2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
33 #include <asm/stacktrace.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly
;
48 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key
);
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX
]
56 [PERF_COUNT_HW_CACHE_OP_MAX
]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX
]
60 [PERF_COUNT_HW_CACHE_OP_MAX
]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64
x86_perf_event_update(struct perf_event
*event
)
70 struct hw_perf_event
*hwc
= &event
->hw
;
71 int shift
= 64 - x86_pmu
.cntval_bits
;
72 u64 prev_raw_count
, new_raw_count
;
76 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
87 prev_raw_count
= local64_read(&hwc
->prev_count
);
88 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
90 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
91 new_raw_count
) != prev_raw_count
)
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
102 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
105 local64_add(delta
, &event
->count
);
106 local64_sub(delta
, &hwc
->period_left
);
108 return new_raw_count
;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
116 struct hw_perf_event_extra
*reg
;
117 struct extra_reg
*er
;
119 reg
= &event
->hw
.extra_reg
;
121 if (!x86_pmu
.extra_regs
)
124 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
125 if (er
->event
!= (config
& er
->config_mask
))
127 if (event
->attr
.config1
& ~er
->valid_mask
)
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er
->extra_msr_access
)
134 reg
->config
= event
->attr
.config1
;
141 static atomic_t active_events
;
142 static atomic_t pmc_refcount
;
143 static DEFINE_MUTEX(pmc_reserve_mutex
);
145 #ifdef CONFIG_X86_LOCAL_APIC
147 static bool reserve_pmc_hardware(void)
151 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
156 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
164 for (i
--; i
>= 0; i
--)
165 release_evntsel_nmi(x86_pmu_config_addr(i
));
167 i
= x86_pmu
.num_counters
;
170 for (i
--; i
>= 0; i
--)
171 release_perfctr_nmi(x86_pmu_event_addr(i
));
176 static void release_pmc_hardware(void)
180 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i
));
182 release_evntsel_nmi(x86_pmu_config_addr(i
));
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
193 static bool check_hw_exists(void)
195 u64 val
, val_fail
= -1, val_new
= ~0;
196 int i
, reg
, reg_fail
= -1, ret
= 0;
201 * Check to see if the BIOS enabled any of the counters, if so
204 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
205 reg
= x86_pmu_config_addr(i
);
206 ret
= rdmsrl_safe(reg
, &val
);
209 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
) {
218 if (x86_pmu
.num_counters_fixed
) {
219 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
220 ret
= rdmsrl_safe(reg
, &val
);
223 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
224 if (val
& (0x03 << i
*4)) {
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
238 if (reg_safe
== -1) {
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 reg
= x86_pmu_event_addr(reg_safe
);
249 if (rdmsrl_safe(reg
, &val
))
252 ret
= wrmsrl_safe(reg
, val
);
253 ret
|= rdmsrl_safe(reg
, &val_new
);
254 if (ret
|| val
!= val_new
)
258 * We still allow the PMU driver to operate:
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR
)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
280 static void hw_perf_event_destroy(struct perf_event
*event
)
282 x86_release_hardware();
283 atomic_dec(&active_events
);
286 void hw_perf_lbr_event_destroy(struct perf_event
*event
)
288 hw_perf_event_destroy(event
);
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr
);
294 static inline int x86_pmu_initialized(void)
296 return x86_pmu
.handle_irq
!= NULL
;
300 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
302 struct perf_event_attr
*attr
= &event
->attr
;
303 unsigned int cache_type
, cache_op
, cache_result
;
306 config
= attr
->config
;
308 cache_type
= (config
>> 0) & 0xff;
309 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
311 cache_type
= array_index_nospec(cache_type
, PERF_COUNT_HW_CACHE_MAX
);
313 cache_op
= (config
>> 8) & 0xff;
314 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
316 cache_op
= array_index_nospec(cache_op
, PERF_COUNT_HW_CACHE_OP_MAX
);
318 cache_result
= (config
>> 16) & 0xff;
319 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
321 cache_result
= array_index_nospec(cache_result
, PERF_COUNT_HW_CACHE_RESULT_MAX
);
323 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
332 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
333 return x86_pmu_extra_regs(val
, event
);
336 int x86_reserve_hardware(void)
340 if (!atomic_inc_not_zero(&pmc_refcount
)) {
341 mutex_lock(&pmc_reserve_mutex
);
342 if (atomic_read(&pmc_refcount
) == 0) {
343 if (!reserve_pmc_hardware())
346 reserve_ds_buffers();
349 atomic_inc(&pmc_refcount
);
350 mutex_unlock(&pmc_reserve_mutex
);
356 void x86_release_hardware(void)
358 if (atomic_dec_and_mutex_lock(&pmc_refcount
, &pmc_reserve_mutex
)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex
);
366 * Check if we can create event of a certain type (that no conflicting events
369 int x86_add_exclusive(unsigned int what
)
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
377 if (x86_pmu
.lbr_pt_coexist
&& what
== x86_lbr_exclusive_pt
)
380 if (!atomic_inc_not_zero(&x86_pmu
.lbr_exclusive
[what
])) {
381 mutex_lock(&pmc_reserve_mutex
);
382 for (i
= 0; i
< ARRAY_SIZE(x86_pmu
.lbr_exclusive
); i
++) {
383 if (i
!= what
&& atomic_read(&x86_pmu
.lbr_exclusive
[i
]))
386 atomic_inc(&x86_pmu
.lbr_exclusive
[what
]);
387 mutex_unlock(&pmc_reserve_mutex
);
390 atomic_inc(&active_events
);
394 mutex_unlock(&pmc_reserve_mutex
);
398 void x86_del_exclusive(unsigned int what
)
400 if (x86_pmu
.lbr_pt_coexist
&& what
== x86_lbr_exclusive_pt
)
403 atomic_dec(&x86_pmu
.lbr_exclusive
[what
]);
404 atomic_dec(&active_events
);
407 int x86_setup_perfctr(struct perf_event
*event
)
409 struct perf_event_attr
*attr
= &event
->attr
;
410 struct hw_perf_event
*hwc
= &event
->hw
;
413 if (!is_sampling_event(event
)) {
414 hwc
->sample_period
= x86_pmu
.max_period
;
415 hwc
->last_period
= hwc
->sample_period
;
416 local64_set(&hwc
->period_left
, hwc
->sample_period
);
419 if (attr
->type
== PERF_TYPE_RAW
)
420 return x86_pmu_extra_regs(event
->attr
.config
, event
);
422 if (attr
->type
== PERF_TYPE_HW_CACHE
)
423 return set_ext_hw_attr(hwc
, event
);
425 if (attr
->config
>= x86_pmu
.max_events
)
428 attr
->config
= array_index_nospec((unsigned long)attr
->config
, x86_pmu
.max_events
);
433 config
= x86_pmu
.event_map(attr
->config
);
444 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
445 !attr
->freq
&& hwc
->sample_period
== 1) {
446 /* BTS is not supported by this architecture. */
447 if (!x86_pmu
.bts_active
)
450 /* BTS is currently only allowed for user-mode. */
451 if (!attr
->exclude_kernel
)
454 /* disallow bts if conflicting events are present */
455 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
458 event
->destroy
= hw_perf_lbr_event_destroy
;
461 hwc
->config
|= config
;
467 * check that branch_sample_type is compatible with
468 * settings needed for precise_ip > 1 which implies
469 * using the LBR to capture ALL taken branches at the
470 * priv levels of the measurement
472 static inline int precise_br_compat(struct perf_event
