1 /* cpu_feature_enabled() cannot be used this early */
2 #define USE_EARLY_PGTABLE_L5
4 #include <linux/bootmem.h>
5 #include <linux/linkage.h>
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/percpu.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/delay.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/clock.h>
15 #include <linux/sched/task.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
21 #include <linux/syscore_ops.h>
23 #include <asm/stackprotector.h>
24 #include <asm/perf_event.h>
25 #include <asm/mmu_context.h>
26 #include <asm/archrandom.h>
27 #include <asm/hypervisor.h>
28 #include <asm/processor.h>
29 #include <asm/tlbflush.h>
30 #include <asm/debugreg.h>
31 #include <asm/sections.h>
32 #include <asm/vsyscall.h>
33 #include <linux/topology.h>
34 #include <linux/cpumask.h>
35 #include <asm/pgtable.h>
36 #include <linux/atomic.h>
37 #include <asm/proto.h>
38 #include <asm/setup.h>
41 #include <asm/fpu/internal.h>
43 #include <asm/hwcap2.h>
44 #include <linux/numa.h>
51 #include <asm/microcode.h>
52 #include <asm/microcode_intel.h>
53 #include <asm/intel-family.h>
54 #include <asm/cpu_device_id.h>
56 #ifdef CONFIG_X86_LOCAL_APIC
57 #include <asm/uv/uv.h>
62 u32 elf_hwcap2 __read_mostly
;
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask
;
66 cpumask_var_t cpu_callout_mask
;
67 cpumask_var_t cpu_callin_mask
;
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask
;
72 /* Number of siblings per CPU package */
73 int smp_num_siblings
= 1;
74 EXPORT_SYMBOL(smp_num_siblings
);
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16
, cpu_llc_id
) = BAD_APICID
;
79 /* correctly size the local cpu masks */
80 void __init
setup_cpu_local_masks(void)
82 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
83 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
84 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
85 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
88 static void default_init(struct cpuinfo_x86
*c
)
91 cpu_detect_cache_sizes(c
);
93 /* Not much we can do here... */
94 /* Check if at least it has cpuid */
95 if (c
->cpuid_level
== -1) {
96 /* No cpuid. It must be an ancient CPU */
98 strcpy(c
->x86_model_id
, "486");
100 strcpy(c
->x86_model_id
, "386");
105 static const struct cpu_dev default_cpu
= {
106 .c_init
= default_init
,
107 .c_vendor
= "Unknown",
108 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
111 static const struct cpu_dev
*this_cpu
= &default_cpu
;
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
116 * We need valid kernel segments for data and code in long mode too
117 * IRET will check the segment types kkeil 2000/10/28
118 * Also sysret mandates a special GDT layout
120 * TLS descriptors are currently at a different place compared to i386.
121 * Hopefully nobody expects them at a fixed place (Wine?)
123 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 * Segments used for calling PnP BIOS have byte granularity.
136 * They code segments and data segments have fixed 64k limits,
137 * the transfer segment sizes are set at run time.
140 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
148 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 * The APM segments have byte granularity and their bases
151 * are set at run time. All have 64k limits.
154 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 GDT_STACK_CANARY_INIT
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
167 static int __init
x86_mpx_setup(char *s
)
169 /* require an exact match without trailing characters */
173 /* do not emit a message if the feature is not present */
174 if (!boot_cpu_has(X86_FEATURE_MPX
))
177 setup_clear_cpu_cap(X86_FEATURE_MPX
);
178 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
181 __setup("nompx", x86_mpx_setup
);
184 static int __init
x86_nopcid_setup(char *s
)
186 /* nopcid doesn't accept parameters */
190 /* do not emit a message if the feature is not present */
191 if (!boot_cpu_has(X86_FEATURE_PCID
))
194 setup_clear_cpu_cap(X86_FEATURE_PCID
);
195 pr_info("nopcid: PCID feature disabled\n");
198 early_param("nopcid", x86_nopcid_setup
);
201 static int __init
x86_noinvpcid_setup(char *s
)
203 /* noinvpcid doesn't accept parameters */
207 /* do not emit a message if the feature is not present */
208 if (!boot_cpu_has(X86_FEATURE_INVPCID
))
211 setup_clear_cpu_cap(X86_FEATURE_INVPCID
);
212 pr_info("noinvpcid: INVPCID feature disabled\n");
215 early_param("noinvpcid", x86_noinvpcid_setup
);
218 static int cachesize_override
= -1;
219 static int disable_x86_serial_nr
= 1;
221 static int __init
cachesize_setup(char *str
)
223 get_option(&str
, &cachesize_override
);
226 __setup("cachesize=", cachesize_setup
);
228 static int __init
x86_sep_setup(char *s
)
230 setup_clear_cpu_cap(X86_FEATURE_SEP
);
233 __setup("nosep", x86_sep_setup
);
235 /* Standard macro to see if a specific flag is changeable */
236 static inline int flag_is_changeable_p(u32 flag
)
241 * Cyrix and IDT cpus allow disabling of CPUID
242 * so the code below may return different results
243 * when it is executed before and after enabling
244 * the CPUID. Add "volatile" to not allow gcc to
245 * optimize the subsequent calls to this function.
247 asm volatile ("pushfl \n\t"
258 : "=&r" (f1
), "=&r" (f2
)
261 return ((f1
^f2
) & flag
) != 0;
264 /* Probe for the CPUID instruction */
265 int have_cpuid_p(void)
267 return flag_is_changeable_p(X86_EFLAGS_ID
);
270 static void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
272 unsigned long lo
, hi
;
274 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
277 /* Disable processor serial number: */
279 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
281 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
283 pr_notice("CPU serial number disabled.\n");
284 clear_cpu_cap(c
, X86_FEATURE_PN
);
286 /* Disabling the serial number may affect the cpuid level */
287 c
->cpuid_level
= cpuid_eax(0);
290 static int __init
x86_serial_nr_setup(char *s
)
292 disable_x86_serial_nr
= 0;
295 __setup("serialnumber", x86_serial_nr_setup
);
297 static inline int flag_is_changeable_p(u32 flag
)
301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
306 static __init
int setup_disable_smep(char *arg
)
308 setup_clear_cpu_cap(X86_FEATURE_SMEP
);
309 /* Check for things that depend on SMEP being enabled: */
310 check_mpx_erratum(&boot_cpu_data
);
313 __setup("nosmep", setup_disable_smep
);
315 static __always_inline
void setup_smep(struct cpuinfo_x86
*c
)
317 if (cpu_has(c
, X86_FEATURE_SMEP
))
318 cr4_set_bits(X86_CR4_SMEP
);
321 static __init
int setup_disable_smap(char *arg
)
323 setup_clear_cpu_cap(X86_FEATURE_SMAP
);
326 __setup("nosmap", setup_disable_smap
);
328 static __always_inline
void setup_smap(struct cpuinfo_x86
*c
)
330 unsigned long eflags
= native_save_fl();
332 /* This should have been cleared long ago */
333 BUG_ON(eflags
& X86_EFLAGS_AC
);
335 if (cpu_has(c
, X86_FEATURE_SMAP
)) {
336 #ifdef CONFIG_X86_SMAP
337 cr4_set_bits(X86_CR4_SMAP
);
339 cr4_clear_bits(X86_CR4_SMAP
);
344 static __always_inline
void setup_umip(struct cpuinfo_x86
*c
)
346 /* Check the boot processor, plus build option for UMIP. */
347 if (!cpu_feature_enabled(X86_FEATURE_UMIP
))
350 /* Check the current processor's cpuid bits. */
351 if (!cpu_has(c
, X86_FEATURE_UMIP
))
354 cr4_set_bits(X86_CR4_UMIP
);
356 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
362 * Make sure UMIP is disabled in case it was enabled in a
363 * previous boot (e.g., via kexec).
