Linux 4.18.10
[linux/fpc-iii.git] / arch / arm64 / kernel / smp.c
blob2faa9863d2e569e704191bd1939dac2eb111cb5b
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
5 * Copyright (C) 2012 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/acpi.h>
21 #include <linux/arm_sdei.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/spinlock.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/hotplug.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/cache.h>
30 #include <linux/profile.h>
31 #include <linux/errno.h>
32 #include <linux/mm.h>
33 #include <linux/err.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/seq_file.h>
37 #include <linux/irq.h>
38 #include <linux/percpu.h>
39 #include <linux/clockchips.h>
40 #include <linux/completion.h>
41 #include <linux/of.h>
42 #include <linux/irq_work.h>
43 #include <linux/kexec.h>
45 #include <asm/alternative.h>
46 #include <asm/atomic.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cpu.h>
49 #include <asm/cputype.h>
50 #include <asm/cpu_ops.h>
51 #include <asm/daifflags.h>
52 #include <asm/mmu_context.h>
53 #include <asm/numa.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/processor.h>
57 #include <asm/smp_plat.h>
58 #include <asm/sections.h>
59 #include <asm/tlbflush.h>
60 #include <asm/ptrace.h>
61 #include <asm/virt.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/ipi.h>
66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
67 EXPORT_PER_CPU_SYMBOL(cpu_number);
70 * as from 2.5, kernels no longer have an init_tasks structure
71 * so we need some other way of telling a new secondary core
72 * where to place its SVC stack
74 struct secondary_data secondary_data;
75 /* Number of CPUs which aren't online, but looping in kernel text. */
76 int cpus_stuck_in_kernel;
78 enum ipi_msg_type {
79 IPI_RESCHEDULE,
80 IPI_CALL_FUNC,
81 IPI_CPU_STOP,
82 IPI_CPU_CRASH_STOP,
83 IPI_TIMER,
84 IPI_IRQ_WORK,
85 IPI_WAKEUP
88 #ifdef CONFIG_HOTPLUG_CPU
89 static int op_cpu_kill(unsigned int cpu);
90 #else
91 static inline int op_cpu_kill(unsigned int cpu)
93 return -ENOSYS;
95 #endif
99 * Boot a secondary CPU, and assign it the specified idle task.
100 * This also gives us the initial stack to use for this CPU.
102 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
104 if (cpu_ops[cpu]->cpu_boot)
105 return cpu_ops[cpu]->cpu_boot(cpu);
107 return -EOPNOTSUPP;
110 static DECLARE_COMPLETION(cpu_running);
112 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 int ret;
115 long status;
118 * We need to tell the secondary core where to find its stack and the
119 * page tables.
121 secondary_data.task = idle;
122 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
123 update_cpu_boot_status(CPU_MMU_OFF);
124 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
127 * Now bring the CPU into our world.
129 ret = boot_secondary(cpu, idle);
130 if (ret == 0) {
132 * CPU was successfully started, wait for it to come online or
133 * time out.
135 wait_for_completion_timeout(&cpu_running,
136 msecs_to_jiffies(1000));
138 if (!cpu_online(cpu)) {
139 pr_crit("CPU%u: failed to come online\n", cpu);
140 ret = -EIO;
142 } else {
143 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
146 secondary_data.task = NULL;
147 secondary_data.stack = NULL;
148 status = READ_ONCE(secondary_data.status);
149 if (ret && status) {
151 if (status == CPU_MMU_OFF)
152 status = READ_ONCE(__early_cpu_boot_status);
154 switch (status) {
155 default:
156 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
157 cpu, status);
158 break;
159 case CPU_KILL_ME:
160 if (!op_cpu_kill(cpu)) {
161 pr_crit("CPU%u: died during early boot\n", cpu);
162 break;
164 /* Fall through */
165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
166 case CPU_STUCK_IN_KERNEL:
167 pr_crit("CPU%u: is stuck in kernel\n", cpu);
168 cpus_stuck_in_kernel++;
169 break;
170 case CPU_PANIC_KERNEL:
171 panic("CPU%u detected unsupported configuration\n", cpu);
175 return ret;
179 * This is the secondary CPU boot entry. We're using this CPUs
180 * idle thread stack, but a set of temporary page tables.
