative to @page, may cross pages
860 * Attempt to add page(s) to the bio_vec maplist. This will only fail
861 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
863 int bio_add_page(struct bio
*bio
, struct page
*page
,
864 unsigned int len
, unsigned int offset
)
866 bool same_page
= false;
868 if (!__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
869 if (bio_full(bio
, len
))
871 __bio_add_page(bio
, page
, len
, offset
);
875 EXPORT_SYMBOL(bio_add_page
);
877 void bio_release_pages(struct bio
*bio
, bool mark_dirty
)
879 struct bvec_iter_all iter_all
;
880 struct bio_vec
*bvec
;
882 if (bio_flagged(bio
, BIO_NO_PAGE_REF
))
885 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
886 if (mark_dirty
&& !PageCompound(bvec
->bv_page
))
887 set_page_dirty_lock(bvec
->bv_page
);
888 put_page(bvec
->bv_page
);
892 static int __bio_iov_bvec_add_pages(struct bio
*bio
, struct iov_iter
*iter
)
894 const struct bio_vec
*bv
= iter
->bvec
;
898 if (WARN_ON_ONCE(iter
->iov_offset
> bv
->bv_len
))
901 len
= min_t(size_t, bv
->bv_len
- iter
->iov_offset
, iter
->count
);
902 size
= bio_add_page(bio
, bv
->bv_page
, len
,
903 bv
->bv_offset
+ iter
->iov_offset
);
904 if (unlikely(size
!= len
))
906 iov_iter_advance(iter
, size
);
910 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
913 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
914 * @bio: bio to add pages to
915 * @iter: iov iterator describing the region to be mapped
917 * Pins pages from *iter and appends them to @bio's bvec array. The
918 * pages will have to be released using put_page() when done.
919 * For multi-segment *iter, this function only adds pages from the
920 * the next non-empty segment of the iov iterator.
922 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
924 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
925 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
926 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
927 struct page
**pages
= (struct page
**)bv
;
928 bool same_page
= false;
934 * Move page array up in the allocated memory for the bio vecs as far as
935 * possible so that we can start filling biovecs from the beginning
936 * without overwriting the temporary page array.
938 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
939 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
941 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
942 if (unlikely(size
<= 0))
943 return size
? size
: -EFAULT
;
945 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
++) {
946 struct page
*page
= pages
[i
];
948 len
= min_t(size_t, PAGE_SIZE
- offset
, left
);
950 if (__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
954 if (WARN_ON_ONCE(bio_full(bio
, len
)))
956 __bio_add_page(bio
, page
, len
, offset
);
961 iov_iter_advance(iter
, size
);
966 * bio_iov_iter_get_pages - add user or kernel pages to a bio
967 * @bio: bio to add pages to
968 * @iter: iov iterator describing the region to be added
970 * This takes either an iterator pointing to user memory, or one pointing to
971 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
972 * map them into the kernel. On IO completion, the caller should put those
973 * pages. If we're adding kernel pages, and the caller told us it's safe to
974 * do so, we just have to add the pages to the bio directly. We don't grab an
975 * extra reference to those pages (the user should already have that), and we
976 * don't put the page on IO completion. The caller needs to check if the bio is
977 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
980 * The function tries, but does not guarantee, to pin as many pages as
981 * fit into the bio, or are requested in *iter, whatever is smaller. If
982 * MM encounters an error pinning the requested pages, it stops. Error
983 * is returned only if 0 pages could be pinned.
985 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
987 const bool is_bvec
= iov_iter_is_bvec(iter
);
990 if (WARN_ON_ONCE(bio
->bi_vcnt
))
995 ret
= __bio_iov_bvec_add_pages(bio
, iter
);
997 ret
= __bio_iov_iter_get_pages(bio
, iter
);
998 } while (!ret
&& iov_iter_count(iter
) && !bio_full(bio
, 0));
1001 bio_set_flag(bio
, BIO_NO_PAGE_REF
);
1002 return bio
->bi_vcnt
? 0 : ret
;
1005 static void submit_bio_wait_endio(struct bio
*bio
)
1007 complete(bio
->bi_private
);
1011 * submit_bio_wait - submit a bio, and wait until it completes
1012 * @bio: The &struct bio which describes the I/O
1014 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1015 * bio_endio() on failure.
