Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / kprobes / core.c
blob44e26dc326d53b6d4b14e69c65194a185e0ec85f
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
67 #include "common.h"
69 void jprobe_return_end(void);
71 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
72 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
81 << (row % 32))
83 * Undefined/reserved opcodes, conditional jump, Opcode Extension
84 * Groups, and some special opcodes can not boost.
85 * This is non-const and volatile to keep gcc from statically
86 * optimizing it out, as variable_test_bit makes gcc think only
87 * *(unsigned long*) is used.
89 static volatile u32 twobyte_is_boostable[256 / 32] = {
90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91 /* ---------------------------------------------- */
92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
108 /* ----------------------------------------------- */
109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
111 #undef W
113 struct kretprobe_blackpoint kretprobe_blacklist[] = {
114 {"__switch_to", }, /* This function switches only current task, but
115 doesn't switch kernel stack.*/
116 {NULL, NULL} /* Terminator */
119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
121 static nokprobe_inline void
122 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
124 struct __arch_relative_insn {
125 u8 op;
126 s32 raddr;
127 } __packed *insn;
129 insn = (struct __arch_relative_insn *)dest;
130 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
131 insn->op = op;
134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
135 void synthesize_reljump(void *dest, void *from, void *to)
137 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
139 NOKPROBE_SYMBOL(synthesize_reljump);
141 /* Insert a call instruction at address 'from', which calls address 'to'.*/
142 void synthesize_relcall(void *dest, void *from, void *to)
144 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
146 NOKPROBE_SYMBOL(synthesize_relcall);
149 * Skip the prefixes of the instruction.
151 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
153 insn_attr_t attr;
155 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
156 while (inat_is_legacy_prefix(attr)) {
157 insn++;
158 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
160 #ifdef CONFIG_X86_64
161 if (inat_is_rex_prefix(attr))
162 insn++;
163 #endif
164 return insn;
166 NOKPROBE_SYMBOL(skip_prefixes);
169 * Returns non-zero if INSN is boostable.
170 * RIP relative instructions are adjusted at copying time in 64 bits mode
172 int can_boost(struct insn *insn, void *addr)
174 kprobe_opcode_t opcode;
176 if (search_exception_tables((unsigned long)addr))
177 return 0; /* Page fault may occur on this address. */
179 /* 2nd-byte opcode */
180 if (insn->opcode.nbytes == 2)
181 return test_bit(insn->opcode.bytes[1],
182 (unsigned long *)twobyte_is_boostable);
184 if (insn->opcode.nbytes != 1)
185 return 0;
187 /* Can't boost Address-size override prefix */
188 if (unlikely(inat_is_address_size_prefix(insn->attr)))
189 return 0;
191 opcode = insn->opcode.bytes[0];
193 switch (opcode & 0xf0) {
194 case 0x60:
195 /* can't boost "bound" */
196 return (opcode != 0x62);
197 case 0x70:
198 return 0; /* can't boost conditional jump */
199 case 0x90:
200 return opcode != 0x9a; /* can't boost call far */
201 case 0xc0:
202 /* can't boost software-interruptions */
203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
204 case 0xd0:
205 /* can boost AA* and XLAT */
206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
207 case 0xe0:
208 /* can boost in/out and absolute jmps */
209 return ((opcode & 0x04) || opcode == 0xea);
210 case 0xf0:
211 /* clear and set flags are boostable */
212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 default:
214 /* CS override prefix and call are not boostable */
215 return (opcode != 0x2e && opcode != 0x9a);
219 static unsigned long
220 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
222 struct kprobe *kp;
223 unsigned long faddr;
225 kp = get_kprobe((void *)addr);
226 faddr = ftrace_location(addr);
228 * Addresses inside the ftrace location are refused by
229 * arch_check_ftrace_location(). Something went terribly wrong
230 * if such an address is checked here.
232 if (WARN_ON(faddr && faddr != addr))
233 return 0UL;
235 * Use the current code if it is not modified by Kprobe
236 * and it cannot be modified by ftrace.