182 asmlinkage notrace void secondary_start_kernel(void)
184 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
185 struct mm_struct *mm = &init_mm;
186 unsigned int cpu;
188 cpu = task_cpu(current);
189 set_my_cpu_offset(per_cpu_offset(cpu));
192 * All kernel threads share the same mm context; grab a
193 * reference and switch to it.
195 mmgrab(mm);
196 current->active_mm = mm;
199 * TTBR0 is only used for the identity mapping at this stage. Make it
200 * point to zero page to avoid speculatively fetching new entries.
202 cpu_uninstall_idmap();
204 preempt_disable();
205 trace_hardirqs_off();
208 * If the system has established the capabilities, make sure
209 * this CPU ticks all of those. If it doesn't, the CPU will
210 * fail to come online.
212 check_local_cpu_capabilities();
214 if (cpu_ops[cpu]->cpu_postboot)
215 cpu_ops[cpu]->cpu_postboot();
218 * Log the CPU info before it is marked online and might get read.
220 cpuinfo_store_cpu();
223 * Enable GIC and timers.
225 notify_cpu_starting(cpu);
227 store_cpu_topology(cpu);
230 * OK, now it's safe to let the boot CPU continue. Wait for
231 * the CPU migration code to notice that the CPU is online
232 * before we continue.
234 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
235 cpu, (unsigned long)mpidr,
236 read_cpuid_id());
237 update_cpu_boot_status(CPU_BOOT_SUCCESS);
238 set_cpu_online(cpu, true);
239 complete(&cpu_running);
241 local_daif_restore(DAIF_PROCCTX);
244 * OK, it's off to the idle thread for us
246 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
249 #ifdef CONFIG_HOTPLUG_CPU
250 static int op_cpu_disable(unsigned int cpu)
253 * If we don't have a cpu_die method, abort before we reach the point
254 * of no return. CPU0 may not have an cpu_ops, so test for it.
256 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
257 return -EOPNOTSUPP;
260 * We may need to abort a hot unplug for some other mechanism-specific
261 * reason.
263 if (cpu_ops[cpu]->cpu_disable)
264 return cpu_ops[cpu]->cpu_disable(cpu);
266 return 0;
270 * __cpu_disable runs on the processor to be shutdown.
272 int __cpu_disable(void)
274 unsigned int cpu = smp_processor_id();
275 int ret;
277 ret = op_cpu_disable(cpu);
278 if (ret)
279 return ret;
282 * Take this CPU offline. Once we clear this, we can't return,
283 * and we must not schedule until we're ready to give up the cpu.
285 set_cpu_online(cpu, false);
288 * OK - migrate IRQs away from this CPU
290 irq_migrate_all_off_this_cpu();
292 return 0;
295 static int op_cpu_kill(unsigned int cpu)
298 * If we have no means of synchronising with the dying CPU, then assume
299 * that it is really dead. We can only wait for an arbitrary length of
300 * time and hope that it's dead, so let's skip the wait and just hope.
302 if (!cpu_ops[cpu]->cpu_kill)
303 return 0;
305 return cpu_ops[cpu]->cpu_kill(cpu);
309 * called on the thread which is asking for a CPU to be shutdown -
310 * waits until shutdown has completed, or it is timed out.
312 void __cpu_die(unsigned int cpu)
314 int err;
316 if (!cpu_wait_death(cpu, 5)) {
317 pr_crit("CPU%u: cpu didn't die\n", cpu);
318 return;
320 pr_notice("CPU%u: shutdown\n", cpu);
323 * Now that the dying CPU is beyond the point of no return w.r.t.
324 * in-kernel synchronisation, try to get the firwmare to help us to
325 * verify that it has really left the kernel before we consider
326 * clobbering anything it might still be using.
