1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
15 #include "blk-cgroup-rwstat.h"
17 /* Max dispatch from a group in 1 round */
18 static int throtl_grp_quantum
= 8;
20 /* Total max dispatch from all groups in one round */
21 static int throtl_quantum
= 32;
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 static struct blkcg_policy blkcg_policy_throtl
;
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct
*kthrotld_workqueue
;
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
69 struct list_head node
; /* service_queue->queued[] */
70 struct bio_list bios
; /* queued bios */
71 struct throtl_grp
*tg
; /* tg this qnode belongs to */
74 struct throtl_service_queue
{
75 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
81 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
82 unsigned int nr_queued
[2]; /* number of queued bios */
85 * RB tree of active children throtl_grp's, which are sorted by
88 struct rb_root_cached pending_tree
; /* RB tree of active tgs */
89 unsigned int nr_pending
; /* # queued in the tree */
90 unsigned long first_pending_disptime
; /* disptime of the first tg */
91 struct timer_list pending_timer
; /* fires on first_pending_disptime */
95 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
108 /* must be the first member */
109 struct blkg_policy_data pd
;
111 /* active throtl group service_queue member */
112 struct rb_node rb_node
;
114 /* throtl_data this group belongs to */
115 struct throtl_data
*td
;
117 /* this group's service queue */
118 struct throtl_service_queue service_queue
;
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
128 struct throtl_qnode qnode_on_self
[2];
129 struct throtl_qnode qnode_on_parent
[2];
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
136 unsigned long disptime
;
140 /* are there any throtl rules between this group and td? */
143 /* internally used bytes per second rate limits */
144 uint64_t bps
[2][LIMIT_CNT
];
145 /* user configured bps limits */
146 uint64_t bps_conf
[2][LIMIT_CNT
];
148 /* internally used IOPS limits */
149 unsigned int iops
[2][LIMIT_CNT
];
150 /* user configured IOPS limits */
151 unsigned int iops_conf
[2][LIMIT_CNT
];
153 /* Number of bytes disptached in current slice */
154 uint64_t bytes_disp
[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp
[2];
158 unsigned long last_low_overflow_time
[2];
160 uint64_t last_bytes_disp
[2];
161 unsigned int last_io_disp
[2];
163 unsigned long last_check_time
;
165 unsigned long latency_target
; /* us */
166 unsigned long latency_target_conf
; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start
[2];
169 unsigned long slice_end
[2];
171 unsigned long last_finish_time
; /* ns / 1024 */
172 unsigned long checked_last_finish_time
; /* ns / 1024 */
173 unsigned long avg_idletime
; /* ns / 1024 */
174 unsigned long idletime_threshold
; /* us */
175 unsigned long idletime_threshold_conf
; /* us */
177 unsigned int bio_cnt
; /* total bios */
178 unsigned int bad_bio_cnt
; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time
;
181 struct blkg_rwstat stat_bytes
;
182 struct blkg_rwstat stat_ios
;
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
188 struct latency_bucket
{
189 unsigned long total_latency
; /* ns / 1024 */
193 struct avg_latency_bucket
{
194 unsigned long latency
; /* ns / 1024 */
200 /* service tree for active throtl groups */
201 struct throtl_service_queue service_queue
;
203 struct request_queue
*queue
;
205 /* Total Number of queued bios on READ and WRITE lists */
206 unsigned int nr_queued
[2];
208 unsigned int throtl_slice
;
210 /* Work for dispatching throttled bios */
211 struct work_struct dispatch_work
;
212 unsigned int limit_index
;
213 bool limit_valid
[LIMIT_CNT
];
215 unsigned long low_upgrade_time
;
216 unsigned long low_downgrade_time
;
220 struct latency_bucket tmp_buckets
[2][LATENCY_BUCKET_SIZE
];
221 struct avg_latency_bucket avg_buckets
[2][LATENCY_BUCKET_SIZE
];
222 struct latency_bucket __percpu
*latency_buckets
[2];
223 unsigned long last_calculate_time
;
224 unsigned long filtered_latency
;
226 bool track_bio_latency
;
229 static void throtl_pending_timer_fn(struct timer_list
*t
);
231 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
233 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
236 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
238 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
241 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
243 return pd_to_blkg(&tg
->pd
);
247 * sq_to_tg - return the throl_grp the specified service queue belongs to
248 * @sq: the throtl_service_queue of interest
250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
251 * embedded in throtl_data, %NULL is returned.
253 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
255 if (sq
&& sq
->parent_sq
)
256 return container_of(sq
, struct throtl_grp
, service_queue
);
262 * sq_to_td - return throtl_data the specified service queue belongs to
263 * @sq: the throtl_service_queue of interest
265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
266 * Determine the associated throtl_data accordingly and return it.
268 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
270 struct throtl_grp
*tg
= sq_to_tg(sq
);
275 return container_of(sq
, struct throtl_data
, service_queue
);
279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280 * make the IO dispatch more smooth.
281 * Scale up: linearly scale up according to lapsed time since upgrade. For
282 * every throtl_slice, the limit scales up 1/2 .low limit till the
283 * limit hits .max limit
284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
286 static uint64_t throtl_adjusted_limit(uint64_t low
, struct throtl_data
*td
)
288 /* arbitrary value to avoid too big scale */
289 if (td
->scale
< 4096 && time_after_eq(jiffies
,
290 td
->low_upgrade_time
+ td
->scale
* td
->throtl_slice
))
291 td
->scale
= (jiffies
- td
->low_upgrade_time
) / td
->throtl_slice
;
293 return low
+ (low
>> 1) * td
->scale
;
296 static uint64_t tg_bps_limit(struct throtl_grp
*tg
, int rw
)
298 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
299 struct throtl_data
*td
;
302 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
306 ret
= tg
->bps
[rw
][td
->limit_index
];
307 if (ret
== 0 && td
->limit_index
== LIMIT_LOW
) {
308 /* intermediate node or iops isn't 0 */
309 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
310 tg
->iops
[rw
][td
->limit_index
])
313 return MIN_THROTL_BPS
;
316 if (td
->limit_index
== LIMIT_MAX
&& tg
->bps
[rw
][LIMIT_LOW
] &&
317 tg
->bps
[rw
][LIMIT_LOW
] != tg
->bps
[rw
][LIMIT_MAX
]) {
320 adjusted
= throtl_adjusted_limit(tg
->bps
[rw
][LIMIT_LOW
], td
);
321 ret
= min(tg
->bps
[rw
][LIMIT_MAX
], adjusted
);
326 static unsigned int tg_iops_limit(struct throtl_grp
*tg
, int rw
)
328 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
329 struct throtl_data
*td
;
332 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
336 ret
= tg
->iops
[rw
][td
->limit_index
];
337 if (ret
== 0 && tg
->td
->limit_index
== LIMIT_LOW
) {
338 /* intermediate node or bps isn't 0 */
339 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
340 tg
->bps
[rw
][td
->limit_index
])
343 return MIN_THROTL_IOPS
;
346 if (td
->limit_index
== LIMIT_MAX
&& tg
->iops
[rw
][LIMIT_LOW
] &&
347 tg
->iops
[rw
][LIMIT_LOW
] != tg
->iops
[rw
][LIMIT_MAX
]) {
350 adjusted
= throtl_adjusted_limit(tg
->iops
[rw
][LIMIT_LOW
], td
);
351 if (adjusted
> UINT_MAX
)
353 ret
= min_t(unsigned int, tg
->iops
[rw
][LIMIT_MAX
], adjusted
);
358 #define request_bucket_index(sectors) \
359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
362 * throtl_log - log debug message via blktrace
363 * @sq: the service_queue being reported
364 * @fmt: printf format string
367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368 * throtl_grp; otherwise, just "throtl".
370 #define throtl_log(sq, fmt, args...) do { \
371 struct throtl_grp *__tg = sq_to_tg((sq)); \
372 struct throtl_data *__td = sq_to_td((sq)); \
375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
378 blk_add_cgroup_trace_msg(__td->queue, \
379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
385 static inline unsigned int throtl_bio_data_size(struct bio
*bio
)
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
390 return bio
->bi_iter
.bi_size
;
393 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
395 INIT_LIST_HEAD(&qn
->node
);
396 bio_list_init(&qn
->bios
);
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
410 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
411 struct list_head
*queued
)
413 bio_list_add(&qn
->bios
, bio
);
414 if (list_empty(&qn
->node
)) {
415 list_add_tail(&qn
->node
, queued
);
416 blkg_get(tg_to_blkg(qn
->tg
));
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
424 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
426 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
429 if (list_empty(queued
))
432 bio
= bio_list_peek(&qn
->bios
);
438 * throtl_pop_queued - pop the first bio form a qnode list
439 * @queued: the qnode list to pop a bio from
440 * @tg_to_put: optional out argument for throtl_grp to put
442 * Pop the first bio from the qnode list @queued. After popping, the first
443 * qnode is removed from @queued if empty or moved to the end of @queued so
444 * that the popping order is round-robin.
