2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
42 #include <trace/events/kvm.h>
49 * All of this file is extremly similar to the ARM coproc.c, but the
50 * types are different. My gut feeling is that it should be pretty
51 * easy to merge, but that would be an ABI breakage -- again. VFP
52 * would also need to be abstracted.
54 * For AArch32, we only take care of what is being trapped. Anything
55 * that has to do with init and userspace access has to go via the
59 static bool read_from_write_only(struct kvm_vcpu
*vcpu
,
60 struct sys_reg_params
*params
,
61 const struct sys_reg_desc
*r
)
63 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 print_sys_reg_instr(params
);
65 kvm_inject_undefined(vcpu
);
69 static bool write_to_read_only(struct kvm_vcpu
*vcpu
,
70 struct sys_reg_params
*params
,
71 const struct sys_reg_desc
*r
)
73 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 print_sys_reg_instr(params
);
75 kvm_inject_undefined(vcpu
);
79 u64
vcpu_read_sys_reg(struct kvm_vcpu
*vcpu
, int reg
)
81 if (!vcpu
->arch
.sysregs_loaded_on_cpu
)
85 * System registers listed in the switch are not saved on every
86 * exit from the guest but are only saved on vcpu_put.
88 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89 * should never be listed below, because the guest cannot modify its
90 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91 * thread when emulating cross-VCPU communication.
94 case CSSELR_EL1
: return read_sysreg_s(SYS_CSSELR_EL1
);
95 case SCTLR_EL1
: return read_sysreg_s(sctlr_EL12
);
96 case ACTLR_EL1
: return read_sysreg_s(SYS_ACTLR_EL1
);
97 case CPACR_EL1
: return read_sysreg_s(cpacr_EL12
);
98 case TTBR0_EL1
: return read_sysreg_s(ttbr0_EL12
);
99 case TTBR1_EL1
: return read_sysreg_s(ttbr1_EL12
);
100 case TCR_EL1
: return read_sysreg_s(tcr_EL12
);
101 case ESR_EL1
: return read_sysreg_s(esr_EL12
);
102 case AFSR0_EL1
: return read_sysreg_s(afsr0_EL12
);
103 case AFSR1_EL1
: return read_sysreg_s(afsr1_EL12
);
104 case FAR_EL1
: return read_sysreg_s(far_EL12
);
105 case MAIR_EL1
: return read_sysreg_s(mair_EL12
);
106 case VBAR_EL1
: return read_sysreg_s(vbar_EL12
);
107 case CONTEXTIDR_EL1
: return read_sysreg_s(contextidr_EL12
);
108 case TPIDR_EL0
: return read_sysreg_s(SYS_TPIDR_EL0
);
109 case TPIDRRO_EL0
: return read_sysreg_s(SYS_TPIDRRO_EL0
);
110 case TPIDR_EL1
: return read_sysreg_s(SYS_TPIDR_EL1
);
111 case AMAIR_EL1
: return read_sysreg_s(amair_EL12
);
112 case CNTKCTL_EL1
: return read_sysreg_s(cntkctl_EL12
);
113 case PAR_EL1
: return read_sysreg_s(SYS_PAR_EL1
);
114 case DACR32_EL2
: return read_sysreg_s(SYS_DACR32_EL2
);
115 case IFSR32_EL2
: return read_sysreg_s(SYS_IFSR32_EL2
);
116 case DBGVCR32_EL2
: return read_sysreg_s(SYS_DBGVCR32_EL2
);
120 return __vcpu_sys_reg(vcpu
, reg
);
123 void vcpu_write_sys_reg(struct kvm_vcpu
*vcpu
, u64 val
, int reg
)
125 if (!vcpu
->arch
.sysregs_loaded_on_cpu
)
126 goto immediate_write
;
129 * System registers listed in the switch are not restored on every
130 * entry to the guest but are only restored on vcpu_load.
132 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133 * should never be listed below, because the the MPIDR should only be
134 * set once, before running the VCPU, and never changed later.
137 case CSSELR_EL1
: write_sysreg_s(val
, SYS_CSSELR_EL1
); return;
138 case SCTLR_EL1
: write_sysreg_s(val
, sctlr_EL12
); return;
139 case ACTLR_EL1
: write_sysreg_s(val
, SYS_ACTLR_EL1
); return;
140 case CPACR_EL1
: write_sysreg_s(val
, cpacr_EL12
); return;
141 case TTBR0_EL1
: write_sysreg_s(val
, ttbr0_EL12
); return;
142 case TTBR1_EL1
: write_sysreg_s(val
, ttbr1_EL12
); return;
143 case TCR_EL1
: write_sysreg_s(val
, tcr_EL12
); return;
144 case ESR_EL1
: write_sysreg_s(val
, esr_EL12
); return;
145 case AFSR0_EL1
: write_sysreg_s(val
, afsr0_EL12
); return;
146 case AFSR1_EL1
: write_sysreg_s(val
, afsr1_EL12
); return;
147 case FAR_EL1
: write_sysreg_s(val
, far_EL12
); return;
148 case MAIR_EL1
: write_sysreg_s(val
, mair_EL12
); return;
149 case VBAR_EL1
: write_sysreg_s(val
, vbar_EL12
); return;
150 case CONTEXTIDR_EL1
: write_sysreg_s(val
, contextidr_EL12
); return;
151 case TPIDR_EL0
: write_sysreg_s(val
, SYS_TPIDR_EL0
); return;
152 case TPIDRRO_EL0
: write_sysreg_s(val
, SYS_TPIDRRO_EL0
); return;
153 case TPIDR_EL1
: write_sysreg_s(val
, SYS_TPIDR_EL1
); return;
154 case AMAIR_EL1
: write_sysreg_s(val
, amair_EL12
); return;
155 case CNTKCTL_EL1
: write_sysreg_s(val
, cntkctl_EL12
); return;
156 case PAR_EL1
: write_sysreg_s(val
, SYS_PAR_EL1
); return;
157 case DACR32_EL2
: write_sysreg_s(val
, SYS_DACR32_EL2
); return;
158 case IFSR32_EL2
: write_sysreg_s(val
, SYS_IFSR32_EL2
); return;
159 case DBGVCR32_EL2
: write_sysreg_s(val
, SYS_DBGVCR32_EL2
); return;
163 __vcpu_sys_reg(vcpu
, reg
) = val
;
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels
;
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32
get_ccsidr(u32 csselr
)
177 /* Make sure noone else changes CSSELR during this! */
179 write_sysreg(csselr
, csselr_el1
);
181 ccsidr
= read_sysreg(ccsidr_el1
);
188 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
190 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
191 struct sys_reg_params
*p
,
192 const struct sys_reg_desc
*r
)
195 return read_from_write_only(vcpu
, p
, r
);
197 kvm_set_way_flush(vcpu
);
202 * Generic accessor for VM registers. Only called as long as HCR_TVM
203 * is set. If the guest enables the MMU, we stop trapping the VM
204 * sys_regs and leave it in complete control of the caches.
206 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
207 struct sys_reg_params
*p
,
208 const struct sys_reg_desc
*r
)
210 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
214 BUG_ON(!p
->is_write
);
216 /* See the 32bit mapping in kvm_host.h */
220 if (!p
->is_aarch32
|| !p
->is_32bit
) {
223 val
= vcpu_read_sys_reg(vcpu
, reg
);
225 val
= (p
->regval
<< 32) | (u64
)lower_32_bits(val
);
227 val
= ((u64
)upper_32_bits(val
) << 32) |
228 lower_32_bits(p
->regval
);
230 vcpu_write_sys_reg(vcpu
, val
, reg
);
232 kvm_toggle_cache(vcpu
, was_enabled
);
237 * Trap handler for the GICv3 SGI generation system register.
238 * Forward the request to the VGIC emulation.
239 * The cp15_64 code makes sure this automatically works
240 * for both AArch64 and AArch32 accesses.
242 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
243 struct sys_reg_params
*p
,
244 const struct sys_reg_desc
*r
)
247 return read_from_write_only(vcpu
, p
, r
);
249 vgic_v3_dispatch_sgi(vcpu
, p
->regval
);
254 static bool access_gic_sre(struct kvm_vcpu
*vcpu
,
255 struct sys_reg_params
*p
,
256 const struct sys_reg_desc
*r
)
259 return ignore_write(vcpu
, p
);
261 p
->regval
= vcpu
->arch
.vgic_cpu
.vgic_v3
.vgic_sre
;
265 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
266 struct sys_reg_params
*p
,
267 const struct sys_reg_desc
*r
)
270 return ignore_write(vcpu
, p
);
272 return read_zero(vcpu
, p
);
275 static bool trap_undef(struct kvm_vcpu
*vcpu
,
276 struct sys_reg_params
*p
,
277 const struct sys_reg_desc
*r
)
279 kvm_inject_undefined(vcpu
);
283 static bool trap_oslsr_el1(struct kvm_vcpu
*vcpu
,
284 struct sys_reg_params
*p
,
285 const struct sys_reg_desc
*r
)
288 return ignore_write(vcpu
, p
);
290 p
->regval
= (1 << 3);
295 static bool trap_dbgauthstatus_el1(struct kvm_vcpu
*vcpu
,
296 struct sys_reg_params
*p
,
297 const struct sys_reg_desc
*r
)
300 return ignore_write(vcpu
, p
);
302 p
->regval
= read_sysreg(dbgauthstatus_el1
);
308 * We want to avoid world-switching all the DBG registers all the
311 * - If we've touched any debug register, it is likely that we're
312 * going to touch more of them. It then makes sense to disable the
313 * traps and start doing the save/restore dance
314 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
315 * then mandatory to save/restore the registers, as the guest
318 * For this, we use a DIRTY bit, indicating the guest has modified the
319 * debug registers, used as follow:
322 * - If the dirty bit is set (because we're coming back from trapping),
323 * disable the traps, save host registers, restore guest registers.