328 err = op_cpu_kill(cpu);
329 if (err)
330 pr_warn("CPU%d may not have shut down cleanly: %d\n",
331 cpu, err);
335 * Called from the idle thread for the CPU which has been shutdown.
338 void cpu_die(void)
340 unsigned int cpu = smp_processor_id();
342 idle_task_exit();
344 local_daif_mask();
346 /* Tell __cpu_die() that this CPU is now safe to dispose of */
347 (void)cpu_report_death();
350 * Actually shutdown the CPU. This must never fail. The specific hotplug
351 * mechanism must perform all required cache maintenance to ensure that
352 * no dirty lines are lost in the process of shutting down the CPU.
354 cpu_ops[cpu]->cpu_die(cpu);
356 BUG();
358 #endif
361 * Kill the calling secondary CPU, early in bringup before it is turned
362 * online.
364 void cpu_die_early(void)
366 int cpu = smp_processor_id();
368 pr_crit("CPU%d: will not boot\n", cpu);
370 /* Mark this CPU absent */
371 set_cpu_present(cpu, 0);
373 #ifdef CONFIG_HOTPLUG_CPU
374 update_cpu_boot_status(CPU_KILL_ME);
375 /* Check if we can park ourselves */
376 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
377 cpu_ops[cpu]->cpu_die(cpu);
378 #endif
379 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
381 cpu_park_loop();
384 static void __init hyp_mode_check(void)
386 if (is_hyp_mode_available())
387 pr_info("CPU: All CPU(s) started at EL2\n");
388 else if (is_hyp_mode_mismatched())
389 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
390 "CPU: CPUs started in inconsistent modes");
391 else
392 pr_info("CPU: All CPU(s) started at EL1\n");
395 void __init smp_cpus_done(unsigned int max_cpus)
397 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
398 setup_cpu_features();
399 hyp_mode_check();
400 apply_alternatives_all();
401 mark_linear_text_alias_ro();
404 void __init smp_prepare_boot_cpu(void)
406 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
408 * Initialise the static keys early as they may be enabled by the
409 * cpufeature code.
411 jump_label_init();
412 cpuinfo_store_boot_cpu();
415 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
417 const __be32 *cell;
418 u64 hwid;
421 * A cpu node with missing "reg" property is
422 * considered invalid to build a cpu_logical_map
423 * entry.
425 cell = of_get_property(dn, "reg", NULL);
426 if (!cell) {
427 pr_err("%pOF: missing reg property\n", dn);
428 return INVALID_HWID;
431 hwid = of_read_number(cell, of_n_addr_cells(dn));
433 * Non affinity bits must be set to 0 in the DT
435 if (hwid & ~MPIDR_HWID_BITMASK) {
436 pr_err("%pOF: invalid reg property\n", dn);
437 return INVALID_HWID;
439 return hwid;
443 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
444 * entries and check for duplicates. If any is found just ignore the
445 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
446 * matching valid MPIDR values.