446 * When the first qnode is removed, its associated throtl_grp should be put
447 * too. If @tg_to_put is NULL, this function automatically puts it;
448 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
449 * responsible for putting it.
451 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
452 struct throtl_grp
**tg_to_put
)
454 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
457 if (list_empty(queued
))
460 bio
= bio_list_pop(&qn
->bios
);
463 if (bio_list_empty(&qn
->bios
)) {
464 list_del_init(&qn
->node
);
468 blkg_put(tg_to_blkg(qn
->tg
));
470 list_move_tail(&qn
->node
, queued
);
476 /* init a service_queue, assumes the caller zeroed it */
477 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
479 INIT_LIST_HEAD(&sq
->queued
[0]);
480 INIT_LIST_HEAD(&sq
->queued
[1]);
481 sq
->pending_tree
= RB_ROOT_CACHED
;
482 timer_setup(&sq
->pending_timer
, throtl_pending_timer_fn
, 0);
485 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
,
486 struct request_queue
*q
,
489 struct throtl_grp
*tg
;
492 tg
= kzalloc_node(sizeof(*tg
), gfp
, q
->node
);
496 if (blkg_rwstat_init(&tg
->stat_bytes
, gfp
))
499 if (blkg_rwstat_init(&tg
->stat_ios
, gfp
))
500 goto err_exit_stat_bytes
;
502 throtl_service_queue_init(&tg
->service_queue
);
504 for (rw
= READ
; rw
<= WRITE
; rw
++) {
505 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
506 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
509 RB_CLEAR_NODE(&tg
->rb_node
);
510 tg
->bps
[READ
][LIMIT_MAX
] = U64_MAX
;
511 tg
->bps
[WRITE
][LIMIT_MAX
] = U64_MAX
;
512 tg
->iops
[READ
][LIMIT_MAX
] = UINT_MAX
;
513 tg
->iops
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
514 tg
->bps_conf
[READ
][LIMIT_MAX
] = U64_MAX
;
515 tg
->bps_conf
[WRITE
][LIMIT_MAX
] = U64_MAX
;
516 tg
->iops_conf
[READ
][LIMIT_MAX
] = UINT_MAX
;
517 tg
->iops_conf
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
518 /* LIMIT_LOW will have default value 0 */
520 tg
->latency_target
= DFL_LATENCY_TARGET
;
521 tg
->latency_target_conf
= DFL_LATENCY_TARGET
;
522 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
523 tg
->idletime_threshold_conf
= DFL_IDLE_THRESHOLD
;
528 blkg_rwstat_exit(&tg
->stat_bytes
);
534 static void throtl_pd_init(struct blkg_policy_data
*pd
)
536 struct throtl_grp
*tg
= pd_to_tg(pd
);
537 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
538 struct throtl_data
*td
= blkg
->q
->td
;
539 struct throtl_service_queue
*sq
= &tg
->service_queue
;
542 * If on the default hierarchy, we switch to properly hierarchical
543 * behavior where limits on a given throtl_grp are applied to the
544 * whole subtree rather than just the group itself. e.g. If 16M
545 * read_bps limit is set on the root group, the whole system can't
546 * exceed 16M for the device.
548 * If not on the default hierarchy, the broken flat hierarchy
549 * behavior is retained where all throtl_grps are treated as if
550 * they're all separate root groups right below throtl_data.
551 * Limits of a group don't interact with limits of other groups
552 * regardless of the position of the group in the hierarchy.
554 sq
->parent_sq
= &td
->service_queue
;
555 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
556 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
561 * Set has_rules[] if @tg or any of its parents have limits configured.
562 * This doesn't require walking up to the top of the hierarchy as the
563 * parent's has_rules[] is guaranteed to be correct.
565 static void tg_update_has_rules(struct throtl_grp
*tg
)
567 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
568 struct throtl_data
*td
= tg
->td
;
571 for (rw
= READ
; rw
<= WRITE
; rw
++)
572 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
573 (td
->limit_valid
[td
->limit_index
] &&
574 (tg_bps_limit(tg
, rw
) != U64_MAX
||
575 tg_iops_limit(tg
, rw
) != UINT_MAX
));
578 static void throtl_pd_online(struct blkg_policy_data
*pd
)
580 struct throtl_grp
*tg
= pd_to_tg(pd
);
582 * We don't want new groups to escape the limits of its ancestors.
583 * Update has_rules[] after a new group is brought online.
585 tg_update_has_rules(tg
);
588 static void blk_throtl_update_limit_valid(struct throtl_data
*td
)
590 struct cgroup_subsys_state
*pos_css
;
591 struct blkcg_gq
*blkg
;
592 bool low_valid
= false;
595 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
596 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
598 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->bps
[WRITE
][LIMIT_LOW
] ||
599 tg
->iops
[READ
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) {
606 td
->limit_valid
[LIMIT_LOW
] = low_valid
;
609 static void throtl_upgrade_state(struct throtl_data
*td
);
610 static void throtl_pd_offline(struct blkg_policy_data
*pd
)
612 struct throtl_grp
*tg
= pd_to_tg(pd
);
614 tg
->bps
[READ
][LIMIT_LOW
] = 0;
615 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
616 tg
->iops
[READ
][LIMIT_LOW
] = 0;
617 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
619 blk_throtl_update_limit_valid(tg
->td
);
621 if (!tg
->td
->limit_valid
[tg
->td
->limit_index
])
622 throtl_upgrade_state(tg
->td
);
625 static void throtl_pd_free(struct blkg_policy_data
*pd
)
627 struct throtl_grp
*tg
= pd_to_tg(pd
);
629 del_timer_sync(&tg
->service_queue
.pending_timer
);
630 blkg_rwstat_exit(&tg
->stat_bytes
);
631 blkg_rwstat_exit(&tg
->stat_ios
);
635 static struct throtl_grp
*
636 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
639 /* Service tree is empty */
640 if (!parent_sq
->nr_pending
)
643 n
= rb_first_cached(&parent_sq
->pending_tree
);
647 return rb_entry_tg(n
);
650 static void throtl_rb_erase(struct rb_node
*n
,
651 struct throtl_service_queue
*parent_sq
)
653 rb_erase_cached(n
, &parent_sq
->pending_tree
);
655 --parent_sq
->nr_pending
;
658 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
660 struct throtl_grp
*tg
;
662 tg
= throtl_rb_first(parent_sq
);
666 parent_sq
->first_pending_disptime
= tg
->disptime
;
669 static void tg_service_queue_add(struct throtl_grp
*tg
)
671 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
672 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_root
.rb_node
;
673 struct rb_node
*parent
= NULL
;
674 struct throtl_grp
*__tg
;
675 unsigned long key
= tg
->disptime
;
676 bool leftmost
= true;
678 while (*node
!= NULL
) {
680 __tg
= rb_entry_tg(parent
);
682 if (time_before(key
, __tg
->disptime
))
683 node
= &parent
->rb_left
;
685 node
= &parent
->rb_right
;
690 rb_link_node(&tg
->rb_node
, parent
, node
);
691 rb_insert_color_cached(&tg
->rb_node
, &parent_sq
->pending_tree
,
695 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
697 tg_service_queue_add(tg
);
698 tg
->flags
|= THROTL_TG_PENDING
;
699 tg
->service_queue
.parent_sq
->nr_pending
++;
702 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
704 if (!(tg
->flags
& THROTL_TG_PENDING
))
705 __throtl_enqueue_tg(tg
);
708 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
710 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
711 tg
->flags
&= ~THROTL_TG_PENDING
;
714 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
716 if (tg
->flags
& THROTL_TG_PENDING
)
717 __throtl_dequeue_tg(tg
);
720 /* Call with queue lock held */
721 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
722 unsigned long expires
)
724 unsigned long max_expire
= jiffies
+ 8 * sq_to_td(sq
)->throtl_slice
;
727 * Since we are adjusting the throttle limit dynamically, the sleep
728 * time calculated according to previous limit might be invalid. It's
729 * possible the cgroup sleep time is very long and no other cgroups
730 * have IO running so notify the limit changes. Make sure the cgroup
731 * doesn't sleep too long to avoid the missed notification.
