2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
69 void jprobe_return_end(void);
71 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
72 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
83 * Undefined/reserved opcodes, conditional jump, Opcode Extension
84 * Groups, and some special opcodes can not boost.
85 * This is non-const and volatile to keep gcc from statically
86 * optimizing it out, as variable_test_bit makes gcc think only
87 * *(unsigned long*) is used.
89 static volatile u32 twobyte_is_boostable
[256 / 32] = {
90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91 /* ---------------------------------------------- */
92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
108 /* ----------------------------------------------- */
109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
113 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
114 {"__switch_to", }, /* This function switches only current task, but
115 doesn't switch kernel stack.*/
116 {NULL
, NULL
} /* Terminator */
119 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
121 static nokprobe_inline
void
122 __synthesize_relative_insn(void *dest
, void *from
, void *to
, u8 op
)
124 struct __arch_relative_insn
{
129 insn
= (struct __arch_relative_insn
*)dest
;
130 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
135 void synthesize_reljump(void *dest
, void *from
, void *to
)
137 __synthesize_relative_insn(dest
, from
, to
, RELATIVEJUMP_OPCODE
);
139 NOKPROBE_SYMBOL(synthesize_reljump
);
141 /* Insert a call instruction at address 'from', which calls address 'to'.*/
142 void synthesize_relcall(void *dest
, void *from
, void *to
)
144 __synthesize_relative_insn(dest
, from
, to
, RELATIVECALL_OPCODE
);
146 NOKPROBE_SYMBOL(synthesize_relcall
);
149 * Skip the prefixes of the instruction.
151 static kprobe_opcode_t
*skip_prefixes(kprobe_opcode_t
*insn
)
155 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
156 while (inat_is_legacy_prefix(attr
)) {
158 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
161 if (inat_is_rex_prefix(attr
))
166 NOKPROBE_SYMBOL(skip_prefixes
);
169 * Returns non-zero if INSN is boostable.
170 * RIP relative instructions are adjusted at copying time in 64 bits mode
172 int can_boost(struct insn
*insn
, void *addr
)
174 kprobe_opcode_t opcode
;
176 if (search_exception_tables((unsigned long)addr
))
177 return 0; /* Page fault may occur on this address. */
179 /* 2nd-byte opcode */
180 if (insn
->opcode
.nbytes
== 2)
181 return test_bit(insn
->opcode
.bytes
[1],
182 (unsigned long *)twobyte_is_boostable
);
184 if (insn
->opcode
.nbytes
!= 1)
187 /* Can't boost Address-size override prefix */
188 if (unlikely(inat_is_address_size_prefix(insn
->attr
)))
191 opcode
= insn
->opcode
.bytes
[0];
193 switch (opcode
& 0xf0) {
195 /* can't boost "bound" */
196 return (opcode
!= 0x62);
198 return 0; /* can't boost conditional jump */
200 return opcode
!= 0x9a; /* can't boost call far */
202 /* can't boost software-interruptions */
203 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
205 /* can boost AA* and XLAT */
206 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
208 /* can boost in/out and absolute jmps */
209 return ((opcode
& 0x04) || opcode
== 0xea);
211 /* clear and set flags are boostable */
212 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
214 /* CS override prefix and call are not boostable */
215 return (opcode
!= 0x2e && opcode
!= 0x9a);
220 __recover_probed_insn(kprobe_opcode_t
*buf
, unsigned long addr
)
225 kp
= get_kprobe((void *)addr
);
226 faddr
= ftrace_location(addr
);
228 * Addresses inside the ftrace location are refused by
229 * arch_check_ftrace_location(). Something went terribly wrong
230 * if such an address is checked here.
232 if (WARN_ON(faddr
&& faddr
!= addr
))
235 * Use the current code if it is not modified by Kprobe
236 * and it cannot be modified by ftrace.
242 * Basically, kp->ainsn.insn has an original instruction.
243 * However, RIP-relative instruction can not do single-stepping
244 * at different place, __copy_instruction() tweaks the displacement of
245 * that instruction. In that case, we can't recover the instruction
246 * from the kp->ainsn.insn.
248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
249 * of the first byte of the probed instruction, which is overwritten
250 * by int3. And the instruction at kp->addr is not modified by kprobes
251 * except for the first byte, we can recover the original instruction
252 * from it and kp->opcode.