448 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
450 unsigned int i;
452 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
453 if (cpu_logical_map(i) == hwid)
454 return true;
455 return false;
459 * Initialize cpu operations for a logical cpu and
460 * set it in the possible mask on success
462 static int __init smp_cpu_setup(int cpu)
464 if (cpu_read_ops(cpu))
465 return -ENODEV;
467 if (cpu_ops[cpu]->cpu_init(cpu))
468 return -ENODEV;
470 set_cpu_possible(cpu, true);
472 return 0;
475 static bool bootcpu_valid __initdata;
476 static unsigned int cpu_count = 1;
478 #ifdef CONFIG_ACPI
479 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
481 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
483 return &cpu_madt_gicc[cpu];
487 * acpi_map_gic_cpu_interface - parse processor MADT entry
489 * Carry out sanity checks on MADT processor entry and initialize
490 * cpu_logical_map on success
492 static void __init
493 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
495 u64 hwid = processor->arm_mpidr;
497 if (!(processor->flags & ACPI_MADT_ENABLED)) {
498 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
499 return;
502 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
503 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
504 return;
507 if (is_mpidr_duplicate(cpu_count, hwid)) {
508 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
509 return;
512 /* Check if GICC structure of boot CPU is available in the MADT */
513 if (cpu_logical_map(0) == hwid) {
514 if (bootcpu_valid) {
515 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
516 hwid);
517 return;
519 bootcpu_valid = true;
520 cpu_madt_gicc[0] = *processor;
521 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
522 return;
525 if (cpu_count >= NR_CPUS)
526 return;
528 /* map the logical cpu id to cpu MPIDR */
529 cpu_logical_map(cpu_count) = hwid;
531 cpu_madt_gicc[cpu_count] = *processor;
534 * Set-up the ACPI parking protocol cpu entries
535 * while initializing the cpu_logical_map to
536 * avoid parsing MADT entries multiple times for
537 * nothing (ie a valid cpu_logical_map entry should
538 * contain a valid parking protocol data set to
539 * initialize the cpu if the parking protocol is
540 * the only available enable method).
542 acpi_set_mailbox_entry(cpu_count, processor);
544 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
546 cpu_count++;
549 static int __init
550 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
551 const unsigned long end)
553 struct acpi_madt_generic_interrupt *processor;
555 processor = (struct acpi_madt_generic_interrupt *)header;
556 if (BAD_MADT_GICC_ENTRY(processor, end))
557 return -EINVAL;
559 acpi_table_print_madt_entry(header);
561 acpi_map_gic_cpu_interface(processor);
563 return 0;
565 #else
566 #define acpi_table_parse_madt(...) do { } while (0)
567 #endif
570 * Enumerate the possible CPU set from the device tree and build the
571 * cpu logical map array containing MPIDR values related to logical
572 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
574 static void __init of_parse_and_init_cpus(void)
576 struct device_node *dn;
578 for_each_node_by_type(dn, "cpu") {
579 u64 hwid = of_get_cpu_mpidr(dn);
581 if (hwid == INVALID_HWID)
582 goto next;
584 if (is_mpidr_duplicate(cpu_count, hwid)) {
585 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
586 dn);
587 goto next;
591 * The numbering scheme requires that the boot CPU
592 * must be assigned logical id 0. Record it so that
593 * the logical map built from DT is validated and can
594 * be used.
596 if (hwid == cpu_logical_map(0)) {
597 if (bootcpu_valid) {
598 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
599 dn);
600 goto next;
603 bootcpu_valid = true;
604 early_map_cpu_to_node(0, of_node_to_nid(dn));
607 * cpu_logical_map has already been
608 * initialized and the boot cpu doesn't need
609 * the enable-method so continue without
610 * incrementing cpu.
612 continue;
615 if (cpu_count >= NR_CPUS)
616 goto next;
618 pr_debug("cpu logical map 0x%llx\n", hwid);
619 cpu_logical_map(cpu_count) = hwid;
621 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
622 next:
623 cpu_count++;
628 * Enumerate the possible CPU set from the device tree or ACPI and build the
629 * cpu logical map array containing MPIDR values related to logical
630 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
632 void __init smp_init_cpus(void)
634 int i;
636 if (acpi_disabled)
637 of_parse_and_init_cpus();
638 else
640 * do a walk of MADT to determine how many CPUs
641 * we have including disabled CPUs, and get information
642 * we need for SMP init
644 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
645 acpi_parse_gic_cpu_interface, 0);
647 if (cpu_count > nr_cpu_ids)
648 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
649 cpu_count, nr_cpu_ids);
651 if (!bootcpu_valid) {
652 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
653 return;
657 * We need to set the cpu_logical_map entries before enabling
658 * the cpus so that cpu processor description entries (DT cpu nodes
659 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
660 * with entries in cpu_logical_map while initializing the cpus.
