Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blob30ca2d1a92319726ff31d3ddb8264140bcec17cf
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 #include <asm/spec-ctrl.h>
44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
46 * so they are allowed to end up in the .data..cacheline_aligned
47 * section. Since TSS's are completely CPU-local, we want them
48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 .x86_tss = {
53 * .sp0 is only used when entering ring 0 from a lower
54 * privilege level. Since the init task never runs anything
55 * but ring 0 code, there is no need for a valid value here.
56 * Poison it.
58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
60 #ifdef CONFIG_X86_64
62 * .sp1 is cpu_current_top_of_stack. The init task never
63 * runs user code, but cpu_current_top_of_stack should still
64 * be well defined before the first context switch.
66 .sp1 = TOP_OF_INIT_STACK,
67 #endif
69 #ifdef CONFIG_X86_32
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
73 #endif
75 #ifdef CONFIG_X86_32
77 * Note that the .io_bitmap member must be extra-big. This is because
78 * the CPU will access an additional byte beyond the end of the IO
79 * permission bitmap. The extra byte must be all 1 bits, and must
80 * be within the limit.
82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
96 memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99 #endif
101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
105 * Free current thread data structures etc..
107 void exit_thread(struct task_struct *tsk)
109 struct thread_struct *t = &tsk->thread;
110 unsigned long *bp = t->io_bitmap_ptr;
111 struct fpu *fpu = &t->fpu;
113 if (bp) {
114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
116 t->io_bitmap_ptr = NULL;
117 clear_thread_flag(TIF_IO_BITMAP);
119 * Careful, clear this in the TSS too:
121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 t->io_bitmap_max = 0;
123 put_cpu();
124 kfree(bp);
127 free_vm86(t);
129 fpu__drop(fpu);
132 void flush_thread(void)
134 struct task_struct *tsk = current;
136 flush_ptrace_hw_breakpoint(tsk);
137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
139 fpu__clear(&tsk->thread.fpu);
142 void disable_TSC(void)
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
150 cr4_set_bits(X86_CR4_TSD);
151 preempt_enable();
154 static void enable_TSC(void)
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
162 cr4_clear_bits(X86_CR4_TSD);
163 preempt_enable();
166 int get_tsc_mode(unsigned long adr)
168 unsigned int val;
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
175 return put_user(val, (unsigned int __user *)adr);
178 int set_tsc_mode(unsigned int val)
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
187 return 0;
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
192 static void set_cpuid_faulting(bool on)
194 u64 msrval;
196 msrval = this_cpu_read(msr_misc_features_shadow);
197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 this_cpu_write(msr_misc_features_shadow, msrval);
200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
203 static void disable_cpuid(void)
205 preempt_disable();
206 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
208 * Must flip the CPU state synchronously with
209 * TIF_NOCPUID in the current running context.
211 set_cpuid_faulting(true);
213 preempt_enable();
216 static void enable_cpuid(void)
218 preempt_disable();
219 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
221 * Must flip the CPU state synchronously with
222 * TIF_NOCPUID in the current running context.
224 set_cpuid_faulting(false);
226 preempt_enable();
229 static int get_cpuid_mode(void)
231 return !test_thread_flag(TIF_NOCPUID);
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 return -ENODEV;
239 if (cpuid_enabled)
240 enable_cpuid();
241 else
242 disable_cpuid();
244 return 0;
248 * Called immediately after a successful exec.
250 void arch_setup_new_exec(void)
252 /* If cpuid was previously disabled for this task, re-enable it. */
253 if (test_thread_flag(TIF_NOCPUID))
254 enable_cpuid();
257 static inline void switch_to_bitmap(struct tss_struct *tss,
258 struct thread_struct *prev,
259 struct thread_struct *next,
260 unsigned long tifp, unsigned long tifn)
262 if (tifn & _TIF_IO_BITMAP) {
264 * Copy the relevant range of the IO bitmap.
265 * Normally this is 128 bytes or less:
267 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268 max(prev->io_bitmap_max, next->io_bitmap_max));
270 * Make sure that the TSS limit is correct for the CPU
271 * to notice the IO bitmap.