1017 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1018 * result in bio reference to be consumed. The caller must drop the reference
1021 int submit_bio_wait(struct bio
*bio
)
1023 DECLARE_COMPLETION_ONSTACK_MAP(done
, bio
->bi_disk
->lockdep_map
);
1025 bio
->bi_private
= &done
;
1026 bio
->bi_end_io
= submit_bio_wait_endio
;
1027 bio
->bi_opf
|= REQ_SYNC
;
1029 wait_for_completion_io(&done
);
1031 return blk_status_to_errno(bio
->bi_status
);
1033 EXPORT_SYMBOL(submit_bio_wait
);
1036 * bio_advance - increment/complete a bio by some number of bytes
1037 * @bio: bio to advance
1038 * @bytes: number of bytes to complete
1040 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1041 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1042 * be updated on the last bvec as well.
1044 * @bio will then represent the remaining, uncompleted portion of the io.
1046 void bio_advance(struct bio
*bio
, unsigned bytes
)
1048 if (bio_integrity(bio
))
1049 bio_integrity_advance(bio
, bytes
);
1051 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1053 EXPORT_SYMBOL(bio_advance
);
1055 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1056 struct bio
*src
, struct bvec_iter
*src_iter
)
1058 struct bio_vec src_bv
, dst_bv
;
1059 void *src_p
, *dst_p
;
1062 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1063 src_bv
= bio_iter_iovec(src
, *src_iter
);
1064 dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1066 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1068 src_p
= kmap_atomic(src_bv
.bv_page
);
1069 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1071 memcpy(dst_p
+ dst_bv
.bv_offset
,
1072 src_p
+ src_bv
.bv_offset
,
1075 kunmap_atomic(dst_p
);
1076 kunmap_atomic(src_p
);
1078 flush_dcache_page(dst_bv
.bv_page
);
1080 bio_advance_iter(src
, src_iter
, bytes
);
1081 bio_advance_iter(dst
, dst_iter
, bytes
);
1084 EXPORT_SYMBOL(bio_copy_data_iter
);
1087 * bio_copy_data - copy contents of data buffers from one bio to another
1089 * @dst: destination bio
1091 * Stops when it reaches the end of either @src or @dst - that is, copies
1092 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1094 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1096 struct bvec_iter src_iter
= src
->bi_iter
;
1097 struct bvec_iter dst_iter
= dst
->bi_iter
;
1099 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1101 EXPORT_SYMBOL(bio_copy_data
);
1104 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1106 * @src: source bio list
1107 * @dst: destination bio list
1109 * Stops when it reaches the end of either the @src list or @dst list - that is,
1110 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1113 void bio_list_copy_data(struct bio
*dst
, struct bio
*src
)
1115 struct bvec_iter src_iter
= src
->bi_iter
;
1116 struct bvec_iter dst_iter
= dst
->bi_iter
;
1119 if (!src_iter
.bi_size
) {
1124 src_iter
= src
->bi_iter
;
1127 if (!dst_iter
.bi_size
) {
1132 dst_iter
= dst
->bi_iter
;
1135 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1138 EXPORT_SYMBOL(bio_list_copy_data
);
1140 struct bio_map_data
{
1142 struct iov_iter iter
;
1146 static struct bio_map_data
*bio_alloc_map_data(struct iov_iter
*data
,
1149 struct bio_map_data
*bmd
;
1150 if (data
->nr_segs
> UIO_MAXIOV
)
1153 bmd
= kmalloc(struct_size(bmd
, iov
, data
->nr_segs
), gfp_mask
);
1156 memcpy(bmd
->iov
, data
->iov
, sizeof(struct iovec
) * data
->nr_segs
);
1158 bmd
->iter
.iov
= bmd
->iov
;
1163 * bio_copy_from_iter - copy all pages from iov_iter to bio
1164 * @bio: The &struct bio which describes the I/O as destination
1165 * @iter: iov_iter as source
1167 * Copy all pages from iov_iter to bio.