*event
)
474 u64 m
= event
->attr
.branch_sample_type
;
477 /* must capture all branches */
478 if (!(m
& PERF_SAMPLE_BRANCH_ANY
))
481 m
&= PERF_SAMPLE_BRANCH_KERNEL
| PERF_SAMPLE_BRANCH_USER
;
483 if (!event
->attr
.exclude_user
)
484 b
|= PERF_SAMPLE_BRANCH_USER
;
486 if (!event
->attr
.exclude_kernel
)
487 b
|= PERF_SAMPLE_BRANCH_KERNEL
;
490 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
496 int x86_pmu_max_precise(void)
500 /* Support for constant skid */
501 if (x86_pmu
.pebs_active
&& !x86_pmu
.pebs_broken
) {
504 /* Support for IP fixup */
505 if (x86_pmu
.lbr_nr
|| x86_pmu
.intel_cap
.pebs_format
>= 2)
508 if (x86_pmu
.pebs_prec_dist
)
514 int x86_pmu_hw_config(struct perf_event
*event
)
516 if (event
->attr
.precise_ip
) {
517 int precise
= x86_pmu_max_precise();
519 if (event
->attr
.precise_ip
> precise
)
522 /* There's no sense in having PEBS for non sampling events: */
523 if (!is_sampling_event(event
))
527 * check that PEBS LBR correction does not conflict with
528 * whatever the user is asking with attr->branch_sample_type
530 if (event
->attr
.precise_ip
> 1 && x86_pmu
.intel_cap
.pebs_format
< 2) {
531 u64
*br_type
= &event
->attr
.branch_sample_type
;
533 if (has_branch_stack(event
)) {
534 if (!precise_br_compat(event
))
537 /* branch_sample_type is compatible */
541 * user did not specify branch_sample_type
543 * For PEBS fixups, we capture all
544 * the branches at the priv level of the
547 *br_type
= PERF_SAMPLE_BRANCH_ANY
;
549 if (!event
->attr
.exclude_user
)
550 *br_type
|= PERF_SAMPLE_BRANCH_USER
;
552 if (!event
->attr
.exclude_kernel
)
553 *br_type
|= PERF_SAMPLE_BRANCH_KERNEL
;
557 if (event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_CALL_STACK
)
558 event
->attach_state
|= PERF_ATTACH_TASK_DATA
;
562 * (keep 'enabled' bit clear for now)
564 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
567 * Count user and OS events unless requested not to
569 if (!event
->attr
.exclude_user
)
570 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
571 if (!event
->attr
.exclude_kernel
)
572 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
574 if (event
->attr
.type
== PERF_TYPE_RAW
)
575 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
577 if (event
->attr
.sample_period
&& x86_pmu
.limit_period
) {
578 if (x86_pmu
.limit_period(event
, event
->attr
.sample_period
) >
579 event
->attr
.sample_period
)
583 return x86_setup_perfctr(event
);
587 * Setup the hardware configuration for a given attr_type
589 static int __x86_pmu_event_init(struct perf_event
*event
)
593 if (!x86_pmu_initialized())
596 err
= x86_reserve_hardware();
600 atomic_inc(&active_events
);
601 event
->destroy
= hw_perf_event_destroy
;
604 event
->hw
.last_cpu
= -1;
605 event
->hw
.last_tag
= ~0ULL;
608 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
609 event
->hw
.branch_reg
.idx
= EXTRA_REG_NONE
;
611 return x86_pmu
.hw_config(event
);
614 void x86_pmu_disable_all(void)
616 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
619 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
622 if (!test_bit(idx
, cpuc
->active_mask
))
624 rdmsrl(x86_pmu_config_addr(idx
), val
);
625 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
627 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
628 wrmsrl(x86_pmu_config_addr(idx
), val
);
633 * There may be PMI landing after enabled=0. The PMI hitting could be before or
636 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637 * It will not be re-enabled in the NMI handler again, because enabled=0. After
638 * handling the NMI, disable_all will be called, which will not change the
639 * state either. If PMI hits after disable_all, the PMU is already disabled
640 * before entering NMI handler. The NMI handler will not change the state
643 * So either situation is harmless.
645 static void x86_pmu_disable(struct pmu
*pmu
)
647 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
649 if (!x86_pmu_initialized())
659 x86_pmu
.disable_all();
662 void x86_pmu_enable_all(int added
)
664 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
667 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
668 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
670 if (!test_bit(idx
, cpuc
->active_mask
))
673 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
677 static struct pmu pmu
;
679 static inline int is_x86_event(struct perf_event
*event
)
681 return event
->pmu
== &pmu
;
685 * Event scheduler state:
687 * Assign events iterating over all events and counters, beginning
688 * with events with least weights first. Keep the current iterator
689 * state in struct sched_state.
693 int event
; /* event index */
694 int counter
; /* counter index */
695 int unassigned
; /* number of events to be assigned left */
696 int nr_gp
; /* number of GP counters used */
697 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
700 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
701 #define SCHED_STATES_MAX 2
708 struct event_constraint
**constraints
;
709 struct sched_state state
;
710 struct sched_state saved
[SCHED_STATES_MAX
];
714 * Initialize interator that runs through all events and counters.
716 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**constraints
,
717 int num
, int wmin
, int wmax
, int gpmax
)
721 memset(sched
, 0, sizeof(*sched
));
722 sched
->max_events
= num
;
723 sched
->max_weight
= wmax
;
724 sched
->max_gp
= gpmax
;
725 sched
->constraints
= constraints
;
727 for (idx
= 0; idx
< num
; idx
++) {
728 if (constraints
[idx
]->weight
== wmin
)
732 sched
->state
.event
= idx
; /* start with min weight */
733 sched
->state
.weight
= wmin
;
734 sched
->state
.unassigned
= num
;
737 static void perf_sched_save_state(struct perf_sched
*sched
)
739 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
742 sched
->saved
[sched
->saved_states
] = sched
->state
;
743 sched
->saved_states
++;
746 static bool perf_sched_restore_state(struct perf_sched
*sched
)
748 if (!sched
->saved_states
)
751 sched
->saved_states
--;
752 sched
->state
= sched
->saved
[sched
->saved_states
];
754 /* continue with next counter: */
755 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
761 * Select a counter for the current event to schedule. Return true on
764 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
766 struct event_constraint
*c
;
769 if (!sched
->state
.unassigned
)
772 if (sched
->state
.event
>= sched
->max_events
)
775 c
= sched
->constraints
[sched
->state
.event
];
776 /* Prefer fixed purpose counters */
777 if (c
->idxmsk64
& (~0ULL << INTEL_PMC_IDX_FIXED
)) {
778 idx
= INTEL_PMC_IDX_FIXED
;
779 for_each_set_bit_from(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
780 if (!__test_and_set_bit(idx
, sched
->state
.used
))
785 /* Grab the first unused counter starting with idx */
786 idx
= sched
->state
.counter
;
787 for_each_set_bit_from(idx
, c
->idxmsk
, INTEL_PMC_IDX_FIXED
) {
788 if (!__test_and_set_bit(idx
, sched
->state
.used
)) {
789 if (sched
->state
.nr_gp
++ >= sched
->max_gp
)
799 sched
->state
.counter
= idx
;
802 perf_sched_save_state(sched
);
807 static bool perf_sched_find_counter(struct perf_sched
*sched
)
809 while (!__perf_sched_find_counter(sched
)) {
810 if (!perf_sched_restore_state(sched
))
818 * Go through all unassigned events and find the next one to schedule.