254 * In case of Kprobes using ftrace, we do not have a copy of
255 * the original instruction. In fact, the ftrace location might
256 * be modified at anytime and even could be in an inconsistent state.
257 * Fortunately, we know that the original code is the ideal 5-byte
260 if (probe_kernel_read(buf
, (void *)addr
,
261 MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
)))
265 memcpy(buf
, ideal_nops
[NOP_ATOMIC5
], 5);
268 return (unsigned long)buf
;
272 * Recover the probed instruction at addr for further analysis.
273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
274 * for preventing to release referencing kprobes.
275 * Returns zero if the instruction can not get recovered (or access failed).
277 unsigned long recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
279 unsigned long __addr
;
281 __addr
= __recover_optprobed_insn(buf
, addr
);
285 return __recover_probed_insn(buf
, addr
);
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr
)
291 unsigned long addr
, __addr
, offset
= 0;
293 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
295 if (!kallsyms_lookup_size_offset(paddr
, NULL
, &offset
))
298 /* Decode instructions */
299 addr
= paddr
- offset
;
300 while (addr
< paddr
) {
302 * Check if the instruction has been modified by another
303 * kprobe, in which case we replace the breakpoint by the
304 * original instruction in our buffer.
305 * Also, jump optimization will change the breakpoint to
306 * relative-jump. Since the relative-jump itself is
307 * normally used, we just go through if there is no kprobe.
309 __addr
= recover_probed_instruction(buf
, addr
);
312 kernel_insn_init(&insn
, (void *)__addr
, MAX_INSN_SIZE
);
313 insn_get_length(&insn
);
316 * Another debugging subsystem might insert this breakpoint.
317 * In that case, we can't recover it.
319 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
324 return (addr
== paddr
);
328 * Returns non-zero if opcode modifies the interrupt flag.
330 static int is_IF_modifier(kprobe_opcode_t
*insn
)
333 insn
= skip_prefixes(insn
);
338 case 0xcf: /* iret/iretd */
339 case 0x9d: /* popf/popfd */
347 * Copy an instruction with recovering modified instruction by kprobes
348 * and adjust the displacement if the instruction uses the %rip-relative
349 * addressing mode. Note that since @real will be the final place of copied
350 * instruction, displacement must be adjust by @real, not @dest.
351 * This returns the length of copied instruction, or 0 if it has an error.
353 int __copy_instruction(u8
*dest
, u8
*src
, u8
*real
, struct insn
*insn
)
355 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
356 unsigned long recovered_insn
=
357 recover_probed_instruction(buf
, (unsigned long)src
);
359 if (!recovered_insn
|| !insn
)
362 /* This can access kernel text if given address is not recovered */
363 if (probe_kernel_read(dest
, (void *)recovered_insn
, MAX_INSN_SIZE
))
366 kernel_insn_init(insn
, dest
, MAX_INSN_SIZE
);
367 insn_get_length(insn
);
369 /* Another subsystem puts a breakpoint, failed to recover */
370 if (insn
->opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
373 /* We should not singlestep on the exception masking instructions */
374 if (insn_masking_exception(insn
))
378 /* Only x86_64 has RIP relative instructions */
379 if (insn_rip_relative(insn
)) {
383 * The copied instruction uses the %rip-relative addressing
384 * mode. Adjust the displacement for the difference between
385 * the original location of this instruction and the location
386 * of the copy that will actually be run. The tricky bit here
387 * is making sure that the sign extension happens correctly in
388 * this calculation, since we need a signed 32-bit result to
389 * be sign-extended to 64 bits when it's added to the %rip
390 * value and yield the same 64-bit result that the sign-
391 * extension of the original signed 32-bit displacement would
394 newdisp
= (u8
*) src
+ (s64
) insn
->displacement
.value
396 if ((s64
) (s32
) newdisp
!= newdisp
) {
397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp
);
400 disp
= (u8
*) dest
+ insn_offset_displacement(insn
);
401 *(s32
*) disp
= (s32
) newdisp
;
407 /* Prepare reljump right after instruction to boost */
408 static int prepare_boost(kprobe_opcode_t
*buf
, struct kprobe
*p
,
411 int len
= insn
->length
;
413 if (can_boost(insn
, p
->addr
) &&
414 MAX_INSN_SIZE
- len
>= RELATIVEJUMP_SIZE
) {
416 * These instructions can be executed directly if it
417 * jumps back to correct address.