1168 * Returns 0 on success, or error on failure.
1170 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter
*iter
)
1172 struct bio_vec
*bvec
;
1173 struct bvec_iter_all iter_all
;
1175 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1178 ret
= copy_page_from_iter(bvec
->bv_page
,
1183 if (!iov_iter_count(iter
))
1186 if (ret
< bvec
->bv_len
)
1194 * bio_copy_to_iter - copy all pages from bio to iov_iter
1195 * @bio: The &struct bio which describes the I/O as source
1196 * @iter: iov_iter as destination
1198 * Copy all pages from bio to iov_iter.
1199 * Returns 0 on success, or error on failure.
1201 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1203 struct bio_vec
*bvec
;
1204 struct bvec_iter_all iter_all
;
1206 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1209 ret
= copy_page_to_iter(bvec
->bv_page
,
1214 if (!iov_iter_count(&iter
))
1217 if (ret
< bvec
->bv_len
)
1224 void bio_free_pages(struct bio
*bio
)
1226 struct bio_vec
*bvec
;
1227 struct bvec_iter_all iter_all
;
1229 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1230 __free_page(bvec
->bv_page
);
1232 EXPORT_SYMBOL(bio_free_pages
);
1235 * bio_uncopy_user - finish previously mapped bio
1236 * @bio: bio being terminated
1238 * Free pages allocated from bio_copy_user_iov() and write back data
1239 * to user space in case of a read.
1241 int bio_uncopy_user(struct bio
*bio
)
1243 struct bio_map_data
*bmd
= bio
->bi_private
;
1246 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1248 * if we're in a workqueue, the request is orphaned, so
1249 * don't copy into a random user address space, just free
1250 * and return -EINTR so user space doesn't expect any data.
1254 else if (bio_data_dir(bio
) == READ
)
1255 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1256 if (bmd
->is_our_pages
)
1257 bio_free_pages(bio
);
1265 * bio_copy_user_iov - copy user data to bio
1266 * @q: destination block queue
1267 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1268 * @iter: iovec iterator
1269 * @gfp_mask: memory allocation flags
1271 * Prepares and returns a bio for indirect user io, bouncing data
1272 * to/from kernel pages as necessary. Must be paired with
1273 * call bio_uncopy_user() on io completion.
1275 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1276 struct rq_map_data
*map_data
,
1277 struct iov_iter
*iter
,
1280 struct bio_map_data
*bmd
;
1285 unsigned int len
= iter
->count
;
1286 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1288 bmd
= bio_alloc_map_data(iter
, gfp_mask
);
1290 return ERR_PTR(-ENOMEM
);
1293 * We need to do a deep copy of the iov_iter including the iovecs.
1294 * The caller provided iov might point to an on-stack or otherwise
1297 bmd
->is_our_pages
= map_data
? 0 : 1;
1299 nr_pages
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
1300 if (nr_pages
> BIO_MAX_PAGES
)
1301 nr_pages
= BIO_MAX_PAGES
;
1304 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1311 nr_pages
= 1 << map_data
->page_order
;
1312 i
= map_data
->offset
/ PAGE_SIZE
;
1315 unsigned int bytes
= PAGE_SIZE
;
1323 if (i
== map_data
->nr_entries
* nr_pages
) {
1328 page
= map_data
->pages
[i
/ nr_pages
];
1329 page
+= (i
% nr_pages
);
1333 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1340 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
) {
1354 map_data
->offset
+= bio
->bi_iter
.bi_size
;
1359 if ((iov_iter_rw(iter
) == WRITE
&& (!map_data
|| !map_data
->null_mapped
)) ||
1360 (map_data
&& map_data
->from_user
)) {
1361 ret
= bio_copy_from_iter(bio
, iter
);
1365 if (bmd
->is_our_pages
)
1367 iov_iter_advance(iter
, bio
->bi_iter
.bi_size
);
1370 bio
->bi_private
= bmd
;
1371 if (map_data
&& map_data
->null_mapped
)
1372 bio_set_flag(bio
, BIO_NULL_MAPPED
);
1376 bio_free_pages(bio
);
1380 return ERR_PTR(ret
);
1384 * bio_map_user_iov - map user iovec into bio
1385 * @q: the struct request_queue for the bio
1386 * @iter: iovec iterator
1387 * @gfp_mask: memory allocation flags
1389 * Map the user space address into a bio suitable for io to a block
1390 * device. Returns an error pointer in case of error.