819 * Take events with the least weight first. Return true on success.
821 static bool perf_sched_next_event(struct perf_sched
*sched
)
823 struct event_constraint
*c
;
825 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
830 sched
->state
.event
++;
831 if (sched
->state
.event
>= sched
->max_events
) {
833 sched
->state
.event
= 0;
834 sched
->state
.weight
++;
835 if (sched
->state
.weight
> sched
->max_weight
)
838 c
= sched
->constraints
[sched
->state
.event
];
839 } while (c
->weight
!= sched
->state
.weight
);
841 sched
->state
.counter
= 0; /* start with first counter */
847 * Assign a counter for each event.
849 int perf_assign_events(struct event_constraint
**constraints
, int n
,
850 int wmin
, int wmax
, int gpmax
, int *assign
)
852 struct perf_sched sched
;
854 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
, gpmax
);
857 if (!perf_sched_find_counter(&sched
))
860 assign
[sched
.state
.event
] = sched
.state
.counter
;
861 } while (perf_sched_next_event(&sched
));
863 return sched
.state
.unassigned
;
865 EXPORT_SYMBOL_GPL(perf_assign_events
);
867 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
869 struct event_constraint
*c
;
870 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
871 struct perf_event
*e
;
872 int i
, wmin
, wmax
, unsched
= 0;
873 struct hw_perf_event
*hwc
;
875 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
877 if (x86_pmu
.start_scheduling
)
878 x86_pmu
.start_scheduling(cpuc
);
880 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
881 cpuc
->event_constraint
[i
] = NULL
;
882 c
= x86_pmu
.get_event_constraints(cpuc
, i
, cpuc
->event_list
[i
]);
883 cpuc
->event_constraint
[i
] = c
;
885 wmin
= min(wmin
, c
->weight
);
886 wmax
= max(wmax
, c
->weight
);
890 * fastpath, try to reuse previous register
892 for (i
= 0; i
< n
; i
++) {
893 hwc
= &cpuc
->event_list
[i
]->hw
;
894 c
= cpuc
->event_constraint
[i
];
900 /* constraint still honored */
901 if (!test_bit(hwc
->idx
, c
->idxmsk
))
904 /* not already used */
905 if (test_bit(hwc
->idx
, used_mask
))
908 __set_bit(hwc
->idx
, used_mask
);
910 assign
[i
] = hwc
->idx
;
915 int gpmax
= x86_pmu
.num_counters
;
918 * Do not allow scheduling of more than half the available
921 * This helps avoid counter starvation of sibling thread by
922 * ensuring at most half the counters cannot be in exclusive
923 * mode. There is no designated counters for the limits. Any
924 * N/2 counters can be used. This helps with events with
925 * specific counter constraints.
927 if (is_ht_workaround_enabled() && !cpuc
->is_fake
&&
928 READ_ONCE(cpuc
->excl_cntrs
->exclusive_present
))
931 unsched
= perf_assign_events(cpuc
->event_constraint
, n
, wmin
,
932 wmax
, gpmax
, assign
);
936 * In case of success (unsched = 0), mark events as committed,
937 * so we do not put_constraint() in case new events are added
938 * and fail to be scheduled
940 * We invoke the lower level commit callback to lock the resource
942 * We do not need to do all of this in case we are called to
943 * validate an event group (assign == NULL)
945 if (!unsched
&& assign
) {
946 for (i
= 0; i
< n
; i
++) {
947 e
= cpuc
->event_list
[i
];
948 e
->hw
.flags
|= PERF_X86_EVENT_COMMITTED
;
949 if (x86_pmu
.commit_scheduling
)
950 x86_pmu
.commit_scheduling(cpuc
, i
, assign
[i
]);
953 for (i
= 0; i
< n
; i
++) {
954 e
= cpuc
->event_list
[i
];
956 * do not put_constraint() on comitted events,
957 * because they are good to go
959 if ((e
->hw
.flags
& PERF_X86_EVENT_COMMITTED
))
963 * release events that failed scheduling
965 if (x86_pmu
.put_event_constraints
)
966 x86_pmu
.put_event_constraints(cpuc
, e
);
970 if (x86_pmu
.stop_scheduling
)
971 x86_pmu
.stop_scheduling(cpuc
);
973 return unsched
? -EINVAL
: 0;
977 * dogrp: true if must collect siblings events (group)
978 * returns total number of events and error code
980 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
982 struct perf_event
*event
;
985 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
987 /* current number of events already accepted */
990 if (is_x86_event(leader
)) {
993 cpuc
->event_list
[n
] = leader
;
999 for_each_sibling_event(event
, leader
) {
1000 if (!is_x86_event(event
) ||
1001 event
->state
<= PERF_EVENT_STATE_OFF
)
1007 cpuc
->event_list
[n
] = event
;
1013 static inline void x86_assign_hw_event(struct perf_event
*event
,
1014 struct cpu_hw_events
*cpuc
, int i
)
1016 struct hw_perf_event
*hwc
= &event
->hw
;
1018 hwc
->idx
= cpuc
->assign
[i
];
1019 hwc
->last_cpu
= smp_processor_id();
1020 hwc
->last_tag
= ++cpuc
->tags
[i
];
1022 if (hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
) {
1023 hwc
->config_base
= 0;
1024 hwc
->event_base
= 0;
1025 } else if (hwc
->idx
>= INTEL_PMC_IDX_FIXED
) {
1026 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
1027 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- INTEL_PMC_IDX_FIXED
);
1028 hwc
->event_base_rdpmc
= (hwc
->idx
- INTEL_PMC_IDX_FIXED
) | 1<<30;
1030 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
1031 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
1032 hwc
->event_base_rdpmc
= x86_pmu_rdpmc_index(hwc
->idx
);
1036 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
1037 struct cpu_hw_events
*cpuc
,
1040 return hwc
->idx
== cpuc
->assign
[i
] &&
1041 hwc
->last_cpu
== smp_processor_id() &&
1042 hwc
->last_tag
== cpuc
->tags
[i
];
1045 static void x86_pmu_start(struct perf_event
*event
, int flags
);
1047 static void x86_pmu_enable(struct pmu
*pmu
)
1049 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1050 struct perf_event
*event
;
1051 struct hw_perf_event
*hwc
;
1052 int i
, added
= cpuc
->n_added
;
1054 if (!x86_pmu_initialized())
1060 if (cpuc
->n_added
) {
1061 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
1063 * apply assignment obtained either from
1064 * hw_perf_group_sched_in() or x86_pmu_enable()
1066 * step1: save events moving to new counters
1068 for (i
= 0; i
< n_running
; i
++) {
1069 event
= cpuc
->event_list
[i
];
1073 * we can avoid reprogramming counter if:
1074 * - assigned same counter as last time
1075 * - running on same CPU as last time
1076 * - no other event has used the counter since
1078 if (hwc
->idx
== -1 ||
1079 match_prev_assignment(hwc
, cpuc
, i
))
1083 * Ensure we don't accidentally enable a stopped
1084 * counter simply because we rescheduled.