419 synthesize_reljump(buf
+ len
, p
->ainsn
.insn
+ len
,
420 p
->addr
+ insn
->length
);
421 len
+= RELATIVEJUMP_SIZE
;
422 p
->ainsn
.boostable
= true;
424 p
->ainsn
.boostable
= false;
430 /* Make page to RO mode when allocate it */
431 void *alloc_insn_page(void)
435 page
= module_alloc(PAGE_SIZE
);
437 set_memory_ro((unsigned long)page
& PAGE_MASK
, 1);
442 /* Recover page to RW mode before releasing it */
443 void free_insn_page(void *page
)
445 set_memory_nx((unsigned long)page
& PAGE_MASK
, 1);
446 set_memory_rw((unsigned long)page
& PAGE_MASK
, 1);
447 module_memfree(page
);
450 static int arch_copy_kprobe(struct kprobe
*p
)
453 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
456 /* Copy an instruction with recovering if other optprobe modifies it.*/
457 len
= __copy_instruction(buf
, p
->addr
, p
->ainsn
.insn
, &insn
);
462 * __copy_instruction can modify the displacement of the instruction,
463 * but it doesn't affect boostable check.
465 len
= prepare_boost(buf
, p
, &insn
);
467 /* Check whether the instruction modifies Interrupt Flag or not */
468 p
->ainsn
.if_modifier
= is_IF_modifier(buf
);
470 /* Also, displacement change doesn't affect the first byte */
473 /* OK, write back the instruction(s) into ROX insn buffer */
474 text_poke(p
->ainsn
.insn
, buf
, len
);
479 int arch_prepare_kprobe(struct kprobe
*p
)
483 if (alternatives_text_reserved(p
->addr
, p
->addr
))
486 if (!can_probe((unsigned long)p
->addr
))
488 /* insn: must be on special executable page on x86. */
489 p
->ainsn
.insn
= get_insn_slot();
493 ret
= arch_copy_kprobe(p
);
495 free_insn_slot(p
->ainsn
.insn
, 0);
496 p
->ainsn
.insn
= NULL
;
502 void arch_arm_kprobe(struct kprobe
*p
)
504 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
507 void arch_disarm_kprobe(struct kprobe
*p
)
509 text_poke(p
->addr
, &p
->opcode
, 1);
512 void arch_remove_kprobe(struct kprobe
*p
)
515 free_insn_slot(p
->ainsn
.insn
, p
->ainsn
.boostable
);
516 p
->ainsn
.insn
= NULL
;
520 static nokprobe_inline
void
521 save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
523 kcb
->prev_kprobe
.kp
= kprobe_running();
524 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
525 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
526 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
529 static nokprobe_inline
void
530 restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
532 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
533 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
534 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
535 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
538 static nokprobe_inline
void
539 set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
540 struct kprobe_ctlblk
*kcb
)
542 __this_cpu_write(current_kprobe
, p
);
543 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
544 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
545 if (p
->ainsn
.if_modifier
)
546 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
549 static nokprobe_inline
void clear_btf(void)
551 if (test_thread_flag(TIF_BLOCKSTEP
)) {
552 unsigned long debugctl
= get_debugctlmsr();
554 debugctl
&= ~DEBUGCTLMSR_BTF
;
555 update_debugctlmsr(debugctl
);
559 static nokprobe_inline
void restore_btf(void)
561 if (test_thread_flag(TIF_BLOCKSTEP
)) {
562 unsigned long debugctl
= get_debugctlmsr();
564 debugctl
|= DEBUGCTLMSR_BTF
;
565 update_debugctlmsr(debugctl
);
569 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
571 unsigned long *sara
= stack_addr(regs
);
573 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
575 /* Replace the return addr with trampoline addr */
576 *sara
= (unsigned long) &kretprobe_trampoline
;
578 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
580 static void setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
581 struct kprobe_ctlblk
*kcb
, int reenter
)
583 if (setup_detour_execution(p
, regs
, reenter
))
586 #if !defined(CONFIG_PREEMPT)
587 if (p
->ainsn
.boostable
&& !p
->post_handler
) {
588 /* Boost up -- we can execute copied instructions directly */
590 reset_current_kprobe();
592 * Reentering boosted probe doesn't reset current_kprobe,
593 * nor set current_kprobe, because it doesn't use single
596 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
597 preempt_enable_no_resched();
602 save_previous_kprobe(kcb
);
603 set_current_kprobe(p
, regs
, kcb
);
604 kcb
->kprobe_status
= KPROBE_REENTER
;
606 kcb
->kprobe_status
= KPROBE_HIT_SS
;
607 /* Prepare real single stepping */
609 regs
->flags
|= X86_EFLAGS_TF
;
610 regs
->flags
&= ~X86_EFLAGS_IF
;
611 /* single step inline if the instruction is an int3 */
612 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
613 regs
->ip
= (unsigned long)p
->addr
;
615 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
617 NOKPROBE_SYMBOL(setup_singlestep
);
620 * We have reentered the kprobe_handler(), since another probe was hit while
621 * within the handler. We save the original kprobes variables and just single
622 * step on the instruction of the new probe without calling any user handlers.