324 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
325 * set the dirty bit, disable the traps, save host registers,
326 * restore guest registers.
327 * - Otherwise, enable the traps
330 * - If the dirty bit is set, save guest registers, restore host
331 * registers and clear the dirty bit. This ensure that the host can
332 * now use the debug registers.
334 static bool trap_debug_regs(struct kvm_vcpu
*vcpu
,
335 struct sys_reg_params
*p
,
336 const struct sys_reg_desc
*r
)
339 vcpu_write_sys_reg(vcpu
, p
->regval
, r
->reg
);
340 vcpu
->arch
.flags
|= KVM_ARM64_DEBUG_DIRTY
;
342 p
->regval
= vcpu_read_sys_reg(vcpu
, r
->reg
);
345 trace_trap_reg(__func__
, r
->reg
, p
->is_write
, p
->regval
);
351 * reg_to_dbg/dbg_to_reg
353 * A 32 bit write to a debug register leave top bits alone
354 * A 32 bit read from a debug register only returns the bottom bits
356 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
357 * hyp.S code switches between host and guest values in future.
359 static void reg_to_dbg(struct kvm_vcpu
*vcpu
,
360 struct sys_reg_params
*p
,
367 val
|= ((*dbg_reg
>> 32) << 32);
371 vcpu
->arch
.flags
|= KVM_ARM64_DEBUG_DIRTY
;
374 static void dbg_to_reg(struct kvm_vcpu
*vcpu
,
375 struct sys_reg_params
*p
,
378 p
->regval
= *dbg_reg
;
380 p
->regval
&= 0xffffffffUL
;
383 static bool trap_bvr(struct kvm_vcpu
*vcpu
,
384 struct sys_reg_params
*p
,
385 const struct sys_reg_desc
*rd
)
387 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
390 reg_to_dbg(vcpu
, p
, dbg_reg
);
392 dbg_to_reg(vcpu
, p
, dbg_reg
);
394 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
399 static int set_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
400 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
402 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
404 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
409 static int get_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
410 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
412 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
414 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
419 static void reset_bvr(struct kvm_vcpu
*vcpu
,
420 const struct sys_reg_desc
*rd
)
422 vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
] = rd
->val
;
425 static bool trap_bcr(struct kvm_vcpu
*vcpu
,
426 struct sys_reg_params
*p
,
427 const struct sys_reg_desc
*rd
)
429 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
432 reg_to_dbg(vcpu
, p
, dbg_reg
);
434 dbg_to_reg(vcpu
, p
, dbg_reg
);
436 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
441 static int set_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
442 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
444 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
446 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
452 static int get_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
453 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
455 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
457 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
462 static void reset_bcr(struct kvm_vcpu
*vcpu
,
463 const struct sys_reg_desc
*rd
)
465 vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
] = rd
->val
;
468 static bool trap_wvr(struct kvm_vcpu
*vcpu
,
469 struct sys_reg_params
*p
,
470 const struct sys_reg_desc
*rd
)
472 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
475 reg_to_dbg(vcpu
, p
, dbg_reg
);
477 dbg_to_reg(vcpu
, p
, dbg_reg
);
479 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
,
480 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
]);
485 static int set_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
486 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
488 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
490 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
495 static int get_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
496 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
498 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
500 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
505 static void reset_wvr(struct kvm_vcpu
*vcpu
,
506 const struct sys_reg_desc
*rd
)
508 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
] = rd
->val
;
511 static bool trap_wcr(struct kvm_vcpu
*vcpu
,
512 struct sys_reg_params
*p
,
513 const struct sys_reg_desc
*rd
)
515 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
518 reg_to_dbg(vcpu
, p
, dbg_reg
);
520 dbg_to_reg(vcpu
, p
, dbg_reg
);
522 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
527 static int set_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
528 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
530 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
532 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
537 static int get_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
538 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
540 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
542 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
547 static void reset_wcr(struct kvm_vcpu
*vcpu
,
548 const struct sys_reg_desc
*rd
)
550 vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
] = rd
->val
;
553 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
555 u64 amair
= read_sysreg(amair_el1
);
556 vcpu_write_sys_reg(vcpu
, amair
, AMAIR_EL1
);
559 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
564 * Map the vcpu_id into the first three affinity level fields of
565 * the MPIDR. We limit the number of VCPUs in level 0 due to a
566 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
567 * of the GICv3 to be able to address each CPU directly when
570 mpidr
= (vcpu
->vcpu_id
& 0x0f) << MPIDR_LEVEL_SHIFT(0);
571 mpidr
|= ((vcpu
->vcpu_id
>> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
572 mpidr
|= ((vcpu
->vcpu_id
>> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
573 vcpu_write_sys_reg(vcpu
, (1ULL << 31) | mpidr
, MPIDR_EL1
);
576 static void reset_pmcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
580 pmcr
= read_sysreg(pmcr_el0
);
582 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
583 * except PMCR.E resetting to zero.
585 val
= ((pmcr
& ~ARMV8_PMU_PMCR_MASK
)
586 | (ARMV8_PMU_PMCR_MASK
& 0xdecafbad)) & (~ARMV8_PMU_PMCR_E
);
587 __vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
590 static bool check_pmu_access_disabled(struct kvm_vcpu
*vcpu
, u64 flags
)
592 u64 reg
= __vcpu_sys_reg(vcpu
, PMUSERENR_EL0
);
593 bool enabled
= (reg
& flags
) || vcpu_mode_priv(vcpu
);
596 kvm_inject_undefined(vcpu
);
601 static bool pmu_access_el0_disabled(struct kvm_vcpu
*vcpu
)
603 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_EN
);
606 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu
*vcpu
)
608 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_SW
| ARMV8_PMU_USERENR_EN
);
611 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
613 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_CR
| ARMV8_PMU_USERENR_EN
);
616 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
618 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_ER
| ARMV8_PMU_USERENR_EN
);
621 static bool access_pmcr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
622 const struct sys_reg_desc
*r
)
626 if (!kvm_arm_pmu_v3_ready(vcpu
))
627 return trap_raz_wi(vcpu
, p
, r
);
629 if (pmu_access_el0_disabled(vcpu
))
633 /* Only update writeable bits of PMCR */
634 val
= __vcpu_sys_reg(vcpu
, PMCR_EL0
);
635 val
&= ~ARMV8_PMU_PMCR_MASK
;
636 val
|= p
->regval
& ARMV8_PMU_PMCR_MASK
;
637 __vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
638 kvm_pmu_handle_pmcr(vcpu
, val
);
640 /* PMCR.P & PMCR.C are RAZ */
641 val
= __vcpu_sys_reg(vcpu
, PMCR_EL0
)
642 & ~(ARMV8_PMU_PMCR_P
| ARMV8_PMU_PMCR_C
);
649 static bool access_pmselr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
650 const struct sys_reg_desc
*r
)
652 if (!kvm_arm_pmu_v3_ready(vcpu
))
653 return trap_raz_wi(vcpu
, p
, r
);
655 if (pmu_access_event_counter_el0_disabled(vcpu
))
659 __vcpu_sys_reg(vcpu
, PMSELR_EL0
) = p
->regval
;
661 /* return PMSELR.SEL field */
662 p
->regval
= __vcpu_sys_reg(vcpu
, PMSELR_EL0
)
663 & ARMV8_PMU_COUNTER_MASK
;
668 static bool access_pmceid(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
669 const struct sys_reg_desc
*r
)
673 if (!kvm_arm_pmu_v3_ready(vcpu
))
674 return trap_raz_wi(vcpu
, p
, r
);
678 if (pmu_access_el0_disabled(vcpu
))
682 pmceid
= read_sysreg(pmceid0_el0
);
684 pmceid
= read_sysreg(pmceid1_el0
);
691 static bool pmu_counter_idx_valid(struct kvm_vcpu
*vcpu
, u64 idx
)
695 pmcr
= __vcpu_sys_reg(vcpu
, PMCR_EL0
);
696 val
= (pmcr
>> ARMV8_PMU_PMCR_N_SHIFT
) & ARMV8_PMU_PMCR_N_MASK
;
697 if (idx
>= val
&& idx
!= ARMV8_PMU_CYCLE_IDX
) {
698 kvm_inject_undefined(vcpu
);
705 static bool access_pmu_evcntr(struct kvm_vcpu
*vcpu
,
706 struct sys_reg_params
*p
,
707 const struct sys_reg_desc
*r
)
711 if (!kvm_arm_pmu_v3_ready(vcpu
))
712 return trap_raz_wi(vcpu
, p
, r
);
714 if (r
->CRn
== 9 && r
->CRm
== 13) {
717 if (pmu_access_event_counter_el0_disabled(vcpu
))
720 idx
= __vcpu_sys_reg(vcpu
, PMSELR_EL0
)
721 & ARMV8_PMU_COUNTER_MASK
;
722 } else if (r
->Op2
== 0) {
724 if (pmu_access_cycle_counter_el0_disabled(vcpu
))
727 idx
= ARMV8_PMU_CYCLE_IDX
;
731 } else if (r
->CRn
== 0 && r
->CRm