733 if (time_after(expires
, max_expire
))
734 expires
= max_expire
;
735 mod_timer(&sq
->pending_timer
, expires
);
736 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
737 expires
- jiffies
, jiffies
);
741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
742 * @sq: the service_queue to schedule dispatch for
743 * @force: force scheduling
745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
746 * dispatch time of the first pending child. Returns %true if either timer
747 * is armed or there's no pending child left. %false if the current
748 * dispatch window is still open and the caller should continue
751 * If @force is %true, the dispatch timer is always scheduled and this
752 * function is guaranteed to return %true. This is to be used when the
753 * caller can't dispatch itself and needs to invoke pending_timer
754 * unconditionally. Note that forced scheduling is likely to induce short
755 * delay before dispatch starts even if @sq->first_pending_disptime is not
756 * in the future and thus shouldn't be used in hot paths.
758 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
761 /* any pending children left? */
765 update_min_dispatch_time(sq
);
767 /* is the next dispatch time in the future? */
768 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
769 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
773 /* tell the caller to continue dispatching */
777 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
778 bool rw
, unsigned long start
)
780 tg
->bytes_disp
[rw
] = 0;
784 * Previous slice has expired. We must have trimmed it after last
785 * bio dispatch. That means since start of last slice, we never used
786 * that bandwidth. Do try to make use of that bandwidth while giving
789 if (time_after_eq(start
, tg
->slice_start
[rw
]))
790 tg
->slice_start
[rw
] = start
;
792 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
793 throtl_log(&tg
->service_queue
,
794 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
795 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
796 tg
->slice_end
[rw
], jiffies
);
799 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
801 tg
->bytes_disp
[rw
] = 0;
803 tg
->slice_start
[rw
] = jiffies
;
804 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
805 throtl_log(&tg
->service_queue
,
806 "[%c] new slice start=%lu end=%lu jiffies=%lu",
807 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
808 tg
->slice_end
[rw
], jiffies
);
811 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
812 unsigned long jiffy_end
)
814 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
817 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
818 unsigned long jiffy_end
)
820 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
821 throtl_log(&tg
->service_queue
,
822 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
824 tg
->slice_end
[rw
], jiffies
);
827 /* Determine if previously allocated or extended slice is complete or not */
828 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
830 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
836 /* Trim the used slices and adjust slice start accordingly */
837 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
839 unsigned long nr_slices
, time_elapsed
, io_trim
;
842 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
845 * If bps are unlimited (-1), then time slice don't get
846 * renewed. Don't try to trim the slice if slice is used. A new
847 * slice will start when appropriate.
849 if (throtl_slice_used(tg
, rw
))
853 * A bio has been dispatched. Also adjust slice_end. It might happen
854 * that initially cgroup limit was very low resulting in high
855 * slice_end, but later limit was bumped up and bio was dispached
856 * sooner, then we need to reduce slice_end. A high bogus slice_end
857 * is bad because it does not allow new slice to start.
860 throtl_set_slice_end(tg
, rw
, jiffies
+ tg
->td
->throtl_slice
);
862 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
864 nr_slices
= time_elapsed
/ tg
->td
->throtl_slice
;
868 tmp
= tg_bps_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
;
872 io_trim
= (tg_iops_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
) /
875 if (!bytes_trim
&& !io_trim
)
878 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
879 tg
->bytes_disp
[rw
] -= bytes_trim
;
881 tg
->bytes_disp
[rw
] = 0;
883 if (tg
->io_disp
[rw
] >= io_trim
)
884 tg
->io_disp
[rw
] -= io_trim
;
888 tg
->slice_start
[rw
] += nr_slices
* tg
->td
->throtl_slice
;
890 throtl_log(&tg
->service_queue
,
891 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
893 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
896 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
899 bool rw
= bio_data_dir(bio
);
900 unsigned int io_allowed
;
901 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
904 jiffy_elapsed
= jiffies
- tg
->slice_start
[rw
];
906 /* Round up to the next throttle slice, wait time must be nonzero */
907 jiffy_elapsed_rnd
= roundup(jiffy_elapsed
+ 1, tg
->td
->throtl_slice
);
910 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
911 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
912 * will allow dispatch after 1 second and after that slice should
916 tmp
= (u64
)tg_iops_limit(tg
, rw
) * jiffy_elapsed_rnd
;
920 io_allowed
= UINT_MAX
;
924 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
930 /* Calc approx time to dispatch */
931 jiffy_wait
= jiffy_elapsed_rnd
- jiffy_elapsed
;
938 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
941 bool rw
= bio_data_dir(bio
);
942 u64 bytes_allowed
, extra_bytes
, tmp
;
943 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
944 unsigned int bio_size
= throtl_bio_data_size(bio
);
946 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
948 /* Slice has just started. Consider one slice interval */
950 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
952 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
954 tmp
= tg_bps_limit(tg
, rw
) * jiffy_elapsed_rnd
;
958 if (tg
->bytes_disp
[rw
] + bio_size
<= bytes_allowed
) {
964 /* Calc approx time to dispatch */
965 extra_bytes
= tg
->bytes_disp
[rw
] + bio_size
- bytes_allowed
;
966 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg_bps_limit(tg
, rw
));
972 * This wait time is without taking into consideration the rounding
973 * up we did. Add that time also.
975 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
982 * Returns whether one can dispatch a bio or not. Also returns approx number
983 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
985 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
988 bool rw
= bio_data_dir(bio
);
989 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
992 * Currently whole state machine of group depends on first bio
993 * queued in the group bio list. So one should not be calling
994 * this function with a different bio if there are other bios
997 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
998 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
1000 /* If tg->bps = -1, then BW is unlimited */
1001 if (tg_bps_limit(tg
, rw
) == U64_MAX
&&
1002 tg_iops_limit(tg
, rw
) == UINT_MAX
) {
1009 * If previous slice expired, start a new one otherwise renew/extend
1010 * existing slice to make sure it is at least throtl_slice interval
1011 * long since now. New slice is started only for empty throttle group.
1012 * If there is queued bio, that means there should be an active
1013 * slice and it should be extended instead.
1015 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
1016 throtl_start_new_slice(tg
, rw
);
1018 if (time_before(tg
->slice_end
[rw
],
1019 jiffies
+ tg
->td
->throtl_slice
))
1020 throtl_extend_slice(tg
, rw
,
1021 jiffies
+ tg
->td
->throtl_slice
);
1024 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
1025 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
1031 max_wait
= max(bps_wait
, iops_wait
);
1036 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
1037 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
1042 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
1044 bool rw
= bio_data_dir(bio
);
1045 unsigned int bio_size
= throtl_bio_data_size(bio
);
1047 /* Charge the bio to the group */
1048 tg
->bytes_disp
[rw
] += bio_size
;
1050 tg
->last_bytes_disp
[rw
] += bio_size
;
1051 tg
->last_io_disp
[rw
]++;
1054 * BIO_THROTTLED is used to prevent the same bio to be throttled
1055 * more than once as a throttled bio will go through blk-throtl the
1056 * second time when it eventually gets issued. Set it when a bio
1057 * is being charged to a tg.
1059 if (!bio_flagged(bio
, BIO_THROTTLED
))
1060 bio_set_flag(bio
, BIO_THROTTLED
);
1064 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1067 * @tg: the target throtl_grp
1069 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1070 * tg->qnode_on_self[] is used.
1072 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
1073 struct throtl_grp
*tg
)
1075 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1076 bool rw
= bio_data_dir(bio
);
1079 qn
= &tg
->qnode_on_self
[rw
];
1082 * If @tg doesn't currently have any bios queued in the same
1083 * direction, queueing @bio can change when @tg should be
1084 * dispatched. Mark that @tg was empty. This is automatically
1085 * cleaered on the next tg_update_disptime().