273 refresh_tss_limit();
274 } else if (tifp & _TIF_IO_BITMAP) {
276 * Clear any possible leftover bits:
278 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
282 #ifdef CONFIG_SMP
284 struct ssb_state {
285 struct ssb_state *shared_state;
286 raw_spinlock_t lock;
287 unsigned int disable_state;
288 unsigned long local_state;
291 #define LSTATE_SSB 0
293 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
295 void speculative_store_bypass_ht_init(void)
297 struct ssb_state *st = this_cpu_ptr(&ssb_state);
298 unsigned int this_cpu = smp_processor_id();
299 unsigned int cpu;
301 st->local_state = 0;
304 * Shared state setup happens once on the first bringup
305 * of the CPU. It's not destroyed on CPU hotunplug.
307 if (st->shared_state)
308 return;
310 raw_spin_lock_init(&st->lock);
313 * Go over HT siblings and check whether one of them has set up the
314 * shared state pointer already.
316 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317 if (cpu == this_cpu)
318 continue;
320 if (!per_cpu(ssb_state, cpu).shared_state)
321 continue;
323 /* Link it to the state of the sibling: */
324 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325 return;
329 * First HT sibling to come up on the core. Link shared state of
330 * the first HT sibling to itself. The siblings on the same core
331 * which come up later will see the shared state pointer and link
332 * themself to the state of this CPU.
334 st->shared_state = st;
338 * Logic is: First HT sibling enables SSBD for both siblings in the core
339 * and last sibling to disable it, disables it for the whole core. This how
340 * MSR_SPEC_CTRL works in "hardware":
342 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
344 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
346 struct ssb_state *st = this_cpu_ptr(&ssb_state);
347 u64 msr = x86_amd_ls_cfg_base;
349 if (!static_cpu_has(X86_FEATURE_ZEN)) {
350 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351 wrmsrl(MSR_AMD64_LS_CFG, msr);
352 return;
355 if (tifn & _TIF_SSBD) {
357 * Since this can race with prctl(), block reentry on the
358 * same CPU.
360 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361 return;
363 msr |= x86_amd_ls_cfg_ssbd_mask;
365 raw_spin_lock(&st->shared_state->lock);
366 /* First sibling enables SSBD: */
367 if (!st->shared_state->disable_state)
368 wrmsrl(MSR_AMD64_LS_CFG, msr);
369 st->shared_state->disable_state++;
370 raw_spin_unlock(&st->shared_state->lock);
371 } else {
372 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373 return;
375 raw_spin_lock(&st->shared_state->lock);
376 st->shared_state->disable_state--;
377 if (!st->shared_state->disable_state)
378 wrmsrl(MSR_AMD64_LS_CFG, msr);
379 raw_spin_unlock(&st->shared_state->lock);
382 #else
383 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
385 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
387 wrmsrl(MSR_AMD64_LS_CFG, msr);
389 #endif
391 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
394 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395 * so ssbd_tif_to_spec_ctrl() just works.
397 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
400 static __always_inline void intel_set_ssb_state(unsigned long tifn)
402 u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
404 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
407 static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
409 if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410 amd_set_ssb_virt_state(tifn);
411 else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412 amd_set_core_ssb_state(tifn);
413 else
414 intel_set_ssb_state(tifn);
417 void speculative_store_bypass_update(unsigned long tif)
419 preempt_disable();
420 __speculative_store_bypass_update(tif);
421 preempt_enable();
424 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425 struct tss_struct *tss)
427 struct thread_struct *prev, *next;
428 unsigned long tifp, tifn;
430 prev = &prev_p->thread;
431 next = &next_p->thread;
433 tifn = READ_ONCE(task_thread_info(next_p)->flags);
434 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435 switch_to_bitmap(tss, prev, next, tifp, tifn);
437 propagate_user_return_notify(prev_p, next_p);
439 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440 arch_has_block_step()) {
441 unsigned long debugctl, msk;
443 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444 debugctl &= ~DEBUGCTLMSR_BTF;
445 msk = tifn & _TIF_BLOCKSTEP;
446 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
450 if ((tifp ^ tifn) & _TIF_NOTSC)
451 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
453 if ((tifp ^ tifn) & _TIF_NOCPUID)
454 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
456 if ((tifp ^ tifn) & _TIF_SSBD)
457 __speculative_store_bypass_update(tifn);
461 * Idle related variables and functions
463 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464 EXPORT_SYMBOL(boot_option_idle_override);
466 static void (*x86_idle)(void);
468 #ifndef CONFIG_SMP
469 static inline void play_dead(void)
471 BUG();
473 #endif
475 void arch_cpu_idle_enter(void)
477 tsc_verify_tsc_adjust(false);
478 local_touch_nmi();
481 void arch_cpu_idle_dead(void)
483 play_dead();
487 * Called from the generic idle code.