624 static int reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
625 struct kprobe_ctlblk
*kcb
)
627 switch (kcb
->kprobe_status
) {
628 case KPROBE_HIT_SSDONE
:
629 case KPROBE_HIT_ACTIVE
:
631 kprobes_inc_nmissed_count(p
);
632 setup_singlestep(p
, regs
, kcb
, 1);
635 /* A probe has been hit in the codepath leading up to, or just
636 * after, single-stepping of a probed instruction. This entire
637 * codepath should strictly reside in .kprobes.text section.
638 * Raise a BUG or we'll continue in an endless reentering loop
639 * and eventually a stack overflow.
641 pr_err("Unrecoverable kprobe detected.\n");
645 /* impossible cases */
652 NOKPROBE_SYMBOL(reenter_kprobe
);
655 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
656 * remain disabled throughout this function.
658 int kprobe_int3_handler(struct pt_regs
*regs
)
660 kprobe_opcode_t
*addr
;
662 struct kprobe_ctlblk
*kcb
;
667 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
669 * We don't want to be preempted for the entire
670 * duration of kprobe processing. We conditionally
671 * re-enable preemption at the end of this function,
672 * and also in reenter_kprobe() and setup_singlestep().
676 kcb
= get_kprobe_ctlblk();
677 p
= get_kprobe(addr
);
680 if (kprobe_running()) {
681 if (reenter_kprobe(p
, regs
, kcb
))
684 set_current_kprobe(p
, regs
, kcb
);
685 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
688 * If we have no pre-handler or it returned 0, we
689 * continue with normal processing. If we have a
690 * pre-handler and it returned non-zero, it prepped
691 * for calling the break_handler below on re-entry
692 * for jprobe processing, so get out doing nothing
695 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
696 setup_singlestep(p
, regs
, kcb
, 0);
699 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
701 * The breakpoint instruction was removed right
702 * after we hit it. Another cpu has removed
703 * either a probepoint or a debugger breakpoint
704 * at this address. In either case, no further
705 * handling of this interrupt is appropriate.
706 * Back up over the (now missing) int3 and run
707 * the original instruction.
709 regs
->ip
= (unsigned long)addr
;
710 preempt_enable_no_resched();
712 } else if (kprobe_running()) {
713 p
= __this_cpu_read(current_kprobe
);
714 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
715 if (!skip_singlestep(p
, regs
, kcb
))
716 setup_singlestep(p
, regs
, kcb
, 0);
719 } /* else: not a kprobe fault; let the kernel handle it */
721 preempt_enable_no_resched();
724 NOKPROBE_SYMBOL(kprobe_int3_handler
);
727 * When a retprobed function returns, this code saves registers and
728 * calls trampoline_handler() runs, which calls the kretprobe's handler.