== 9) {
733 if (pmu_access_event_counter_el0_disabled(vcpu
))
736 idx
= ARMV8_PMU_CYCLE_IDX
;
737 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 8) {
739 if (pmu_access_event_counter_el0_disabled(vcpu
))
742 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
747 if (!pmu_counter_idx_valid(vcpu
, idx
))
751 if (pmu_access_el0_disabled(vcpu
))
754 kvm_pmu_set_counter_value(vcpu
, idx
, p
->regval
);
756 p
->regval
= kvm_pmu_get_counter_value(vcpu
, idx
);
762 static bool access_pmu_evtyper(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
763 const struct sys_reg_desc
*r
)
767 if (!kvm_arm_pmu_v3_ready(vcpu
))
768 return trap_raz_wi(vcpu
, p
, r
);
770 if (pmu_access_el0_disabled(vcpu
))
773 if (r
->CRn
== 9 && r
->CRm
== 13 && r
->Op2
== 1) {
775 idx
= __vcpu_sys_reg(vcpu
, PMSELR_EL0
) & ARMV8_PMU_COUNTER_MASK
;
776 reg
= PMEVTYPER0_EL0
+ idx
;
777 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 12) {
778 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
779 if (idx
== ARMV8_PMU_CYCLE_IDX
)
783 reg
= PMEVTYPER0_EL0
+ idx
;
788 if (!pmu_counter_idx_valid(vcpu
, idx
))
792 kvm_pmu_set_counter_event_type(vcpu
, p
->regval
, idx
);
793 __vcpu_sys_reg(vcpu
, reg
) = p
->regval
& ARMV8_PMU_EVTYPE_MASK
;
795 p
->regval
= __vcpu_sys_reg(vcpu
, reg
) & ARMV8_PMU_EVTYPE_MASK
;
801 static bool access_pmcnten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
802 const struct sys_reg_desc
*r
)
806 if (!kvm_arm_pmu_v3_ready(vcpu
))
807 return trap_raz_wi(vcpu
, p
, r
);
809 if (pmu_access_el0_disabled(vcpu
))
812 mask
= kvm_pmu_valid_counter_mask(vcpu
);
814 val
= p
->regval
& mask
;
816 /* accessing PMCNTENSET_EL0 */
817 __vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) |= val
;
818 kvm_pmu_enable_counter(vcpu
, val
);
820 /* accessing PMCNTENCLR_EL0 */
821 __vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) &= ~val
;
822 kvm_pmu_disable_counter(vcpu
, val
);
825 p
->regval
= __vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) & mask
;
831 static bool access_pminten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
832 const struct sys_reg_desc
*r
)
834 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
836 if (!kvm_arm_pmu_v3_ready(vcpu
))
837 return trap_raz_wi(vcpu
, p
, r
);
839 if (!vcpu_mode_priv(vcpu
)) {
840 kvm_inject_undefined(vcpu
);
845 u64 val
= p
->regval
& mask
;
848 /* accessing PMINTENSET_EL1 */
849 __vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) |= val
;
851 /* accessing PMINTENCLR_EL1 */
852 __vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) &= ~val
;
854 p
->regval
= __vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) & mask
;
860 static bool access_pmovs(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
861 const struct sys_reg_desc
*r
)
863 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
865 if (!kvm_arm_pmu_v3_ready(vcpu
))
866 return trap_raz_wi(vcpu
, p
, r
);
868 if (pmu_access_el0_disabled(vcpu
))
873 /* accessing PMOVSSET_EL0 */
874 __vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) |= (p
->regval
& mask
);
876 /* accessing PMOVSCLR_EL0 */
877 __vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) &= ~(p
->regval
& mask
);
879 p
->regval
= __vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) & mask
;
885 static bool access_pmswinc(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
886 const struct sys_reg_desc
*r
)
890 if (!kvm_arm_pmu_v3_ready(vcpu
))
891 return trap_raz_wi(vcpu
, p
, r
);
894 return read_from_write_only(vcpu
, p
, r
);
896 if (pmu_write_swinc_el0_disabled(vcpu
))
899 mask
= kvm_pmu_valid_counter_mask(vcpu
);
900 kvm_pmu_software_increment(vcpu
, p
->regval
& mask
);
904 static bool access_pmuserenr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
905 const struct sys_reg_desc
*r
)
907 if (!kvm_arm_pmu_v3_ready(vcpu
))
908 return trap_raz_wi(vcpu
, p
, r
);
911 if (!vcpu_mode_priv(vcpu
)) {
912 kvm_inject_undefined(vcpu
);
916 __vcpu_sys_reg(vcpu
, PMUSERENR_EL0
) =
917 p
->regval
& ARMV8_PMU_USERENR_MASK
;
919 p
->regval
= __vcpu_sys_reg(vcpu
, PMUSERENR_EL0
)
920 & ARMV8_PMU_USERENR_MASK
;
926 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
927 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
928 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
929 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
930 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
931 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
932 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
933 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
934 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
935 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
937 /* Macro to expand the PMEVCNTRn_EL0 register */
938 #define PMU_PMEVCNTR_EL0(n) \
939 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
940 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
942 /* Macro to expand the PMEVTYPERn_EL0 register */
943 #define PMU_PMEVTYPER_EL0(n) \
944 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
945 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
947 static bool access_cntp_tval(struct kvm_vcpu
*vcpu
,
948 struct sys_reg_params
*p
,
949 const struct sys_reg_desc
*r
)
951 u64 now
= kvm_phys_timer_read();
955 kvm_arm_timer_set_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
,
958 cval
= kvm_arm_timer_get_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
);
959 p
->regval
= cval
- now
;
965 static bool access_cntp_ctl(struct kvm_vcpu
*vcpu
,
966 struct sys_reg_params
*p
,
967 const struct sys_reg_desc
*r
)
970 kvm_arm_timer_set_reg(vcpu
, KVM_REG_ARM_PTIMER_CTL
, p
->regval
);
972 p
->regval
= kvm_arm_timer_get_reg(vcpu
, KVM_REG_ARM_PTIMER_CTL
);
977 static bool access_cntp_cval(struct kvm_vcpu
*vcpu
,
978 struct sys_reg_params
*p
,
979 const struct sys_reg_desc
*r
)
982 kvm_arm_timer_set_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
, p
->regval
);
984 p
->regval
= kvm_arm_timer_get_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
);
989 /* Read a sanitised cpufeature ID register by sys_reg_desc */
990 static u64
read_id_reg(struct sys_reg_desc
const *r
, bool raz
)
992 u32 id
= sys_reg((u32
)r
->Op0
, (u32
)r
->Op1
,
993 (u32
)r
->CRn
, (u32
)r
->CRm
, (u32
)r
->Op2
);
994 u64 val
= raz
? 0 : read_sanitised_ftr_reg(id
);
996 if (id
== SYS_ID_AA64PFR0_EL1
) {
997 if (val
& (0xfUL
<< ID_AA64PFR0_SVE_SHIFT
))
998 kvm_debug("SVE unsupported for guests, suppressing\n");
1000 val
&= ~(0xfUL
<< ID_AA64PFR0_SVE_SHIFT
);
1001 } else if (id
== SYS_ID_AA64MMFR1_EL1
) {
1002 if (val
& (0xfUL
<< ID_AA64MMFR1_LOR_SHIFT
))
1003 kvm_debug("LORegions unsupported for guests, suppressing\n");
1005 val
&= ~(0xfUL
<< ID_AA64MMFR1_LOR_SHIFT
);
1011 /* cpufeature ID register access trap handlers */
1013 static bool __access_id_reg(struct kvm_vcpu
*vcpu
,
1014 struct sys_reg_params
*p
,
1015 const struct sys_reg_desc
*r
,
1019 return write_to_read_only(vcpu
, p
, r
);
1021 p
->regval
= read_id_reg(r
, raz
);
1025 static bool access_id_reg(struct kvm_vcpu
*vcpu
,
1026 struct sys_reg_params
*p
,
1027 const struct sys_reg_desc
*r
)
1029 return __access_id_reg(vcpu
, p
, r
, false);
1032 static bool access_raz_id_reg(struct kvm_vcpu
*vcpu
,
1033 struct sys_reg_params
*p
,
1034 const struct sys_reg_desc
*r
)
1036 return __access_id_reg(vcpu
, p
, r
, true);
1039 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
);
1040 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
);
1041 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
);
1044 * cpufeature ID register user accessors
1046 * For now, these registers are immutable for userspace, so no values
1047 * are stored, and for set_id_reg() we don't allow the effective value
1050 static int __get_id_reg(const struct sys_reg_desc
*rd
, void __user
*uaddr
,
1053 const u64 id
= sys_reg_to_index(rd
);
1054 const u64 val
= read_id_reg(rd
, raz
);
1056 return reg_to_user(uaddr
, &val
, id
);
1059 static int __set_id_reg(const struct sys_reg_desc
*rd
, void __user
*uaddr
,
1062 const u64 id
= sys_reg_to_index(rd
);
1066 err
= reg_from_user(&val
, uaddr
, id
);
1070 /* This is what we mean by invariant: you can't change it. */
1071 if (val
!= read_id_reg(rd
, raz
))
1077 static int get_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1078 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1080 return __get_id_reg(rd
, uaddr
, false);
1083 static int set_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1084 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1086 return __set_id_reg(rd
, uaddr
, false);
1089 static int get_raz_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1090 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1092 return __get_id_reg(rd
, uaddr
, true);
1095 static int set_raz_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1096 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1098 return __set_id_reg(rd
, uaddr
, true);
1101 /* sys_reg_desc initialiser for known cpufeature ID registers */
1102 #define ID_SANITISED(name) { \
1103 SYS_DESC(SYS_##name), \
1104 .access = access_id_reg, \
1105 .get_user = get_id_reg, \
1106 .set_user = set_id_reg, \
1110 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1111 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1112 * (1 <= crm < 8, 0 <= Op2 < 8).
