Linux 4.18.10
[linux/fpc-iii.git] / arch / arm64 / kernel / hibernate.c
blob6b2686d54411fdc0a92e3d4cda2dd38f5b21d40b
1 /*:
2 * Hibernate support specific for ARM64
4 * Derived from work on ARM hibernation support by:
6 * Ubuntu project, hibernation support for mach-dove
7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
9 * https://lkml.org/lkml/2010/6/18/4
10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
11 * https://patchwork.kernel.org/patch/96442/
13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15 * License terms: GNU General Public License (GPL) version 2
17 #define pr_fmt(x) "hibernate: " x
18 #include <linux/cpu.h>
19 #include <linux/kvm_host.h>
20 #include <linux/mm.h>
21 #include <linux/pm.h>
22 #include <linux/sched.h>
23 #include <linux/suspend.h>
24 #include <linux/utsname.h>
25 #include <linux/version.h>
27 #include <asm/barrier.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/daifflags.h>
31 #include <asm/irqflags.h>
32 #include <asm/kexec.h>
33 #include <asm/memory.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgalloc.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgtable-hwdef.h>
38 #include <asm/sections.h>
39 #include <asm/smp.h>
40 #include <asm/smp_plat.h>
41 #include <asm/suspend.h>
42 #include <asm/sysreg.h>
43 #include <asm/virt.h>
46 * Hibernate core relies on this value being 0 on resume, and marks it
47 * __nosavedata assuming it will keep the resume kernel's '0' value. This
48 * doesn't happen with either KASLR.
50 * defined as "__visible int in_suspend __nosavedata" in
51 * kernel/power/hibernate.c
53 extern int in_suspend;
55 /* Do we need to reset el2? */
56 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
58 /* temporary el2 vectors in the __hibernate_exit_text section. */
59 extern char hibernate_el2_vectors[];
61 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
62 extern char __hyp_stub_vectors[];
65 * The logical cpu number we should resume on, initialised to a non-cpu
66 * number.
68 static int sleep_cpu = -EINVAL;
71 * Values that may not change over hibernate/resume. We put the build number
72 * and date in here so that we guarantee not to resume with a different
73 * kernel.
75 struct arch_hibernate_hdr_invariants {
76 char uts_version[__NEW_UTS_LEN + 1];
79 /* These values need to be know across a hibernate/restore. */
80 static struct arch_hibernate_hdr {
81 struct arch_hibernate_hdr_invariants invariants;
83 /* These are needed to find the relocated kernel if built with kaslr */
84 phys_addr_t ttbr1_el1;
85 void (*reenter_kernel)(void);
88 * We need to know where the __hyp_stub_vectors are after restore to
89 * re-configure el2.
91 phys_addr_t __hyp_stub_vectors;
93 u64 sleep_cpu_mpidr;
94 } resume_hdr;
96 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
98 memset(i, 0, sizeof(*i));
99 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
102 int pfn_is_nosave(unsigned long pfn)
104 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
105 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
107 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
108 crash_is_nosave(pfn);
111 void notrace save_processor_state(void)
113 WARN_ON(num_online_cpus() != 1);
116 void notrace restore_processor_state(void)
120 int arch_hibernation_header_save(void *addr, unsigned int max_size)
122 struct arch_hibernate_hdr *hdr = addr;
124 if (max_size < sizeof(*hdr))
125 return -EOVERFLOW;
127 arch_hdr_invariants(&hdr->invariants);
128 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
129 hdr->reenter_kernel = _cpu_resume;
131 /* We can't use __hyp_get_vectors() because kvm may still be loaded */
132 if (el2_reset_needed())
133 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
134 else
135 hdr->__hyp_stub_vectors = 0;
137 /* Save the mpidr of the cpu we called cpu_suspend() on... */
138 if (sleep_cpu < 0) {
139 pr_err("Failing to hibernate on an unknown CPU.\n");
140 return -ENODEV;
142 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
143 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
144 hdr->sleep_cpu_mpidr);
146 return 0;
148 EXPORT_SYMBOL(arch_hibernation_header_save);
150 int arch_hibernation_header_restore(void *addr)
152 int ret;
153 struct arch_hibernate_hdr_invariants invariants;
154 struct arch_hibernate_hdr *hdr = addr;
156 arch_hdr_invariants(&invariants);
157 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
158 pr_crit("Hibernate image not generated by this kernel!\n");
159 return -EINVAL;
162 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
163 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
164 hdr->sleep_cpu_mpidr);
165 if (sleep_cpu < 0) {
166 pr_crit("Hibernated on a CPU not known to this kernel!\n");
167 sleep_cpu = -EINVAL;
168 return -EINVAL;
170 if (!cpu_online(sleep_cpu)) {
171 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
172 ret = cpu_up(sleep_cpu);
173 if (ret) {
174 pr_err("Failed to bring hibernate-CPU up!\n");
175 sleep_cpu = -EINVAL;
176 return ret;
180 resume_hdr = *hdr;
182 return 0;
184 EXPORT_SYMBOL(arch_hibernation_header_restore);
187 * Copies length bytes, starting at src_start into an new page,
188 * perform cache maintentance, then maps it at the specified address low
189 * address as executable.