238 if (!kp && !faddr)
239 return addr;
242 * Basically, kp->ainsn.insn has an original instruction.
243 * However, RIP-relative instruction can not do single-stepping
244 * at different place, __copy_instruction() tweaks the displacement of
245 * that instruction. In that case, we can't recover the instruction
246 * from the kp->ainsn.insn.
248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
249 * of the first byte of the probed instruction, which is overwritten
250 * by int3. And the instruction at kp->addr is not modified by kprobes
251 * except for the first byte, we can recover the original instruction
252 * from it and kp->opcode.
254 * In case of Kprobes using ftrace, we do not have a copy of
255 * the original instruction. In fact, the ftrace location might
256 * be modified at anytime and even could be in an inconsistent state.
257 * Fortunately, we know that the original code is the ideal 5-byte
258 * long NOP.
260 if (probe_kernel_read(buf, (void *)addr,
261 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
262 return 0UL;
264 if (faddr)
265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 else
267 buf[0] = kp->opcode;
268 return (unsigned long)buf;
272 * Recover the probed instruction at addr for further analysis.
273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
274 * for preventing to release referencing kprobes.
275 * Returns zero if the instruction can not get recovered (or access failed).
277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
279 unsigned long __addr;
281 __addr = __recover_optprobed_insn(buf, addr);
282 if (__addr != addr)
283 return __addr;
285 return __recover_probed_insn(buf, addr);
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr)
291 unsigned long addr, __addr, offset = 0;
292 struct insn insn;
293 kprobe_opcode_t buf[MAX_INSN_SIZE];
295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
296 return 0;
298 /* Decode instructions */
299 addr = paddr - offset;
300 while (addr < paddr) {
302 * Check if the instruction has been modified by another
303 * kprobe, in which case we replace the breakpoint by the
304 * original instruction in our buffer.
305 * Also, jump optimization will change the breakpoint to
306 * relative-jump. Since the relative-jump itself is
307 * normally used, we just go through if there is no kprobe.
309 __addr = recover_probed_instruction(buf, addr);
310 if (!__addr)
311 return 0;
312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
313 insn_get_length(&insn);
316 * Another debugging subsystem might insert this breakpoint.
317 * In that case, we can't recover it.
319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 return 0;
321 addr += insn.length;
324 return (addr == paddr);
328 * Returns non-zero if opcode modifies the interrupt flag.
330 static int is_IF_modifier(kprobe_opcode_t *insn)
332 /* Skip prefixes */
333 insn = skip_prefixes(insn);
335 switch (*insn) {
336 case 0xfa: /* cli */
337 case 0xfb: /* sti */
338 case 0xcf: /* iret/iretd */
339 case 0x9d: /* popf/popfd */
340 return 1;
343 return 0;
347 * Copy an instruction with recovering modified instruction by kprobes
348 * and adjust the displacement if the instruction uses the %rip-relative
349 * addressing mode. Note that since @real will be the final place of copied
350 * instruction, displacement must be adjust by @real, not @dest.
351 * This returns the length of copied instruction, or 0 if it has an error.
353 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
355 kprobe_opcode_t buf[MAX_INSN_SIZE];
356 unsigned long recovered_insn =
357 recover_probed_instruction(buf, (unsigned long)src);
359 if (!recovered_insn || !insn)
360 return 0;
362 /* This can access kernel text if given address is not recovered */
363 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
364 return 0;
366 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
367 insn_get_length(insn);
369 /* Another subsystem puts a breakpoint, failed to recover */
370 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
371 return 0;
373 /* We should not singlestep on the exception masking instructions */
374 if (insn_masking_exception(insn))
375 return 0;
377 #ifdef CONFIG_X86_64
378 /* Only x86_64 has RIP relative instructions */
379 if (insn_rip_relative(insn)) {
380 s64 newdisp;
381 u8 *disp;
383 * The copied instruction uses the %rip-relative addressing
384 * mode. Adjust the displacement for the difference between
385 * the original location of this instruction and the location
386 * of the copy that will actually be run. The tricky bit here
387 * is making sure that the sign extension happens correctly in
388 * this calculation, since we need a signed 32-bit result to
389 * be sign-extended to 64 bits when it's added to the %rip
390 * value and yield the same 64-bit result that the sign-
391 * extension of the original signed 32-bit displacement would
392 * have given.