1392 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1393 struct iov_iter
*iter
,
1400 if (!iov_iter_count(iter
))
1401 return ERR_PTR(-EINVAL
);
1403 bio
= bio_kmalloc(gfp_mask
, iov_iter_npages(iter
, BIO_MAX_PAGES
));
1405 return ERR_PTR(-ENOMEM
);
1407 while (iov_iter_count(iter
)) {
1408 struct page
**pages
;
1410 size_t offs
, added
= 0;
1413 bytes
= iov_iter_get_pages_alloc(iter
, &pages
, LONG_MAX
, &offs
);
1414 if (unlikely(bytes
<= 0)) {
1415 ret
= bytes
? bytes
: -EFAULT
;
1419 npages
= DIV_ROUND_UP(offs
+ bytes
, PAGE_SIZE
);
1421 if (unlikely(offs
& queue_dma_alignment(q
))) {
1425 for (j
= 0; j
< npages
; j
++) {
1426 struct page
*page
= pages
[j
];
1427 unsigned int n
= PAGE_SIZE
- offs
;
1428 bool same_page
= false;
1433 if (!__bio_add_pc_page(q
, bio
, page
, n
, offs
,
1444 iov_iter_advance(iter
, added
);
1447 * release the pages we didn't map into the bio, if any
1450 put_page(pages
[j
++]);
1452 /* couldn't stuff something into bio? */
1457 bio_set_flag(bio
, BIO_USER_MAPPED
);
1460 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1461 * it would normally disappear when its bi_end_io is run.
1462 * however, we need it for the unmap, so grab an extra
1469 bio_release_pages(bio
, false);
1471 return ERR_PTR(ret
);
1475 * bio_unmap_user - unmap a bio
1476 * @bio: the bio being unmapped
1478 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1481 * bio_unmap_user() may sleep.
1483 void bio_unmap_user(struct bio
*bio
)
1485 bio_release_pages(bio
, bio_data_dir(bio
) == READ
);
1490 static void bio_invalidate_vmalloc_pages(struct bio
*bio
)
1492 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1493 if (bio
->bi_private
&& !op_is_write(bio_op(bio
))) {
1494 unsigned long i
, len
= 0;
1496 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1497 len
+= bio
->bi_io_vec
[i
].bv_len
;
1498 invalidate_kernel_vmap_range(bio
->bi_private
, len
);
1503 static void bio_map_kern_endio(struct bio
*bio
)
1505 bio_invalidate_vmalloc_pages(bio
);
1510 * bio_map_kern - map kernel address into bio
1511 * @q: the struct request_queue for the bio
1512 * @data: pointer to buffer to map
1513 * @len: length in bytes
1514 * @gfp_mask: allocation flags for bio allocation
1516 * Map the kernel address into a bio suitable for io to a block
1517 * device. Returns an error pointer in case of error.