1114 #define ID_UNALLOCATED(crm, op2) { \
1115 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1116 .access = access_raz_id_reg, \
1117 .get_user = get_raz_id_reg, \
1118 .set_user = set_raz_id_reg, \
1122 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1123 * For now, these are exposed just like unallocated ID regs: they appear
1124 * RAZ for the guest.
1126 #define ID_HIDDEN(name) { \
1127 SYS_DESC(SYS_##name), \
1128 .access = access_raz_id_reg, \
1129 .get_user = get_raz_id_reg, \
1130 .set_user = set_raz_id_reg, \
1134 * Architected system registers.
1135 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1137 * Debug handling: We do trap most, if not all debug related system
1138 * registers. The implementation is good enough to ensure that a guest
1139 * can use these with minimal performance degradation. The drawback is
1140 * that we don't implement any of the external debug, none of the
1141 * OSlock protocol. This should be revisited if we ever encounter a
1142 * more demanding guest...
1144 static const struct sys_reg_desc sys_reg_descs
[] = {
1145 { SYS_DESC(SYS_DC_ISW
), access_dcsw
},
1146 { SYS_DESC(SYS_DC_CSW
), access_dcsw
},
1147 { SYS_DESC(SYS_DC_CISW
), access_dcsw
},
1149 DBG_BCR_BVR_WCR_WVR_EL1(0),
1150 DBG_BCR_BVR_WCR_WVR_EL1(1),
1151 { SYS_DESC(SYS_MDCCINT_EL1
), trap_debug_regs
, reset_val
, MDCCINT_EL1
, 0 },
1152 { SYS_DESC(SYS_MDSCR_EL1
), trap_debug_regs
, reset_val
, MDSCR_EL1
, 0 },
1153 DBG_BCR_BVR_WCR_WVR_EL1(2),
1154 DBG_BCR_BVR_WCR_WVR_EL1(3),
1155 DBG_BCR_BVR_WCR_WVR_EL1(4),
1156 DBG_BCR_BVR_WCR_WVR_EL1(5),
1157 DBG_BCR_BVR_WCR_WVR_EL1(6),
1158 DBG_BCR_BVR_WCR_WVR_EL1(7),
1159 DBG_BCR_BVR_WCR_WVR_EL1(8),
1160 DBG_BCR_BVR_WCR_WVR_EL1(9),
1161 DBG_BCR_BVR_WCR_WVR_EL1(10),
1162 DBG_BCR_BVR_WCR_WVR_EL1(11),
1163 DBG_BCR_BVR_WCR_WVR_EL1(12),
1164 DBG_BCR_BVR_WCR_WVR_EL1(13),
1165 DBG_BCR_BVR_WCR_WVR_EL1(14),
1166 DBG_BCR_BVR_WCR_WVR_EL1(15),
1168 { SYS_DESC(SYS_MDRAR_EL1
), trap_raz_wi
},
1169 { SYS_DESC(SYS_OSLAR_EL1
), trap_raz_wi
},
1170 { SYS_DESC(SYS_OSLSR_EL1
), trap_oslsr_el1
},
1171 { SYS_DESC(SYS_OSDLR_EL1
), trap_raz_wi
},
1172 { SYS_DESC(SYS_DBGPRCR_EL1
), trap_raz_wi
},
1173 { SYS_DESC(SYS_DBGCLAIMSET_EL1
), trap_raz_wi
},
1174 { SYS_DESC(SYS_DBGCLAIMCLR_EL1
), trap_raz_wi
},
1175 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1
), trap_dbgauthstatus_el1
},
1177 { SYS_DESC(SYS_MDCCSR_EL0
), trap_raz_wi
},
1178 { SYS_DESC(SYS_DBGDTR_EL0
), trap_raz_wi
},
1179 // DBGDTR[TR]X_EL0 share the same encoding
1180 { SYS_DESC(SYS_DBGDTRTX_EL0
), trap_raz_wi
},
1182 { SYS_DESC(SYS_DBGVCR32_EL2
), NULL
, reset_val
, DBGVCR32_EL2
, 0 },
1184 { SYS_DESC(SYS_MPIDR_EL1
), NULL
, reset_mpidr
, MPIDR_EL1
},
1187 * ID regs: all ID_SANITISED() entries here must have corresponding
1188 * entries in arm64_ftr_regs[].
1191 /* AArch64 mappings of the AArch32 ID registers */
1193 ID_SANITISED(ID_PFR0_EL1
),
1194 ID_SANITISED(ID_PFR1_EL1
),
1195 ID_SANITISED(ID_DFR0_EL1
),
1196 ID_HIDDEN(ID_AFR0_EL1
),
1197 ID_SANITISED(ID_MMFR0_EL1
),
1198 ID_SANITISED(ID_MMFR1_EL1
),
1199 ID_SANITISED(ID_MMFR2_EL1
),
1200 ID_SANITISED(ID_MMFR3_EL1
),
1203 ID_SANITISED(ID_ISAR0_EL1
),
1204 ID_SANITISED(ID_ISAR1_EL1
),
1205 ID_SANITISED(ID_ISAR2_EL1
),
1206 ID_SANITISED(ID_ISAR3_EL1
),
1207 ID_SANITISED(ID_ISAR4_EL1
),
1208 ID_SANITISED(ID_ISAR5_EL1
),
1209 ID_SANITISED(ID_MMFR4_EL1
),
1210 ID_UNALLOCATED(2,7),
1213 ID_SANITISED(MVFR0_EL1
),
1214 ID_SANITISED(MVFR1_EL1
),
1215 ID_SANITISED(MVFR2_EL1
),
1216 ID_UNALLOCATED(3,3),
1217 ID_UNALLOCATED(3,4),
1218 ID_UNALLOCATED(3,5),
1219 ID_UNALLOCATED(3,6),
1220 ID_UNALLOCATED(3,7),
1222 /* AArch64 ID registers */
1224 ID_SANITISED(ID_AA64PFR0_EL1
),
1225 ID_SANITISED(ID_AA64PFR1_EL1
),
1226 ID_UNALLOCATED(4,2),
1227 ID_UNALLOCATED(4,3),
1228 ID_UNALLOCATED(4,4),
1229 ID_UNALLOCATED(4,5),
1230 ID_UNALLOCATED(4,6),
1231 ID_UNALLOCATED(4,7),
1234 ID_SANITISED(ID_AA64DFR0_EL1
),
1235 ID_SANITISED(ID_AA64DFR1_EL1
),
1236 ID_UNALLOCATED(5,2),
1237 ID_UNALLOCATED(5,3),
1238 ID_HIDDEN(ID_AA64AFR0_EL1
),
1239 ID_HIDDEN(ID_AA64AFR1_EL1
),
1240 ID_UNALLOCATED(5,6),
1241 ID_UNALLOCATED(5,7),
1244 ID_SANITISED(ID_AA64ISAR0_EL1
),
1245 ID_SANITISED(ID_AA64ISAR1_EL1
),
1246 ID_UNALLOCATED(6,2),
1247 ID_UNALLOCATED(6,3),
1248 ID_UNALLOCATED(6,4),
1249 ID_UNALLOCATED(6,5),
1250 ID_UNALLOCATED(6,6),
1251 ID_UNALLOCATED(6,7),
1254 ID_SANITISED(ID_AA64MMFR0_EL1
),
1255 ID_SANITISED(ID_AA64MMFR1_EL1
),
1256 ID_SANITISED(ID_AA64MMFR2_EL1
),
1257 ID_UNALLOCATED(7,3),
1258 ID_UNALLOCATED(7,4),
1259 ID_UNALLOCATED(7,5),
1260 ID_UNALLOCATED(7,6),
1261 ID_UNALLOCATED(7,7),
1263 { SYS_DESC(SYS_SCTLR_EL1
), access_vm_reg
, reset_val
, SCTLR_EL1
, 0x00C50078 },
1264 { SYS_DESC(SYS_CPACR_EL1
), NULL
, reset_val
, CPACR_EL1
, 0 },
1265 { SYS_DESC(SYS_TTBR0_EL1
), access_vm_reg
, reset_unknown
, TTBR0_EL1
},
1266 { SYS_DESC(SYS_TTBR1_EL1
), access_vm_reg
, reset_unknown
, TTBR1_EL1
},
1267 { SYS_DESC(SYS_TCR_EL1
), access_vm_reg
, reset_val
, TCR_EL1
, 0 },
1269 { SYS_DESC(SYS_AFSR0_EL1
), access_vm_reg
, reset_unknown
, AFSR0_EL1
},
1270 { SYS_DESC(SYS_AFSR1_EL1
), access_vm_reg
, reset_unknown
, AFSR1_EL1
},
1271 { SYS_DESC(SYS_ESR_EL1
), access_vm_reg
, reset_unknown
, ESR_EL1
},
1273 { SYS_DESC(SYS_ERRIDR_EL1
), trap_raz_wi
},
1274 { SYS_DESC(SYS_ERRSELR_EL1