394 newdisp = (u8 *) src + (s64) insn->displacement.value
395 - (u8 *) real;
396 if ((s64) (s32) newdisp != newdisp) {
397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
398 return 0;
400 disp = (u8 *) dest + insn_offset_displacement(insn);
401 *(s32 *) disp = (s32) newdisp;
403 #endif
404 return insn->length;
407 /* Prepare reljump right after instruction to boost */
408 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
409 struct insn *insn)
411 int len = insn->length;
413 if (can_boost(insn, p->addr) &&
414 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
416 * These instructions can be executed directly if it
417 * jumps back to correct address.
419 synthesize_reljump(buf + len, p->ainsn.insn + len,
420 p->addr + insn->length);
421 len += RELATIVEJUMP_SIZE;
422 p->ainsn.boostable = true;
423 } else {
424 p->ainsn.boostable = false;
427 return len;
430 /* Make page to RO mode when allocate it */
431 void *alloc_insn_page(void)
433 void *page;
435 page = module_alloc(PAGE_SIZE);
436 if (page)
437 set_memory_ro((unsigned long)page & PAGE_MASK, 1);
439 return page;
442 /* Recover page to RW mode before releasing it */
443 void free_insn_page(void *page)
445 set_memory_nx((unsigned long)page & PAGE_MASK, 1);
446 set_memory_rw((unsigned long)page & PAGE_MASK, 1);
447 module_memfree(page);
450 static int arch_copy_kprobe(struct kprobe *p)
452 struct insn insn;
453 kprobe_opcode_t buf[MAX_INSN_SIZE];
454 int len;
456 /* Copy an instruction with recovering if other optprobe modifies it.*/
457 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
458 if (!len)
459 return -EINVAL;
462 * __copy_instruction can modify the displacement of the instruction,
463 * but it doesn't affect boostable check.
465 len = prepare_boost(buf, p, &insn);
467 /* Check whether the instruction modifies Interrupt Flag or not */
468 p->ainsn.if_modifier = is_IF_modifier(buf);
470 /* Also, displacement change doesn't affect the first byte */
471 p->opcode = buf[0];
473 /* OK, write back the instruction(s) into ROX insn buffer */
474 text_poke(p->ainsn.insn, buf, len);
476 return 0;
479 int arch_prepare_kprobe(struct kprobe *p)
481 int ret;
483 if (alternatives_text_reserved(p->addr, p->addr))
484 return -EINVAL;
486 if (!can_probe((unsigned long)p->addr))
487 return -EILSEQ;
488 /* insn: must be on special executable page on x86. */
489 p->ainsn.insn = get_insn_slot();
490 if (!p->ainsn.insn)
491 return -ENOMEM;
493 ret = arch_copy_kprobe(p);
494 if (ret) {
495 free_insn_slot(p->ainsn.insn, 0);
496 p->ainsn.insn = NULL;
499 return ret;
502 void arch_arm_kprobe(struct kprobe *p)
504 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
507 void arch_disarm_kprobe(struct kprobe *p)
509 text_poke(p->addr, &p->opcode, 1);
512 void arch_remove_kprobe(struct kprobe *p)
514 if (p->ainsn.insn) {
515 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
516 p->ainsn.insn = NULL;
520 static nokprobe_inline void
521 save_previous_kprobe(struct kprobe_ctlblk *kcb)
523 kcb->prev_kprobe.kp = kprobe_running();
524 kcb->prev_kprobe.status = kcb->kprobe_status;
525 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
526 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
529 static nokprobe_inline void
530 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
532 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
533 kcb->kprobe_status = kcb->prev_kprobe.status;
534 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
535 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
538 static nokprobe_inline void
539 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
540 struct kprobe_ctlblk *kcb)
542 __this_cpu_write(current_kprobe, p);