1086 if (hwc
->state
& PERF_HES_STOPPED
)
1087 hwc
->state
|= PERF_HES_ARCH
;
1089 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1093 * step2: reprogram moved events into new counters
1095 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1096 event
= cpuc
->event_list
[i
];
1099 if (!match_prev_assignment(hwc
, cpuc
, i
))
1100 x86_assign_hw_event(event
, cpuc
, i
);
1101 else if (i
< n_running
)
1104 if (hwc
->state
& PERF_HES_ARCH
)
1107 x86_pmu_start(event
, PERF_EF_RELOAD
);
1110 perf_events_lapic_init();
1116 x86_pmu
.enable_all(added
);
1119 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1122 * Set the next IRQ period, based on the hwc->period_left value.
1123 * To be called with the event disabled in hw:
1125 int x86_perf_event_set_period(struct perf_event
*event
)
1127 struct hw_perf_event
*hwc
= &event
->hw
;
1128 s64 left
= local64_read(&hwc
->period_left
);
1129 s64 period
= hwc
->sample_period
;
1130 int ret
= 0, idx
= hwc
->idx
;
1132 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
1136 * If we are way outside a reasonable range then just skip forward:
1138 if (unlikely(left
<= -period
)) {
1140 local64_set(&hwc
->period_left
, left
);
1141 hwc
->last_period
= period
;
1145 if (unlikely(left
<= 0)) {
1147 local64_set(&hwc
->period_left
, left
);
1148 hwc
->last_period
= period
;
1152 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1154 if (unlikely(left
< 2))
1157 if (left
> x86_pmu
.max_period
)
1158 left
= x86_pmu
.max_period
;
1160 if (x86_pmu
.limit_period
)
1161 left
= x86_pmu
.limit_period(event
, left
);
1163 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1166 * The hw event starts counting from this event offset,
1167 * mark it to be able to extra future deltas:
1169 local64_set(&hwc
->prev_count
, (u64
)-left
);
1171 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
1174 * Due to erratum on certan cpu we need
1175 * a second write to be sure the register
1176 * is updated properly
1178 if (x86_pmu
.perfctr_second_write
) {
1179 wrmsrl(hwc
->event_base
,
1180 (u64
)(-left
) & x86_pmu
.cntval_mask
);
1183 perf_event_update_userpage(event
);
1188 void x86_pmu_enable_event(struct perf_event
*event
)
1190 if (__this_cpu_read(cpu_hw_events
.enabled
))
1191 __x86_pmu_enable_event(&event
->hw
,
1192 ARCH_PERFMON_EVENTSEL_ENABLE
);
1196 * Add a single event to the PMU.
1198 * The event is added to the group of enabled events
1199 * but only if it can be scehduled with existing events.
1201 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1203 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1204 struct hw_perf_event
*hwc
;
1205 int assign
[X86_PMC_IDX_MAX
];
1210 n0
= cpuc
->n_events
;
1211 ret
= n
= collect_events(cpuc
, event
, false);
1215 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1216 if (!(flags
& PERF_EF_START
))
1217 hwc
->state
|= PERF_HES_ARCH
;
1220 * If group events scheduling transaction was started,
1221 * skip the schedulability test here, it will be performed
1222 * at commit time (->commit_txn) as a whole.
1224 * If commit fails, we'll call ->del() on all events
1225 * for which ->add() was called.
1227 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1230 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1234 * copy new assignment, now we know it is possible
1235 * will be used by hw_perf_enable()
1237 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1241 * Commit the collect_events() state. See x86_pmu_del() and
1245 cpuc
->n_added
+= n
- n0
;
1246 cpuc
->n_txn
+= n
- n0
;
1250 * This is before x86_pmu_enable() will call x86_pmu_start(),
1251 * so we enable LBRs before an event needs them etc..
1261 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1263 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1264 int idx
= event
->hw
.idx
;
1266 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1269 if (WARN_ON_ONCE(idx
== -1))
1272 if (flags
& PERF_EF_RELOAD
) {
1273 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1274 x86_perf_event_set_period(event
);
1277 event
->hw
.state
= 0;
1279 cpuc
->events
[idx
] = event
;
1280 __set_bit(idx
, cpuc
->active_mask
);
1281 __set_bit(idx
, cpuc
->running
);
1282 x86_pmu
.enable(event
);
1283 perf_event_update_userpage(event
);
1286 void perf_event_print_debug(void)
1288 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1290 struct cpu_hw_events
*cpuc
;
1291 unsigned long flags
;
1294 if (!x86_pmu
.num_counters
)
1297 local_irq_save(flags
);
1299 cpu
= smp_processor_id();
1300 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1302 if (x86_pmu
.version
>= 2) {
1303 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1304 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1305 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1306 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1309 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1310 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1311 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1312 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1313 if (x86_pmu
.pebs_constraints
) {
1314 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1315 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1317 if (x86_pmu
.lbr_nr
) {
1318 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
1319 pr_info("CPU#%d: debugctl: %016llx\n", cpu
, debugctl
);
1322 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1324 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1325 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1326 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1328 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1330 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1331 cpu
, idx
, pmc_ctrl
);
1332 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1333 cpu
, idx
, pmc_count
);
1334 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1335 cpu
, idx
, prev_left
);
1337 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1338 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1340 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1341 cpu
, idx
, pmc_count
);
1343 local_irq_restore(flags
);
1346 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1348 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1349 struct hw_perf_event
*hwc
= &event
->hw
;
1351 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1352 x86_pmu
.disable(event
);
1353 cpuc
->events
[hwc
->idx
] = NULL
;
1354 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1355 hwc
->state
|= PERF_HES_STOPPED
;
1358 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1360 * Drain the remaining delta count out of a event
1361 * that we are disabling:
1363 x86_perf_event_update(event
);
1364 hwc
->state
|= PERF_HES_UPTODATE
;
1368 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1370 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1374 * event is descheduled
1376 event
->hw
.flags
&= ~PERF_X86_EVENT_COMMITTED
;
1379 * If we're called during a txn, we only need to undo x86_pmu.add.
1380 * The events never got scheduled and ->cancel_txn will truncate
1383 * XXX assumes any ->del() called during a TXN will only be on
1384 * an event added during that same TXN.
1386 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1390 * Not a TXN, therefore cleanup properly.
1392 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1394 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1395 if (event
== cpuc
->event_list
[i
])
1399 if (WARN_ON_ONCE(i
== cpuc
->n_events
)) /* called ->del() without ->add() ? */
1402 /* If we have a newly added event; make sure to decrease n_added. */
1403 if (i
>= cpuc
->n_events
- cpuc
->n_added
)
1406 if (x86_pmu
.put_event_constraints
)
1407 x86_pmu
.put_event_constraints(cpuc
, event
);
1409 /* Delete the array entry. */
1410 while (++i
< cpuc
->n_events
) {
1411 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1412 cpuc
->event_constraint
[i
-1] = cpuc
->event_constraint
[i
];
1416 perf_event_update_userpage(event
);
1421 * This is after x86_pmu_stop(); so we disable LBRs after any
1422 * event can need them etc..
1428 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1430 struct perf_sample_data data
;
1431 struct cpu_hw_events
*cpuc
;
1432 struct perf_event
*event
;
1433 int idx
, handled
= 0;
1436 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1439 * Some chipsets need to unmask the LVTPC in a particular spot
1440 * inside the nmi handler. As a result, the unmasking was pushed
1441 * into all the nmi handlers.