), trap_raz_wi
},
1275 { SYS_DESC(SYS_ERXFR_EL1
), trap_raz_wi
},
1276 { SYS_DESC(SYS_ERXCTLR_EL1
), trap_raz_wi
},
1277 { SYS_DESC(SYS_ERXSTATUS_EL1
), trap_raz_wi
},
1278 { SYS_DESC(SYS_ERXADDR_EL1
), trap_raz_wi
},
1279 { SYS_DESC(SYS_ERXMISC0_EL1
), trap_raz_wi
},
1280 { SYS_DESC(SYS_ERXMISC1_EL1
), trap_raz_wi
},
1282 { SYS_DESC(SYS_FAR_EL1
), access_vm_reg
, reset_unknown
, FAR_EL1
},
1283 { SYS_DESC(SYS_PAR_EL1
), NULL
, reset_unknown
, PAR_EL1
},
1285 { SYS_DESC(SYS_PMINTENSET_EL1
), access_pminten
, reset_unknown
, PMINTENSET_EL1
},
1286 { SYS_DESC(SYS_PMINTENCLR_EL1
), access_pminten
, NULL
, PMINTENSET_EL1
},
1288 { SYS_DESC(SYS_MAIR_EL1
), access_vm_reg
, reset_unknown
, MAIR_EL1
},
1289 { SYS_DESC(SYS_AMAIR_EL1
), access_vm_reg
, reset_amair_el1
, AMAIR_EL1
},
1291 { SYS_DESC(SYS_LORSA_EL1
), trap_undef
},
1292 { SYS_DESC(SYS_LOREA_EL1
), trap_undef
},
1293 { SYS_DESC(SYS_LORN_EL1
), trap_undef
},
1294 { SYS_DESC(SYS_LORC_EL1
), trap_undef
},
1295 { SYS_DESC(SYS_LORID_EL1
), trap_undef
},
1297 { SYS_DESC(SYS_VBAR_EL1
), NULL
, reset_val
, VBAR_EL1
, 0 },
1298 { SYS_DESC(SYS_DISR_EL1
), NULL
, reset_val
, DISR_EL1
, 0 },
1300 { SYS_DESC(SYS_ICC_IAR0_EL1
), write_to_read_only
},
1301 { SYS_DESC(SYS_ICC_EOIR0_EL1
), read_from_write_only
},
1302 { SYS_DESC(SYS_ICC_HPPIR0_EL1
), write_to_read_only
},
1303 { SYS_DESC(SYS_ICC_DIR_EL1
), read_from_write_only
},
1304 { SYS_DESC(SYS_ICC_RPR_EL1
), write_to_read_only
},
1305 { SYS_DESC(SYS_ICC_SGI1R_EL1
), access_gic_sgi
},
1306 { SYS_DESC(SYS_ICC_IAR1_EL1
), write_to_read_only
},
1307 { SYS_DESC(SYS_ICC_EOIR1_EL1
), read_from_write_only
},
1308 { SYS_DESC(SYS_ICC_HPPIR1_EL1
), write_to_read_only
},
1309 { SYS_DESC(SYS_ICC_SRE_EL1
), access_gic_sre
},
1311 { SYS_DESC(SYS_CONTEXTIDR_EL1
), access_vm_reg
, reset_val
, CONTEXTIDR_EL1
, 0 },
1312 { SYS_DESC(SYS_TPIDR_EL1
), NULL
, reset_unknown
, TPIDR_EL1
},
1314 { SYS_DESC(SYS_CNTKCTL_EL1
), NULL
, reset_val
, CNTKCTL_EL1
, 0},
1316 { SYS_DESC(SYS_CSSELR_EL1
), NULL
, reset_unknown
, CSSELR_EL1
},
1318 { SYS_DESC(SYS_PMCR_EL0
), access_pmcr
, reset_pmcr
, },
1319 { SYS_DESC(SYS_PMCNTENSET_EL0
), access_pmcnten
, reset_unknown
, PMCNTENSET_EL0
},
1320 { SYS_DESC(SYS_PMCNTENCLR_EL0
), access_pmcnten
, NULL
, PMCNTENSET_EL0
},
1321 { SYS_DESC(SYS_PMOVSCLR_EL0
), access_pmovs
, NULL
, PMOVSSET_EL0
},
1322 { SYS_DESC(SYS_PMSWINC_EL0
), access_pmswinc
, reset_unknown
, PMSWINC_EL0
},
1323 { SYS_DESC(SYS_PMSELR_EL0
), access_pmselr
, reset_unknown
, PMSELR_EL0
},
1324 { SYS_DESC(SYS_PMCEID0_EL0
), access_pmceid
},
1325 { SYS_DESC(SYS_PMCEID1_EL0
), access_pmceid
},
1326 { SYS_DESC(SYS_PMCCNTR_EL0
), access_pmu_evcntr
, reset_unknown
, PMCCNTR_EL0
},
1327 { SYS_DESC(SYS_PMXEVTYPER_EL0
), access_pmu_evtyper
},
1328 { SYS_DESC(SYS_PMXEVCNTR_EL0
), access_pmu_evcntr
},
1330 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1331 * in 32bit mode. Here we choose to reset it as zero for consistency.
1333 { SYS_DESC(SYS_PMUSERENR_EL0
), access_pmuserenr
, reset_val
, PMUSERENR_EL0
, 0 },
1334 { SYS_DESC(SYS_PMOVSSET_EL0
), access_pmovs
, reset_unknown
, PMOVSSET_EL0
},
1336 { SYS_DESC(SYS_TPIDR_EL0
), NULL
, reset_unknown
, TPIDR_EL0
},
1337 { SYS_DESC(SYS_TPIDRRO_EL0
), NULL
, reset_unknown
, TPIDRRO_EL0
},
1339 { SYS_DESC(SYS_CNTP_TVAL_EL0
), access_cntp_tval
},
1340 { SYS_DESC(SYS_CNTP_CTL_EL0
), access_cntp_ctl
},
1341 { SYS_DESC(SYS_CNTP_CVAL_EL0
), access_cntp_cval
},
1344 PMU_PMEVCNTR_EL0(0),
1345 PMU_PMEVCNTR_EL0(1),
1346 PMU_PMEVCNTR_EL0(2),
1347 PMU_PMEVCNTR_EL0(3),
1348 PMU_PMEVCNTR_EL0(4),
1349 PMU_PMEVCNTR_EL0(5),
1350 PMU_PMEVCNTR_EL0(6),
1351 PMU_PMEVCNTR_EL0(7),
1352 PMU_PMEVCNTR_EL0(8),
1353 PMU_PMEVCNTR_EL0(9),
1354 PMU_PMEVCNTR_EL0(10),
1355 PMU_PMEVCNTR_EL0(11),
1356 PMU_PMEVCNTR_EL0(12),
1357 PMU_PMEVCNTR_EL0(13),
1358 PMU_PMEVCNTR_EL0(14),
1359 PMU_PMEVCNTR_EL0(15),
1360 PMU_PMEVCNTR_EL0(16),
1361 PMU_PMEVCNTR_EL0(17),
1362 PMU_PMEVCNTR_EL0(18),
1363 PMU_PMEVCNTR_EL0(19),
1364 PMU_PMEVCNTR_EL0(20),
1365 PMU_PMEVCNTR_EL0(21),
1366 PMU_PMEVCNTR_EL0(22),
1367 PMU_PMEVCNTR_EL0(23),
1368 PMU_PMEVCNTR_EL0(24),
1369 PMU_PMEVCNTR_EL0(25),
1370 PMU_PMEVCNTR_EL0(26),
1371 PMU_PMEVCNTR_EL0(27),
1372 PMU_PMEVCNTR_EL0(28),
1373 PMU_PMEVCNTR_EL0(29),
1374 PMU_PMEVCNTR_EL0(30),
1375 /* PMEVTYPERn_EL0 */
1376 PMU_PMEVTYPER_EL0(0),
1377 PMU_PMEVTYPER_EL0(1),
1378 PMU_PMEVTYPER_EL0(2),
1379 PMU_PMEVTYPER_EL0(3),
1380 PMU_PMEVTYPER_EL0(4),
1381 PMU_PMEVTYPER_EL0(5),
1382 PMU_PMEVTYPER_EL0(6),
1383 PMU_PMEVTYPER_EL0(7),
1384 PMU_PMEVTYPER_EL0(8),
1385 PMU_PMEVTYPER_EL0(9),
1386 PMU_PMEVTYPER_EL0(10),
1387 PMU_PMEVTYPER_EL0(11),
1388 PMU_PMEVTYPER_EL0(12),
1389 PMU_PMEVTYPER_EL0(13),
1390 PMU_PMEVTYPER_EL0(14),
1391 PMU_PMEVTYPER_EL0(15),
1392 PMU_PMEVTYPER_EL0(16),
1393 PMU_PMEVTYPER_EL0(17),
1394 PMU_PMEVTYPER_EL0(18),
1395 PMU_PMEVTYPER_EL0(19),
1396 PMU_PMEVTYPER_EL0(20),
1397 PMU_PMEVTYPER_EL0(21),
1398 PMU_PMEVTYPER_EL0(22),
1399 PMU_PMEVTYPER_EL0(23),
1400 PMU_PMEVTYPER_EL0(24),
1401 PMU_PMEVTYPER_EL0(25),
1402 PMU_PMEVTYPER_EL0(26),
1403 PMU_PMEVTYPER_EL0(27),
1404 PMU_PMEVTYPER_EL0(28),
1405 PMU_PMEVTYPER_EL0(29),
1406 PMU_PMEVTYPER_EL0(30),
1408 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1409 * in 32bit mode. Here we choose to reset it as zero for consistency.