489 void arch_cpu_idle(void)
491 x86_idle();
495 * We use this if we don't have any better idle routine..
497 void __cpuidle default_idle(void)
499 trace_cpu_idle_rcuidle(1, smp_processor_id());
500 safe_halt();
501 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
503 #ifdef CONFIG_APM_MODULE
504 EXPORT_SYMBOL(default_idle);
505 #endif
507 #ifdef CONFIG_XEN
508 bool xen_set_default_idle(void)
510 bool ret = !!x86_idle;
512 x86_idle = default_idle;
514 return ret;
516 #endif
518 void stop_this_cpu(void *dummy)
520 local_irq_disable();
522 * Remove this CPU:
524 set_cpu_online(smp_processor_id(), false);
525 disable_local_APIC();
526 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
529 * Use wbinvd on processors that support SME. This provides support
530 * for performing a successful kexec when going from SME inactive
531 * to SME active (or vice-versa). The cache must be cleared so that
532 * if there are entries with the same physical address, both with and
533 * without the encryption bit, they don't race each other when flushed
534 * and potentially end up with the wrong entry being committed to
535 * memory.
537 if (boot_cpu_has(X86_FEATURE_SME))
538 native_wbinvd();
539 for (;;) {
541 * Use native_halt() so that memory contents don't change
542 * (stack usage and variables) after possibly issuing the
543 * native_wbinvd() above.
545 native_halt();
550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
551 * states (local apic timer and TSC stop).
553 static void amd_e400_idle(void)
556 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
557 * gets set after static_cpu_has() places have been converted via
558 * alternatives.
560 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
561 default_idle();
562 return;
565 tick_broadcast_enter();
567 default_idle();
570 * The switch back from broadcast mode needs to be called with
571 * interrupts disabled.
573 local_irq_disable();
574 tick_broadcast_exit();
575 local_irq_enable();
579 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
580 * We can't rely on cpuidle installing MWAIT, because it will not load
581 * on systems that support only C1 -- so the boot default must be MWAIT.
583 * Some AMD machines are the opposite, they depend on using HALT.
585 * So for default C1, which is used during boot until cpuidle loads,
586 * use MWAIT-C1 on Intel HW that has it, else use HALT.
588 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
590 if (c->x86_vendor != X86_VENDOR_INTEL)
591 return 0;
593 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
594 return 0;
596 return 1;
600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
601 * with interrupts enabled and no flags, which is backwards compatible with the
602 * original MWAIT implementation.