1519 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1522 unsigned long kaddr
= (unsigned long)data
;
1523 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1524 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1525 const int nr_pages
= end
- start
;
1526 bool is_vmalloc
= is_vmalloc_addr(data
);
1531 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1533 return ERR_PTR(-ENOMEM
);
1536 flush_kernel_vmap_range(data
, len
);
1537 bio
->bi_private
= data
;
1540 offset
= offset_in_page(kaddr
);
1541 for (i
= 0; i
< nr_pages
; i
++) {
1542 unsigned int bytes
= PAGE_SIZE
- offset
;
1551 page
= virt_to_page(data
);
1553 page
= vmalloc_to_page(data
);
1554 if (bio_add_pc_page(q
, bio
, page
, bytes
,
1556 /* we don't support partial mappings */
1558 return ERR_PTR(-EINVAL
);
1566 bio
->bi_end_io
= bio_map_kern_endio
;
1570 static void bio_copy_kern_endio(struct bio
*bio
)
1572 bio_free_pages(bio
);
1576 static void bio_copy_kern_endio_read(struct bio
*bio
)
1578 char *p
= bio
->bi_private
;
1579 struct bio_vec
*bvec
;
1580 struct bvec_iter_all iter_all
;
1582 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1583 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1587 bio_copy_kern_endio(bio
);
1591 * bio_copy_kern - copy kernel address into bio
1592 * @q: the struct request_queue for the bio
1593 * @data: pointer to buffer to copy
1594 * @len: length in bytes
1595 * @gfp_mask: allocation flags for bio and page allocation
1596 * @reading: data direction is READ
1598 * copy the kernel address into a bio suitable for io to a block
1599 * device. Returns an error pointer in case of error.
1601 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1602 gfp_t gfp_mask
, int reading
)
1604 unsigned long kaddr
= (unsigned long)data
;
1605 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1606 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1615 return ERR_PTR(-EINVAL
);
1617 nr_pages
= end
- start
;
1618 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1620 return ERR_PTR(-ENOMEM
);
1624 unsigned int bytes
= PAGE_SIZE
;
1629 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1634 memcpy(page_address(page
), p
, bytes
);
1636 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1644 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1645 bio
->bi_private
= data
;
1647 bio
->bi_end_io
= bio_copy_kern_endio
;
1653 bio_free_pages(bio
);
1655 return ERR_PTR(-ENOMEM
);
1659 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1660 * for performing direct-IO in BIOs.
1662 * The problem is that we cannot run set_page_dirty() from interrupt context
1663 * because the required locks are not interrupt-safe. So what we can do is to
1664 * mark the pages dirty _before_ performing IO. And in interrupt context,
1665 * check that the pages are still dirty. If so, fine. If not, redirty them
1666 * in process context.
1668 * We special-case compound pages here: normally this means reads into hugetlb
1669 * pages. The logic in here doesn't really work right for compound pages
1670 * because the VM does not uniformly chase down the head page in all cases.
1671 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1672 * handle them at all. So we skip compound pages here at an early stage.
1674 * Note that this code is very hard to test under normal circumstances because
1675 * direct-io pins the pages with get_user_pages(). This makes
1676 * is_page_cache_freeable return false, and the VM will not clean the pages.
1677 * But other code (eg, flusher threads) could clean the pages if they are mapped
1680 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1681 * deferred bio dirtying paths.
1685 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1687 void bio_set_pages_dirty(struct bio
*bio
)
1689 struct bio_vec
*bvec
;
1690 struct bvec_iter_all iter_all
;
1692 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1693 if (!PageCompound(bvec
->bv_page
))
1694 set_page_dirty_lock(bvec
->bv_page
);
1699 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1700 * If they are, then fine. If, however, some pages are clean then they must
1701 * have been written out during the direct-IO read. So we take another ref on
1702 * the BIO and re-dirty the pages in process context.
1704 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1705 * here on. It will run one put_page() against each page and will run one
1706 * bio_put() against the BIO.