1411 { SYS_DESC(SYS_PMCCFILTR_EL0
), access_pmu_evtyper
, reset_val
, PMCCFILTR_EL0
, 0 },
1413 { SYS_DESC(SYS_DACR32_EL2
), NULL
, reset_unknown
, DACR32_EL2
},
1414 { SYS_DESC(SYS_IFSR32_EL2
), NULL
, reset_unknown
, IFSR32_EL2
},
1415 { SYS_DESC(SYS_FPEXC32_EL2
), NULL
, reset_val
, FPEXC32_EL2
, 0x70 },
1418 static bool trap_dbgidr(struct kvm_vcpu
*vcpu
,
1419 struct sys_reg_params
*p
,
1420 const struct sys_reg_desc
*r
)
1423 return ignore_write(vcpu
, p
);
1425 u64 dfr
= read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1
);
1426 u64 pfr
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
1427 u32 el3
= !!cpuid_feature_extract_unsigned_field(pfr
, ID_AA64PFR0_EL3_SHIFT
);
1429 p
->regval
= ((((dfr
>> ID_AA64DFR0_WRPS_SHIFT
) & 0xf) << 28) |
1430 (((dfr
>> ID_AA64DFR0_BRPS_SHIFT
) & 0xf) << 24) |
1431 (((dfr
>> ID_AA64DFR0_CTX_CMPS_SHIFT
) & 0xf) << 20)
1432 | (6 << 16) | (el3
<< 14) | (el3
<< 12));
1437 static bool trap_debug32(struct kvm_vcpu
*vcpu
,
1438 struct sys_reg_params
*p
,
1439 const struct sys_reg_desc
*r
)
1442 vcpu_cp14(vcpu
, r
->reg
) = p
->regval
;
1443 vcpu
->arch
.flags
|= KVM_ARM64_DEBUG_DIRTY
;
1445 p
->regval
= vcpu_cp14(vcpu
, r
->reg
);
1451 /* AArch32 debug register mappings
1453 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1454 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1456 * All control registers and watchpoint value registers are mapped to
1457 * the lower 32 bits of their AArch64 equivalents. We share the trap
1458 * handlers with the above AArch64 code which checks what mode the
1462 static bool trap_xvr(struct kvm_vcpu
*vcpu
,
1463 struct sys_reg_params
*p
,
1464 const struct sys_reg_desc
*rd
)
1466 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
1471 val
&= 0xffffffffUL
;
1472 val
|= p
->regval
<< 32;
1475 vcpu
->arch
.flags
|= KVM_ARM64_DEBUG_DIRTY
;
1477 p
->regval
= *dbg_reg
>> 32;
1480 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
1485 #define DBG_BCR_BVR_WCR_WVR(n) \
1487 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1489 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1491 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1493 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1495 #define DBGBXVR(n) \
1496 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1499 * Trapped cp14 registers. We generally ignore most of the external
1500 * debug, on the principle that they don't really make sense to a
1501 * guest. Revisit this one day, would this principle change.
1503 static const struct sys_reg_desc cp14_regs
[] = {
1505 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr
},
1507 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi
},
1509 DBG_BCR_BVR_WCR_WVR(0),
1511 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi
},
1512 DBG_BCR_BVR_WCR_WVR(1),
1514 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32
},
1516 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32
},
1517 DBG_BCR_BVR_WCR_WVR(2),
1518 /* DBGDTR[RT]Xint */
1519 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi
},
1520 /* DBGDTR[RT]Xext */
1521 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi
},
1522 DBG_BCR_BVR_WCR_WVR(3),
1523 DBG_BCR_BVR_WCR_WVR(4),
1524 DBG_BCR_BVR_WCR_WVR(5),
1526 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi
},
1528 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi
},
1529 DBG_BCR_BVR_WCR_WVR(6),
1531 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32
},
1532 DBG_BCR_BVR_WCR_WVR(7),
1533 DBG_BCR_BVR_WCR_WVR(8),
1534 DBG_BCR_BVR_WCR_WVR(9),
1535 DBG_BCR_BVR_WCR_WVR(10),
1536 DBG_BCR_BVR_WCR_WVR(11),
1537 DBG_BCR_BVR_WCR_WVR(12),
1538 DBG_BCR_BVR_WCR_WVR(13),
1539 DBG_BCR_BVR_WCR_WVR(14),
1540 DBG_BCR_BVR_WCR_WVR(15),
1542 /* DBGDRAR (32bit) */
1543 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi
},
1547 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi
},
1550 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1
},
1554 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi
},
1557 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi
},
1570 /* DBGDSAR (32bit) */
1571 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi
},
1574 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi
},
1576 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi
},
1578 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi
},
1580 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi
},
1582 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi
},
1584 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1
},
1587 /* Trapped cp14 64bit registers */
1588 static const struct sys_reg_desc cp14_64_regs
[] = {
1589 /* DBGDRAR (64bit) */
1590 { Op1( 0), CRm( 1), .access
= trap_raz_wi
},
1592 /* DBGDSAR (64bit) */
1593 { Op1( 0), CRm( 2), .access
= trap_raz_wi
},
1596 /* Macro to expand the PMEVCNTRn register */
1597 #define PMU_PMEVCNTR(n) \
1599 { Op1(0), CRn(0b1110), \
1600 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1603 /* Macro to expand the PMEVTYPERn register */
1604 #define PMU_PMEVTYPER(n) \
1606 { Op1(0), CRn(0b1110), \
1607 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1608 access_pmu_evtyper }
1611 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1612 * depending on the way they are accessed (as a 32bit or a 64bit
1615 static const struct sys_reg_desc cp15_regs
[] = {
1616 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
1618 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c1_SCTLR
},
1619 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
1620 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c2_TTBR1
},
1621 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c2_TTBCR
},
1622 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c3_DACR
},
1623 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c5_DFSR
},
1624 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c5_IFSR
},
1625 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg
, NULL
, c5_ADFSR
},
1626 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg
, NULL
, c5_AIFSR
},
1627 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c6_DFAR
},
1628 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c6_IFAR
},
1631 * DC{C,I,CI}SW operations:
1633 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
1634 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
1635 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
1638 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr
},
1639 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten
},
1640 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten
},
1641 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs
},
1642 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc
},
1643 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr
},
1644 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid
},
1645 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid
},
1646 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr
},
1647 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper
},
1648 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr
},
1649 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr
},
1650 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten
},
1651 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten
},
1652 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs
},
1654 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c10_PRRR
},
1655 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg
, NULL
, c10_NMRR
},
1656 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg
, NULL
, c10_AMAIR0
},
1657 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg
, NULL
, c10_AMAIR1
},
1660 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre
},
1662 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c13_CID
},
1665 { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval
},
1667 { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl
},
1734 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper
},
1737 static const struct sys_reg_desc cp15_64_regs
[] = {
1738 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
1739 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr
},
1740 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
1741 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR1
},
1742 { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval
},
1745 /* Target specific emulation tables */
1746 static struct kvm_sys_reg_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
1748 void kvm_register_target_sys_reg_table(unsigned int target
,
1749 struct kvm_sys_reg_target_table
*table
)
1751 target_tables
[target
] = table
;
1754 /* Get specific register table for this target. */
1755 static const struct sys_reg_desc
*get_target_table(unsigned target
,
1759 struct kvm_sys_reg_target_table
*table
;
1761 table
= target_tables
[target
];
1763 *num
= table
->table64
.num
;
1764 return table
->table64
.table
;
1766 *num
= table
->table32
.num
;
1767 return table
->table32
.table
;
1771 #define reg_to_match_value(x) \
1773 unsigned long val; \
1774 val = (x)->Op0 << 14; \
1775 val |= (x)->Op1 << 11; \
1776 val |= (x)->CRn << 7; \
1777 val |= (x)->CRm << 3; \
1782 static int match_sys_reg(const void *key
, const void *elt
)
1784 const unsigned long pval
= (unsigned long)key
;
1785 const struct sys_reg_desc
*r
= elt
;
1787 return pval
- reg_to_match_value(r
);
1790 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
1791 const struct sys_reg_desc table
[],
1794 unsigned long pval
= reg_to_match_value(params
);
1796 return bsearch((void *)pval
, table
, num
, sizeof(table
[0]), match_sys_reg
);
1799 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1801 kvm_inject_undefined(vcpu
);
1805 static void perform_access(struct kvm_vcpu
*vcpu
,
1806 struct sys_reg_params
*params
,
1807 const struct sys_reg_desc
*r
)
1810 * Not having an accessor means that we have configured a trap
1811 * that we don't know how to handle. This certainly qualifies
1812 * as a gross bug that should be fixed right away.