1087 if (!sq
->nr_queued
[rw
])
1088 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
1090 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
1092 sq
->nr_queued
[rw
]++;
1093 throtl_enqueue_tg(tg
);
1096 static void tg_update_disptime(struct throtl_grp
*tg
)
1098 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1099 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
1102 bio
= throtl_peek_queued(&sq
->queued
[READ
]);
1104 tg_may_dispatch(tg
, bio
, &read_wait
);
1106 bio
= throtl_peek_queued(&sq
->queued
[WRITE
]);
1108 tg_may_dispatch(tg
, bio
, &write_wait
);
1110 min_wait
= min(read_wait
, write_wait
);
1111 disptime
= jiffies
+ min_wait
;
1113 /* Update dispatch time */
1114 throtl_dequeue_tg(tg
);
1115 tg
->disptime
= disptime
;
1116 throtl_enqueue_tg(tg
);
1118 /* see throtl_add_bio_tg() */
1119 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
1122 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
1123 struct throtl_grp
*parent_tg
, bool rw
)
1125 if (throtl_slice_used(parent_tg
, rw
)) {
1126 throtl_start_new_slice_with_credit(parent_tg
, rw
,
1127 child_tg
->slice_start
[rw
]);
1132 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
1134 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1135 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
1136 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
1137 struct throtl_grp
*tg_to_put
= NULL
;
1141 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1142 * from @tg may put its reference and @parent_sq might end up
1143 * getting released prematurely. Remember the tg to put and put it
1144 * after @bio is transferred to @parent_sq.
1146 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
1147 sq
->nr_queued
[rw
]--;
1149 throtl_charge_bio(tg
, bio
);
1152 * If our parent is another tg, we just need to transfer @bio to
1153 * the parent using throtl_add_bio_tg(). If our parent is
1154 * @td->service_queue, @bio is ready to be issued. Put it on its
1155 * bio_lists[] and decrease total number queued. The caller is
1156 * responsible for issuing these bios.
1159 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
1160 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
1162 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
1163 &parent_sq
->queued
[rw
]);
1164 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
1165 tg
->td
->nr_queued
[rw
]--;
1168 throtl_trim_slice(tg
, rw
);
1171 blkg_put(tg_to_blkg(tg_to_put
));
1174 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
1176 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1177 unsigned int nr_reads
= 0, nr_writes
= 0;
1178 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
1179 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
1182 /* Try to dispatch 75% READS and 25% WRITES */
1184 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
1185 tg_may_dispatch(tg
, bio
, NULL
)) {
1187 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1190 if (nr_reads
>= max_nr_reads
)
1194 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
1195 tg_may_dispatch(tg
, bio
, NULL
)) {
1197 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1200 if (nr_writes
>= max_nr_writes
)
1204 return nr_reads
+ nr_writes
;
1207 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
1209 unsigned int nr_disp
= 0;
1212 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
1213 struct throtl_service_queue
*sq
;
1218 if (time_before(jiffies
, tg
->disptime
))
1221 throtl_dequeue_tg(tg
);
1223 nr_disp
+= throtl_dispatch_tg(tg
);
1225 sq
= &tg
->service_queue
;
1226 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1227 tg_update_disptime(tg
);
1229 if (nr_disp
>= throtl_quantum
)
1236 static bool throtl_can_upgrade(struct throtl_data
*td
,
1237 struct throtl_grp
*this_tg
);
1239 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1240 * @t: the pending_timer member of the throtl_service_queue being serviced
1242 * This timer is armed when a child throtl_grp with active bio's become
1243 * pending and queued on the service_queue's pending_tree and expires when
1244 * the first child throtl_grp should be dispatched. This function
1245 * dispatches bio's from the children throtl_grps to the parent
1248 * If the parent's parent is another throtl_grp, dispatching is propagated
1249 * by either arming its pending_timer or repeating dispatch directly. If
1250 * the top-level service_tree is reached, throtl_data->dispatch_work is
1251 * kicked so that the ready bio's are issued.
1253 static void throtl_pending_timer_fn(struct timer_list
*t
)
1255 struct throtl_service_queue
*sq
= from_timer(sq
, t
, pending_timer
);
1256 struct throtl_grp
*tg
= sq_to_tg(sq
);
1257 struct throtl_data
*td
= sq_to_td(sq
);
1258 struct request_queue
*q
= td
->queue
;
1259 struct throtl_service_queue
*parent_sq
;
1263 spin_lock_irq(&q
->queue_lock
);
1264 if (throtl_can_upgrade(td
, NULL
))
1265 throtl_upgrade_state(td
);
1268 parent_sq
= sq
->parent_sq
;
1272 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1273 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1274 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1276 ret
= throtl_select_dispatch(sq
);
1278 throtl_log(sq
, "bios disp=%u", ret
);
1282 if (throtl_schedule_next_dispatch(sq
, false))
1285 /* this dispatch windows is still open, relax and repeat */
1286 spin_unlock_irq(&q
->queue_lock
);
1288 spin_lock_irq(&q
->queue_lock
);
1295 /* @parent_sq is another throl_grp, propagate dispatch */
1296 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1297 tg_update_disptime(tg
);
1298 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1299 /* window is already open, repeat dispatching */
1306 /* reached the top-level, queue issueing */
1307 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1310 spin_unlock_irq(&q
->queue_lock
);
1314 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1315 * @work: work item being executed
1317 * This function is queued for execution when bio's reach the bio_lists[]
1318 * of throtl_data->service_queue. Those bio's are ready and issued by this
1321 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1323 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1325 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1326 struct request_queue
*q
= td
->queue
;
1327 struct bio_list bio_list_on_stack
;
1329 struct blk_plug plug
;
1332 bio_list_init(&bio_list_on_stack
);
1334 spin_lock_irq(&q
->queue_lock
);
1335 for (rw
= READ
; rw
<= WRITE
; rw
++)
1336 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1337 bio_list_add(&bio_list_on_stack
, bio
);
1338 spin_unlock_irq(&q
->queue_lock
);
1340 if (!bio_list_empty(&bio_list_on_stack
)) {
1341 blk_start_plug(&plug
);
1342 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1343 generic_make_request(bio
);
1344 blk_finish_plug(&plug
);
1348 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1351 struct throtl_grp
*tg
= pd_to_tg(pd
);
1352 u64 v
= *(u64
*)((void *)tg
+ off
);
1356 return __blkg_prfill_u64(sf
, pd
, v
);
1359 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1362 struct throtl_grp
*tg
= pd_to_tg(pd
);
1363 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1367 return __blkg_prfill_u64(sf
, pd
, v
);
1370 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1372 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1373 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1377 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1379 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1380 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1384 static void tg_conf_updated(struct throtl_grp
*tg
, bool global
)
1386 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1387 struct cgroup_subsys_state
*pos_css
;
1388 struct blkcg_gq
*blkg
;
1390 throtl_log(&tg
->service_queue
,
1391 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1392 tg_bps_limit(tg
, READ
), tg_bps_limit(tg
, WRITE
),
1393 tg_iops_limit(tg
, READ
), tg_iops_limit(tg
, WRITE
));
1396 * Update has_rules[] flags for the updated tg's subtree. A tg is
1397 * considered to have rules if either the tg itself or any of its
1398 * ancestors has rules. This identifies groups without any
1399 * restrictions in the whole hierarchy and allows them to bypass
1402 blkg_for_each_descendant_pre(blkg
, pos_css
,
1403 global
? tg
->td
->queue
->root_blkg
: tg_to_blkg(tg
)) {
1404 struct throtl_grp
*this_tg
= blkg_to_tg(blkg
);
1405 struct throtl_grp
*parent_tg
;
1407 tg_update_has_rules(this_tg
);
1408 /* ignore root/second level */
1409 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
) || !blkg
->parent
||
1410 !blkg
->parent
->parent
)
1412 parent_tg
= blkg_to_tg(blkg
->parent
);
1414 * make sure all children has lower idle time threshold and
1415 * higher latency target
1417 this_tg
->idletime_threshold
= min(this_tg
->idletime_threshold
,
1418 parent_tg
->idletime_threshold
);
1419 this_tg
->latency_target
= max(this_tg
->latency_target
,
1420 parent_tg
->latency_target
);
1424 * We're already holding queue_lock and know @tg is valid. Let's
1425 * apply the new config directly.
1427 * Restart the slices for both READ and WRITES. It might happen
1428 * that a group's limit are dropped suddenly and we don't want to
1429 * account recently dispatched IO with new low rate.