1709 static void bio_dirty_fn(struct work_struct
*work
);
1711 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1712 static DEFINE_SPINLOCK(bio_dirty_lock
);
1713 static struct bio
*bio_dirty_list
;
1716 * This runs in process context
1718 static void bio_dirty_fn(struct work_struct
*work
)
1720 struct bio
*bio
, *next
;
1722 spin_lock_irq(&bio_dirty_lock
);
1723 next
= bio_dirty_list
;
1724 bio_dirty_list
= NULL
;
1725 spin_unlock_irq(&bio_dirty_lock
);
1727 while ((bio
= next
) != NULL
) {
1728 next
= bio
->bi_private
;
1730 bio_release_pages(bio
, true);
1735 void bio_check_pages_dirty(struct bio
*bio
)
1737 struct bio_vec
*bvec
;
1738 unsigned long flags
;
1739 struct bvec_iter_all iter_all
;
1741 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1742 if (!PageDirty(bvec
->bv_page
) && !PageCompound(bvec
->bv_page
))
1746 bio_release_pages(bio
, false);
1750 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1751 bio
->bi_private
= bio_dirty_list
;
1752 bio_dirty_list
= bio
;
1753 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1754 schedule_work(&bio_dirty_work
);
1757 void update_io_ticks(struct hd_struct
*part
, unsigned long now
)
1759 unsigned long stamp
;
1761 stamp
= READ_ONCE(part
->stamp
);
1762 if (unlikely(stamp
!= now
)) {
1763 if (likely(cmpxchg(&part
->stamp
, stamp
, now
) == stamp
)) {
1764 __part_stat_add(part
, io_ticks
, 1);
1768 part
= &part_to_disk(part
)->part0
;
1773 void generic_start_io_acct(struct request_queue
*q
, int op
,
1774 unsigned long sectors
, struct hd_struct
*part
)
1776 const int sgrp
= op_stat_group(op
);
1780 update_io_ticks(part
, jiffies
);
1781 part_stat_inc(part
, ios
[sgrp
]);
1782 part_stat_add(part
, sectors
[sgrp
], sectors
);
1783 part_inc_in_flight(q
, part
, op_is_write(op
));
1787 EXPORT_SYMBOL(generic_start_io_acct
);
1789 void generic_end_io_acct(struct request_queue
*q
, int req_op
,
1790 struct hd_struct
*part
, unsigned long start_time
)
1792 unsigned long now
= jiffies
;
1793 unsigned long duration
= now
- start_time
;
1794 const int sgrp
= op_stat_group(req_op
);
1798 update_io_ticks(part
, now
);
1799 part_stat_add(part
, nsecs
[sgrp
], jiffies_to_nsecs(duration
));
1800 part_stat_add(part
, time_in_queue
, duration
);
1801 part_dec_in_flight(q
, part
, op_is_write(req_op
));
1805 EXPORT_SYMBOL(generic_end_io_acct
);
1807 static inline bool bio_remaining_done(struct bio
*bio
)
1810 * If we're not chaining, then ->__bi_remaining is always 1 and
1811 * we always end io on the first invocation.
1813 if (!bio_flagged(bio
, BIO_CHAIN
))
1816 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1818 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1819 bio_clear_flag(bio
, BIO_CHAIN
);
1827 * bio_endio - end I/O on a bio
1831 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1832 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1833 * bio unless they own it and thus know that it has an end_io function.
1835 * bio_endio() can be called several times on a bio that has been chained
1836 * using bio_chain(). The ->bi_end_io() function will only be called the
1837 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1838 * generated if BIO_TRACE_COMPLETION is set.
1840 void bio_endio(struct bio
*bio
)
1843 if (!bio_remaining_done(bio
))
1845 if (!bio_integrity_endio(bio
))
1849 rq_qos_done_bio(bio
->bi_disk
->queue
, bio
);
1852 * Need to have a real endio function for chained bios, otherwise
1853 * various corner cases will break (like stacking block devices that
1854 * save/restore bi_end_io) - however, we want to avoid unbounded
1855 * recursion and blowing the stack. Tail call optimization would
1856 * handle this, but compiling with frame pointers also disables
1857 * gcc's sibling call optimization.
1859 if (bio
->bi_end_io
== bio_chain_endio
) {
1860 bio
= __bio_chain_endio(bio
);
1864 if (bio
->bi_disk
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1865 trace_block_bio_complete(bio
->bi_disk
->queue
, bio
,
1866 blk_status_to_errno(bio
->bi_status
));
1867 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1870 blk_throtl_bio_endio(bio
);
1871 /* release cgroup info */
1874 bio
->bi_end_io(bio
);
1876 EXPORT_SYMBOL(bio_endio
);
1879 * bio_split - split a bio
1880 * @bio: bio to split
1881 * @sectors: number of sectors to split from the front of @bio
1883 * @bs: bio set to allocate from
1885 * Allocates and returns a new bio which represents @sectors from the start of
1886 * @bio, and updates @bio to represent the remaining sectors.