191 * This is used by hibernate to copy the code it needs to execute when
192 * overwriting the kernel text. This function generates a new set of page
193 * tables, which it loads into ttbr0.
195 * Length is provided as we probably only want 4K of data, even on a 64K
196 * page system.
198 static int create_safe_exec_page(void *src_start, size_t length,
199 unsigned long dst_addr,
200 phys_addr_t *phys_dst_addr,
201 void *(*allocator)(gfp_t mask),
202 gfp_t mask)
204 int rc = 0;
205 pgd_t *pgdp;
206 pud_t *pudp;
207 pmd_t *pmdp;
208 pte_t *ptep;
209 unsigned long dst = (unsigned long)allocator(mask);
211 if (!dst) {
212 rc = -ENOMEM;
213 goto out;
216 memcpy((void *)dst, src_start, length);
217 flush_icache_range(dst, dst + length);
219 pgdp = pgd_offset_raw(allocator(mask), dst_addr);
220 if (pgd_none(READ_ONCE(*pgdp))) {
221 pudp = allocator(mask);
222 if (!pudp) {
223 rc = -ENOMEM;
224 goto out;
226 pgd_populate(&init_mm, pgdp, pudp);
229 pudp = pud_offset(pgdp, dst_addr);
230 if (pud_none(READ_ONCE(*pudp))) {
231 pmdp = allocator(mask);
232 if (!pmdp) {
233 rc = -ENOMEM;
234 goto out;
236 pud_populate(&init_mm, pudp, pmdp);
239 pmdp = pmd_offset(pudp, dst_addr);
240 if (pmd_none(READ_ONCE(*pmdp))) {
241 ptep = allocator(mask);
242 if (!ptep) {
243 rc = -ENOMEM;
244 goto out;
246 pmd_populate_kernel(&init_mm, pmdp, ptep);
249 ptep = pte_offset_kernel(pmdp, dst_addr);
250 set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC));
253 * Load our new page tables. A strict BBM approach requires that we
254 * ensure that TLBs are free of any entries that may overlap with the
255 * global mappings we are about to install.
257 * For a real hibernate/resume cycle TTBR0 currently points to a zero
258 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
259 * runtime services), while for a userspace-driven test_resume cycle it
260 * points to userspace page tables (and we must point it at a zero page
261 * ourselves). Elsewhere we only (un)install the idmap with preemption
262 * disabled, so T0SZ should be as required regardless.
264 cpu_set_reserved_ttbr0();
265 local_flush_tlb_all();
266 write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1);
267 isb();
269 *phys_dst_addr = virt_to_phys((void *)dst);
271 out:
272 return rc;
275 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start))
277 int swsusp_arch_suspend(void)
279 int ret = 0;
280 unsigned long flags;
281 struct sleep_stack_data state;
283 if (cpus_are_stuck_in_kernel()) {
284 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
285 return -EBUSY;
288 flags = local_daif_save();
290 if (__cpu_suspend_enter(&state)) {
291 /* make the crash dump kernel image visible/saveable */
292 crash_prepare_suspend();
294 sleep_cpu = smp_processor_id();
295 ret = swsusp_save();
296 } else {
297 /* Clean kernel core startup/idle code to PoC*/
298 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
299 dcache_clean_range(__idmap_text_start, __idmap_text_end);
301 /* Clean kvm setup code to PoC? */
302 if (el2_reset_needed())
303 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
305 /* make the crash dump kernel image protected again */
306 crash_post_resume();
309 * Tell the hibernation core that we've just restored
310 * the memory
312 in_suspend = 0;
314 sleep_cpu = -EINVAL;
315 __cpu_suspend_exit();
318 * Just in case the boot kernel did turn the SSBD
319 * mitigation off behind our back, let's set the state
320 * to what we expect it to be.
322 switch (arm64_get_ssbd_state()) {
323 case ARM64_SSBD_FORCE_ENABLE:
324 case ARM64_SSBD_KERNEL:
325 arm64_set_ssbd_mitigation(true);
329 local_daif_restore(flags);
331 return ret;
334 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
336 pte_t pte = READ_ONCE(*src_ptep);
338 if (pte_valid(pte)) {
340 * Resume will overwrite areas that may be marked
341 * read only (code, rodata). Clear the RDONLY bit from
342 * the temporary mappings we use during restore.
344 set_pte(dst_ptep, pte_mkwrite(pte));
345 } else if (debug_pagealloc_enabled() && !pte_none(pte)) {
347 * debug_pagealloc will removed the PTE_VALID bit if
348 * the page isn't in use by the resume kernel. It may have
349 * been in use by the original kernel, in which case we need
350 * to put it back in our copy to do the restore.
352 * Before marking this entry valid, check the pfn should
353 * be mapped.