1431 throtl_start_new_slice(tg
, 0);
1432 throtl_start_new_slice(tg
, 1);
1434 if (tg
->flags
& THROTL_TG_PENDING
) {
1435 tg_update_disptime(tg
);
1436 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1440 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1441 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1443 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1444 struct blkg_conf_ctx ctx
;
1445 struct throtl_grp
*tg
;
1449 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1454 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1459 tg
= blkg_to_tg(ctx
.blkg
);
1462 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1464 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1466 tg_conf_updated(tg
, false);
1469 blkg_conf_finish(&ctx
);
1470 return ret
?: nbytes
;
1473 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1474 char *buf
, size_t nbytes
, loff_t off
)
1476 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1479 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1480 char *buf
, size_t nbytes
, loff_t off
)
1482 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1485 static int tg_print_rwstat(struct seq_file
*sf
, void *v
)
1487 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1488 blkg_prfill_rwstat
, &blkcg_policy_throtl
,
1489 seq_cft(sf
)->private, true);
1493 static u64
tg_prfill_rwstat_recursive(struct seq_file
*sf
,
1494 struct blkg_policy_data
*pd
, int off
)
1496 struct blkg_rwstat_sample sum
;
1498 blkg_rwstat_recursive_sum(pd_to_blkg(pd
), &blkcg_policy_throtl
, off
,
1500 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1503 static int tg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1505 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1506 tg_prfill_rwstat_recursive
, &blkcg_policy_throtl
,
1507 seq_cft(sf
)->private, true);
1511 static struct cftype throtl_legacy_files
[] = {
1513 .name
= "throttle.read_bps_device",
1514 .private = offsetof(struct throtl_grp
, bps
[READ
][LIMIT_MAX
]),
1515 .seq_show
= tg_print_conf_u64
,
1516 .write
= tg_set_conf_u64
,
1519 .name
= "throttle.write_bps_device",
1520 .private = offsetof(struct throtl_grp
, bps
[WRITE
][LIMIT_MAX
]),
1521 .seq_show
= tg_print_conf_u64
,
1522 .write
= tg_set_conf_u64
,
1525 .name
= "throttle.read_iops_device",
1526 .private = offsetof(struct throtl_grp
, iops
[READ
][LIMIT_MAX
]),
1527 .seq_show
= tg_print_conf_uint
,
1528 .write
= tg_set_conf_uint
,
1531 .name
= "throttle.write_iops_device",
1532 .private = offsetof(struct throtl_grp
, iops
[WRITE
][LIMIT_MAX
]),
1533 .seq_show
= tg_print_conf_uint
,
1534 .write
= tg_set_conf_uint
,
1537 .name
= "throttle.io_service_bytes",
1538 .private = offsetof(struct throtl_grp
, stat_bytes
),
1539 .seq_show
= tg_print_rwstat
,
1542 .name
= "throttle.io_service_bytes_recursive",
1543 .private = offsetof(struct throtl_grp
, stat_bytes
),
1544 .seq_show
= tg_print_rwstat_recursive
,
1547 .name
= "throttle.io_serviced",
1548 .private = offsetof(struct throtl_grp
, stat_ios
),
1549 .seq_show
= tg_print_rwstat
,
1552 .name
= "throttle.io_serviced_recursive",
1553 .private = offsetof(struct throtl_grp
, stat_ios
),
1554 .seq_show
= tg_print_rwstat_recursive
,
1559 static u64
tg_prfill_limit(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1562 struct throtl_grp
*tg
= pd_to_tg(pd
);
1563 const char *dname
= blkg_dev_name(pd
->blkg
);
1564 char bufs
[4][21] = { "max", "max", "max", "max" };
1566 unsigned int iops_dft
;
1567 char idle_time
[26] = "";
1568 char latency_time
[26] = "";
1573 if (off
== LIMIT_LOW
) {
1578 iops_dft
= UINT_MAX
;
1581 if (tg
->bps_conf
[READ
][off
] == bps_dft
&&
1582 tg
->bps_conf
[WRITE
][off
] == bps_dft
&&
1583 tg
->iops_conf
[READ
][off
] == iops_dft
&&
1584 tg
->iops_conf
[WRITE
][off
] == iops_dft
&&
1585 (off
!= LIMIT_LOW
||
1586 (tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
&&
1587 tg
->latency_target_conf
== DFL_LATENCY_TARGET
)))
1590 if (tg
->bps_conf
[READ
][off
] != U64_MAX
)
1591 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu",
1592 tg
->bps_conf
[READ
][off
]);
1593 if (tg
->bps_conf
[WRITE
][off
] != U64_MAX
)
1594 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu",
1595 tg
->bps_conf
[WRITE
][off
]);
1596 if (tg
->iops_conf
[READ
][off
] != UINT_MAX
)
1597 snprintf(bufs
[2], sizeof(bufs
[2]), "%u",
1598 tg
->iops_conf
[READ
][off
]);
1599 if (tg
->iops_conf
[WRITE
][off
] != UINT_MAX
)
1600 snprintf(bufs
[3], sizeof(bufs
[3]), "%u",
1601 tg
->iops_conf
[WRITE
][off
]);
1602 if (off
== LIMIT_LOW
) {
1603 if (tg
->idletime_threshold_conf
== ULONG_MAX
)
1604 strcpy(idle_time
, " idle=max");
1606 snprintf(idle_time
, sizeof(idle_time
), " idle=%lu",
1607 tg
->idletime_threshold_conf
);
1609 if (tg
->latency_target_conf
== ULONG_MAX
)
1610 strcpy(latency_time
, " latency=max");
1612 snprintf(latency_time
, sizeof(latency_time
),
1613 " latency=%lu", tg
->latency_target_conf
);
1616 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1617 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3], idle_time
,
1622 static int tg_print_limit(struct seq_file
*sf
, void *v
)
1624 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_limit
,
1625 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1629 static ssize_t
tg_set_limit(struct kernfs_open_file
*of
,
1630 char *buf
, size_t nbytes
, loff_t off
)
1632 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1633 struct blkg_conf_ctx ctx
;
1634 struct throtl_grp
*tg
;
1636 unsigned long idle_time
;
1637 unsigned long latency_time
;
1639 int index
= of_cft(of
)->private;
1641 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1645 tg
= blkg_to_tg(ctx
.blkg
);
1647 v
[0] = tg
->bps_conf
[READ
][index
];
1648 v
[1] = tg
->bps_conf
[WRITE
][index
];
1649 v
[2] = tg
->iops_conf
[READ
][index
];
1650 v
[3] = tg
->iops_conf
[WRITE
][index
];
1652 idle_time
= tg
->idletime_threshold_conf
;
1653 latency_time
= tg
->latency_target_conf
;
1655 char tok
[27]; /* wiops=18446744073709551616 */
1660 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1669 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1677 if (!strcmp(tok
, "rbps"))
1679 else if (!strcmp(tok
, "wbps"))
1681 else if (!strcmp(tok
, "riops"))
1682 v
[2] = min_t(u64
, val
, UINT_MAX
);
1683 else if (!strcmp(tok
, "wiops"))
1684 v
[3] = min_t(u64
, val
, UINT_MAX
);
1685 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "idle"))
1687 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "latency"))
1693 tg
->bps_conf
[READ
][index
] = v
[0];
1694 tg
->bps_conf
[WRITE
][index
] = v
[1];
1695 tg
->iops_conf
[READ
][index
] = v
[2];
1696 tg
->iops_conf
[WRITE
][index
] = v
[3];
1698 if (index
== LIMIT_MAX
) {
1699 tg
->bps
[READ
][index
] = v
[0];
1700 tg
->bps
[WRITE
][index
] = v
[1];
1701 tg
->iops
[READ
][index
] = v
[2];
1702 tg
->iops
[WRITE
][index
] = v
[3];
1704 tg
->bps
[READ
][LIMIT_LOW
] = min(tg
->bps_conf
[READ
][LIMIT_LOW
],
1705 tg
->bps_conf
[READ
][LIMIT_MAX
]);
1706 tg
->bps
[WRITE
][LIMIT_LOW
] = min(tg
->bps_conf
[WRITE
][LIMIT_LOW
],
1707 tg
->bps_conf
[WRITE
][LIMIT_MAX
]);
1708 tg
->iops
[READ
][LIMIT_LOW
] = min(tg
->iops_conf
[READ