1816 /* Skip instruction if instructed so */
1817 if (likely(r
->access(vcpu
, params
, r
)))
1818 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1822 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1823 * call the corresponding trap handler.
1825 * @params: pointer to the descriptor of the access
1826 * @table: array of trap descriptors
1827 * @num: size of the trap descriptor array
1829 * Return 0 if the access has been handled, and -1 if not.
1831 static int emulate_cp(struct kvm_vcpu
*vcpu
,
1832 struct sys_reg_params
*params
,
1833 const struct sys_reg_desc
*table
,
1836 const struct sys_reg_desc
*r
;
1839 return -1; /* Not handled */
1841 r
= find_reg(params
, table
, num
);
1844 perform_access(vcpu
, params
, r
);
1852 static void unhandled_cp_access(struct kvm_vcpu
*vcpu
,
1853 struct sys_reg_params
*params
)
1855 u8 hsr_ec
= kvm_vcpu_trap_get_class(vcpu
);
1859 case ESR_ELx_EC_CP15_32
:
1860 case ESR_ELx_EC_CP15_64
:
1863 case ESR_ELx_EC_CP14_MR
:
1864 case ESR_ELx_EC_CP14_64
:
1871 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1872 cp
, *vcpu_pc(vcpu
));
1873 print_sys_reg_instr(params
);
1874 kvm_inject_undefined(vcpu
);
1878 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1879 * @vcpu: The VCPU pointer
1880 * @run: The kvm_run struct
1882 static int kvm_handle_cp_64(struct kvm_vcpu
*vcpu
,
1883 const struct sys_reg_desc
*global
,
1885 const struct sys_reg_desc
*target_specific
,
1888 struct sys_reg_params params
;
1889 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1890 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1891 int Rt2
= (hsr
>> 10) & 0x1f;
1893 params
.is_aarch32
= true;
1894 params
.is_32bit
= false;
1895 params
.CRm
= (hsr
>> 1) & 0xf;
1896 params
.is_write
= ((hsr
& 1) == 0);
1899 params
.Op1
= (hsr
>> 16) & 0xf;
1904 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1905 * backends between AArch32 and AArch64, we get away with it.
1907 if (params
.is_write
) {
1908 params
.regval
= vcpu_get_reg(vcpu
, Rt
) & 0xffffffff;
1909 params
.regval
|= vcpu_get_reg(vcpu
, Rt2
) << 32;
1913 * Try to emulate the coprocessor access using the target
1914 * specific table first, and using the global table afterwards.
1915 * If either of the tables contains a handler, handle the
1916 * potential register operation in the case of a read and return
1919 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1920 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1921 /* Split up the value between registers for the read side */
1922 if (!params
.is_write
) {
1923 vcpu_set_reg(vcpu
, Rt
, lower_32_bits(params
.regval
));
1924 vcpu_set_reg(vcpu
, Rt2
, upper_32_bits(params
.regval
));
1930 unhandled_cp_access(vcpu
, ¶ms
);
1935 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1936 * @vcpu: The VCPU pointer
1937 * @run: The kvm_run struct
1939 static int kvm_handle_cp_32(struct kvm_vcpu
*vcpu
,
1940 const struct sys_reg_desc
*global
,
1942 const struct sys_reg_desc
*target_specific
,
1945 struct sys_reg_params params
;
1946 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1947 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1949 params
.is_aarch32
= true;
1950 params
.is_32bit
= true;
1951 params
.CRm
= (hsr
>> 1) & 0xf;
1952 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1953 params
.is_write
= ((hsr
& 1) == 0);
1954 params
.CRn
= (hsr
>> 10) & 0xf;
1956 params
.Op1
= (hsr
>> 14) & 0x7;
1957 params
.Op2
= (hsr
>> 17) & 0x7;
1959 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1960 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1961 if (!params
.is_write
)
1962 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1966 unhandled_cp_access(vcpu
, ¶ms
);
1970 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1972 const struct sys_reg_desc
*target_specific
;
1975 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1976 return kvm_handle_cp_64(vcpu
,
1977 cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
),
1978 target_specific
, num
);
1981 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1983 const struct sys_reg_desc
*target_specific
;
1986 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1987 return kvm_handle_cp_32(vcpu
,
1988 cp15_regs
, ARRAY_SIZE(cp15_regs
),
1989 target_specific
, num
);
1992 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1994 return kvm_handle_cp_64(vcpu
,
1995 cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
),
1999 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
2001 return kvm_handle_cp_32(vcpu
,
2002 cp14_regs
, ARRAY_SIZE(cp14_regs
),
2006 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
2007 struct sys_reg_params
*params
)
2010 const struct sys_reg_desc
*table
, *r
;
2012 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
2014 /* Search target-specific then generic table. */
2015 r
= find_reg(params
, table
, num
);
2017 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2020 perform_access(vcpu
, params
, r
);
2022 kvm_err("Unsupported guest sys_reg access at: %lx\n",
2024 print_sys_reg_instr(params
);
2025 kvm_inject_undefined(vcpu
);
2030 static void reset_sys_reg_descs(struct kvm_vcpu
*vcpu
,
2031 const struct sys_reg_desc
*table
, size_t num
)
2035 for (i
= 0; i
< num
; i
++)
2037 table
[i
].reset(vcpu
, &table
[i
]);
2041 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2042 * @vcpu: The VCPU pointer
2043 * @run: The kvm_run struct
2045 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
2047 struct sys_reg_params params
;
2048 unsigned long esr
= kvm_vcpu_get_hsr(vcpu
);
2049 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
2052 trace_kvm_handle_sys_reg(esr
);
2054 params
.is_aarch32
= false;
2055 params
.is_32bit
= false;
2056 params
.Op0
= (esr
>> 20) & 3;
2057 params
.Op1
= (esr
>> 14) & 0x7;
2058 params
.CRn
= (esr
>> 10) & 0xf;
2059 params
.CRm
= (esr
>> 1) & 0xf;
2060 params
.Op2
= (esr
>> 17) & 0x7;
2061 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
2062 params
.is_write
= !(esr
& 1);
2064 ret
= emulate_sys_reg(vcpu
, ¶ms
);
2066 if (!params
.is_write
)
2067 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
2071 /******************************************************************************
2073 *****************************************************************************/
2075 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
2077 switch (id
& KVM_REG_SIZE_MASK
) {
2078 case KVM_REG_SIZE_U64
:
2079 /* Any unused index bits means it's not valid. */
2080 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
2081 | KVM_REG_ARM_COPROC_MASK
2082 | KVM_REG_ARM64_SYSREG_OP0_MASK
2083 | KVM_REG_ARM64_SYSREG_OP1_MASK
2084 | KVM_REG_ARM64_SYSREG_CRN_MASK
2085 | KVM_REG_ARM64_SYSREG_CRM_MASK
2086 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
2088 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
2089 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
2090 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
2091 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
2092 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
2093 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
2094 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
2095 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
2096 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
2097 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
2104 const struct sys_reg_desc
*find_reg_by_id(u64 id
,
2105 struct sys_reg_params
*params
,
2106 const struct sys_reg_desc table
[],
2109 if (!index_to_params(id
, params
))
2112 return find_reg(params
, table
, num
);
2115 /* Decode an index value, and find the sys_reg_desc entry. */
2116 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
2120 const struct sys_reg_desc
*table
, *r
;
2121 struct sys_reg_params params
;
2123 /* We only do sys_reg for now. */
2124 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
2127 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
2128 r
= find_reg_by_id(id
, ¶ms
, table
, num
);
2130 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2132 /* Not saved in the sys_reg array and not otherwise accessible? */
2133 if (r
&& !(r
->reg
|| r
->get_user
))
2140 * These are the invariant sys_reg registers: we let the guest see the
2141 * host versions of these, so they're part of the guest state.