1888 * Unless this is a discard request the newly allocated bio will point
1889 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1890 * neither @bio nor @bs are freed before the split bio.
1892 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1893 gfp_t gfp
, struct bio_set
*bs
)
1897 BUG_ON(sectors
<= 0);
1898 BUG_ON(sectors
>= bio_sectors(bio
));
1900 split
= bio_clone_fast(bio
, gfp
, bs
);
1904 split
->bi_iter
.bi_size
= sectors
<< 9;
1906 if (bio_integrity(split
))
1907 bio_integrity_trim(split
);
1909 bio_advance(bio
, split
->bi_iter
.bi_size
);
1911 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1912 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1916 EXPORT_SYMBOL(bio_split
);
1919 * bio_trim - trim a bio
1921 * @offset: number of sectors to trim from the front of @bio
1922 * @size: size we want to trim @bio to, in sectors
1924 void bio_trim(struct bio
*bio
, int offset
, int size
)
1926 /* 'bio' is a cloned bio which we need to trim to match
1927 * the given offset and size.
1931 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1934 bio_advance(bio
, offset
<< 9);
1935 bio
->bi_iter
.bi_size
= size
;
1937 if (bio_integrity(bio
))
1938 bio_integrity_trim(bio
);
1941 EXPORT_SYMBOL_GPL(bio_trim
);
1944 * create memory pools for biovec's in a bio_set.
1945 * use the global biovec slabs created for general use.
1947 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1949 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1951 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1955 * bioset_exit - exit a bioset initialized with bioset_init()
1957 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1960 void bioset_exit(struct bio_set
*bs
)
1962 if (bs
->rescue_workqueue
)
1963 destroy_workqueue(bs
->rescue_workqueue
);
1964 bs
->rescue_workqueue
= NULL
;
1966 mempool_exit(&bs
->bio_pool
);
1967 mempool_exit(&bs
->bvec_pool
);
1969 bioset_integrity_free(bs
);
1972 bs
->bio_slab
= NULL
;
1974 EXPORT_SYMBOL(bioset_exit
);
1977 * bioset_init - Initialize a bio_set
1978 * @bs: pool to initialize
1979 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1980 * @front_pad: Number of bytes to allocate in front of the returned bio
1981 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1982 * and %BIOSET_NEED_RESCUER
1985 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1986 * to ask for a number of bytes to be allocated in front of the bio.
1987 * Front pad allocation is useful for embedding the bio inside
1988 * another structure, to avoid allocating extra data to go with the bio.
1989 * Note that the bio must be embedded at the END of that structure always,
1990 * or things will break badly.
1991 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1992 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1993 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1994 * dispatch queued requests when the mempool runs out of space.
1997 int bioset_init(struct bio_set
*bs
,
1998 unsigned int pool_size
,
1999 unsigned int front_pad
,
2002 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
2004 bs
->front_pad
= front_pad
;
2006 spin_lock_init(&bs
->rescue_lock
);
2007 bio_list_init(&bs
->rescue_list
);
2008 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
2010 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
2014 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
2017 if ((flags
& BIOSET_NEED_BVECS
) &&
2018 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
2021 if (!(flags
& BIOSET_NEED_RESCUER
))
2024 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
2025 if (!bs
->rescue_workqueue
)
2033 EXPORT_SYMBOL(bioset_init
);
2036 * Initialize and setup a new bio_set, based on the settings from
2039 int bioset_init_from_src(struct bio_set
*bs
, struct bio_set
*src
)
2044 if (src
->bvec_pool
.min_nr
)
2045 flags
|= BIOSET_NEED_BVECS
;
2046 if (src
->rescue_workqueue
)
2047 flags
|= BIOSET_NEED_RESCUER
;
2049 return bioset_init(bs
, src
->bio_pool
.min_nr
, src
->front_pad
, flags
);
2051 EXPORT_SYMBOL(bioset_init_from_src
);
2053 #ifdef CONFIG_BLK_CGROUP
2056 * bio_disassociate_blkg - puts back the blkg reference if associated
2059 * Helper to disassociate the blkg from @bio if a blkg is associated.