][LIMIT_LOW
],
1709 tg
->iops_conf
[READ
][LIMIT_MAX
]);
1710 tg
->iops
[WRITE
][LIMIT_LOW
] = min(tg
->iops_conf
[WRITE
][LIMIT_LOW
],
1711 tg
->iops_conf
[WRITE
][LIMIT_MAX
]);
1712 tg
->idletime_threshold_conf
= idle_time
;
1713 tg
->latency_target_conf
= latency_time
;
1715 /* force user to configure all settings for low limit */
1716 if (!(tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
] ||
1717 tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) ||
1718 tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
||
1719 tg
->latency_target_conf
== DFL_LATENCY_TARGET
) {
1720 tg
->bps
[READ
][LIMIT_LOW
] = 0;
1721 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
1722 tg
->iops
[READ
][LIMIT_LOW
] = 0;
1723 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
1724 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
1725 tg
->latency_target
= DFL_LATENCY_TARGET
;
1726 } else if (index
== LIMIT_LOW
) {
1727 tg
->idletime_threshold
= tg
->idletime_threshold_conf
;
1728 tg
->latency_target
= tg
->latency_target_conf
;
1731 blk_throtl_update_limit_valid(tg
->td
);
1732 if (tg
->td
->limit_valid
[LIMIT_LOW
]) {
1733 if (index
== LIMIT_LOW
)
1734 tg
->td
->limit_index
= LIMIT_LOW
;
1736 tg
->td
->limit_index
= LIMIT_MAX
;
1737 tg_conf_updated(tg
, index
== LIMIT_LOW
&&
1738 tg
->td
->limit_valid
[LIMIT_LOW
]);
1741 blkg_conf_finish(&ctx
);
1742 return ret
?: nbytes
;
1745 static struct cftype throtl_files
[] = {
1746 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1749 .flags
= CFTYPE_NOT_ON_ROOT
,
1750 .seq_show
= tg_print_limit
,
1751 .write
= tg_set_limit
,
1752 .private = LIMIT_LOW
,
1757 .flags
= CFTYPE_NOT_ON_ROOT
,
1758 .seq_show
= tg_print_limit
,
1759 .write
= tg_set_limit
,
1760 .private = LIMIT_MAX
,
1765 static void throtl_shutdown_wq(struct request_queue
*q
)
1767 struct throtl_data
*td
= q
->td
;
1769 cancel_work_sync(&td
->dispatch_work
);
1772 static struct blkcg_policy blkcg_policy_throtl
= {
1773 .dfl_cftypes
= throtl_files
,
1774 .legacy_cftypes
= throtl_legacy_files
,
1776 .pd_alloc_fn
= throtl_pd_alloc
,
1777 .pd_init_fn
= throtl_pd_init
,
1778 .pd_online_fn
= throtl_pd_online
,
1779 .pd_offline_fn
= throtl_pd_offline
,
1780 .pd_free_fn
= throtl_pd_free
,
1783 static unsigned long __tg_last_low_overflow_time(struct throtl_grp
*tg
)
1785 unsigned long rtime
= jiffies
, wtime
= jiffies
;
1787 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
])
1788 rtime
= tg
->last_low_overflow_time
[READ
];
1789 if (tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
])
1790 wtime
= tg
->last_low_overflow_time
[WRITE
];
1791 return min(rtime
, wtime
);
1794 /* tg should not be an intermediate node */
1795 static unsigned long tg_last_low_overflow_time(struct throtl_grp
*tg
)
1797 struct throtl_service_queue
*parent_sq
;
1798 struct throtl_grp
*parent
= tg
;
1799 unsigned long ret
= __tg_last_low_overflow_time(tg
);
1802 parent_sq
= parent
->service_queue
.parent_sq
;
1803 parent
= sq_to_tg(parent_sq
);
1808 * The parent doesn't have low limit, it always reaches low
1809 * limit. Its overflow time is useless for children
1811 if (!parent
->bps
[READ
][LIMIT_LOW
] &&
1812 !parent
->iops
[READ
][LIMIT_LOW
] &&
1813 !parent
->bps
[WRITE
][LIMIT_LOW
] &&
1814 !parent
->iops
[WRITE
][LIMIT_LOW
])
1816 if (time_after(__tg_last_low_overflow_time(parent
), ret
))
1817 ret
= __tg_last_low_overflow_time(parent
);
1822 static bool throtl_tg_is_idle(struct throtl_grp
*tg
)
1825 * cgroup is idle if:
1826 * - single idle is too long, longer than a fixed value (in case user
1827 * configure a too big threshold) or 4 times of idletime threshold
1828 * - average think time is more than threshold
1829 * - IO latency is largely below threshold
1834 time
= min_t(unsigned long, MAX_IDLE_TIME
, 4 * tg
->idletime_threshold
);
1835 ret
= tg
->latency_target
== DFL_LATENCY_TARGET
||
1836 tg
->idletime_threshold
== DFL_IDLE_THRESHOLD
||
1837 (ktime_get_ns() >> 10) - tg
->last_finish_time
> time
||
1838 tg
->avg_idletime
> tg
->idletime_threshold
||
1839 (tg
->latency_target
&& tg
->bio_cnt
&&
1840 tg
->bad_bio_cnt
* 5 < tg
->bio_cnt
);
1841 throtl_log(&tg
->service_queue
,
1842 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1843 tg
->avg_idletime
, tg
->idletime_threshold
, tg
->bad_bio_cnt
,
1844 tg
->bio_cnt
, ret
, tg
->td
->scale
);
1848 static bool throtl_tg_can_upgrade(struct throtl_grp
*tg
)
1850 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1851 bool read_limit
, write_limit
;
1854 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1855 * reaches), it's ok to upgrade to next limit
1857 read_limit
= tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
];
1858 write_limit
= tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
];
1859 if (!read_limit
&& !write_limit
)
1861 if (read_limit
&& sq
->nr_queued
[READ
] &&
1862 (!write_limit
|| sq
->nr_queued
[WRITE
]))
1864 if (write_limit
&& sq
->nr_queued
[WRITE
] &&
1865 (!read_limit
|| sq
->nr_queued
[READ
]))
1868 if (time_after_eq(jiffies
,
1869 tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
) &&
1870 throtl_tg_is_idle(tg
))
1875 static bool throtl_hierarchy_can_upgrade(struct throtl_grp
*tg
)
1878 if (throtl_tg_can_upgrade(tg
))
1880 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1881 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1887 static bool throtl_can_upgrade(struct throtl_data
*td
,
1888 struct throtl_grp
*this_tg
)
1890 struct cgroup_subsys_state
*pos_css
;
1891 struct blkcg_gq
*blkg
;
1893 if (td
->limit_index
!= LIMIT_LOW
)
1896 if (time_before(jiffies
, td
->low_downgrade_time
+ td
->throtl_slice
))
1900 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1901 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1905 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1907 if (!throtl_hierarchy_can_upgrade(tg
)) {
1916 static void throtl_upgrade_check(struct throtl_grp
*tg
)
1918 unsigned long now
= jiffies
;
1920 if (tg
->td
->limit_index
!= LIMIT_LOW
)
1923 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1926 tg
->last_check_time
= now
;
1928 if (!time_after_eq(now
,
1929 __tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
))
1932 if (throtl_can_upgrade(tg
->td
, NULL
))
1933 throtl_upgrade_state(tg
->td
);
1936 static void throtl_upgrade_state(struct throtl_data
*td
)
1938 struct cgroup_subsys_state
*pos_css
;
1939 struct blkcg_gq
*blkg
;
1941 throtl_log(&td
->service_queue
, "upgrade to max");
1942 td
->limit_index
= LIMIT_MAX
;
1943 td
->low_upgrade_time
= jiffies
;
1946 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1947 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1948 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1950 tg
->disptime
= jiffies
- 1;
1951 throtl_select_dispatch(sq
);
1952 throtl_schedule_next_dispatch(sq
, true);
1955 throtl_select_dispatch(&td
->service_queue
);
1956 throtl_schedule_next_dispatch(&td
->service_queue
, true);
1957 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1960 static void throtl_downgrade_state(struct throtl_data
*td
, int new)
1964 throtl_log(&td
->service_queue
, "downgrade, scale %d", td
->scale
);