731 ".global kretprobe_trampoline\n"
732 ".type kretprobe_trampoline, @function\n"
733 "kretprobe_trampoline:\n"
735 /* We don't bother saving the ss register */
740 " call trampoline_handler\n"
741 /* Replace saved sp with true return address. */
742 " movq %rax, 152(%rsp)\n"
749 " call trampoline_handler\n"
750 /* Move flags to cs */
751 " movl 56(%esp), %edx\n"
752 " movl %edx, 52(%esp)\n"
753 /* Replace saved flags with true return address. */
754 " movl %eax, 56(%esp)\n"
759 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
761 NOKPROBE_SYMBOL(kretprobe_trampoline
);
762 STACK_FRAME_NON_STANDARD(kretprobe_trampoline
);
765 * Called from kretprobe_trampoline
767 __visible __used
void *trampoline_handler(struct pt_regs
*regs
)
769 struct kretprobe_instance
*ri
= NULL
;
770 struct hlist_head
*head
, empty_rp
;
771 struct hlist_node
*tmp
;
772 unsigned long flags
, orig_ret_address
= 0;
773 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
774 kprobe_opcode_t
*correct_ret_addr
= NULL
;
776 INIT_HLIST_HEAD(&empty_rp
);
777 kretprobe_hash_lock(current
, &head
, &flags
);
778 /* fixup registers */
780 regs
->cs
= __KERNEL_CS
;
782 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
785 regs
->ip
= trampoline_address
;
786 regs
->orig_ax
= ~0UL;
789 * It is possible to have multiple instances associated with a given
790 * task either because multiple functions in the call path have
791 * return probes installed on them, and/or more than one
792 * return probe was registered for a target function.
794 * We can handle this because:
795 * - instances are always pushed into the head of the list
796 * - when multiple return probes are registered for the same
797 * function, the (chronologically) first instance's ret_addr
798 * will be the real return address, and all the rest will
799 * point to kretprobe_trampoline.
801 hlist_for_each_entry(ri
, head
, hlist
) {
802 if (ri
->task
!= current
)
803 /* another task is sharing our hash bucket */
806 orig_ret_address
= (unsigned long)ri
->ret_addr
;
808 if (orig_ret_address
!= trampoline_address
)
810 * This is the real return address. Any other
811 * instances associated with this task are for
812 * other calls deeper on the call stack
817 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
819 correct_ret_addr
= ri
->ret_addr
;
820 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
821 if (ri
->task
!= current
)
822 /* another task is sharing our hash bucket */
825 orig_ret_address
= (unsigned long)ri
->ret_addr
;
826 if (ri
->rp
&& ri
->rp
->handler
) {
827 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
828 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
829 ri
->ret_addr
= correct_ret_addr
;
830 ri
->rp
->handler(ri
, regs
);
831 __this_cpu_write(current_kprobe
, NULL
);
834 recycle_rp_inst(ri
, &empty_rp
);
836 if (orig_ret_address
!= trampoline_address
)
838 * This is the real return address. Any other
839 * instances associated with this task are for
840 * other calls deeper on the call stack
845 kretprobe_hash_unlock(current
, &flags
);
847 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
848 hlist_del(&ri
->hlist
);
851 return (void *)orig_ret_address
;
853 NOKPROBE_SYMBOL(trampoline_handler
);
856 * Called after single-stepping. p->addr is the address of the
857 * instruction whose first byte has been replaced by the "int 3"
858 * instruction. To avoid the SMP problems that can occur when we
859 * temporarily put back the original opcode to single-step, we
860 * single-stepped a copy of the instruction. The address of this
861 * copy is p->ainsn.insn.
863 * This function prepares to return from the post-single-step
864 * interrupt. We have to fix up the stack as follows:
866 * 0) Except in the case of absolute or indirect jump or call instructions,
867 * the new ip is relative to the copied instruction. We need to make
868 * it relative to the original instruction.
870 * 1) If the single-stepped instruction was pushfl, then the TF and IF
871 * flags are set in the just-pushed flags, and may need to be cleared.
873 * 2) If the single-stepped instruction was a call, the return address
874 * that is atop the stack is the address following the copied instruction.
875 * We need to make it the address following the original instruction.
877 * If this is the first time we've single-stepped the instruction at
878 * this probepoint, and the instruction is boostable, boost it: add a
879 * jump instruction after the copied instruction, that jumps to the next
880 * instruction after the probepoint.