543 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
544 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
545 if (p->ainsn.if_modifier)
546 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
549 static nokprobe_inline void clear_btf(void)
551 if (test_thread_flag(TIF_BLOCKSTEP)) {
552 unsigned long debugctl = get_debugctlmsr();
554 debugctl &= ~DEBUGCTLMSR_BTF;
555 update_debugctlmsr(debugctl);
559 static nokprobe_inline void restore_btf(void)
561 if (test_thread_flag(TIF_BLOCKSTEP)) {
562 unsigned long debugctl = get_debugctlmsr();
564 debugctl |= DEBUGCTLMSR_BTF;
565 update_debugctlmsr(debugctl);
569 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
571 unsigned long *sara = stack_addr(regs);
573 ri->ret_addr = (kprobe_opcode_t *) *sara;
575 /* Replace the return addr with trampoline addr */
576 *sara = (unsigned long) &kretprobe_trampoline;
578 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
580 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
581 struct kprobe_ctlblk *kcb, int reenter)
583 if (setup_detour_execution(p, regs, reenter))
584 return;
586 #if !defined(CONFIG_PREEMPT)
587 if (p->ainsn.boostable && !p->post_handler) {
588 /* Boost up -- we can execute copied instructions directly */
589 if (!reenter)
590 reset_current_kprobe();
592 * Reentering boosted probe doesn't reset current_kprobe,
593 * nor set current_kprobe, because it doesn't use single
594 * stepping.
596 regs->ip = (unsigned long)p->ainsn.insn;
597 preempt_enable_no_resched();
598 return;
600 #endif
601 if (reenter) {
602 save_previous_kprobe(kcb);
603 set_current_kprobe(p, regs, kcb);
604 kcb->kprobe_status = KPROBE_REENTER;
605 } else
606 kcb->kprobe_status = KPROBE_HIT_SS;
607 /* Prepare real single stepping */
608 clear_btf();
609 regs->flags |= X86_EFLAGS_TF;
610 regs->flags &= ~X86_EFLAGS_IF;
611 /* single step inline if the instruction is an int3 */
612 if (p->opcode == BREAKPOINT_INSTRUCTION)
613 regs->ip = (unsigned long)p->addr;
614 else
615 regs->ip = (unsigned long)p->ainsn.insn;
617 NOKPROBE_SYMBOL(setup_singlestep);
620 * We have reentered the kprobe_handler(), since another probe was hit while
621 * within the handler. We save the original kprobes variables and just single
622 * step on the instruction of the new probe without calling any user handlers.
624 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
625 struct kprobe_ctlblk *kcb)
627 switch (kcb->kprobe_status) {
628 case KPROBE_HIT_SSDONE:
629 case KPROBE_HIT_ACTIVE:
630 case KPROBE_HIT_SS:
631 kprobes_inc_nmissed_count(p);
632 setup_singlestep(p, regs, kcb, 1);
633 break;
634 case KPROBE_REENTER:
635 /* A probe has been hit in the codepath leading up to, or just
636 * after, single-stepping of a probed instruction. This entire
637 * codepath should strictly reside in .kprobes.text section.
638 * Raise a BUG or we'll continue in an endless reentering loop
639 * and eventually a stack overflow.
641 pr_err("Unrecoverable kprobe detected.\n");
642 dump_kprobe(p);
643 BUG();
644 default:
645 /* impossible cases */
646 WARN_ON(1);
647 return 0;
650 return 1;
652 NOKPROBE_SYMBOL(reenter_kprobe);
655 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
656 * remain disabled throughout this function.
658 int kprobe_int3_handler(struct pt_regs *regs)
660 kprobe_opcode_t *addr;
661 struct kprobe *p;
662 struct kprobe_ctlblk *kcb;
664 if (user_mode(regs))
665 return 0;
667 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
669 * We don't want to be preempted for the entire
670 * duration of kprobe processing. We conditionally
671 * re-enable preemption at the end of this function,
672 * and also in reenter_kprobe() and setup_singlestep().