1966 td
->low_upgrade_time
= jiffies
- td
->scale
* td
->throtl_slice
;
1970 td
->limit_index
= new;
1971 td
->low_downgrade_time
= jiffies
;
1974 static bool throtl_tg_can_downgrade(struct throtl_grp
*tg
)
1976 struct throtl_data
*td
= tg
->td
;
1977 unsigned long now
= jiffies
;
1980 * If cgroup is below low limit, consider downgrade and throttle other
1983 if (time_after_eq(now
, td
->low_upgrade_time
+ td
->throtl_slice
) &&
1984 time_after_eq(now
, tg_last_low_overflow_time(tg
) +
1985 td
->throtl_slice
) &&
1986 (!throtl_tg_is_idle(tg
) ||
1987 !list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
)))
1992 static bool throtl_hierarchy_can_downgrade(struct throtl_grp
*tg
)
1995 if (!throtl_tg_can_downgrade(tg
))
1997 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1998 if (!tg
|| !tg_to_blkg(tg
)->parent
)
2004 static void throtl_downgrade_check(struct throtl_grp
*tg
)
2008 unsigned long elapsed_time
;
2009 unsigned long now
= jiffies
;
2011 if (tg
->td
->limit_index
!= LIMIT_MAX
||
2012 !tg
->td
->limit_valid
[LIMIT_LOW
])
2014 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
2016 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
2019 elapsed_time
= now
- tg
->last_check_time
;
2020 tg
->last_check_time
= now
;
2022 if (time_before(now
, tg_last_low_overflow_time(tg
) +
2023 tg
->td
->throtl_slice
))
2026 if (tg
->bps
[READ
][LIMIT_LOW
]) {
2027 bps
= tg
->last_bytes_disp
[READ
] * HZ
;
2028 do_div(bps
, elapsed_time
);
2029 if (bps
>= tg
->bps
[READ
][LIMIT_LOW
])
2030 tg
->last_low_overflow_time
[READ
] = now
;
2033 if (tg
->bps
[WRITE
][LIMIT_LOW
]) {
2034 bps
= tg
->last_bytes_disp
[WRITE
] * HZ
;
2035 do_div(bps
, elapsed_time
);
2036 if (bps
>= tg
->bps
[WRITE
][LIMIT_LOW
])
2037 tg
->last_low_overflow_time
[WRITE
] = now
;
2040 if (tg
->iops
[READ
][LIMIT_LOW
]) {
2041 iops
= tg
->last_io_disp
[READ
] * HZ
/ elapsed_time
;
2042 if (iops
>= tg
->iops
[READ
][LIMIT_LOW
])
2043 tg
->last_low_overflow_time
[READ
] = now
;
2046 if (tg
->iops
[WRITE
][LIMIT_LOW
]) {
2047 iops
= tg
->last_io_disp
[WRITE
] * HZ
/ elapsed_time
;
2048 if (iops
>= tg
->iops
[WRITE
][LIMIT_LOW
])
2049 tg
->last_low_overflow_time
[WRITE
] = now
;
2053 * If cgroup is below low limit, consider downgrade and throttle other
2056 if (throtl_hierarchy_can_downgrade(tg
))
2057 throtl_downgrade_state(tg
->td
, LIMIT_LOW
);
2059 tg
->last_bytes_disp
[READ
] = 0;
2060 tg
->last_bytes_disp
[WRITE
] = 0;
2061 tg
->last_io_disp
[READ
] = 0;
2062 tg
->last_io_disp
[WRITE
] = 0;
2065 static void blk_throtl_update_idletime(struct throtl_grp
*tg
)
2067 unsigned long now
= ktime_get_ns() >> 10;
2068 unsigned long last_finish_time
= tg
->last_finish_time
;
2070 if (now
<= last_finish_time
|| last_finish_time
== 0 ||
2071 last_finish_time
== tg
->checked_last_finish_time
)
2074 tg
->avg_idletime
= (tg
->avg_idletime
* 7 + now
- last_finish_time
) >> 3;
2075 tg
->checked_last_finish_time
= last_finish_time
;
2078 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2079 static void throtl_update_latency_buckets(struct throtl_data
*td
)
2081 struct avg_latency_bucket avg_latency
[2][LATENCY_BUCKET_SIZE
];
2083 unsigned long last_latency
[2] = { 0 };
2084 unsigned long latency
[2];
2086 if (!blk_queue_nonrot(td
->queue
))
2088 if (time_before(jiffies
, td
->last_calculate_time
+ HZ
))
2090 td
->last_calculate_time
= jiffies
;
2092 memset(avg_latency
, 0, sizeof(avg_latency
));
2093 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2094 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2095 struct latency_bucket
*tmp
= &td
->tmp_buckets
[rw
][i
];
2097 for_each_possible_cpu(cpu
) {
2098 struct latency_bucket
*bucket
;
2100 /* this isn't race free, but ok in practice */
2101 bucket
= per_cpu_ptr(td
->latency_buckets
[rw
],
2103 tmp
->total_latency
+= bucket
[i
].total_latency
;
2104 tmp
->samples
+= bucket
[i
].samples
;
2105 bucket
[i
].total_latency
= 0;
2106 bucket
[i
].samples
= 0;
2109 if (tmp
->samples
>= 32) {
2110 int samples
= tmp
->samples
;
2112 latency
[rw
] = tmp
->total_latency
;
2114 tmp
->total_latency
= 0;
2116 latency
[rw
] /= samples
;
2117 if (latency
[rw
] == 0)
2119 avg_latency
[rw
][i
].latency
= latency
[rw
];
2124 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2125 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2126 if (!avg_latency
[rw
][i
].latency
) {
2127 if (td
->avg_buckets
[rw
][i
].latency
< last_latency
[rw
])
2128 td
->avg_buckets
[rw
][i
].latency
=
2133 if (!td
->avg_buckets
[rw
][i
].valid
)
2134 latency
[rw
] = avg_latency
[rw
][i
].latency
;
2136 latency
[rw
] = (td
->avg_buckets
[rw
][i
].latency
* 7 +
2137 avg_latency
[rw
][i
].latency
) >> 3;
2139 td
->avg_buckets
[rw
][i
].latency
= max(latency
[rw
],
2141 td
->avg_buckets
[rw
][i
].valid
= true;
2142 last_latency
[rw
] = td
->avg_buckets
[rw
][i
].latency
;
2146 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++)
2147 throtl_log(&td
->service_queue
,
2148 "Latency bucket %d: read latency=%ld, read valid=%d, "
2149 "write latency=%ld, write valid=%d", i
,
2150 td
->avg_buckets
[READ
][i
].latency
,
2151 td
->avg_buckets
[READ
][i
].valid
,
2152 td
->avg_buckets
[WRITE
][i
].latency
,
2153 td
->avg_buckets
[WRITE
][i
].valid
);
2156 static inline void throtl_update_latency_buckets(struct throtl_data
*td
)
2161 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
2164 struct throtl_qnode
*qn
= NULL
;
2165 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
2166 struct throtl_service_queue
*sq
;
2167 bool rw
= bio_data_dir(bio
);
2168 bool throttled
= false;
2169 struct throtl_data
*td
= tg
->td
;
2171 WARN_ON_ONCE(!rcu_read_lock_held());
2173 /* see throtl_charge_bio() */
2174 if (bio_flagged(bio
, BIO_THROTTLED
))
2177 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
)) {
2178 blkg_rwstat_add(&tg
->stat_bytes
, bio
->bi_opf
,
2179 bio
->bi_iter
.bi_size
);
2180 blkg_rwstat_add(&tg
->stat_ios
, bio
->bi_opf
, 1);
2183 if (!tg
->has_rules
[rw
])
2186 spin_lock_irq(&q
->queue_lock
);
2188 throtl_update_latency_buckets(td
);
2190 blk_throtl_update_idletime(tg
);
2192 sq
= &tg
->service_queue
;
2196 if (tg
->last_low_overflow_time
[rw
] == 0)
2197 tg
->last_low_overflow_time
[rw
] = jiffies
;
2198 throtl_downgrade_check(tg
);
2199 throtl_upgrade_check(tg
);
2200 /* throtl is FIFO - if bios are already queued, should queue */
2201 if (sq
->nr_queued
[rw
])
2204 /* if above limits, break to queue */
2205 if (!tg_may_dispatch(tg
, bio
, NULL
)) {
2206 tg
->last_low_overflow_time
[rw
] = jiffies
;
2207 if (throtl_can_upgrade(td
, tg
)) {
2208 throtl_upgrade_state(td
);
2214 /* within limits, let's charge and dispatch directly */
2215 throtl_charge_bio(tg
, bio
);
2218 * We need to trim slice even when bios are not being queued
2219 * otherwise it might happen that a bio is not queued for
2220 * a long time and slice keeps on extending and trim is not
2221 * called for a long time. Now if limits are reduced suddenly
2222 * we take into account all the IO dispatched so far at new
2223 * low rate and * newly queued IO gets a really long dispatch
2226 * So keep on trimming slice even if bio is not queued.