365 cr4_clear_bits(X86_CR4_UMIP
);
369 * Protection Keys are not available in 32-bit mode.
371 static bool pku_disabled
;
373 static __always_inline
void setup_pku(struct cpuinfo_x86
*c
)
375 /* check the boot processor, plus compile options for PKU: */
376 if (!cpu_feature_enabled(X86_FEATURE_PKU
))
378 /* checks the actual processor's cpuid bits: */
379 if (!cpu_has(c
, X86_FEATURE_PKU
))
384 cr4_set_bits(X86_CR4_PKE
);
386 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
387 * cpuid bit to be set. We need to ensure that we
388 * update that bit in this CPU's "cpu_info".
393 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
394 static __init
int setup_disable_pku(char *arg
)
397 * Do not clear the X86_FEATURE_PKU bit. All of the
398 * runtime checks are against OSPKE so clearing the
401 * This way, we will see "pku" in cpuinfo, but not
402 * "ospke", which is exactly what we want. It shows
403 * that the CPU has PKU, but the OS has not enabled it.
404 * This happens to be exactly how a system would look
405 * if we disabled the config option.
407 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
411 __setup("nopku", setup_disable_pku
);
412 #endif /* CONFIG_X86_64 */
415 * Some CPU features depend on higher CPUID levels, which may not always
416 * be available due to CPUID level capping or broken virtualization
417 * software. Add those features to this table to auto-disable them.
419 struct cpuid_dependent_feature
{
424 static const struct cpuid_dependent_feature
425 cpuid_dependent_features
[] = {
426 { X86_FEATURE_MWAIT
, 0x00000005 },
427 { X86_FEATURE_DCA
, 0x00000009 },
428 { X86_FEATURE_XSAVE
, 0x0000000d },
432 static void filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
434 const struct cpuid_dependent_feature
*df
;
436 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
438 if (!cpu_has(c
, df
->feature
))
441 * Note: cpuid_level is set to -1 if unavailable, but
442 * extended_extended_level is set to 0 if unavailable
443 * and the legitimate extended levels are all negative
444 * when signed; hence the weird messing around with
447 if (!((s32
)df
->level
< 0 ?
448 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
449 (s32
)df
->level
> (s32
)c
->cpuid_level
))
452 clear_cpu_cap(c
, df
->feature
);
456 pr_warn("CPU: CPU feature " X86_CAP_FMT
" disabled, no CPUID level 0x%x\n",
457 x86_cap_flag(df
->feature
), df
->level
);
462 * Naming convention should be: <Name> [(<Codename>)]
463 * This table only is used unless init_<vendor>() below doesn't set it;
464 * in particular, if CPUID levels 0x80000002..4 are supported, this
468 /* Look up CPU names by table lookup. */
469 static const char *table_lookup_model(struct cpuinfo_x86
*c
)
472 const struct legacy_cpu_model_info
*info
;
474 if (c
->x86_model
>= 16)
475 return NULL
; /* Range check */
480 info
= this_cpu
->legacy_models
;
482 while (info
->family
) {
483 if (info
->family
== c
->x86
)
484 return info
->model_names
[c
->x86_model
];
488 return NULL
; /* Not found */
491 __u32 cpu_caps_cleared
[NCAPINTS
+ NBUGINTS
];
492 __u32 cpu_caps_set
[NCAPINTS
+ NBUGINTS
];
494 void load_percpu_segment(int cpu
)
497 loadsegment(fs
, __KERNEL_PERCPU
);
499 __loadsegment_simple(gs
, 0);
500 wrmsrl(MSR_GS_BASE
, cpu_kernelmode_gs_base(cpu
));
502 load_stack_canary_segment();
506 /* The 32-bit entry code needs to find cpu_entry_area. */
507 DEFINE_PER_CPU(struct cpu_entry_area
*, cpu_entry_area
);
512 * Special IST stacks which the CPU switches to when it calls
513 * an IST-marked descriptor entry. Up to 7 stacks (hardware
514 * limit), all of them are 4K, except the debug stack which
517 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
518 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
519 [DEBUG_STACK
- 1] = DEBUG_STKSZ
523 /* Load the original GDT from the per-cpu structure */
524 void load_direct_gdt(int cpu
)
526 struct desc_ptr gdt_descr
;
528 gdt_descr
.address
= (long)get_cpu_gdt_rw(cpu
);
529 gdt_descr
.size
= GDT_SIZE
- 1;
530 load_gdt(&gdt_descr
);
532 EXPORT_SYMBOL_GPL(load_direct_gdt
);
534 /* Load a fixmap remapping of the per-cpu GDT */
535 void load_fixmap_gdt(int cpu
)
537 struct desc_ptr gdt_descr
;
539 gdt_descr
.address
= (long)get_cpu_gdt_ro(cpu
);
540 gdt_descr
.size
= GDT_SIZE
- 1;
541 load_gdt(&gdt_descr
);
543 EXPORT_SYMBOL_GPL(load_fixmap_gdt
);
546 * Current gdt points %fs at the "master" per-cpu area: after this,
547 * it's on the real one.