661 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
663 for (i = 1; i < nr_cpu_ids; i++) {
664 if (cpu_logical_map(i) != INVALID_HWID) {
665 if (smp_cpu_setup(i))
666 cpu_logical_map(i) = INVALID_HWID;
671 void __init smp_prepare_cpus(unsigned int max_cpus)
673 int err;
674 unsigned int cpu;
675 unsigned int this_cpu;
677 init_cpu_topology();
679 this_cpu = smp_processor_id();
680 store_cpu_topology(this_cpu);
681 numa_store_cpu_info(this_cpu);
684 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
685 * secondary CPUs present.
687 if (max_cpus == 0)
688 return;
691 * Initialise the present map (which describes the set of CPUs
692 * actually populated at the present time) and release the
693 * secondaries from the bootloader.
695 for_each_possible_cpu(cpu) {
697 per_cpu(cpu_number, cpu) = cpu;
699 if (cpu == smp_processor_id())
700 continue;
702 if (!cpu_ops[cpu])
703 continue;
705 err = cpu_ops[cpu]->cpu_prepare(cpu);
706 if (err)
707 continue;
709 set_cpu_present(cpu, true);
710 numa_store_cpu_info(cpu);
714 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
716 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
718 __smp_cross_call = fn;
721 static const char *ipi_types[NR_IPI] __tracepoint_string = {
722 #define S(x,s) [x] = s
723 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
724 S(IPI_CALL_FUNC, "Function call interrupts"),
725 S(IPI_CPU_STOP, "CPU stop interrupts"),
726 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
727 S(IPI_TIMER, "Timer broadcast interrupts"),
728 S(IPI_IRQ_WORK, "IRQ work interrupts"),
729 S(IPI_WAKEUP, "CPU wake-up interrupts"),
732 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
734 trace_ipi_raise(target, ipi_types[ipinr]);
735 __smp_cross_call(target, ipinr);
738 void show_ipi_list(struct seq_file *p, int prec)
740 unsigned int cpu, i;
742 for (i = 0; i < NR_IPI; i++) {
743 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
744 prec >= 4 ? " " : "");
745 for_each_online_cpu(cpu)
746 seq_printf(p, "%10u ",
747 __get_irq_stat(cpu, ipi_irqs[i]));
748 seq_printf(p, " %s\n", ipi_types[i]);
752 u64 smp_irq_stat_cpu(unsigned int cpu)
754 u64 sum = 0;
755 int i;
757 for (i = 0; i < NR_IPI; i++)
758 sum += __get_irq_stat(cpu, ipi_irqs[i]);
760 return sum;
763 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
765 smp_cross_call(mask, IPI_CALL_FUNC);
768 void arch_send_call_function_single_ipi(int cpu)
770 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
773 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
774 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
776 smp_cross_call(mask, IPI_WAKEUP);
778 #endif
780 #ifdef CONFIG_IRQ_WORK
781 void arch_irq_work_raise(void)
783 if (__smp_cross_call)
784 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
786 #endif
789 * ipi_cpu_stop - handle IPI from smp_send_stop()
791 static void ipi_cpu_stop(unsigned int cpu)
793 set_cpu_online(cpu, false);
795 local_daif_mask();
796 sdei_mask_local_cpu();
798 while (1)
799 cpu_relax();
802 #ifdef CONFIG_KEXEC_CORE
803 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
804 #endif
806 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
808 #ifdef CONFIG_KEXEC_CORE
809 crash_save_cpu(regs, cpu);
811 atomic_dec(&waiting_for_crash_ipi);
813 local_irq_disable();
814 sdei_mask_local_cpu();
816 #ifdef CONFIG_HOTPLUG_CPU
817 if (cpu_ops[cpu]->cpu_die)
818 cpu_ops[cpu]->cpu_die(cpu);
819 #endif
821 /* just in case */
822 cpu_park_loop();
823 #endif
827 * Main handler for inter-processor interrupts
829 void handle_IPI(int ipinr, struct pt_regs *regs)
831 unsigned int cpu = smp_processor_id();
832 struct pt_regs *old_regs = set_irq_regs(regs);
834 if ((unsigned)ipinr < NR_IPI) {