882 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
,
883 struct kprobe_ctlblk
*kcb
)
885 unsigned long *tos
= stack_addr(regs
);
886 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
887 unsigned long orig_ip
= (unsigned long)p
->addr
;
888 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
891 insn
= skip_prefixes(insn
);
893 regs
->flags
&= ~X86_EFLAGS_TF
;
895 case 0x9c: /* pushfl */
896 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
897 *tos
|= kcb
->kprobe_old_flags
;
899 case 0xc2: /* iret/ret/lret */
904 case 0xea: /* jmp absolute -- ip is correct */
905 /* ip is already adjusted, no more changes required */
906 p
->ainsn
.boostable
= true;
908 case 0xe8: /* call relative - Fix return addr */
909 *tos
= orig_ip
+ (*tos
- copy_ip
);
912 case 0x9a: /* call absolute -- same as call absolute, indirect */
913 *tos
= orig_ip
+ (*tos
- copy_ip
);
917 if ((insn
[1] & 0x30) == 0x10) {
919 * call absolute, indirect
920 * Fix return addr; ip is correct.
921 * But this is not boostable
923 *tos
= orig_ip
+ (*tos
- copy_ip
);
925 } else if (((insn
[1] & 0x31) == 0x20) ||
926 ((insn
[1] & 0x31) == 0x21)) {
928 * jmp near and far, absolute indirect
929 * ip is correct. And this is boostable
931 p
->ainsn
.boostable
= true;
938 regs
->ip
+= orig_ip
- copy_ip
;
943 NOKPROBE_SYMBOL(resume_execution
);
946 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
947 * remain disabled throughout this function.
949 int kprobe_debug_handler(struct pt_regs
*regs
)
951 struct kprobe
*cur
= kprobe_running();
952 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
957 resume_execution(cur
, regs
, kcb
);
958 regs
->flags
|= kcb
->kprobe_saved_flags
;
960 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
961 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
962 cur
->post_handler(cur
, regs
, 0);
965 /* Restore back the original saved kprobes variables and continue. */
966 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
967 restore_previous_kprobe(kcb
);
970 reset_current_kprobe();
972 preempt_enable_no_resched();
975 * if somebody else is singlestepping across a probe point, flags
976 * will have TF set, in which case, continue the remaining processing
977 * of do_debug, as if this is not a probe hit.
979 if (regs
->flags
& X86_EFLAGS_TF
)
984 NOKPROBE_SYMBOL(kprobe_debug_handler
);
986 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
988 struct kprobe
*cur
= kprobe_running();
989 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
991 if (unlikely(regs
->ip
== (unsigned long)cur
->ainsn
.insn
)) {
992 /* This must happen on single-stepping */
993 WARN_ON(kcb
->kprobe_status
!= KPROBE_HIT_SS
&&
994 kcb
->kprobe_status
!= KPROBE_REENTER
);
996 * We are here because the instruction being single
997 * stepped caused a page fault. We reset the current
998 * kprobe and the ip points back to the probe address
999 * and allow the page fault handler to continue as a
1000 * normal page fault.
1002 regs
->ip
= (unsigned long)cur
->addr
;
1004 * Trap flag (TF) has been set here because this fault
1005 * happened where the single stepping will be done.
1006 * So clear it by resetting the current kprobe:
1008 regs
->flags
&= ~X86_EFLAGS_TF
;
1011 * If the TF flag was set before the kprobe hit,
1014 regs
->flags
|= kcb
->kprobe_old_flags
;
1016 if (kcb
->kprobe_status
== KPROBE_REENTER
)
1017 restore_previous_kprobe(kcb
);
1019 reset_current_kprobe();
1020 preempt_enable_no_resched();
1021 } else if (kcb
->kprobe_status
== KPROBE_HIT_ACTIVE
||
1022 kcb
->kprobe_status
== KPROBE_HIT_SSDONE
) {
1024 * We increment the nmissed count for accounting,
1025 * we can also use npre/npostfault count for accounting
1026 * these specific fault cases.
1028 kprobes_inc_nmissed_count(cur
);
1031 * We come here because instructions in the pre/post
1032 * handler caused the page_fault, this could happen
1033 * if handler tries to access user space by
1034 * copy_from_user(), get_user() etc. Let the
1035 * user-specified handler try to fix it first.
1037 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
1041 * In case the user-specified fault handler returned
1042 * zero, try to fix up.
1044 if (fixup_exception(regs
, trapnr
))
1048 * fixup routine could not handle it,
1049 * Let do_page_fault() fix it.