549 void switch_to_new_gdt(int cpu
)
551 /* Load the original GDT */
552 load_direct_gdt(cpu
);
553 /* Reload the per-cpu base */
554 load_percpu_segment(cpu
);
557 static const struct cpu_dev
*cpu_devs
[X86_VENDOR_NUM
] = {};
559 static void get_model_name(struct cpuinfo_x86
*c
)
564 if (c
->extended_cpuid_level
< 0x80000004)
567 v
= (unsigned int *)c
->x86_model_id
;
568 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
569 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
570 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
571 c
->x86_model_id
[48] = 0;
573 /* Trim whitespace */
574 p
= q
= s
= &c
->x86_model_id
[0];
580 /* Note the last non-whitespace index */
590 void detect_num_cpu_cores(struct cpuinfo_x86
*c
)
592 unsigned int eax
, ebx
, ecx
, edx
;
594 c
->x86_max_cores
= 1;
595 if (!IS_ENABLED(CONFIG_SMP
) || c
->cpuid_level
< 4)
598 cpuid_count(4, 0, &eax
, &ebx
, &ecx
, &edx
);
600 c
->x86_max_cores
= (eax
>> 26) + 1;
603 void cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
605 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
607 n
= c
->extended_cpuid_level
;
609 if (n
>= 0x80000005) {
610 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
611 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
613 /* On K8 L1 TLB is inclusive, so don't count it */
618 if (n
< 0x80000006) /* Some chips just has a large L1. */
621 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
625 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
627 /* do processor-specific cache resizing */
628 if (this_cpu
->legacy_cache_size
)
629 l2size
= this_cpu
->legacy_cache_size(c
, l2size
);
631 /* Allow user to override all this if necessary. */
632 if (cachesize_override
!= -1)
633 l2size
= cachesize_override
;
636 return; /* Again, no L2 cache is possible */
639 c
->x86_cache_size
= l2size
;
642 u16 __read_mostly tlb_lli_4k
[NR_INFO
];
643 u16 __read_mostly tlb_lli_2m
[NR_INFO
];
644 u16 __read_mostly tlb_lli_4m
[NR_INFO
];
645 u16 __read_mostly tlb_lld_4k
[NR_INFO
];
646 u16 __read_mostly tlb_lld_2m
[NR_INFO
];
647 u16 __read_mostly tlb_lld_4m
[NR_INFO
];
648 u16 __read_mostly tlb_lld_1g
[NR_INFO
];
650 static void cpu_detect_tlb(struct cpuinfo_x86
*c
)
652 if (this_cpu
->c_detect_tlb
)
653 this_cpu
->c_detect_tlb(c
);
655 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
656 tlb_lli_4k
[ENTRIES
], tlb_lli_2m
[ENTRIES
],
657 tlb_lli_4m
[ENTRIES
]);
659 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
660 tlb_lld_4k
[ENTRIES
], tlb_lld_2m
[ENTRIES
],
661 tlb_lld_4m
[ENTRIES
], tlb_lld_1g
[ENTRIES
]);
664 int detect_ht_early(struct cpuinfo_x86
*c
)
667 u32 eax
, ebx
, ecx
, edx
;
669 if (!cpu_has(c
, X86_FEATURE_HT
))
672 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
675 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
678 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
680 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
681 if (smp_num_siblings
== 1)
682 pr_info_once("CPU0: Hyper-Threading is disabled\n");
687 void detect_ht(struct cpuinfo_x86
*c
)
690 int index_msb
, core_bits
;
692 if (detect_ht_early(c
) < 0)
695 index_msb
= get_count_order(smp_num_siblings
);
696 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
698 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
700 index_msb
= get_count_order(smp_num_siblings
);
702 core_bits
= get_count_order(c
->x86_max_cores
);
704 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
705 ((1 << core_bits
) - 1);
709 static void get_cpu_vendor(struct cpuinfo_x86
*c
)
711 char *v
= c
->x86_vendor_id
;
714 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
718 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
719 (cpu_devs
[i
]->c_ident
[1] &&
720 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
722 this_cpu
= cpu_devs
[i
];
723 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
728 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
729 "CPU: Your system may be unstable.\n", v
);
731 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
732 this_cpu
= &default_cpu
;
735 void cpu_detect(struct cpuinfo_x86
*c
)
737 /* Get vendor name */
738 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
739 (unsigned int *)&c
->x86_vendor_id
[0],
740 (unsigned int *)&c
->x86_vendor_id
[8],
741 (unsigned int *)&c
->x86_vendor_id
[4]);
744 /* Intel-defined flags: level 0x00000001 */
745 if (c
->cpuid_level
>= 0x00000001) {
746 u32 junk
, tfms
, cap0
, misc
;
748 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
749 c
->x86
= x86_family(tfms
);
750 c
->x86_model
= x86_model(tfms
);
751 c
->x86_stepping
= x86_stepping(tfms
);
753 if (cap0
& (1<<19)) {
754 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
755 c
->x86_cache_alignment
= c
->x86_clflush_size
;
760 static void apply_forced_caps(struct cpuinfo_x86
*c
)
764 for (i
= 0; i
< NCAPINTS
+ NBUGINTS
; i
++) {
765 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
766 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
770 static void init_speculation_control(struct cpuinfo_x86
*c
)
773 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
774 * and they also have a different bit for STIBP support. Also,
775 * a hypervisor might have set the individual AMD bits even on
776 * Intel CPUs, for finer-grained selection of what's available.