2061 void bio_disassociate_blkg(struct bio
*bio
)
2064 blkg_put(bio
->bi_blkg
);
2065 bio
->bi_blkg
= NULL
;
2068 EXPORT_SYMBOL_GPL(bio_disassociate_blkg
);
2071 * __bio_associate_blkg - associate a bio with the a blkg
2073 * @blkg: the blkg to associate
2075 * This tries to associate @bio with the specified @blkg. Association failure
2076 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2077 * be anything between @blkg and the root_blkg. This situation only happens
2078 * when a cgroup is dying and then the remaining bios will spill to the closest
2081 * A reference will be taken on the @blkg and will be released when @bio is
2084 static void __bio_associate_blkg(struct bio
*bio
, struct blkcg_gq
*blkg
)
2086 bio_disassociate_blkg(bio
);
2088 bio
->bi_blkg
= blkg_tryget_closest(blkg
);
2092 * bio_associate_blkg_from_css - associate a bio with a specified css
2096 * Associate @bio with the blkg found by combining the css's blkg and the
2097 * request_queue of the @bio. This falls back to the queue's root_blkg if
2098 * the association fails with the css.
2100 void bio_associate_blkg_from_css(struct bio
*bio
,
2101 struct cgroup_subsys_state
*css
)
2103 struct request_queue
*q
= bio
->bi_disk
->queue
;
2104 struct blkcg_gq
*blkg
;
2108 if (!css
|| !css
->parent
)
2109 blkg
= q
->root_blkg
;
2111 blkg
= blkg_lookup_create(css_to_blkcg(css
), q
);
2113 __bio_associate_blkg(bio
, blkg
);
2117 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css
);
2121 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2123 * @page: the page to lookup the blkcg from
2125 * Associate @bio with the blkg from @page's owning memcg and the respective
2126 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2129 void bio_associate_blkg_from_page(struct bio
*bio
, struct page
*page
)
2131 struct cgroup_subsys_state
*css
;
2133 if (!page
->mem_cgroup
)
2138 css
= cgroup_e_css(page
->mem_cgroup
->css
.cgroup
, &io_cgrp_subsys
);
2139 bio_associate_blkg_from_css(bio
, css
);
2143 #endif /* CONFIG_MEMCG */
2146 * bio_associate_blkg - associate a bio with a blkg
2149 * Associate @bio with the blkg found from the bio's css and request_queue.
2150 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2151 * already associated, the css is reused and association redone as the
2152 * request_queue may have changed.
2154 void bio_associate_blkg(struct bio
*bio
)
2156 struct cgroup_subsys_state
*css
;
2161 css
= &bio_blkcg(bio
)->css
;
2165 bio_associate_blkg_from_css(bio
, css
);
2169 EXPORT_SYMBOL_GPL(bio_associate_blkg
);
2172 * bio_clone_blkg_association - clone blkg association from src to dst bio
2173 * @dst: destination bio
2176 void bio_clone_blkg_association(struct bio
*dst
, struct bio
*src
)
2181 __bio_associate_blkg(dst
, src
->bi_blkg
);
2185 EXPORT_SYMBOL_GPL(bio_clone_blkg_association
);
2186 #endif /* CONFIG_BLK_CGROUP */
2188 static void __init
biovec_init_slabs(void)
2192 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2194 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2196 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2201 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2202 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2203 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2207 static int __init
init_bio(void)
2211 bio_slabs
= kcalloc(bio_slab_max
, sizeof(struct bio_slab
),
2214 BUILD_BUG_ON(BIO_FLAG_LAST
> BVEC_POOL_OFFSET
);
2217 panic("bio: can't allocate bios\n");
2219 bio_integrity_init();
2220 biovec_init_slabs();
2222 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
))
2223 panic("bio: can't allocate bios\n");
2225 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
2226 panic("bio: can't create integrity pool\n");
2230 subsys_initcall(init_bio
);