835 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
836 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
839 switch (ipinr) {
840 case IPI_RESCHEDULE:
841 scheduler_ipi();
842 break;
844 case IPI_CALL_FUNC:
845 irq_enter();
846 generic_smp_call_function_interrupt();
847 irq_exit();
848 break;
850 case IPI_CPU_STOP:
851 irq_enter();
852 ipi_cpu_stop(cpu);
853 irq_exit();
854 break;
856 case IPI_CPU_CRASH_STOP:
857 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
858 irq_enter();
859 ipi_cpu_crash_stop(cpu, regs);
861 unreachable();
863 break;
865 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
866 case IPI_TIMER:
867 irq_enter();
868 tick_receive_broadcast();
869 irq_exit();
870 break;
871 #endif
873 #ifdef CONFIG_IRQ_WORK
874 case IPI_IRQ_WORK:
875 irq_enter();
876 irq_work_run();
877 irq_exit();
878 break;
879 #endif
881 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
882 case IPI_WAKEUP:
883 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
884 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
885 cpu);
886 break;
887 #endif
889 default:
890 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
891 break;
894 if ((unsigned)ipinr < NR_IPI)
895 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
896 set_irq_regs(old_regs);
899 void smp_send_reschedule(int cpu)
901 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
904 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
905 void tick_broadcast(const struct cpumask *mask)
907 smp_cross_call(mask, IPI_TIMER);
909 #endif
911 void smp_send_stop(void)
913 unsigned long timeout;
915 if (num_online_cpus() > 1) {
916 cpumask_t mask;
918 cpumask_copy(&mask, cpu_online_mask);
919 cpumask_clear_cpu(smp_processor_id(), &mask);
921 if (system_state <= SYSTEM_RUNNING)
922 pr_crit("SMP: stopping secondary CPUs\n");
923 smp_cross_call(&mask, IPI_CPU_STOP);
926 /* Wait up to one second for other CPUs to stop */
927 timeout = USEC_PER_SEC;
928 while (num_online_cpus() > 1 && timeout--)
929 udelay(1);
931 if (num_online_cpus() > 1)
932 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
933 cpumask_pr_args(cpu_online_mask));
935 sdei_mask_local_cpu();
938 #ifdef CONFIG_KEXEC_CORE
939 void crash_smp_send_stop(void)
941 static int cpus_stopped;
942 cpumask_t mask;
943 unsigned long timeout;
946 * This function can be called twice in panic path, but obviously
947 * we execute this only once.
949 if (cpus_stopped)
950 return;
952 cpus_stopped = 1;
954 if (num_online_cpus() == 1) {
955 sdei_mask_local_cpu();
956 return;
959 cpumask_copy(&mask, cpu_online_mask);
960 cpumask_clear_cpu(smp_processor_id(), &mask);
962 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
964 pr_crit("SMP: stopping secondary CPUs\n");
965 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
967 /* Wait up to one second for other CPUs to stop */
968 timeout = USEC_PER_SEC;
969 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
970 udelay(1);
972 if (atomic_read(&waiting_for_crash_ipi) > 0)
973 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
974 cpumask_pr_args(&mask));
976 sdei_mask_local_cpu();
979 bool smp_crash_stop_failed(void)
981 return (atomic_read(&waiting_for_crash_ipi) > 0);
983 #endif
986 * not supported here
988 int setup_profiling_timer(unsigned int multiplier)
990 return -EINVAL;
993 static bool have_cpu_die(void)
995 #ifdef CONFIG_HOTPLUG_CPU
996 int any_cpu = raw_smp_processor_id();
998 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
999 return true;
1000 #endif
1001 return false;
1004 bool cpus_are_stuck_in_kernel(void)
1006 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1008 return !!cpus_stuck_in_kernel || smp_spin_tables;