1443 * This generic handler doesn't seem to have any issues where the
1444 * unmasking occurs so it was left at the top.
1446 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1448 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1449 if (!test_bit(idx
, cpuc
->active_mask
)) {
1451 * Though we deactivated the counter some cpus
1452 * might still deliver spurious interrupts still
1453 * in flight. Catch them:
1455 if (__test_and_clear_bit(idx
, cpuc
->running
))
1460 event
= cpuc
->events
[idx
];
1462 val
= x86_perf_event_update(event
);
1463 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1470 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1472 if (!x86_perf_event_set_period(event
))
1475 if (perf_event_overflow(event
, &data
, regs
))
1476 x86_pmu_stop(event
, 0);
1480 inc_irq_stat(apic_perf_irqs
);
1485 void perf_events_lapic_init(void)
1487 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1491 * Always use NMI for PMU
1493 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1497 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1504 * All PMUs/events that share this PMI handler should make sure to
1505 * increment active_events for their events.
1507 if (!atomic_read(&active_events
))
1510 start_clock
= sched_clock();
1511 ret
= x86_pmu
.handle_irq(regs
);
1512 finish_clock
= sched_clock();
1514 perf_sample_event_took(finish_clock
- start_clock
);
1518 NOKPROBE_SYMBOL(perf_event_nmi_handler
);
1520 struct event_constraint emptyconstraint
;
1521 struct event_constraint unconstrained
;
1523 static int x86_pmu_prepare_cpu(unsigned int cpu
)
1525 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1528 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++)
1529 cpuc
->kfree_on_online
[i
] = NULL
;
1530 if (x86_pmu
.cpu_prepare
)
1531 return x86_pmu
.cpu_prepare(cpu
);
1535 static int x86_pmu_dead_cpu(unsigned int cpu
)
1537 if (x86_pmu
.cpu_dead
)
1538 x86_pmu
.cpu_dead(cpu
);
1542 static int x86_pmu_online_cpu(unsigned int cpu
)
1544 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1547 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++) {
1548 kfree(cpuc
->kfree_on_online
[i
]);
1549 cpuc
->kfree_on_online
[i
] = NULL
;
1554 static int x86_pmu_starting_cpu(unsigned int cpu
)
1556 if (x86_pmu
.cpu_starting
)
1557 x86_pmu
.cpu_starting(cpu
);
1561 static int x86_pmu_dying_cpu(unsigned int cpu
)
1563 if (x86_pmu
.cpu_dying
)
1564 x86_pmu
.cpu_dying(cpu
);
1568 static void __init
pmu_check_apic(void)
1570 if (boot_cpu_has(X86_FEATURE_APIC
))
1574 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1575 pr_info("no hardware sampling interrupt available.\n");
1578 * If we have a PMU initialized but no APIC
1579 * interrupts, we cannot sample hardware
1580 * events (user-space has to fall back and
1581 * sample via a hrtimer based software event):
1583 pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
1587 static struct attribute_group x86_pmu_format_group
= {
1593 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1594 * out of events_attr attributes.
1596 static void __init
filter_events(struct attribute
**attrs
)
1598 struct device_attribute
*d
;
1599 struct perf_pmu_events_attr
*pmu_attr
;
1603 for (i
= 0; attrs
[i
]; i
++) {
1604 d
= (struct device_attribute
*)attrs
[i
];
1605 pmu_attr
= container_of(d
, struct perf_pmu_events_attr
, attr
);
1607 if (pmu_attr
->event_str
)
1609 if (x86_pmu
.event_map(i
+ offset
))
1612 for (j
= i
; attrs
[j
]; j
++)
1613 attrs
[j
] = attrs
[j
+ 1];
1615 /* Check the shifted attr. */
1619 * event_map() is index based, the attrs array is organized
1620 * by increasing event index. If we shift the events, then
1621 * we need to compensate for the event_map(), otherwise
1622 * we are looking up the wrong event in the map
1628 /* Merge two pointer arrays */
1629 __init
struct attribute
**merge_attr(struct attribute
**a
, struct attribute
**b
)
1631 struct attribute
**new;
1634 for (j
= 0; a
[j
]; j
++)
1636 for (i
= 0; b
[i
]; i
++)
1640 new = kmalloc_array(j
, sizeof(struct attribute
*), GFP_KERNEL
);
1645 for (i
= 0; a
[i
]; i
++)
1647 for (i
= 0; b
[i
]; i
++)
1654 ssize_t
events_sysfs_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
1656 struct perf_pmu_events_attr
*pmu_attr
= \
1657 container_of(attr
, struct perf_pmu_events_attr
, attr
);
1658 u64 config
= x86_pmu
.event_map(pmu_attr
->id
);
1660 /* string trumps id */
1661 if (pmu_attr
->event_str
)
1662 return sprintf(page
, "%s", pmu_attr
->event_str
);
1664 return x86_pmu
.events_sysfs_show(page
, config
);
1666 EXPORT_SYMBOL_GPL(events_sysfs_show
);
1668 ssize_t
events_ht_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1671 struct perf_pmu_events_ht_attr
*pmu_attr
=
1672 container_of(attr
, struct perf_pmu_events_ht_attr
, attr
);
1675 * Report conditional events depending on Hyper-Threading.
1677 * This is overly conservative as usually the HT special
1678 * handling is not needed if the other CPU thread is idle.
1680 * Note this does not (and cannot) handle the case when thread
1681 * siblings are invisible, for example with virtualization
1682 * if they are owned by some other guest. The user tool
1683 * has to re-read when a thread sibling gets onlined later.
1685 return sprintf(page
, "%s",
1686 topology_max_smt_threads() > 1 ?
1687 pmu_attr
->event_str_ht
:
1688 pmu_attr
->event_str_noht
);
1691 EVENT_ATTR(cpu
-cycles
, CPU_CYCLES
);
1692 EVENT_ATTR(instructions
, INSTRUCTIONS
);
1693 EVENT_ATTR(cache
-references
, CACHE_REFERENCES
);
1694 EVENT_ATTR(cache
-misses
, CACHE_MISSES
);
1695 EVENT_ATTR(branch
-instructions
, BRANCH_INSTRUCTIONS
);
1696 EVENT_ATTR(branch
-misses
, BRANCH_MISSES
);
1697 EVENT_ATTR(bus
-cycles
, BUS_CYCLES
);
1698 EVENT_ATTR(stalled
-cycles
-frontend
, STALLED_CYCLES_FRONTEND
);
1699 EVENT_ATTR(stalled
-cycles
-backend
, STALLED_CYCLES_BACKEND
);
1700 EVENT_ATTR(ref
-cycles
, REF_CPU_CYCLES
);
1702 static struct attribute
*empty_attrs
;
1704 static struct attribute
*events_attr
[] = {
1705 EVENT_PTR(CPU_CYCLES
),
1706 EVENT_PTR(INSTRUCTIONS
),
1707 EVENT_PTR(CACHE_REFERENCES
),
1708 EVENT_PTR(CACHE_MISSES
),
1709 EVENT_PTR(BRANCH_INSTRUCTIONS
),
1710 EVENT_PTR(BRANCH_MISSES
),
1711 EVENT_PTR(BUS_CYCLES
),
1712 EVENT_PTR(STALLED_CYCLES_FRONTEND
),
1713 EVENT_PTR(STALLED_CYCLES_BACKEND
),
1714 EVENT_PTR(REF_CPU_CYCLES
),
1718 static struct attribute_group x86_pmu_events_group
= {
1720 .attrs
= events_attr
,
1723 ssize_t
x86_event_sysfs_show(char *page
, u64 config
, u64 event
)
1725 u64 umask
= (config
& ARCH_PERFMON_EVENTSEL_UMASK
) >> 8;
1726 u64 cmask
= (config
& ARCH_PERFMON_EVENTSEL_CMASK
) >> 24;
1727 bool edge
= (config
& ARCH_PERFMON_EVENTSEL_EDGE
);
1728 bool pc
= (config
& ARCH_PERFMON_EVENTSEL_PIN_CONTROL
);
1729 bool any
= (config
& ARCH_PERFMON_EVENTSEL_ANY
);
1730 bool inv
= (config
& ARCH_PERFMON_EVENTSEL_INV
);
1734 * We have whole page size to spend and just little data
1735 * to write, so we can safely use sprintf.