778 if (cpu_has(c
, X86_FEATURE_SPEC_CTRL
)) {
779 set_cpu_cap(c
, X86_FEATURE_IBRS
);
780 set_cpu_cap(c
, X86_FEATURE_IBPB
);
781 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
784 if (cpu_has(c
, X86_FEATURE_INTEL_STIBP
))
785 set_cpu_cap(c
, X86_FEATURE_STIBP
);
787 if (cpu_has(c
, X86_FEATURE_SPEC_CTRL_SSBD
) ||
788 cpu_has(c
, X86_FEATURE_VIRT_SSBD
))
789 set_cpu_cap(c
, X86_FEATURE_SSBD
);
791 if (cpu_has(c
, X86_FEATURE_AMD_IBRS
)) {
792 set_cpu_cap(c
, X86_FEATURE_IBRS
);
793 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
796 if (cpu_has(c
, X86_FEATURE_AMD_IBPB
))
797 set_cpu_cap(c
, X86_FEATURE_IBPB
);
799 if (cpu_has(c
, X86_FEATURE_AMD_STIBP
)) {
800 set_cpu_cap(c
, X86_FEATURE_STIBP
);
801 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
804 if (cpu_has(c
, X86_FEATURE_AMD_SSBD
)) {
805 set_cpu_cap(c
, X86_FEATURE_SSBD
);
806 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
807 clear_cpu_cap(c
, X86_FEATURE_VIRT_SSBD
);
811 void get_cpu_cap(struct cpuinfo_x86
*c
)
813 u32 eax
, ebx
, ecx
, edx
;
815 /* Intel-defined flags: level 0x00000001 */
816 if (c
->cpuid_level
>= 0x00000001) {
817 cpuid(0x00000001, &eax
, &ebx
, &ecx
, &edx
);
819 c
->x86_capability
[CPUID_1_ECX
] = ecx
;
820 c
->x86_capability
[CPUID_1_EDX
] = edx
;
823 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
824 if (c
->cpuid_level
>= 0x00000006)
825 c
->x86_capability
[CPUID_6_EAX
] = cpuid_eax(0x00000006);
827 /* Additional Intel-defined flags: level 0x00000007 */
828 if (c
->cpuid_level
>= 0x00000007) {
829 cpuid_count(0x00000007, 0, &eax
, &ebx
, &ecx
, &edx
);
830 c
->x86_capability
[CPUID_7_0_EBX
] = ebx
;
831 c
->x86_capability
[CPUID_7_ECX
] = ecx
;
832 c
->x86_capability
[CPUID_7_EDX
] = edx
;
835 /* Extended state features: level 0x0000000d */
836 if (c
->cpuid_level
>= 0x0000000d) {
837 cpuid_count(0x0000000d, 1, &eax
, &ebx
, &ecx
, &edx
);
839 c
->x86_capability
[CPUID_D_1_EAX
] = eax
;
842 /* Additional Intel-defined flags: level 0x0000000F */
843 if (c
->cpuid_level
>= 0x0000000F) {
845 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
846 cpuid_count(0x0000000F, 0, &eax
, &ebx
, &ecx
, &edx
);
847 c
->x86_capability
[CPUID_F_0_EDX
] = edx
;
849 if (cpu_has(c
, X86_FEATURE_CQM_LLC
)) {
850 /* will be overridden if occupancy monitoring exists */
851 c
->x86_cache_max_rmid
= ebx
;
853 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
854 cpuid_count(0x0000000F, 1, &eax
, &ebx
, &ecx
, &edx
);
855 c
->x86_capability
[CPUID_F_1_EDX
] = edx
;
857 if ((cpu_has(c
, X86_FEATURE_CQM_OCCUP_LLC
)) ||
858 ((cpu_has(c
, X86_FEATURE_CQM_MBM_TOTAL
)) ||
859 (cpu_has(c
, X86_FEATURE_CQM_MBM_LOCAL
)))) {
860 c
->x86_cache_max_rmid
= ecx
;
861 c
->x86_cache_occ_scale
= ebx
;
864 c
->x86_cache_max_rmid
= -1;
865 c
->x86_cache_occ_scale
= -1;
869 /* AMD-defined flags: level 0x80000001 */
870 eax
= cpuid_eax(0x80000000);
871 c
->extended_cpuid_level
= eax
;
873 if ((eax
& 0xffff0000) == 0x80000000) {
874 if (eax
>= 0x80000001) {
875 cpuid(0x80000001, &eax
, &ebx
, &ecx
, &edx
);
877 c
->x86_capability
[CPUID_8000_0001_ECX
] = ecx
;
878 c
->x86_capability
[CPUID_8000_0001_EDX
] = edx
;
882 if (c
->extended_cpuid_level
>= 0x80000007) {
883 cpuid(0x80000007, &eax
, &ebx
, &ecx
, &edx
);
885 c
->x86_capability
[CPUID_8000_0007_EBX
] = ebx
;
889 if (c
->extended_cpuid_level
>= 0x80000008) {
890 cpuid(0x80000008, &eax
, &ebx
, &ecx
, &edx
);
891 c
->x86_capability
[CPUID_8000_0008_EBX
] = ebx
;
894 if (c
->extended_cpuid_level
>= 0x8000000a)
895 c
->x86_capability
[CPUID_8000_000A_EDX
] = cpuid_edx(0x8000000a);
897 init_scattered_cpuid_features(c
);
898 init_speculation_control(c
);
901 * Clear/Set all flags overridden by options, after probe.
902 * This needs to happen each time we re-probe, which may happen
903 * several times during CPU initialization.
905 apply_forced_caps(c
);
908 void get_cpu_address_sizes(struct cpuinfo_x86
*c
)
910 u32 eax
, ebx
, ecx
, edx
;
912 if (c
->extended_cpuid_level
>= 0x80000008) {
913 cpuid(0x80000008, &eax
, &ebx
, &ecx
, &edx
);
915 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
916 c
->x86_phys_bits
= eax
& 0xff;
919 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
920 c
->x86_phys_bits
= 36;
922 c
->x86_cache_bits
= c
->x86_phys_bits
;
925 static void identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
931 * First of all, decide if this is a 486 or higher
932 * It's a 486 if we can modify the AC flag
934 if (flag_is_changeable_p(X86_EFLAGS_AC
))
939 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
940 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
941 c
->x86_vendor_id
[0] = 0;
942 cpu_devs
[i
]->c_identify(c
);
943 if (c
->x86_vendor_id
[0]) {
951 static const __initconst
struct x86_cpu_id cpu_no_speculation
[] = {
952 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_CEDARVIEW
, X86_FEATURE_ANY
},
953 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_CLOVERVIEW
, X86_FEATURE_ANY
},
954 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_LINCROFT
, X86_FEATURE_ANY
},
955 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_PENWELL
, X86_FEATURE_ANY
},
956 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_PINEVIEW
, X86_FEATURE_ANY
},
957 { X86_VENDOR_CENTAUR
, 5 },
958 { X86_VENDOR_INTEL
, 5 },
959 { X86_VENDOR_NSC
, 5 },
960 { X86_VENDOR_ANY
, 4 },
964 static const __initconst
struct x86_cpu_id cpu_no_meltdown
[] = {
969 /* Only list CPUs which speculate but are non susceptible to SSB */
970 static const __initconst
struct x86_cpu_id cpu_no_spec_store_bypass
[] = {
971 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_SILVERMONT1
},
972 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_AIRMONT
},
973 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_SILVERMONT2
},
974 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_MERRIFIELD
},
975 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_CORE_YONAH
},
976 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_XEON_PHI_KNL
},
977 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_XEON_PHI_KNM
},
978 { X86_VENDOR_AMD
, 0x12, },
979 { X86_VENDOR_AMD
, 0x11, },
980 { X86_VENDOR_AMD
, 0x10, },
981 { X86_VENDOR_AMD
, 0xf, },
985 static const __initconst
struct x86_cpu_id cpu_no_l1tf
[] = {
986 /* in addition to cpu_no_speculation */
987 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_SILVERMONT1
},
988 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_SILVERMONT2
},
989 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_AIRMONT
},
990 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_MERRIFIELD
},
991 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_MOOREFIELD
},
992 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_GOLDMONT
},
993 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_DENVERTON
},
994 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_ATOM_GEMINI_LAKE
},
995 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_XEON_PHI_KNL
},
996 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_XEON_PHI_KNM
},
1000 static void __init
cpu_set_bug_bits(struct cpuinfo_x86
*c
)
1004 if (x86_match_cpu(cpu_no_speculation
))
1007 setup_force_cpu_bug(X86_BUG_SPECTRE_V1
);
1008 setup_force_cpu_bug(X86_BUG_SPECTRE_V2
);
1010 if (cpu_has(c
, X86_FEATURE_ARCH_CAPABILITIES
))
1011 rdmsrl(MSR_IA32_ARCH_CAPABILITIES
, ia32_cap
);
1013 if (!x86_match_cpu(cpu_no_spec_store_bypass
) &&
1014 !(ia32_cap
& ARCH_CAP_SSB_NO
) &&
1015 !cpu_has(c
, X86_FEATURE_AMD_SSB_NO
))
1016 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS
);
1018 if (x86_match_cpu(cpu_no_meltdown
))
1021 /* Rogue Data Cache Load? No! */
1022 if (ia32_cap
& ARCH_CAP_RDCL_NO
)
1025 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN
);
1027 if (x86_match_cpu(cpu_no_l1tf
))
1030 setup_force_cpu_bug(X86_BUG_L1TF
);
1034 * Do minimum CPU detection early.