2143 * A future CPU may provide a mechanism to present different values to
2144 * the guest, or a future kvm may trap them.
2147 #define FUNCTION_INVARIANT(reg) \
2148 static void get_##reg(struct kvm_vcpu *v, \
2149 const struct sys_reg_desc *r) \
2151 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2154 FUNCTION_INVARIANT(midr_el1
)
2155 FUNCTION_INVARIANT(ctr_el0
)
2156 FUNCTION_INVARIANT(revidr_el1
)
2157 FUNCTION_INVARIANT(clidr_el1
)
2158 FUNCTION_INVARIANT(aidr_el1
)
2160 /* ->val is filled in by kvm_sys_reg_table_init() */
2161 static struct sys_reg_desc invariant_sys_regs
[] = {
2162 { SYS_DESC(SYS_MIDR_EL1
), NULL
, get_midr_el1
},
2163 { SYS_DESC(SYS_REVIDR_EL1
), NULL
, get_revidr_el1
},
2164 { SYS_DESC(SYS_CLIDR_EL1
), NULL
, get_clidr_el1
},
2165 { SYS_DESC(SYS_AIDR_EL1
), NULL
, get_aidr_el1
},
2166 { SYS_DESC(SYS_CTR_EL0
), NULL
, get_ctr_el0
},
2169 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
)
2171 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
2176 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
)
2178 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
2183 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
2185 struct sys_reg_params params
;
2186 const struct sys_reg_desc
*r
;
2188 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
2189 ARRAY_SIZE(invariant_sys_regs
));
2193 return reg_to_user(uaddr
, &r
->val
, id
);
2196 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
2198 struct sys_reg_params params
;
2199 const struct sys_reg_desc
*r
;
2201 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
2203 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
2204 ARRAY_SIZE(invariant_sys_regs
));
2208 err
= reg_from_user(&val
, uaddr
, id
);
2212 /* This is what we mean by invariant: you can't change it. */
2219 static bool is_valid_cache(u32 val
)
2223 if (val
>= CSSELR_MAX
)
2226 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2228 ctype
= (cache_levels
>> (level
* 3)) & 7;
2231 case 0: /* No cache */
2233 case 1: /* Instruction cache only */
2235 case 2: /* Data cache only */
2236 case 4: /* Unified cache */
2238 case 3: /* Separate instruction and data caches */
2240 default: /* Reserved: we can't know instruction or data. */
2245 static int demux_c15_get(u64 id
, void __user
*uaddr
)
2248 u32 __user
*uval
= uaddr
;
2250 /* Fail if we have unknown bits set. */
2251 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
2252 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
2255 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
2256 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
2257 if (KVM_REG_SIZE(id
) != 4)
2259 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
2260 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
2261 if (!is_valid_cache(val
))
2264 return put_user(get_ccsidr(val
), uval
);
2270 static int demux_c15_set(u64 id
, void __user
*uaddr
)
2273 u32 __user
*uval
= uaddr
;
2275 /* Fail if we have unknown bits set. */
2276 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
2277 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
2280 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
2281 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
2282 if (KVM_REG_SIZE(id
) != 4)
2284 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
2285 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
2286 if (!is_valid_cache(val
))
2289 if (get_user(newval
, uval
))
2292 /* This is also invariant: you can't change it. */
2293 if (newval
!= get_ccsidr(val
))
2301 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2303 const struct sys_reg_desc
*r
;
2304 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2306 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2307 return demux_c15_get(reg
->id
, uaddr
);
2309 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2312 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2314 return get_invariant_sys_reg(reg
->id
, uaddr
);
2317 return (r
->get_user
)(vcpu
, r
, reg
, uaddr
);
2319 return reg_to_user(uaddr
, &__vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
2322 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2324 const struct sys_reg_desc
*r
;
2325 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2327 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2328 return demux_c15_set(reg
->id
, uaddr
);
2330 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2333 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2335 return set_invariant_sys_reg(reg
->id
, uaddr
);
2338 return (r
->set_user
)(vcpu
, r
, reg
, uaddr
);
2340 return reg_from_user(&__vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
2343 static unsigned int num_demux_regs(void)
2345 unsigned int i
, count
= 0;
2347 for (i
= 0; i
< CSSELR_MAX
; i
++)
2348 if (is_valid_cache(i
))
2354 static int write_demux_regids(u64 __user
*uindices
)
2356 u64 val
= KVM_REG_ARM64
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
2359 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
2360 for (i
= 0; i
< CSSELR_MAX
; i
++) {
2361 if (!is_valid_cache(i
))
2363 if (put_user(val
| i
, uindices
))
2370 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
2372 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
2373 KVM_REG_ARM64_SYSREG
|
2374 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
2375 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
2376 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
2377 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
2378 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
2381 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
2386 if (put_user(sys_reg_to_index(reg
), *uind
))
2393 static int walk_one_sys_reg(const struct sys_reg_desc
*rd
,
2395 unsigned int *total
)
2398 * Ignore registers we trap but don't save,
2399 * and for which no custom user accessor is provided.
2401 if (!(rd
->reg
|| rd
->get_user
))
2404 if (!copy_reg_to_user(rd
, uind
))
2411 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2412 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
2414 const struct sys_reg_desc
*i1
, *i2
, *end1
, *end2
;
2415 unsigned int total
= 0;
2419 /* We check for duplicates here, to allow arch-specific overrides. */
2420 i1
= get_target_table(vcpu
->arch
.target
, true, &num
);
2423 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
2425 BUG_ON(i1
== end1
|| i2
== end2
);
2427 /* Walk carefully, as both tables may refer to the same register. */
2429 int cmp
= cmp_sys_reg(i1
, i2
);
2430 /* target-specific overrides generic entry. */
2432 err
= walk_one_sys_reg(i1
, &uind
, &total
);
2434 err
= walk_one_sys_reg(i2
, &uind
, &total
);
2439 if (cmp
<= 0 && ++i1
== end1
)
2441 if (cmp
>= 0 && ++i2
== end2
)
2447 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
2449 return ARRAY_SIZE(invariant_sys_regs
)
2451 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
2454 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
2459 /* Then give them all the invariant registers' indices. */
2460 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
2461 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
2466 err
= walk_sys_regs(vcpu
, uindices
);
2471 return write_demux_regids(uindices
);
2474 static int check_sysreg_table(const struct sys_reg_desc
*table
, unsigned int n
)
2478 for (i
= 1; i
< n
; i
++) {
2479 if (cmp_sys_reg(&table
[i
-1], &table
[i
]) >= 0) {
2480 kvm_err("sys_reg table %p out of order (%d)\n", table
, i
- 1);
2488 void kvm_sys_reg_table_init(void)
2491 struct sys_reg_desc clidr
;
2493 /* Make sure tables are unique and in order. */
2494 BUG_ON(check_sysreg_table(sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
)));
2495 BUG_ON(check_sysreg_table(cp14_regs
, ARRAY_SIZE(cp14_regs
)));
2496 BUG_ON(check_sysreg_table(cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
)));
2497 BUG_ON(check_sysreg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
2498 BUG_ON(check_sysreg_table(cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
)));
2499 BUG_ON(check_sysreg_table(invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
)));
2501 /* We abuse the reset function to overwrite the table itself. */
2502 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
2503 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
2506 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2508 * If software reads the Cache Type fields from Ctype1
2509 * upwards, once it has seen a value of 0b000, no caches
2510 * exist at further-out levels of the hierarchy. So, for
2511 * example, if Ctype3 is the first Cache Type field with a
2512 * value of 0b000, the values of Ctype4 to Ctype7 must be
2515 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
2516 cache_levels
= clidr
.val
;
2517 for (i
= 0; i
< 7; i
++)
2518 if (((cache_levels
>> (i
*3)) & 7) == 0)
2520 /* Clear all higher bits. */
2521 cache_levels
&= (1 << (i
*3))-1;
2525 * kvm_reset_sys_regs - sets system registers to reset value
2526 * @vcpu: The VCPU pointer
2528 * This function finds the right table above and sets the registers on the
2529 * virtual CPU struct to their architecturally defined reset values.
2531 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
2534 const struct sys_reg_desc
*table
;
2536 /* Catch someone adding a register without putting in reset entry. */
2537 memset(&vcpu
->arch
.ctxt
.sys_regs
, 0x42, sizeof(vcpu
->arch
.ctxt
.sys_regs
));
2539 /* Generic chip reset first (so target could override). */
2540 reset_sys_reg_descs(vcpu
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2542 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
2543 reset_sys_reg_descs(vcpu
, table
, num
);
2545 for (num
= 1; num
< NR_SYS_REGS
; num
++)
2546 if (__vcpu_sys_reg(vcpu
, num
) == 0x4242424242424242)
2547 panic("Didn't reset __vcpu_sys_reg(%zi)", num
);