1737 ret
= sprintf(page
, "event=0x%02llx", event
);
1740 ret
+= sprintf(page
+ ret
, ",umask=0x%02llx", umask
);
1743 ret
+= sprintf(page
+ ret
, ",edge");
1746 ret
+= sprintf(page
+ ret
, ",pc");
1749 ret
+= sprintf(page
+ ret
, ",any");
1752 ret
+= sprintf(page
+ ret
, ",inv");
1755 ret
+= sprintf(page
+ ret
, ",cmask=0x%02llx", cmask
);
1757 ret
+= sprintf(page
+ ret
, "\n");
1762 static struct attribute_group x86_pmu_attr_group
;
1763 static struct attribute_group x86_pmu_caps_group
;
1765 static int __init
init_hw_perf_events(void)
1767 struct x86_pmu_quirk
*quirk
;
1770 pr_info("Performance Events: ");
1772 switch (boot_cpu_data
.x86_vendor
) {
1773 case X86_VENDOR_INTEL
:
1774 err
= intel_pmu_init();
1776 case X86_VENDOR_AMD
:
1777 err
= amd_pmu_init();
1783 pr_cont("no PMU driver, software events only.\n");
1789 /* sanity check that the hardware exists or is emulated */
1790 if (!check_hw_exists())
1793 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1795 x86_pmu
.attr_rdpmc
= 1; /* enable userspace RDPMC usage by default */
1797 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1800 if (!x86_pmu
.intel_ctrl
)
1801 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1803 perf_events_lapic_init();
1804 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1806 unconstrained
= (struct event_constraint
)
1807 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1808 0, x86_pmu
.num_counters
, 0, 0);
1810 x86_pmu_format_group
.attrs
= x86_pmu
.format_attrs
;
1812 if (x86_pmu
.caps_attrs
) {
1813 struct attribute
**tmp
;
1815 tmp
= merge_attr(x86_pmu_caps_group
.attrs
, x86_pmu
.caps_attrs
);
1817 x86_pmu_caps_group
.attrs
= tmp
;
1820 if (x86_pmu
.event_attrs
)
1821 x86_pmu_events_group
.attrs
= x86_pmu
.event_attrs
;
1823 if (!x86_pmu
.events_sysfs_show
)
1824 x86_pmu_events_group
.attrs
= &empty_attrs
;
1826 filter_events(x86_pmu_events_group
.attrs
);
1828 if (x86_pmu
.cpu_events
) {
1829 struct attribute
**tmp
;
1831 tmp
= merge_attr(x86_pmu_events_group
.attrs
, x86_pmu
.cpu_events
);
1833 x86_pmu_events_group
.attrs
= tmp
;
1836 if (x86_pmu
.attrs
) {
1837 struct attribute
**tmp
;
1839 tmp
= merge_attr(x86_pmu_attr_group
.attrs
, x86_pmu
.attrs
);
1841 x86_pmu_attr_group
.attrs
= tmp
;
1844 pr_info("... version: %d\n", x86_pmu
.version
);
1845 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1846 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1847 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1848 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1849 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1850 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1853 * Install callbacks. Core will call them for each online
1856 err
= cpuhp_setup_state(CPUHP_PERF_X86_PREPARE
, "perf/x86:prepare",
1857 x86_pmu_prepare_cpu
, x86_pmu_dead_cpu
);
1861 err
= cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING
,
1862 "perf/x86:starting", x86_pmu_starting_cpu
,
1867 err
= cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE
, "perf/x86:online",
1868 x86_pmu_online_cpu
, NULL
);
1872 err
= perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1879 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE
);
1881 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING
);
1883 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE
);
1886 early_initcall(init_hw_perf_events
);
1888 static inline void x86_pmu_read(struct perf_event
*event
)
1891 return x86_pmu
.read(event
);
1892 x86_perf_event_update(event
);
1896 * Start group events scheduling transaction
1897 * Set the flag to make pmu::enable() not perform the
1898 * schedulability test, it will be performed at commit time
1900 * We only support PERF_PMU_TXN_ADD transactions. Save the
1901 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1904 static void x86_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1906 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1908 WARN_ON_ONCE(cpuc
->txn_flags
); /* txn already in flight */
1910 cpuc
->txn_flags
= txn_flags
;
1911 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1914 perf_pmu_disable(pmu
);
1915 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1919 * Stop group events scheduling transaction
1920 * Clear the flag and pmu::enable() will perform the
1921 * schedulability test.
1923 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1925 unsigned int txn_flags
;
1926 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1928 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1930 txn_flags
= cpuc
->txn_flags
;
1931 cpuc
->txn_flags
= 0;
1932 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1936 * Truncate collected array by the number of events added in this
1937 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1939 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1940 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1941 perf_pmu_enable(pmu
);
1945 * Commit group events scheduling transaction
1946 * Perform the group schedulability test as a whole
1947 * Return 0 if success
1949 * Does not cancel the transaction on failure; expects the caller to do this.
1951 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1953 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1954 int assign
[X86_PMC_IDX_MAX
];
1957 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1959 if (cpuc
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1960 cpuc
->txn_flags
= 0;
1966 if (!x86_pmu_initialized())
1969 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1974 * copy new assignment, now we know it is possible
1975 * will be used by hw_perf_enable()
1977 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1979 cpuc
->txn_flags
= 0;
1980 perf_pmu_enable(pmu
);
1984 * a fake_cpuc is used to validate event groups. Due to
1985 * the extra reg logic, we need to also allocate a fake
1986 * per_core and per_cpu structure. Otherwise, group events
1987 * using extra reg may conflict without the kernel being
1988 * able to catch this when the last event gets added to
1991 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1993 kfree(cpuc
->shared_regs
);
1997 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1999 struct cpu_hw_events
*cpuc
;
2000 int cpu
= raw_smp_processor_id();
2002 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
2004 return ERR_PTR(-ENOMEM
);
2006 /* only needed, if we have extra_regs */
2007 if (x86_pmu
.extra_regs
) {
2008 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
2009 if (!cpuc
->shared_regs
)
2015 free_fake_cpuc(cpuc
);
2016 return ERR_PTR(-ENOMEM
);
2020 * validate that we can schedule this event
2022 static int validate_event(struct perf_event
*event
)
2024 struct cpu_hw_events
*fake_cpuc
;
2025 struct event_constraint
*c
;
2028 fake_cpuc
= allocate_fake_cpuc();
2029 if (IS_ERR(fake_cpuc
))
2030 return PTR_ERR(fake_cpuc
);
2032 c
= x86_pmu
.get_event_constraints(fake_cpuc
, -1, event
);
2034 if (!c
|| !c
->weight
)
2037 if (x86_pmu
.put_event_constraints
)
2038 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
2040 free_fake_cpuc(fake_cpuc
);
2046 * validate a single event group
2048 * validation include:
2049 * - check events are compatible which each other
2050 * - events do not compete for the same counter
2051 * - number of events <= number of counters
2053 * validation ensures the group can be loaded onto the
2054 * PMU if it was the only group available.