674 preempt_disable();
676 kcb = get_kprobe_ctlblk();
677 p = get_kprobe(addr);
679 if (p) {
680 if (kprobe_running()) {
681 if (reenter_kprobe(p, regs, kcb))
682 return 1;
683 } else {
684 set_current_kprobe(p, regs, kcb);
685 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
688 * If we have no pre-handler or it returned 0, we
689 * continue with normal processing. If we have a
690 * pre-handler and it returned non-zero, it prepped
691 * for calling the break_handler below on re-entry
692 * for jprobe processing, so get out doing nothing
693 * more here.
695 if (!p->pre_handler || !p->pre_handler(p, regs))
696 setup_singlestep(p, regs, kcb, 0);
697 return 1;
699 } else if (*addr != BREAKPOINT_INSTRUCTION) {
701 * The breakpoint instruction was removed right
702 * after we hit it. Another cpu has removed
703 * either a probepoint or a debugger breakpoint
704 * at this address. In either case, no further
705 * handling of this interrupt is appropriate.
706 * Back up over the (now missing) int3 and run
707 * the original instruction.
709 regs->ip = (unsigned long)addr;
710 preempt_enable_no_resched();
711 return 1;
712 } else if (kprobe_running()) {
713 p = __this_cpu_read(current_kprobe);
714 if (p->break_handler && p->break_handler(p, regs)) {
715 if (!skip_singlestep(p, regs, kcb))
716 setup_singlestep(p, regs, kcb, 0);
717 return 1;
719 } /* else: not a kprobe fault; let the kernel handle it */
721 preempt_enable_no_resched();
722 return 0;
724 NOKPROBE_SYMBOL(kprobe_int3_handler);
727 * When a retprobed function returns, this code saves registers and
728 * calls trampoline_handler() runs, which calls the kretprobe's handler.
730 asm(
731 ".global kretprobe_trampoline\n"
732 ".type kretprobe_trampoline, @function\n"
733 "kretprobe_trampoline:\n"
734 #ifdef CONFIG_X86_64
735 /* We don't bother saving the ss register */
736 " pushq %rsp\n"
737 " pushfq\n"
738 SAVE_REGS_STRING
739 " movq %rsp, %rdi\n"
740 " call trampoline_handler\n"
741 /* Replace saved sp with true return address. */
742 " movq %rax, 152(%rsp)\n"
743 RESTORE_REGS_STRING
744 " popfq\n"
745 #else
746 " pushf\n"
747 SAVE_REGS_STRING
748 " movl %esp, %eax\n"
749 " call trampoline_handler\n"
750 /* Move flags to cs */
751 " movl 56(%esp), %edx\n"
752 " movl %edx, 52(%esp)\n"
753 /* Replace saved flags with true return address. */
754 " movl %eax, 56(%esp)\n"
755 RESTORE_REGS_STRING
756 " popf\n"
757 #endif
758 " ret\n"
759 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
761 NOKPROBE_SYMBOL(kretprobe_trampoline);
762 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
765 * Called from kretprobe_trampoline
767 __visible __used void *trampoline_handler(struct pt_regs *regs)
769 struct kretprobe_instance *ri = NULL;
770 struct hlist_head *head, empty_rp;
771 struct hlist_node *tmp;
772 unsigned long flags, orig_ret_address = 0;
773 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
774 kprobe_opcode_t *correct_ret_addr = NULL;
776 INIT_HLIST_HEAD(&empty_rp);
777 kretprobe_hash_lock(current, &head, &flags);
778 /* fixup registers */
779 #ifdef CONFIG_X86_64
780 regs->cs = __KERNEL_CS;
781 #else
782 regs->cs = __KERNEL_CS | get_kernel_rpl();
783 regs->gs = 0;
784 #endif
785 regs->ip = trampoline_address;
786 regs->orig_ax = ~0UL;
789 * It is possible to have multiple instances associated with a given
790 * task either because multiple functions in the call path have
791 * return probes installed on them, and/or more than one
792 * return probe was registered for a target function.