604 static __cpuidle void mwait_idle(void)
606 if (!current_set_polling_and_test()) {
607 trace_cpu_idle_rcuidle(1, smp_processor_id());
608 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
609 mb(); /* quirk */
610 clflush((void *)&current_thread_info()->flags);
611 mb(); /* quirk */
614 __monitor((void *)&current_thread_info()->flags, 0, 0);
615 if (!need_resched())
616 __sti_mwait(0, 0);
617 else
618 local_irq_enable();
619 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
620 } else {
621 local_irq_enable();
623 __current_clr_polling();
626 void select_idle_routine(const struct cpuinfo_x86 *c)
628 #ifdef CONFIG_SMP
629 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
630 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
631 #endif
632 if (x86_idle || boot_option_idle_override == IDLE_POLL)
633 return;
635 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
636 pr_info("using AMD E400 aware idle routine\n");
637 x86_idle = amd_e400_idle;
638 } else if (prefer_mwait_c1_over_halt(c)) {
639 pr_info("using mwait in idle threads\n");
640 x86_idle = mwait_idle;
641 } else
642 x86_idle = default_idle;
645 void amd_e400_c1e_apic_setup(void)
647 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
648 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
649 local_irq_disable();
650 tick_broadcast_force();
651 local_irq_enable();
655 void __init arch_post_acpi_subsys_init(void)
657 u32 lo, hi;
659 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
660 return;
663 * AMD E400 detection needs to happen after ACPI has been enabled. If
664 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
665 * MSR_K8_INT_PENDING_MSG.
667 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
668 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
669 return;
671 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
673 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
674 mark_tsc_unstable("TSC halt in AMD C1E");
675 pr_info("System has AMD C1E enabled\n");
678 static int __init idle_setup(char *str)
680 if (!str)
681 return -EINVAL;
683 if (!strcmp(str, "poll")) {
684 pr_info("using polling idle threads\n");
685 boot_option_idle_override = IDLE_POLL;
686 cpu_idle_poll_ctrl(true);
687 } else if (!strcmp(str, "halt")) {
689 * When the boot option of idle=halt is added, halt is
690 * forced to be used for CPU idle. In such case CPU C2/C3
691 * won't be used again.
692 * To continue to load the CPU idle driver, don't touch
693 * the boot_option_idle_override.
695 x86_idle = default_idle;
696 boot_option_idle_override = IDLE_HALT;
697 } else if (!strcmp(str, "nomwait")) {
699 * If the boot option of "idle=nomwait" is added,
700 * it means that mwait will be disabled for CPU C2/C3
701 * states. In such case it won't touch the variable
702 * of boot_option_idle_override.
704 boot_option_idle_override = IDLE_NOMWAIT;
705 } else
706 return -1;
708 return 0;
710 early_param("idle", idle_setup);
712 unsigned long arch_align_stack(unsigned long sp)
714 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715 sp -= get_random_int() % 8192;
716 return sp & ~0xf;
719 unsigned long arch_randomize_brk(struct mm_struct *mm)
721 return randomize_page(mm->brk, 0x02000000);
725 * Called from fs/proc with a reference on @p to find the function
726 * which called into schedule(). This needs to be done carefully
727 * because the task might wake up and we might look at a stack
728 * changing under us.
730 unsigned long get_wchan(struct task_struct *p)
732 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
733 int count = 0;
735 if (!p || p == current || p->state == TASK_RUNNING)
736 return 0;
738 if (!try_get_task_stack(p))
739 return 0;
741 start = (unsigned long)task_stack_page(p);
742 if (!start)
743 goto out;
746 * Layout of the stack page:
748 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
749 * PADDING
750 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
751 * stack
752 * ----------- bottom = start
754 * The tasks stack pointer points at the location where the
755 * framepointer is stored. The data on the stack is:
756 * ... IP FP ... IP FP
758 * We need to read FP and IP, so we need to adjust the upper
759 * bound by another unsigned long.
761 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
762 top -= 2 * sizeof(unsigned long);
763 bottom = start;
765 sp = READ_ONCE(p->thread.sp);
766 if (sp < bottom || sp > top)
767 goto out;
769 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
770 do {
771 if (fp < bottom || fp > top)
772 goto out;
773 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
774 if (!in_sched_functions(ip)) {
775 ret = ip;
776 goto out;
778 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
779 } while (count++ < 16 && p->state != TASK_RUNNING);
781 out:
782 put_task_stack(p);
783 return ret;
786 long do_arch_prctl_common(struct task_struct *task, int option,
787 unsigned long cpuid_enabled)
789 switch (option) {
790 case ARCH_GET_CPUID:
791 return get_cpuid_mode();
792 case ARCH_SET_CPUID:
793 return set_cpuid_mode(task, cpuid_enabled);
796 return -EINVAL;