2228 throtl_trim_slice(tg
, rw
);
2231 * @bio passed through this layer without being throttled.
2232 * Climb up the ladder. If we''re already at the top, it
2233 * can be executed directly.
2235 qn
= &tg
->qnode_on_parent
[rw
];
2242 /* out-of-limit, queue to @tg */
2243 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2244 rw
== READ
? 'R' : 'W',
2245 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
,
2246 tg_bps_limit(tg
, rw
),
2247 tg
->io_disp
[rw
], tg_iops_limit(tg
, rw
),
2248 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
2250 tg
->last_low_overflow_time
[rw
] = jiffies
;
2252 td
->nr_queued
[rw
]++;
2253 throtl_add_bio_tg(bio
, qn
, tg
);
2257 * Update @tg's dispatch time and force schedule dispatch if @tg
2258 * was empty before @bio. The forced scheduling isn't likely to
2259 * cause undue delay as @bio is likely to be dispatched directly if
2260 * its @tg's disptime is not in the future.
2262 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
2263 tg_update_disptime(tg
);
2264 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
2268 spin_unlock_irq(&q
->queue_lock
);
2270 bio_set_flag(bio
, BIO_THROTTLED
);
2272 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2273 if (throttled
|| !td
->track_bio_latency
)
2274 bio
->bi_issue
.value
|= BIO_ISSUE_THROTL_SKIP_LATENCY
;
2279 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2280 static void throtl_track_latency(struct throtl_data
*td
, sector_t size
,
2281 int op
, unsigned long time
)
2283 struct latency_bucket
*latency
;
2286 if (!td
|| td
->limit_index
!= LIMIT_LOW
||
2287 !(op
== REQ_OP_READ
|| op
== REQ_OP_WRITE
) ||
2288 !blk_queue_nonrot(td
->queue
))
2291 index
= request_bucket_index(size
);
2293 latency
= get_cpu_ptr(td
->latency_buckets
[op
]);
2294 latency
[index
].total_latency
+= time
;
2295 latency
[index
].samples
++;
2296 put_cpu_ptr(td
->latency_buckets
[op
]);
2299 void blk_throtl_stat_add(struct request
*rq
, u64 time_ns
)
2301 struct request_queue
*q
= rq
->q
;
2302 struct throtl_data
*td
= q
->td
;
2304 throtl_track_latency(td
, blk_rq_stats_sectors(rq
), req_op(rq
),
2308 void blk_throtl_bio_endio(struct bio
*bio
)
2310 struct blkcg_gq
*blkg
;
2311 struct throtl_grp
*tg
;
2313 unsigned long finish_time
;
2314 unsigned long start_time
;
2316 int rw
= bio_data_dir(bio
);
2318 blkg
= bio
->bi_blkg
;
2321 tg
= blkg_to_tg(blkg
);
2323 finish_time_ns
= ktime_get_ns();
2324 tg
->last_finish_time
= finish_time_ns
>> 10;
2326 start_time
= bio_issue_time(&bio
->bi_issue
) >> 10;
2327 finish_time
= __bio_issue_time(finish_time_ns
) >> 10;
2328 if (!start_time
|| finish_time
<= start_time
)
2331 lat
= finish_time
- start_time
;
2332 /* this is only for bio based driver */
2333 if (!(bio
->bi_issue
.value
& BIO_ISSUE_THROTL_SKIP_LATENCY
))
2334 throtl_track_latency(tg
->td
, bio_issue_size(&bio
->bi_issue
),
2337 if (tg
->latency_target
&& lat
>= tg
->td
->filtered_latency
) {
2339 unsigned int threshold
;
2341 bucket
= request_bucket_index(bio_issue_size(&bio
->bi_issue
));
2342 threshold
= tg
->td
->avg_buckets
[rw
][bucket
].latency
+
2344 if (lat
> threshold
)
2347 * Not race free, could get wrong count, which means cgroups
2353 if (time_after(jiffies
, tg
->bio_cnt_reset_time
) || tg
->bio_cnt
> 1024) {
2354 tg
->bio_cnt_reset_time
= tg
->td
->throtl_slice
+ jiffies
;
2356 tg
->bad_bio_cnt
/= 2;
2362 * Dispatch all bios from all children tg's queued on @parent_sq. On
2363 * return, @parent_sq is guaranteed to not have any active children tg's
2364 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2366 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
2368 struct throtl_grp
*tg
;
2370 while ((tg
= throtl_rb_first(parent_sq
))) {
2371 struct throtl_service_queue
*sq
= &tg
->service_queue
;
2374 throtl_dequeue_tg(tg
);
2376 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
2377 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2378 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
2379 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2384 * blk_throtl_drain - drain throttled bios
2385 * @q: request_queue to drain throttled bios for
2387 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2389 void blk_throtl_drain(struct request_queue
*q
)
2390 __releases(&q
->queue_lock
) __acquires(&q
->queue_lock
)
2392 struct throtl_data
*td
= q
->td
;
2393 struct blkcg_gq
*blkg
;
2394 struct cgroup_subsys_state
*pos_css
;
2401 * Drain each tg while doing post-order walk on the blkg tree, so
2402 * that all bios are propagated to td->service_queue. It'd be
2403 * better to walk service_queue tree directly but blkg walk is
2406 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
2407 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
2409 /* finally, transfer bios from top-level tg's into the td */
2410 tg_drain_bios(&td
->service_queue
);
2413 spin_unlock_irq(&q
->queue_lock
);
2415 /* all bios now should be in td->service_queue, issue them */
2416 for (rw
= READ
; rw
<= WRITE
; rw
++)
2417 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
2419 generic_make_request(bio
);
2421 spin_lock_irq(&q
->queue_lock
);
2424 int blk_throtl_init(struct request_queue
*q
)
2426 struct throtl_data
*td
;
2429 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
2432 td
->latency_buckets
[READ
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2433 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2434 if (!td
->latency_buckets
[READ
]) {
2438 td
->latency_buckets
[WRITE
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2439 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2440 if (!td
->latency_buckets
[WRITE
]) {
2441 free_percpu(td
->latency_buckets
[READ
]);
2446 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
2447 throtl_service_queue_init(&td
->service_queue
);
2452 td
->limit_valid
[LIMIT_MAX
] = true;
2453 td
->limit_index
= LIMIT_MAX
;
2454 td
->low_upgrade_time
= jiffies
;
2455 td
->low_downgrade_time
= jiffies
;
2457 /* activate policy */
2458 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
2460 free_percpu(td
->latency_buckets
[READ
]);
2461 free_percpu(td
->latency_buckets
[WRITE
]);
2467 void blk_throtl_exit(struct request_queue
*q
)
2470 throtl_shutdown_wq(q
);
2471 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
2472 free_percpu(q
->td
->latency_buckets
[READ
]);
2473 free_percpu(q
->td
->latency_buckets
[WRITE
]);
2477 void blk_throtl_register_queue(struct request_queue
*q
)
2479 struct throtl_data
*td
;
2485 if (blk_queue_nonrot(q
)) {
2486 td
->throtl_slice
= DFL_THROTL_SLICE_SSD
;
2487 td
->filtered_latency
= LATENCY_FILTERED_SSD
;
2489 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2490 td
->filtered_latency
= LATENCY_FILTERED_HD
;
2491 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2492 td
->avg_buckets
[READ
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2493 td
->avg_buckets
[WRITE
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2496 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2497 /* if no low limit, use previous default */
2498 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2501 td
->track_bio_latency
= !queue_is_mq(q
);
2502 if (!td
->track_bio_latency
)
2503 blk_stat_enable_accounting(q
);
2506 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2507 ssize_t
blk_throtl_sample_time_show(struct request_queue
*q
, char *page
)
2511 return sprintf(page
, "%u\n", jiffies_to_msecs(q
->td
->throtl_slice
));
2514 ssize_t
blk_throtl_sample_time_store(struct request_queue
*q
,
2515 const char *page
, size_t count
)
2522 if (kstrtoul(page
, 10, &v
))
2524 t
= msecs_to_jiffies(v
);
2525 if (t
== 0 || t
> MAX_THROTL_SLICE
)
2527 q
->td
->throtl_slice
= t
;
2532 static int __init
throtl_init(void)
2534 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
2535 if (!kthrotld_workqueue
)
2536 panic("Failed to create kthrotld\n");
2538 return blkcg_policy_register(&blkcg_policy_throtl
);
2541 module_init(throtl_init
);