2056 static int validate_group(struct perf_event
*event
)
2058 struct perf_event
*leader
= event
->group_leader
;
2059 struct cpu_hw_events
*fake_cpuc
;
2060 int ret
= -EINVAL
, n
;
2062 fake_cpuc
= allocate_fake_cpuc();
2063 if (IS_ERR(fake_cpuc
))
2064 return PTR_ERR(fake_cpuc
);
2066 * the event is not yet connected with its
2067 * siblings therefore we must first collect
2068 * existing siblings, then add the new event
2069 * before we can simulate the scheduling
2071 n
= collect_events(fake_cpuc
, leader
, true);
2075 fake_cpuc
->n_events
= n
;
2076 n
= collect_events(fake_cpuc
, event
, false);
2080 fake_cpuc
->n_events
= n
;
2082 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
2085 free_fake_cpuc(fake_cpuc
);
2089 static int x86_pmu_event_init(struct perf_event
*event
)
2094 switch (event
->attr
.type
) {
2096 case PERF_TYPE_HARDWARE
:
2097 case PERF_TYPE_HW_CACHE
:
2104 err
= __x86_pmu_event_init(event
);
2107 * we temporarily connect event to its pmu
2108 * such that validate_group() can classify
2109 * it as an x86 event using is_x86_event()
2114 if (event
->group_leader
!= event
)
2115 err
= validate_group(event
);
2117 err
= validate_event(event
);
2123 event
->destroy(event
);
2126 if (READ_ONCE(x86_pmu
.attr_rdpmc
) &&
2127 !(event
->hw
.flags
& PERF_X86_EVENT_LARGE_PEBS
))
2128 event
->hw
.flags
|= PERF_X86_EVENT_RDPMC_ALLOWED
;
2133 static void refresh_pce(void *ignored
)
2135 load_mm_cr4(this_cpu_read(cpu_tlbstate
.loaded_mm
));
2138 static void x86_pmu_event_mapped(struct perf_event
*event
, struct mm_struct
*mm
)
2140 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2144 * This function relies on not being called concurrently in two
2145 * tasks in the same mm. Otherwise one task could observe
2146 * perf_rdpmc_allowed > 1 and return all the way back to
2147 * userspace with CR4.PCE clear while another task is still
2148 * doing on_each_cpu_mask() to propagate CR4.PCE.
2150 * For now, this can't happen because all callers hold mmap_sem
2151 * for write. If this changes, we'll need a different solution.
2153 lockdep_assert_held_exclusive(&mm
->mmap_sem
);
2155 if (atomic_inc_return(&mm
->context
.perf_rdpmc_allowed
) == 1)
2156 on_each_cpu_mask(mm_cpumask(mm
), refresh_pce
, NULL
, 1);
2159 static void x86_pmu_event_unmapped(struct perf_event
*event
, struct mm_struct
*mm
)
2162 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2165 if (atomic_dec_and_test(&mm
->context
.perf_rdpmc_allowed
))
2166 on_each_cpu_mask(mm_cpumask(mm
), refresh_pce
, NULL
, 1);
2169 static int x86_pmu_event_idx(struct perf_event
*event
)
2171 int idx
= event
->hw
.idx
;
2173 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2176 if (x86_pmu
.num_counters_fixed
&& idx
>= INTEL_PMC_IDX_FIXED
) {
2177 idx
-= INTEL_PMC_IDX_FIXED
;
2184 static ssize_t
get_attr_rdpmc(struct device
*cdev
,
2185 struct device_attribute
*attr
,
2188 return snprintf(buf
, 40, "%d\n", x86_pmu
.attr_rdpmc
);
2191 static ssize_t
set_attr_rdpmc(struct device
*cdev
,
2192 struct device_attribute
*attr
,
2193 const char *buf
, size_t count
)
2198 ret
= kstrtoul(buf
, 0, &val
);
2205 if (x86_pmu
.attr_rdpmc_broken
)
2208 if ((val
== 2) != (x86_pmu
.attr_rdpmc
== 2)) {
2210 * Changing into or out of always available, aka
2211 * perf-event-bypassing mode. This path is extremely slow,
2212 * but only root can trigger it, so it's okay.
2215 static_branch_inc(&rdpmc_always_available_key
);
2217 static_branch_dec(&rdpmc_always_available_key
);
2218 on_each_cpu(refresh_pce
, NULL
, 1);
2221 x86_pmu
.attr_rdpmc
= val
;
2226 static DEVICE_ATTR(rdpmc
, S_IRUSR
| S_IWUSR
, get_attr_rdpmc
, set_attr_rdpmc
);
2228 static struct attribute
*x86_pmu_attrs
[] = {
2229 &dev_attr_rdpmc
.attr
,
2233 static struct attribute_group x86_pmu_attr_group
= {
2234 .attrs
= x86_pmu_attrs
,
2237 static ssize_t
max_precise_show(struct device
*cdev
,
2238 struct device_attribute
*attr
,
2241 return snprintf(buf
, PAGE_SIZE
, "%d\n", x86_pmu_max_precise());
2244 static DEVICE_ATTR_RO(max_precise
);
2246 static struct attribute
*x86_pmu_caps_attrs
[] = {
2247 &dev_attr_max_precise
.attr
,
2251 static struct attribute_group x86_pmu_caps_group
= {
2253 .attrs
= x86_pmu_caps_attrs
,
2256 static const struct attribute_group
*x86_pmu_attr_groups
[] = {
2257 &x86_pmu_attr_group
,
2258 &x86_pmu_format_group
,
2259 &x86_pmu_events_group
,
2260 &x86_pmu_caps_group
,
2264 static void x86_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
2266 if (x86_pmu
.sched_task
)
2267 x86_pmu
.sched_task(ctx
, sched_in
);
2270 void perf_check_microcode(void)
2272 if (x86_pmu
.check_microcode
)
2273 x86_pmu
.check_microcode();
2276 static struct pmu pmu
= {
2277 .pmu_enable
= x86_pmu_enable
,
2278 .pmu_disable
= x86_pmu_disable
,
2280 .attr_groups
= x86_pmu_attr_groups
,
2282 .event_init
= x86_pmu_event_init
,
2284 .event_mapped
= x86_pmu_event_mapped
,
2285 .event_unmapped
= x86_pmu_event_unmapped
,
2289 .start
= x86_pmu_start
,
2290 .stop
= x86_pmu_stop
,
2291 .read
= x86_pmu_read
,
2293 .start_txn
= x86_pmu_start_txn
,
2294 .cancel_txn
= x86_pmu_cancel_txn
,
2295 .commit_txn
= x86_pmu_commit_txn
,
2297 .event_idx
= x86_pmu_event_idx
,
2298 .sched_task
= x86_pmu_sched_task
,
2299 .task_ctx_size
= sizeof(struct x86_perf_task_context
),
2302 void arch_perf_update_userpage(struct perf_event
*event
,
2303 struct perf_event_mmap_page
*userpg
, u64 now
)
2305 struct cyc2ns_data data
;
2308 userpg
->cap_user_time
= 0;
2309 userpg
->cap_user_time_zero
= 0;
2310 userpg
->cap_user_rdpmc
=
2311 !!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
);
2312 userpg
->pmc_width
= x86_pmu
.cntval_bits
;
2314 if (!using_native_sched_clock() || !sched_clock_stable())
2317 cyc2ns_read_begin(&data
);
2319 offset
= data
.cyc2ns_offset
+ __sched_clock_offset
;
2322 * Internal timekeeping for enabled/running/stopped times
2323 * is always in the local_clock domain.