1035 * Fields really needed: vendor, cpuid_level, family, model, mask,
1037 * The others are not touched to avoid unwanted side effects.
1039 * WARNING: this function is only called on the boot CPU. Don't add code
1040 * here that is supposed to run on all CPUs.
1042 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
1044 #ifdef CONFIG_X86_64
1045 c
->x86_clflush_size
= 64;
1046 c
->x86_phys_bits
= 36;
1047 c
->x86_virt_bits
= 48;
1049 c
->x86_clflush_size
= 32;
1050 c
->x86_phys_bits
= 32;
1051 c
->x86_virt_bits
= 32;
1053 c
->x86_cache_alignment
= c
->x86_clflush_size
;
1055 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
1056 c
->extended_cpuid_level
= 0;
1058 /* cyrix could have cpuid enabled via c_identify()*/
1059 if (have_cpuid_p()) {
1063 get_cpu_address_sizes(c
);
1064 setup_force_cpu_cap(X86_FEATURE_CPUID
);
1066 if (this_cpu
->c_early_init
)
1067 this_cpu
->c_early_init(c
);
1070 filter_cpuid_features(c
, false);
1072 if (this_cpu
->c_bsp_init
)
1073 this_cpu
->c_bsp_init(c
);
1075 identify_cpu_without_cpuid(c
);
1076 setup_clear_cpu_cap(X86_FEATURE_CPUID
);
1079 setup_force_cpu_cap(X86_FEATURE_ALWAYS
);
1081 cpu_set_bug_bits(c
);
1083 fpu__init_system(c
);
1085 #ifdef CONFIG_X86_32
1087 * Regardless of whether PCID is enumerated, the SDM says
1088 * that it can't be enabled in 32-bit mode.
1090 setup_clear_cpu_cap(X86_FEATURE_PCID
);
1094 * Later in the boot process pgtable_l5_enabled() relies on
1095 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1096 * enabled by this point we need to clear the feature bit to avoid
1097 * false-positives at the later stage.
1099 * pgtable_l5_enabled() can be false here for several reasons:
1100 * - 5-level paging is disabled compile-time;
1101 * - it's 32-bit kernel;
1102 * - machine doesn't support 5-level paging;
1103 * - user specified 'no5lvl' in kernel command line.
1105 if (!pgtable_l5_enabled())
1106 setup_clear_cpu_cap(X86_FEATURE_LA57
);
1109 void __init
early_cpu_init(void)
1111 const struct cpu_dev
*const *cdev
;
1114 #ifdef CONFIG_PROCESSOR_SELECT
1115 pr_info("KERNEL supported cpus:\n");
1118 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
1119 const struct cpu_dev
*cpudev
= *cdev
;
1121 if (count
>= X86_VENDOR_NUM
)
1123 cpu_devs
[count
] = cpudev
;
1126 #ifdef CONFIG_PROCESSOR_SELECT
1130 for (j
= 0; j
< 2; j
++) {
1131 if (!cpudev
->c_ident
[j
])
1133 pr_info(" %s %s\n", cpudev
->c_vendor
,
1134 cpudev
->c_ident
[j
]);
1139 early_identify_cpu(&boot_cpu_data
);
1143 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1144 * unfortunately, that's not true in practice because of early VIA
1145 * chips and (more importantly) broken virtualizers that are not easy
1146 * to detect. In the latter case it doesn't even *fail* reliably, so
1147 * probing for it doesn't even work. Disable it completely on 32-bit
1148 * unless we can find a reliable way to detect all the broken cases.
1149 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1151 static void detect_nopl(struct cpuinfo_x86
*c
)
1153 #ifdef CONFIG_X86_32
1154 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
1156 set_cpu_cap(c
, X86_FEATURE_NOPL
);
1160 static void detect_null_seg_behavior(struct cpuinfo_x86
*c
)
1162 #ifdef CONFIG_X86_64
1164 * Empirically, writing zero to a segment selector on AMD does
1165 * not clear the base, whereas writing zero to a segment
1166 * selector on Intel does clear the base. Intel's behavior
1167 * allows slightly faster context switches in the common case
1168 * where GS is unused by the prev and next threads.
1170 * Since neither vendor documents this anywhere that I can see,
1171 * detect it directly instead of hardcoding the choice by
1174 * I've designated AMD's behavior as the "bug" because it's
1175 * counterintuitive and less friendly.
