Linux 4.18.10
[linux/fpc-iii.git] / arch / arm64 / include / asm / kvm_mmu.h
blobfb9a7127bb752d6e627e873962cf39d6b1752687
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
32 * kernel address). We need to find out how many bits to mask.
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
50 * T = __pa_symbol(__hyp_idmap_text_start)
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
72 #ifdef __ASSEMBLY__
74 #include <asm/alternative.h>
77 * Convert a kernel VA into a HYP VA.
78 * reg: VA to be converted.
80 * The actual code generation takes place in kvm_update_va_mask, and
81 * the instructions below are only there to reserve the space and
82 * perform the register allocation (kvm_update_va_mask uses the
83 * specific registers encoded in the instructions).
85 .macro kern_hyp_va reg
86 alternative_cb kvm_update_va_mask
87 and \reg, \reg, #1 /* mask with va_mask */
88 ror \reg, \reg, #1 /* rotate to the first tag bit */
89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
91 ror \reg, \reg, #63 /* rotate back */
92 alternative_cb_end
93 .endm
95 #else
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
103 void kvm_update_va_mask(struct alt_instr *alt,
104 __le32 *origptr, __le32 *updptr, int nr_inst);
106 static inline unsigned long __kern_hyp_va(unsigned long v)
108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 "ror %0, %0, #1\n"
110 "add %0, %0, #0\n"
111 "add %0, %0, #0, lsl 12\n"
112 "ror %0, %0, #63\n",
113 kvm_update_va_mask)
114 : "+r" (v));
115 return v;
118 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
121 * Obtain the PC-relative address of a kernel symbol
122 * s: symbol
124 * The goal of this macro is to return a symbol's address based on a
125 * PC-relative computation, as opposed to a loading the VA from a
126 * constant pool or something similar. This works well for HYP, as an
127 * absolute VA is guaranteed to be wrong. Only use this if trying to
128 * obtain the address of a symbol (i.e. not something you obtained by
129 * following a pointer).
131 #define hyp_symbol_addr(s) \
132 ({ \
133 typeof(s) *addr; \
134 asm("adrp %0, %1\n" \
135 "add %0, %0, :lo12:%1\n" \
136 : "=r" (addr) : "S" (&s)); \
137 addr; \
141 * We currently only support a 40bit IPA.
143 #define KVM_PHYS_SHIFT (40)
144 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
145 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
147 #include <asm/stage2_pgtable.h>
149 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
150 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
151 void __iomem **kaddr,
152 void __iomem **haddr);
153 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
154 void **haddr);
155 void free_hyp_pgds(void);
157 void stage2_unmap_vm(struct kvm *kvm);
158 int kvm_alloc_stage2_pgd(struct kvm *kvm);
159 void kvm_free_stage2_pgd(struct kvm *kvm);
160 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
161 phys_addr_t pa, unsigned long size, bool writable);
163 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
165 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
167 phys_addr_t kvm_mmu_get_httbr(void);
168 phys_addr_t kvm_get_idmap_vector(void);
169 int kvm_mmu_init(void);
170 void kvm_clear_hyp_idmap(void);
172 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
173 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
175 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
177 pte_val(pte) |= PTE_S2_RDWR;
178 return pte;
181 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
183 pmd_val(pmd) |= PMD_S2_RDWR;
184 return pmd;
187 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
189 pte_val(pte) &= ~PTE_S2_XN;
190 return pte;
193 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
195 pmd_val(pmd) &= ~PMD_S2_XN;
196 return pmd;
199 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
201 pteval_t old_pteval, pteval;
203 pteval = READ_ONCE(pte_val(*ptep));
204 do {
205 old_pteval = pteval;
206 pteval &= ~PTE_S2_RDWR;
207 pteval |= PTE_S2_RDONLY;
208 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
209 } while (pteval != old_pteval);
212 static inline bool kvm_s2pte_readonly(pte_t *ptep)
214 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
217 static inline bool kvm_s2pte_exec(pte_t *ptep)
219 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
222 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
224 kvm_set_s2pte_readonly((pte_t *)pmdp);
227 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
229 return kvm_s2pte_readonly((pte_t *)pmdp);
232 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
234 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
237 static inline bool kvm_page_empty(void *ptr)
239 struct page *ptr_page = virt_to_page(ptr);
240 return page_count(ptr_page) == 1;
243 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
245 #ifdef __PAGETABLE_PMD_FOLDED
246 #define hyp_pmd_table_empty(pmdp) (0)
247 #else
248 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
249 #endif
251 #ifdef __PAGETABLE_PUD_FOLDED
252 #define hyp_pud_table_empty(pudp) (0)
253 #else
254 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
255 #endif
257 struct kvm;
259 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
261 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
263 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
266 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
268 void *va = page_address(pfn_to_page(pfn));
270 kvm_flush_dcache_to_poc(va, size);
273 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
274 unsigned long size)
276 if (icache_is_aliasing()) {
277 /* any kind of VIPT cache */
278 __flush_icache_all();
279 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
280 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
281 void *va = page_address(pfn_to_page(pfn));
283 invalidate_icache_range((unsigned long)va,
284 (unsigned long)va + size);
288 static inline void __kvm_flush_dcache_pte(pte_t pte)
290 struct page *page = pte_page(pte);
291 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
294 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
296 struct page *page = pmd_page(pmd);
297 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
300 static inline void __kvm_flush_dcache_pud(pud_t pud)
302 struct page *page = pud_page(pud);
303 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
306 #define kvm_virt_to_phys(x) __pa_symbol(x)
308 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
309 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
311 static inline bool __kvm_cpu_uses_extended_idmap(void)
313 return __cpu_uses_extended_idmap_level();
316 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
318 return idmap_ptrs_per_pgd;
322 * Can't use pgd_populate here, because the extended idmap adds an extra level
323 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
324 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
326 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
327 pgd_t *hyp_pgd,
328 pgd_t *merged_hyp_pgd,
329 unsigned long hyp_idmap_start)
331 int idmap_idx;
332 u64 pgd_addr;
335 * Use the first entry to access the HYP mappings. It is
336 * guaranteed to be free, otherwise we wouldn't use an
337 * extended idmap.