794 * We can handle this because:
795 * - instances are always pushed into the head of the list
796 * - when multiple return probes are registered for the same
797 * function, the (chronologically) first instance's ret_addr
798 * will be the real return address, and all the rest will
799 * point to kretprobe_trampoline.
801 hlist_for_each_entry(ri, head, hlist) {
802 if (ri->task != current)
803 /* another task is sharing our hash bucket */
804 continue;
806 orig_ret_address = (unsigned long)ri->ret_addr;
808 if (orig_ret_address != trampoline_address)
810 * This is the real return address. Any other
811 * instances associated with this task are for
812 * other calls deeper on the call stack
814 break;
817 kretprobe_assert(ri, orig_ret_address, trampoline_address);
819 correct_ret_addr = ri->ret_addr;
820 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
821 if (ri->task != current)
822 /* another task is sharing our hash bucket */
823 continue;
825 orig_ret_address = (unsigned long)ri->ret_addr;
826 if (ri->rp && ri->rp->handler) {
827 __this_cpu_write(current_kprobe, &ri->rp->kp);
828 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
829 ri->ret_addr = correct_ret_addr;
830 ri->rp->handler(ri, regs);
831 __this_cpu_write(current_kprobe, NULL);
834 recycle_rp_inst(ri, &empty_rp);
836 if (orig_ret_address != trampoline_address)
838 * This is the real return address. Any other
839 * instances associated with this task are for
840 * other calls deeper on the call stack
842 break;
845 kretprobe_hash_unlock(current, &flags);
847 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
848 hlist_del(&ri->hlist);
849 kfree(ri);
851 return (void *)orig_ret_address;
853 NOKPROBE_SYMBOL(trampoline_handler);
856 * Called after single-stepping. p->addr is the address of the
857 * instruction whose first byte has been replaced by the "int 3"
858 * instruction. To avoid the SMP problems that can occur when we
859 * temporarily put back the original opcode to single-step, we
860 * single-stepped a copy of the instruction. The address of this
861 * copy is p->ainsn.insn.
863 * This function prepares to return from the post-single-step
864 * interrupt. We have to fix up the stack as follows:
866 * 0) Except in the case of absolute or indirect jump or call instructions,
867 * the new ip is relative to the copied instruction. We need to make
868 * it relative to the original instruction.
870 * 1) If the single-stepped instruction was pushfl, then the TF and IF
871 * flags are set in the just-pushed flags, and may need to be cleared.
873 * 2) If the single-stepped instruction was a call, the return address
874 * that is atop the stack is the address following the copied instruction.
875 * We need to make it the address following the original instruction.
877 * If this is the first time we've single-stepped the instruction at
878 * this probepoint, and the instruction is boostable, boost it: add a
879 * jump instruction after the copied instruction, that jumps to the next
880 * instruction after the probepoint.
882 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
883 struct kprobe_ctlblk *kcb)
885 unsigned long *tos = stack_addr(regs);
886 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
887 unsigned long orig_ip = (unsigned long)p->addr;
888 kprobe_opcode_t *insn = p->ainsn.insn;
890 /* Skip prefixes */
891 insn = skip_prefixes(insn);
893 regs->flags &= ~X86_EFLAGS_TF;
894 switch (*insn) {
895 case 0x9c: /* pushfl */
896 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
897 *tos |= kcb->kprobe_old_flags;
898 break;
899 case 0xc2: /* iret/ret/lret */
900 case 0xc3:
901 case 0xca:
902 case 0xcb:
903 case 0xcf:
904 case 0xea: /* jmp absolute -- ip is correct */
905 /* ip is already adjusted, no more changes required */
906 p->ainsn.boostable = true;
907 goto no_change;
908 case 0xe8: /* call relative - Fix return addr */
909 *tos = orig_ip + (*tos - copy_ip);
910 break;
911 #ifdef CONFIG_X86_32
912 case 0x9a: /* call absolute -- same as call absolute, indirect */
913 *tos = orig_ip + (*tos - copy_ip);
914 goto no_change;
915 #endif
916 case 0xff:
917 if ((insn[1] & 0x30) == 0x10) {
919 * call absolute, indirect
920 * Fix return addr; ip is correct.