1178 unsigned long old_base
, tmp
;
1179 rdmsrl(MSR_FS_BASE
, old_base
);
1180 wrmsrl(MSR_FS_BASE
, 1);
1182 rdmsrl(MSR_FS_BASE
, tmp
);
1184 set_cpu_bug(c
, X86_BUG_NULL_SEG
);
1185 wrmsrl(MSR_FS_BASE
, old_base
);
1189 static void generic_identify(struct cpuinfo_x86
*c
)
1191 c
->extended_cpuid_level
= 0;
1193 if (!have_cpuid_p())
1194 identify_cpu_without_cpuid(c
);
1196 /* cyrix could have cpuid enabled via c_identify()*/
1197 if (!have_cpuid_p())
1206 get_cpu_address_sizes(c
);
1208 if (c
->cpuid_level
>= 0x00000001) {
1209 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
1210 #ifdef CONFIG_X86_32
1212 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
1214 c
->apicid
= c
->initial_apicid
;
1217 c
->phys_proc_id
= c
->initial_apicid
;
1220 get_model_name(c
); /* Default name */
1224 detect_null_seg_behavior(c
);
1227 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1228 * systems that run Linux at CPL > 0 may or may not have the
1229 * issue, but, even if they have the issue, there's absolutely
1230 * nothing we can do about it because we can't use the real IRET
1233 * NB: For the time being, only 32-bit kernels support
1234 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1235 * whether to apply espfix using paravirt hooks. If any
1236 * non-paravirt system ever shows up that does *not* have the
1237 * ESPFIX issue, we can change this.
1239 #ifdef CONFIG_X86_32
1240 # ifdef CONFIG_PARAVIRT
1242 extern void native_iret(void);
1243 if (pv_cpu_ops
.iret
== native_iret
)
1244 set_cpu_bug(c
, X86_BUG_ESPFIX
);
1247 set_cpu_bug(c
, X86_BUG_ESPFIX
);
1252 static void x86_init_cache_qos(struct cpuinfo_x86
*c
)
1255 * The heavy lifting of max_rmid and cache_occ_scale are handled
1256 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1257 * in case CQM bits really aren't there in this CPU.
1259 if (c
!= &boot_cpu_data
) {
1260 boot_cpu_data
.x86_cache_max_rmid
=
1261 min(boot_cpu_data
.x86_cache_max_rmid
,
1262 c
->x86_cache_max_rmid
);
1267 * Validate that ACPI/mptables have the same information about the
1268 * effective APIC id and update the package map.
1270 static void validate_apic_and_package_id(struct cpuinfo_x86
*c
)
1273 unsigned int apicid
, cpu
= smp_processor_id();
1275 apicid
= apic
->cpu_present_to_apicid(cpu
);
1277 if (apicid
!= c
->apicid
) {
1278 pr_err(FW_BUG
"CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1279 cpu
, apicid
, c
->initial_apicid
);
1281 BUG_ON(topology_update_package_map(c
->phys_proc_id
, cpu
));
1283 c
->logical_proc_id
= 0;
1288 * This does the hard work of actually picking apart the CPU stuff...
1290 static void identify_cpu(struct cpuinfo_x86
*c
)
1294 c
->loops_per_jiffy
= loops_per_jiffy
;
1295 c
->x86_cache_size
= 0;
1296 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
1297 c
->x86_model
= c
->x86_stepping
= 0; /* So far unknown... */
1298 c
->x86_vendor_id
[0] = '\0'; /* Unset */
1299 c
->x86_model_id
[0] = '\0'; /* Unset */
1300 c
->x86_max_cores
= 1;
1301 c
->x86_coreid_bits
= 0;
1303 #ifdef CONFIG_X86_64
1304 c
->x86_clflush_size
= 64;
1305 c
->x86_phys_bits
= 36;
1306 c
->x86_virt_bits
= 48;
1308 c
->cpuid_level
= -1; /* CPUID not detected */
1309 c
->x86_clflush_size
= 32;
1310 c
->x86_phys_bits
= 32;
1311 c
->x86_virt_bits
= 32;
1313 c
->x86_cache_alignment
= c
->x86_clflush_size
;
1314 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
1316 generic_identify(c
);
1318 if (this_cpu
->c_identify
)
1319 this_cpu
->c_identify(c
);
1321 /* Clear/Set all flags overridden by options, after probe */
1322 apply_forced_caps(c
);
1324 #ifdef CONFIG_X86_64
1325 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
1329 * Vendor-specific initialization. In this section we
1330 * canonicalize the feature flags, meaning if there are
1331 * features a certain CPU supports which CPUID doesn't
1332 * tell us, CPUID claiming incorrect flags, or other bugs,
1333 * we handle them here.
1335 * At the end of this section, c->x86_capability better
1336 * indicate the features this CPU genuinely supports!
1338 if (this_cpu
->c_init
)
1339 this_cpu
->c_init(c
);
1341 /* Disable the PN if appropriate */
1342 squash_the_stupid_serial_number(c
);
1344 /* Set up SMEP/SMAP/UMIP */
1350 * The vendor-specific functions might have changed features.
1351 * Now we do "generic changes."
1354 /* Filter out anything that depends on CPUID levels we don't have */
1355 filter_cpuid_features(c
, true);
1357 /* If the model name is still unset, do table lookup. */
1358 if (!c
->x86_model_id
[0]) {
1360 p
= table_lookup_model(c
);
1362 strcpy(c
->x86_model_id
, p
);
1364 /* Last resort... */
1365 sprintf(c
->x86_model_id
, "%02x/%02x",
1366 c
->x86
, c
->x86_model
);
1369 #ifdef CONFIG_X86_64
1374 x86_init_cache_qos(c
);
1378 * Clear/Set all flags overridden by options, need do it
1379 * before following smp all cpus cap AND.
1381 apply_forced_caps(c
);
1384 * On SMP, boot_cpu_data holds the common feature set between
1385 * all CPUs; so make sure that we indicate which features are
1386 * common between the CPUs. The first time this routine gets
1387 * executed, c == &boot_cpu_data.
1389 if (c
!= &boot_cpu_data
) {
1390 /* AND the already accumulated flags with these */
1391 for (i
= 0; i
< NCAPINTS
; i
++)
1392 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
1394 /* OR, i.e. replicate the bug flags */
1395 for (i
= NCAPINTS
; i
< NCAPINTS
+ NBUGINTS
; i
++)
1396 c
->x86_capability
[i
] |= boot_cpu_data
.x86_capability
[i
];
1399 /* Init Machine Check Exception if available. */
1402 select_idle_routine(c
);
1405 numa_add_cpu(smp_processor_id());
1410 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1411 * on 32-bit kernels:
1413 #ifdef CONFIG_X86_32
1414 void enable_sep_cpu(void)
1416 struct tss_struct
*tss
;
1419 if (!boot_cpu_has(X86_FEATURE_SEP
))
1423 tss
= &per_cpu(cpu_tss_rw
, cpu
);
1426 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1427 * see the big comment in struct x86_hw_tss's definition.