355 BUG_ON(!pfn_valid(pte_pfn(pte)));
357 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
361 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
362 unsigned long end)
364 pte_t *src_ptep;
365 pte_t *dst_ptep;
366 unsigned long addr = start;
368 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
369 if (!dst_ptep)
370 return -ENOMEM;
371 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
372 dst_ptep = pte_offset_kernel(dst_pmdp, start);
374 src_ptep = pte_offset_kernel(src_pmdp, start);
375 do {
376 _copy_pte(dst_ptep, src_ptep, addr);
377 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
379 return 0;
382 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
383 unsigned long end)
385 pmd_t *src_pmdp;
386 pmd_t *dst_pmdp;
387 unsigned long next;
388 unsigned long addr = start;
390 if (pud_none(READ_ONCE(*dst_pudp))) {
391 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
392 if (!dst_pmdp)
393 return -ENOMEM;
394 pud_populate(&init_mm, dst_pudp, dst_pmdp);
396 dst_pmdp = pmd_offset(dst_pudp, start);
398 src_pmdp = pmd_offset(src_pudp, start);
399 do {
400 pmd_t pmd = READ_ONCE(*src_pmdp);
402 next = pmd_addr_end(addr, end);
403 if (pmd_none(pmd))
404 continue;
405 if (pmd_table(pmd)) {
406 if (copy_pte(dst_pmdp, src_pmdp, addr, next))
407 return -ENOMEM;
408 } else {
409 set_pmd(dst_pmdp,
410 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
412 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
414 return 0;
417 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
418 unsigned long end)
420 pud_t *dst_pudp;
421 pud_t *src_pudp;
422 unsigned long next;
423 unsigned long addr = start;
425 if (pgd_none(READ_ONCE(*dst_pgdp))) {
426 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
427 if (!dst_pudp)
428 return -ENOMEM;
429 pgd_populate(&init_mm, dst_pgdp, dst_pudp);
431 dst_pudp = pud_offset(dst_pgdp, start);
433 src_pudp = pud_offset(src_pgdp, start);
434 do {
435 pud_t pud = READ_ONCE(*src_pudp);
437 next = pud_addr_end(addr, end);
438 if (pud_none(pud))
439 continue;
440 if (pud_table(pud)) {
441 if (copy_pmd(dst_pudp, src_pudp, addr, next))
442 return -ENOMEM;
443 } else {
444 set_pud(dst_pudp,
445 __pud(pud_val(pud) & ~PMD_SECT_RDONLY));
447 } while (dst_pudp++, src_pudp++, addr = next, addr != end);
449 return 0;
452 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
453 unsigned long end)
455 unsigned long next;
456 unsigned long addr = start;
457 pgd_t *src_pgdp = pgd_offset_k(start);
459 dst_pgdp = pgd_offset_raw(dst_pgdp, start);
460 do {
461 next = pgd_addr_end(addr, end);
462 if (pgd_none(READ_ONCE(*src_pgdp)))
463 continue;
464 if (copy_pud(dst_pgdp, src_pgdp, addr, next))
465 return -ENOMEM;
466 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
468 return 0;
472 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
474 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
475 * we don't need to free it here.
477 int swsusp_arch_resume(void)
479 int rc = 0;
480 void *zero_page;
481 size_t exit_size;
482 pgd_t *tmp_pg_dir;
483 phys_addr_t phys_hibernate_exit;
484 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
485 void *, phys_addr_t, phys_addr_t);
488 * Restoring the memory image will overwrite the ttbr1 page tables.
489 * Create a second copy of just the linear map, and use this when
490 * restoring.
492 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
493 if (!tmp_pg_dir) {
494 pr_err("Failed to allocate memory for temporary page tables.\n");
495 rc = -ENOMEM;
496 goto out;
498 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0);
499 if (rc)
500 goto out;
503 * We need a zero page that is zero before & after resume in order to
504 * to break before make on the ttbr1 page tables.
506 zero_page = (void *)get_safe_page(GFP_ATOMIC);
507 if (!zero_page) {
508 pr_err("Failed to allocate zero page.\n");
509 rc = -ENOMEM;
510 goto out;
514 * Locate the exit code in the bottom-but-one page, so that *NULL
515 * still has disastrous affects.
517 hibernate_exit = (void *)PAGE_SIZE;
518 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
520 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
521 * a new set of ttbr0 page tables and load them.
523 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
524 (unsigned long)hibernate_exit,
525 &phys_hibernate_exit,
526 (void *)get_safe_page, GFP_ATOMIC);
527 if (rc) {
528 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
529 goto out;
533 * The hibernate exit text contains a set of el2 vectors, that will
534 * be executed at el2 with the mmu off in order to reload hyp-stub.
536 __flush_dcache_area(hibernate_exit, exit_size);
539 * KASLR will cause the el2 vectors to be in a different location in
540 * the resumed kernel. Load hibernate's temporary copy into el2.
542 * We can skip this step if we booted at EL1, or are running with VHE.
544 if (el2_reset_needed()) {
545 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */
546 el2_vectors += hibernate_el2_vectors -
547 __hibernate_exit_text_start; /* offset */
549 __hyp_set_vectors(el2_vectors);
552 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
553 resume_hdr.reenter_kernel, restore_pblist,
554 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
556 out:
557 return rc;
560 int hibernate_resume_nonboot_cpu_disable(void)
562 if (sleep_cpu < 0) {
563 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
564 return -ENODEV;
567 return freeze_secondary_cpus(sleep_cpu);