339 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
340 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
341 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
344 * Create another extended level entry that points to the boot HYP map,
345 * which contains an ID mapping of the HYP init code. We essentially
346 * merge the boot and runtime HYP maps by doing so, but they don't
347 * overlap anyway, so this is fine.
349 idmap_idx = hyp_idmap_start >> VA_BITS;
350 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
351 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
352 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
355 static inline unsigned int kvm_get_vmid_bits(void)
357 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
359 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
363 * We are not in the kvm->srcu critical section most of the time, so we take
364 * the SRCU read lock here. Since we copy the data from the user page, we
365 * can immediately drop the lock again.
367 static inline int kvm_read_guest_lock(struct kvm *kvm,
368 gpa_t gpa, void *data, unsigned long len)
370 int srcu_idx = srcu_read_lock(&kvm->srcu);
371 int ret = kvm_read_guest(kvm, gpa, data, len);
373 srcu_read_unlock(&kvm->srcu, srcu_idx);
375 return ret;
378 #ifdef CONFIG_KVM_INDIRECT_VECTORS
380 * EL2 vectors can be mapped and rerouted in a number of ways,
381 * depending on the kernel configuration and CPU present:
383 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
384 * hardening sequence is placed in one of the vector slots, which is
385 * executed before jumping to the real vectors.
387 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
388 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
389 * hardening sequence is mapped next to the idmap page, and executed
390 * before jumping to the real vectors.
392 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
393 * empty slot is selected, mapped next to the idmap page, and
394 * executed before jumping to the real vectors.
396 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
397 * VHE, as we don't have hypervisor-specific mappings. If the system
398 * is VHE and yet selects this capability, it will be ignored.
400 #include <asm/mmu.h>
402 extern void *__kvm_bp_vect_base;
403 extern int __kvm_harden_el2_vector_slot;
405 static inline void *kvm_get_hyp_vector(void)
407 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
408 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
409 int slot = -1;
411 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
412 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
413 slot = data->hyp_vectors_slot;
416 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
417 vect = __kvm_bp_vect_base;
418 if (slot == -1)
419 slot = __kvm_harden_el2_vector_slot;
422 if (slot != -1)
423 vect += slot * SZ_2K;
425 return vect;
428 /* This is only called on a !VHE system */
429 static inline int kvm_map_vectors(void)
432 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
433 * HEL2 = ARM64_HARDEN_EL2_VECTORS
435 * !HBP + !HEL2 -> use direct vectors
436 * HBP + !HEL2 -> use hardened vectors in place
437 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
438 * HBP + HEL2 -> use hardened vertors and use exec mapping
440 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
441 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
442 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
445 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
446 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
447 unsigned long size = (__bp_harden_hyp_vecs_end -
448 __bp_harden_hyp_vecs_start);
451 * Always allocate a spare vector slot, as we don't
452 * know yet which CPUs have a BP hardening slot that
453 * we can reuse.
455 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
456 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
457 return create_hyp_exec_mappings(vect_pa, size,
458 &__kvm_bp_vect_base);
461 return 0;
463 #else
464 static inline void *kvm_get_hyp_vector(void)
466 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
469 static inline int kvm_map_vectors(void)
471 return 0;
473 #endif
475 #ifdef CONFIG_ARM64_SSBD
476 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
478 static inline int hyp_map_aux_data(void)
480 int cpu, err;
482 for_each_possible_cpu(cpu) {
483 u64 *ptr;
485 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
486 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
487 if (err)
488 return err;
490 return 0;
492 #else
493 static inline int hyp_map_aux_data(void)
495 return 0;
497 #endif
499 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
501 #endif /* __ASSEMBLY__ */
502 #endif /* __ARM64_KVM_MMU_H__ */