1430 tss
->x86_tss
.ss1
= __KERNEL_CS
;
1431 wrmsr(MSR_IA32_SYSENTER_CS
, tss
->x86_tss
.ss1
, 0);
1432 wrmsr(MSR_IA32_SYSENTER_ESP
, (unsigned long)(cpu_entry_stack(cpu
) + 1), 0);
1433 wrmsr(MSR_IA32_SYSENTER_EIP
, (unsigned long)entry_SYSENTER_32
, 0);
1439 void __init
identify_boot_cpu(void)
1441 identify_cpu(&boot_cpu_data
);
1442 #ifdef CONFIG_X86_32
1446 cpu_detect_tlb(&boot_cpu_data
);
1449 void identify_secondary_cpu(struct cpuinfo_x86
*c
)
1451 BUG_ON(c
== &boot_cpu_data
);
1453 #ifdef CONFIG_X86_32
1457 validate_apic_and_package_id(c
);
1458 x86_spec_ctrl_setup_ap();
1461 static __init
int setup_noclflush(char *arg
)
1463 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH
);
1464 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT
);
1467 __setup("noclflush", setup_noclflush
);
1469 void print_cpu_info(struct cpuinfo_x86
*c
)
1471 const char *vendor
= NULL
;
1473 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
1474 vendor
= this_cpu
->c_vendor
;
1476 if (c
->cpuid_level
>= 0)
1477 vendor
= c
->x86_vendor_id
;
1480 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
1481 pr_cont("%s ", vendor
);
1483 if (c
->x86_model_id
[0])
1484 pr_cont("%s", c
->x86_model_id
);
1486 pr_cont("%d86", c
->x86
);
1488 pr_cont(" (family: 0x%x, model: 0x%x", c
->x86
, c
->x86_model
);
1490 if (c
->x86_stepping
|| c
->cpuid_level
>= 0)
1491 pr_cont(", stepping: 0x%x)\n", c
->x86_stepping
);
1497 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1498 * But we need to keep a dummy __setup around otherwise it would
1499 * show up as an environment variable for init.
1501 static __init
int setup_clearcpuid(char *arg
)
1505 __setup("clearcpuid=", setup_clearcpuid
);
1507 #ifdef CONFIG_X86_64
1508 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
1509 irq_stack_union
) __aligned(PAGE_SIZE
) __visible
;
1510 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union
);
1513 * The following percpu variables are hot. Align current_task to
1514 * cacheline size such that they fall in the same cacheline.
1516 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
1518 EXPORT_PER_CPU_SYMBOL(current_task
);
1520 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1521 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
;
1523 DEFINE_PER_CPU(unsigned int, irq_count
) __visible
= -1;
1525 DEFINE_PER_CPU(int, __preempt_count
) = INIT_PREEMPT_COUNT
;
1526 EXPORT_PER_CPU_SYMBOL(__preempt_count
);
1528 /* May not be marked __init: used by software suspend */
1529 void syscall_init(void)
1531 extern char _entry_trampoline
[];
1532 extern char entry_SYSCALL_64_trampoline
[];
1534 int cpu
= smp_processor_id();
1535 unsigned long SYSCALL64_entry_trampoline
=
1536 (unsigned long)get_cpu_entry_area(cpu
)->entry_trampoline
+
1537 (entry_SYSCALL_64_trampoline
- _entry_trampoline
);
1539 wrmsr(MSR_STAR
, 0, (__USER32_CS
<< 16) | __KERNEL_CS
);
1540 if (static_cpu_has(X86_FEATURE_PTI
))
1541 wrmsrl(MSR_LSTAR
, SYSCALL64_entry_trampoline
);
1543 wrmsrl(MSR_LSTAR
, (unsigned long)entry_SYSCALL_64
);
1545 #ifdef CONFIG_IA32_EMULATION
1546 wrmsrl(MSR_CSTAR
, (unsigned long)entry_SYSCALL_compat
);
1548 * This only works on Intel CPUs.
1549 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1550 * This does not cause SYSENTER to jump to the wrong location, because
1551 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1553 wrmsrl_safe(MSR_IA32_SYSENTER_CS
, (u64
)__KERNEL_CS
);
1554 wrmsrl_safe(MSR_IA32_SYSENTER_ESP
, (unsigned long)(cpu_entry_stack(cpu
) + 1));
1555 wrmsrl_safe(MSR_IA32_SYSENTER_EIP
, (u64
)entry_SYSENTER_compat
);
1557 wrmsrl(MSR_CSTAR
, (unsigned long)ignore_sysret
);
1558 wrmsrl_safe(MSR_IA32_SYSENTER_CS
, (u64
)GDT_ENTRY_INVALID_SEG
);
1559 wrmsrl_safe(MSR_IA32_SYSENTER_ESP
, 0ULL);
1560 wrmsrl_safe(MSR_IA32_SYSENTER_EIP
, 0ULL);
1563 /* Flags to clear on syscall */
1564 wrmsrl(MSR_SYSCALL_MASK
,
1565 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|
1566 X86_EFLAGS_IOPL
|X86_EFLAGS_AC
|X86_EFLAGS_NT
);
1570 * Copies of the original ist values from the tss are only accessed during
1571 * debugging, no special alignment required.
1573 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1575 static DEFINE_PER_CPU(unsigned long, debug_stack_addr
);
1576 DEFINE_PER_CPU(int, debug_stack_usage
);
1578 int is_debug_stack(unsigned long addr
)
1580 return __this_cpu_read(debug_stack_usage
) ||
1581 (addr
<= __this_cpu_read(debug_stack_addr
) &&
1582 addr
> (__this_cpu_read(debug_stack_addr
) - DEBUG_STKSZ
));
1584 NOKPROBE_SYMBOL(is_debug_stack
);
1586 DEFINE_PER_CPU(u32
, debug_idt_ctr
);
1588 void debug_stack_set_zero(void)
1590 this_cpu_inc(debug_idt_ctr
);
1593 NOKPROBE_SYMBOL(debug_stack_set_zero
);
1595 void debug_stack_reset(void)
1597 if (WARN_ON(!this_cpu_read(debug_idt_ctr
)))
1599 if (this_cpu_dec_return(debug_idt_ctr
) == 0)
1602 NOKPROBE_SYMBOL(debug_stack_reset
);
1604 #else /* CONFIG_X86_64 */
1606 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1607 EXPORT_PER_CPU_SYMBOL(current_task
);
1608 DEFINE_PER_CPU(int, __preempt_count
) = INIT_PREEMPT_COUNT
;
1609 EXPORT_PER_CPU_SYMBOL(__preempt_count
);
1612 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1613 * the top of the kernel stack. Use an extra percpu variable to track the
1614 * top of the kernel stack directly.