921 * But this is not boostable
923 *tos = orig_ip + (*tos - copy_ip);
924 goto no_change;
925 } else if (((insn[1] & 0x31) == 0x20) ||
926 ((insn[1] & 0x31) == 0x21)) {
928 * jmp near and far, absolute indirect
929 * ip is correct. And this is boostable
931 p->ainsn.boostable = true;
932 goto no_change;
934 default:
935 break;
938 regs->ip += orig_ip - copy_ip;
940 no_change:
941 restore_btf();
943 NOKPROBE_SYMBOL(resume_execution);
946 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
947 * remain disabled throughout this function.
949 int kprobe_debug_handler(struct pt_regs *regs)
951 struct kprobe *cur = kprobe_running();
952 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
954 if (!cur)
955 return 0;
957 resume_execution(cur, regs, kcb);
958 regs->flags |= kcb->kprobe_saved_flags;
960 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
961 kcb->kprobe_status = KPROBE_HIT_SSDONE;
962 cur->post_handler(cur, regs, 0);
965 /* Restore back the original saved kprobes variables and continue. */
966 if (kcb->kprobe_status == KPROBE_REENTER) {
967 restore_previous_kprobe(kcb);
968 goto out;
970 reset_current_kprobe();
971 out:
972 preempt_enable_no_resched();
975 * if somebody else is singlestepping across a probe point, flags
976 * will have TF set, in which case, continue the remaining processing
977 * of do_debug, as if this is not a probe hit.
979 if (regs->flags & X86_EFLAGS_TF)
980 return 0;
982 return 1;
984 NOKPROBE_SYMBOL(kprobe_debug_handler);
986 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
988 struct kprobe *cur = kprobe_running();
989 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
991 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
992 /* This must happen on single-stepping */
993 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
994 kcb->kprobe_status != KPROBE_REENTER);
996 * We are here because the instruction being single
997 * stepped caused a page fault. We reset the current
998 * kprobe and the ip points back to the probe address
999 * and allow the page fault handler to continue as a
1000 * normal page fault.
1002 regs->ip = (unsigned long)cur->addr;
1004 * Trap flag (TF) has been set here because this fault
1005 * happened where the single stepping will be done.
1006 * So clear it by resetting the current kprobe:
1008 regs->flags &= ~X86_EFLAGS_TF;
1011 * If the TF flag was set before the kprobe hit,
1012 * don't touch it:
1014 regs->flags |= kcb->kprobe_old_flags;
1016 if (kcb->kprobe_status == KPROBE_REENTER)
1017 restore_previous_kprobe(kcb);
1018 else
1019 reset_current_kprobe();
1020 preempt_enable_no_resched();
1021 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1022 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1024 * We increment the nmissed count for accounting,
1025 * we can also use npre/npostfault count for accounting
1026 * these specific fault cases.
1028 kprobes_inc_nmissed_count(cur);
1031 * We come here because instructions in the pre/post
1032 * handler caused the page_fault, this could happen
1033 * if handler tries to access user space by
1034 * copy_from_user(), get_user() etc. Let the
1035 * user-specified handler try to fix it first.
1037 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1038 return 1;
1041 * In case the user-specified fault handler returned
1042 * zero, try to fix up.
1044 if (fixup_exception(regs, trapnr))
1045 return 1;
1048 * fixup routine could not handle it,
1049 * Let do_page_fault() fix it.
1053 return 0;
1055 NOKPROBE_SYMBOL(kprobe_fault_handler);
1058 * Wrapper routine for handling exceptions.