2325 userpg
->cap_user_time
= 1;
2326 userpg
->time_mult
= data
.cyc2ns_mul
;
2327 userpg
->time_shift
= data
.cyc2ns_shift
;
2328 userpg
->time_offset
= offset
- now
;
2331 * cap_user_time_zero doesn't make sense when we're using a different
2332 * time base for the records.
2334 if (!event
->attr
.use_clockid
) {
2335 userpg
->cap_user_time_zero
= 1;
2336 userpg
->time_zero
= offset
;
2343 perf_callchain_kernel(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
2345 struct unwind_state state
;
2348 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2349 /* TODO: We don't support guest os callchain now */
2353 if (perf_callchain_store(entry
, regs
->ip
))
2356 for (unwind_start(&state
, current
, regs
, NULL
); !unwind_done(&state
);
2357 unwind_next_frame(&state
)) {
2358 addr
= unwind_get_return_address(&state
);
2359 if (!addr
|| perf_callchain_store(entry
, addr
))
2365 valid_user_frame(const void __user
*fp
, unsigned long size
)
2367 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
2370 static unsigned long get_segment_base(unsigned int segment
)
2372 struct desc_struct
*desc
;
2373 unsigned int idx
= segment
>> 3;
2375 if ((segment
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2376 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2377 struct ldt_struct
*ldt
;
2379 /* IRQs are off, so this synchronizes with smp_store_release */
2380 ldt
= READ_ONCE(current
->active_mm
->context
.ldt
);
2381 if (!ldt
|| idx
>= ldt
->nr_entries
)
2384 desc
= &ldt
->entries
[idx
];
2389 if (idx
>= GDT_ENTRIES
)
2392 desc
= raw_cpu_ptr(gdt_page
.gdt
) + idx
;
2395 return get_desc_base(desc
);
2398 #ifdef CONFIG_IA32_EMULATION
2400 #include <linux/compat.h>
2403 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry_ctx
*entry
)
2405 /* 32-bit process in 64-bit kernel. */
2406 unsigned long ss_base
, cs_base
;
2407 struct stack_frame_ia32 frame
;
2408 const void __user
*fp
;
2410 if (!test_thread_flag(TIF_IA32
))
2413 cs_base
= get_segment_base(regs
->cs
);
2414 ss_base
= get_segment_base(regs
->ss
);
2416 fp
= compat_ptr(ss_base
+ regs
->bp
);
2417 pagefault_disable();
2418 while (entry
->nr
< entry
->max_stack
) {
2419 unsigned long bytes
;
2420 frame
.next_frame
= 0;
2421 frame
.return_address
= 0;
2423 if (!valid_user_frame(fp
, sizeof(frame
)))
2426 bytes
= __copy_from_user_nmi(&frame
.next_frame
, fp
, 4);
2429 bytes
= __copy_from_user_nmi(&frame
.return_address
, fp
+4, 4);
2433 perf_callchain_store(entry
, cs_base
+ frame
.return_address
);
2434 fp
= compat_ptr(ss_base
+ frame
.next_frame
);
2441 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry_ctx
*entry
)
2448 perf_callchain_user(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
2450 struct stack_frame frame
;
2451 const unsigned long __user
*fp
;
2453 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2454 /* TODO: We don't support guest os callchain now */
2459 * We don't know what to do with VM86 stacks.. ignore them for now.
2461 if (regs
->flags
& (X86_VM_MASK
| PERF_EFLAGS_VM
))
2464 fp
= (unsigned long __user
*)regs
->bp
;
2466 perf_callchain_store(entry
, regs
->ip
);
2468 if (!nmi_uaccess_okay())
2471 if (perf_callchain_user32(regs
, entry
))
2474 pagefault_disable();
2475 while (entry
->nr
< entry
->max_stack
) {
2476 unsigned long bytes
;
2478 frame
.next_frame
= NULL
;
2479 frame
.return_address
= 0;
2481 if (!valid_user_frame(fp
, sizeof(frame
)))
2484 bytes
= __copy_from_user_nmi(&frame
.next_frame
, fp
, sizeof(*fp
));
2487 bytes
= __copy_from_user_nmi(&frame
.return_address
, fp
+ 1, sizeof(*fp
));
2491 perf_callchain_store(entry
, frame
.return_address
);
2492 fp
= (void __user
*)frame
.next_frame
;
2498 * Deal with code segment offsets for the various execution modes:
2500 * VM86 - the good olde 16 bit days, where the linear address is
2501 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2503 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2504 * to figure out what the 32bit base address is.
2506 * X32 - has TIF_X32 set, but is running in x86_64
2508 * X86_64 - CS,DS,SS,ES are all zero based.
2510 static unsigned long code_segment_base(struct pt_regs
*regs
)
2513 * For IA32 we look at the GDT/LDT segment base to convert the
2514 * effective IP to a linear address.
2517 #ifdef CONFIG_X86_32
2519 * If we are in VM86 mode, add the segment offset to convert to a
2522 if (regs
->flags
& X86_VM_MASK
)
2523 return 0x10 * regs
->cs
;
2525 if (user_mode(regs
) && regs
->cs
!= __USER_CS
)
2526 return get_segment_base(regs
->cs
);
2528 if (user_mode(regs
) && !user_64bit_mode(regs
) &&
2529 regs
->cs
!= __USER32_CS
)
2530 return get_segment_base(regs
->cs
);
2535 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2537 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
2538 return perf_guest_cbs
->get_guest_ip();
2540 return regs
->ip
+ code_segment_base(regs
);
2543 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2547 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2548 if (perf_guest_cbs
->is_user_mode())
2549 misc
|= PERF_RECORD_MISC_GUEST_USER
;
2551 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
2553 if (user_mode(regs
))
2554 misc
|= PERF_RECORD_MISC_USER
;
2556 misc
|= PERF_RECORD_MISC_KERNEL
;
2559 if (regs
->flags
& PERF_EFLAGS_EXACT
)
2560 misc
|= PERF_RECORD_MISC_EXACT_IP
;
2565 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
2567 cap
->version
= x86_pmu
.version
;
2568 cap
->num_counters_gp
= x86_pmu
.num_counters
;
2569 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
2570 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
2571 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
2572 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
2573 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
2575 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);