1055 NOKPROBE_SYMBOL(kprobe_fault_handler
);
1058 * Wrapper routine for handling exceptions.
1060 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
1063 struct die_args
*args
= data
;
1064 int ret
= NOTIFY_DONE
;
1066 if (args
->regs
&& user_mode(args
->regs
))
1069 if (val
== DIE_GPF
) {
1071 * To be potentially processing a kprobe fault and to
1072 * trust the result from kprobe_running(), we have
1073 * be non-preemptible.
1075 if (!preemptible() && kprobe_running() &&
1076 kprobe_fault_handler(args
->regs
, args
->trapnr
))
1081 NOKPROBE_SYMBOL(kprobe_exceptions_notify
);
1083 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1085 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1087 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1089 kcb
->jprobe_saved_regs
= *regs
;
1090 kcb
->jprobe_saved_sp
= stack_addr(regs
);
1091 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
1094 * As Linus pointed out, gcc assumes that the callee
1095 * owns the argument space and could overwrite it, e.g.
1096 * tailcall optimization. So, to be absolutely safe
1097 * we also save and restore enough stack bytes to cover
1098 * the argument area.
1099 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1100 * raw stack chunk with redzones:
1102 __memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
, MIN_STACK_SIZE(addr
));
1103 regs
->ip
= (unsigned long)(jp
->entry
);
1106 * jprobes use jprobe_return() which skips the normal return
1107 * path of the function, and this messes up the accounting of the
1108 * function graph tracer to get messed up.
1110 * Pause function graph tracing while performing the jprobe function.
1112 pause_graph_tracing();
1115 NOKPROBE_SYMBOL(setjmp_pre_handler
);
1117 void jprobe_return(void)
1119 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1121 /* Unpoison stack redzones in the frames we are going to jump over. */
1122 kasan_unpoison_stack_above_sp_to(kcb
->jprobe_saved_sp
);
1125 #ifdef CONFIG_X86_64
1126 " xchg %%rbx,%%rsp \n"
1128 " xchgl %%ebx,%%esp \n"
1131 " .globl jprobe_return_end\n"
1132 " jprobe_return_end: \n"
1134 (kcb
->jprobe_saved_sp
):"memory");
1136 NOKPROBE_SYMBOL(jprobe_return
);
1137 NOKPROBE_SYMBOL(jprobe_return_end
);
1139 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1141 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1142 u8
*addr
= (u8
*) (regs
->ip
- 1);
1143 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1144 void *saved_sp
= kcb
->jprobe_saved_sp
;
1146 if ((addr
> (u8
*) jprobe_return
) &&
1147 (addr
< (u8
*) jprobe_return_end
)) {
1148 if (stack_addr(regs
) != saved_sp
) {
1149 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
1151 "current sp %p does not match saved sp %p\n",
1152 stack_addr(regs
), saved_sp
);
1153 printk(KERN_ERR
"Saved registers for jprobe %p\n", jp
);
1154 show_regs(saved_regs
);
1155 printk(KERN_ERR
"Current registers\n");
1159 /* It's OK to start function graph tracing again */
1160 unpause_graph_tracing();
1161 *regs
= kcb
->jprobe_saved_regs
;
1162 __memcpy(saved_sp
, kcb
->jprobes_stack
, MIN_STACK_SIZE(saved_sp
));
1163 preempt_enable_no_resched();
1168 NOKPROBE_SYMBOL(longjmp_break_handler
);
1170 bool arch_within_kprobe_blacklist(unsigned long addr
)
1172 bool is_in_entry_trampoline_section
= false;
1174 #ifdef CONFIG_X86_64
1175 is_in_entry_trampoline_section
=
1176 (addr
>= (unsigned long)__entry_trampoline_start
&&
1177 addr
< (unsigned long)__entry_trampoline_end
);
1179 return (addr
>= (unsigned long)__kprobes_text_start
&&
1180 addr
< (unsigned long)__kprobes_text_end
) ||
1181 (addr
>= (unsigned long)__entry_text_start
&&
1182 addr
< (unsigned long)__entry_text_end
) ||
1183 is_in_entry_trampoline_section
;
1186 int __init
arch_init_kprobes(void)
1191 int arch_trampoline_kprobe(struct kprobe
*p
)