1060 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1061 void *data)
1063 struct die_args *args = data;
1064 int ret = NOTIFY_DONE;
1066 if (args->regs && user_mode(args->regs))
1067 return ret;
1069 if (val == DIE_GPF) {
1071 * To be potentially processing a kprobe fault and to
1072 * trust the result from kprobe_running(), we have
1073 * be non-preemptible.
1075 if (!preemptible() && kprobe_running() &&
1076 kprobe_fault_handler(args->regs, args->trapnr))
1077 ret = NOTIFY_STOP;
1079 return ret;
1081 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1083 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1085 struct jprobe *jp = container_of(p, struct jprobe, kp);
1086 unsigned long addr;
1087 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1089 kcb->jprobe_saved_regs = *regs;
1090 kcb->jprobe_saved_sp = stack_addr(regs);
1091 addr = (unsigned long)(kcb->jprobe_saved_sp);
1094 * As Linus pointed out, gcc assumes that the callee
1095 * owns the argument space and could overwrite it, e.g.
1096 * tailcall optimization. So, to be absolutely safe
1097 * we also save and restore enough stack bytes to cover
1098 * the argument area.
1099 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1100 * raw stack chunk with redzones:
1102 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1103 regs->ip = (unsigned long)(jp->entry);
1106 * jprobes use jprobe_return() which skips the normal return
1107 * path of the function, and this messes up the accounting of the
1108 * function graph tracer to get messed up.
1110 * Pause function graph tracing while performing the jprobe function.
1112 pause_graph_tracing();
1113 return 1;
1115 NOKPROBE_SYMBOL(setjmp_pre_handler);
1117 void jprobe_return(void)
1119 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1121 /* Unpoison stack redzones in the frames we are going to jump over. */
1122 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1124 asm volatile (
1125 #ifdef CONFIG_X86_64
1126 " xchg %%rbx,%%rsp \n"
1127 #else
1128 " xchgl %%ebx,%%esp \n"
1129 #endif
1130 " int3 \n"
1131 " .globl jprobe_return_end\n"
1132 " jprobe_return_end: \n"
1133 " nop \n"::"b"
1134 (kcb->jprobe_saved_sp):"memory");
1136 NOKPROBE_SYMBOL(jprobe_return);
1137 NOKPROBE_SYMBOL(jprobe_return_end);
1139 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1141 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1142 u8 *addr = (u8 *) (regs->ip - 1);
1143 struct jprobe *jp = container_of(p, struct jprobe, kp);
1144 void *saved_sp = kcb->jprobe_saved_sp;
1146 if ((addr > (u8 *) jprobe_return) &&
1147 (addr < (u8 *) jprobe_return_end)) {
1148 if (stack_addr(regs) != saved_sp) {
1149 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1150 printk(KERN_ERR
1151 "current sp %p does not match saved sp %p\n",
1152 stack_addr(regs), saved_sp);
1153 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1154 show_regs(saved_regs);
1155 printk(KERN_ERR "Current registers\n");
1156 show_regs(regs);
1157 BUG();
1159 /* It's OK to start function graph tracing again */
1160 unpause_graph_tracing();
1161 *regs = kcb->jprobe_saved_regs;
1162 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1163 preempt_enable_no_resched();
1164 return 1;
1166 return 0;
1168 NOKPROBE_SYMBOL(longjmp_break_handler);
1170 bool arch_within_kprobe_blacklist(unsigned long addr)
1172 bool is_in_entry_trampoline_section = false;
1174 #ifdef CONFIG_X86_64
1175 is_in_entry_trampoline_section =
1176 (addr >= (unsigned long)__entry_trampoline_start &&
1177 addr < (unsigned long)__entry_trampoline_end);
1178 #endif
1179 return (addr >= (unsigned long)__kprobes_text_start &&
1180 addr < (unsigned long)__kprobes_text_end) ||
1181 (addr >= (unsigned long)__entry_text_start &&
1182 addr < (unsigned long)__entry_text_end) ||
1183 is_in_entry_trampoline_section;
1186 int __init arch_init_kprobes(void)
1188 return 0;
1191 int arch_trampoline_kprobe(struct kprobe *p)
1193 return 0;