1616 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack
) =
1617 (unsigned long)&init_thread_union
+ THREAD_SIZE
;
1618 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack
);
1620 #ifdef CONFIG_STACKPROTECTOR
1621 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1624 #endif /* CONFIG_X86_64 */
1627 * Clear all 6 debug registers:
1629 static void clear_all_debug_regs(void)
1633 for (i
= 0; i
< 8; i
++) {
1634 /* Ignore db4, db5 */
1635 if ((i
== 4) || (i
== 5))
1644 * Restore debug regs if using kgdbwait and you have a kernel debugger
1645 * connection established.
1647 static void dbg_restore_debug_regs(void)
1649 if (unlikely(kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
))
1650 arch_kgdb_ops
.correct_hw_break();
1652 #else /* ! CONFIG_KGDB */
1653 #define dbg_restore_debug_regs()
1654 #endif /* ! CONFIG_KGDB */
1656 static void wait_for_master_cpu(int cpu
)
1660 * wait for ACK from master CPU before continuing
1661 * with AP initialization
1663 WARN_ON(cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
));
1664 while (!cpumask_test_cpu(cpu
, cpu_callout_mask
))
1670 * cpu_init() initializes state that is per-CPU. Some data is already
1671 * initialized (naturally) in the bootstrap process, such as the GDT
1672 * and IDT. We reload them nevertheless, this function acts as a
1673 * 'CPU state barrier', nothing should get across.
1674 * A lot of state is already set up in PDA init for 64 bit
1676 #ifdef CONFIG_X86_64
1680 struct orig_ist
*oist
;
1681 struct task_struct
*me
;
1682 struct tss_struct
*t
;
1684 int cpu
= raw_smp_processor_id();
1687 wait_for_master_cpu(cpu
);
1690 * Initialize the CR4 shadow before doing anything that could
1698 t
= &per_cpu(cpu_tss_rw
, cpu
);
1699 oist
= &per_cpu(orig_ist
, cpu
);
1702 if (this_cpu_read(numa_node
) == 0 &&
1703 early_cpu_to_node(cpu
) != NUMA_NO_NODE
)
1704 set_numa_node(early_cpu_to_node(cpu
));
1709 pr_debug("Initializing CPU#%d\n", cpu
);
1711 cr4_clear_bits(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1714 * Initialize the per-CPU GDT with the boot GDT,
1715 * and set up the GDT descriptor:
1718 switch_to_new_gdt(cpu
);
1723 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1726 wrmsrl(MSR_FS_BASE
, 0);
1727 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1734 * set up and load the per-CPU TSS
1736 if (!oist
->ist
[0]) {
1737 char *estacks
= get_cpu_entry_area(cpu
)->exception_stacks
;
1739 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1740 estacks
+= exception_stack_sizes
[v
];
1741 oist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1742 (unsigned long)estacks
;
1743 if (v
== DEBUG_STACK
-1)
1744 per_cpu(debug_stack_addr
, cpu
) = (unsigned long)estacks
;
1748 t
->x86_tss
.io_bitmap_base
= IO_BITMAP_OFFSET
;
1751 * <= is required because the CPU will access up to
1752 * 8 bits beyond the end of the IO permission bitmap.
1754 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1755 t
->io_bitmap
[i
] = ~0UL;
1758 me
->active_mm
= &init_mm
;
1760 initialize_tlbstate_and_flush();
1761 enter_lazy_tlb(&init_mm
, me
);
1764 * Initialize the TSS. sp0 points to the entry trampoline stack
1765 * regardless of what task is running.
1767 set_tss_desc(cpu
, &get_cpu_entry_area(cpu
)->tss
.x86_tss
);
1769 load_sp0((unsigned long)(cpu_entry_stack(cpu
) + 1));
1771 load_mm_ldt(&init_mm
);
1773 clear_all_debug_regs();
1774 dbg_restore_debug_regs();
1781 load_fixmap_gdt(cpu
);
1788 int cpu
= smp_processor_id();
1789 struct task_struct
*curr
= current
;
1790 struct tss_struct
*t
= &per_cpu(cpu_tss_rw
, cpu
);
1792 wait_for_master_cpu(cpu
);
1795 * Initialize the CR4 shadow before doing anything that could
1800 show_ucode_info_early();
1802 pr_info("Initializing CPU#%d\n", cpu
);
1804 if (cpu_feature_enabled(X86_FEATURE_VME
) ||
1805 boot_cpu_has(X86_FEATURE_TSC
) ||
1806 boot_cpu_has(X86_FEATURE_DE
))
1807 cr4_clear_bits(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1810 switch_to_new_gdt(cpu
);
1813 * Set up and load the per-CPU TSS and LDT
1816 curr
->active_mm
= &init_mm
;
1818 initialize_tlbstate_and_flush();
1819 enter_lazy_tlb(&init_mm
, curr
);
1822 * Initialize the TSS. Don't bother initializing sp0, as the initial
1823 * task never enters user mode.
1825 set_tss_desc(cpu
, &get_cpu_entry_area(cpu
)->tss
.x86_tss
);
1828 load_mm_ldt(&init_mm
);
1830 t
->x86_tss
.io_bitmap_base
= IO_BITMAP_OFFSET
;
1832 #ifdef CONFIG_DOUBLEFAULT
1833 /* Set up doublefault TSS pointer in the GDT */
1834 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1837 clear_all_debug_regs();
1838 dbg_restore_debug_regs();
1842 load_fixmap_gdt(cpu
);
1846 static void bsp_resume(void)
1848 if (this_cpu
->c_bsp_resume
)
1849 this_cpu
->c_bsp_resume(&boot_cpu_data
);
1852 static struct syscore_ops cpu_syscore_ops
= {
1853 .resume
= bsp_resume
,
1856 static int __init
init_cpu_syscore(void)
1858 register_syscore_ops(&cpu_syscore_ops
);
1861 core_initcall(init_cpu_syscore
);
1864 * The microcode loader calls this upon late microcode load to recheck features,
1865 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1868 void microcode_check(void)
1870 struct cpuinfo_x86 info
;
1872 perf_check_microcode();
1874 /* Reload CPUID max function as it might've changed. */
1875 info
.cpuid_level
= cpuid_eax(0);
1878 * Copy all capability leafs to pick up the synthetic ones so that
1879 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1880 * get overwritten in get_cpu_cap().
1882 memcpy(&info
.x86_capability
, &boot_cpu_data
.x86_capability
, sizeof(info
.x86_capability
));
1886 if (!memcmp(&info
.x86_capability
, &boot_cpu_data
.x86_capability
, sizeof(info
.x86_capability
)))
1889 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1890 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");