Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kvm / hyperv.c
blob01d209ab5481b0edddb020bbc4b701f4c27d3055
1 /*
2 * KVM Microsoft Hyper-V emulation
4 * derived from arch/x86/kvm/x86.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 * This work is licensed under the terms of the GNU GPL, version 2. See
20 * the COPYING file in the top-level directory.
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
37 #include "trace.h"
39 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
41 return atomic64_read(&synic->sint[sint]);
44 static inline int synic_get_sint_vector(u64 sint_value)
46 if (sint_value & HV_SYNIC_SINT_MASKED)
47 return -1;
48 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
51 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
52 int vector)
54 int i;
56 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
57 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
58 return true;
60 return false;
63 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
64 int vector)
66 int i;
67 u64 sint_value;
69 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
70 sint_value = synic_read_sint(synic, i);
71 if (synic_get_sint_vector(sint_value) == vector &&
72 sint_value & HV_SYNIC_SINT_AUTO_EOI)
73 return true;
75 return false;
78 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
79 int vector)
81 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
82 return;
84 if (synic_has_vector_connected(synic, vector))
85 __set_bit(vector, synic->vec_bitmap);
86 else
87 __clear_bit(vector, synic->vec_bitmap);
89 if (synic_has_vector_auto_eoi(synic, vector))
90 __set_bit(vector, synic->auto_eoi_bitmap);
91 else
92 __clear_bit(vector, synic->auto_eoi_bitmap);
95 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
96 u64 data, bool host)
98 int vector, old_vector;
99 bool masked;
101 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
102 masked = data & HV_SYNIC_SINT_MASKED;
105 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
106 * default '0x10000' value on boot and this should not #GP. We need to
107 * allow zero-initing the register from host as well.
109 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
110 return 1;
112 * Guest may configure multiple SINTs to use the same vector, so
113 * we maintain a bitmap of vectors handled by synic, and a
114 * bitmap of vectors with auto-eoi behavior. The bitmaps are
115 * updated here, and atomically queried on fast paths.
117 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
119 atomic64_set(&synic->sint[sint], data);
121 synic_update_vector(synic, old_vector);
123 synic_update_vector(synic, vector);
125 /* Load SynIC vectors into EOI exit bitmap */
126 kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
127 return 0;
130 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
132 struct kvm_vcpu *vcpu = NULL;
133 int i;
135 if (vpidx < KVM_MAX_VCPUS)
136 vcpu = kvm_get_vcpu(kvm, vpidx);
137 if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
138 return vcpu;
139 kvm_for_each_vcpu(i, vcpu, kvm)
140 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
141 return vcpu;
142 return NULL;
145 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
147 struct kvm_vcpu *vcpu;
148 struct kvm_vcpu_hv_synic *synic;
150 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
151 if (!vcpu)
152 return NULL;
153 synic = vcpu_to_synic(vcpu);
154 return (synic->active) ? synic : NULL;
157 static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic,
158 u32 sint)
160 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
161 struct page *page;
162 gpa_t gpa;
163 struct hv_message *msg;
164 struct hv_message_page *msg_page;
166 gpa = synic->msg_page & PAGE_MASK;
167 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
168 if (is_error_page(page)) {
169 vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n",
170 gpa);
171 return;
173 msg_page = kmap_atomic(page);
175 msg = &msg_page->sint_message[sint];
176 msg->header.message_flags.msg_pending = 0;
178 kunmap_atomic(msg_page);
179 kvm_release_page_dirty(page);
180 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
183 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
185 struct kvm *kvm = vcpu->kvm;
186 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
187 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
188 struct kvm_vcpu_hv_stimer *stimer;
189 int gsi, idx, stimers_pending;
191 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
193 if (synic->msg_page & HV_SYNIC_SIMP_ENABLE)
194 synic_clear_sint_msg_pending(synic, sint);
196 /* Try to deliver pending Hyper-V SynIC timers messages */
197 stimers_pending = 0;
198 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
199 stimer = &hv_vcpu->stimer[idx];
200 if (stimer->msg_pending &&
201 (stimer->config & HV_STIMER_ENABLE) &&
202 HV_STIMER_SINT(stimer->config) == sint) {
203 set_bit(stimer->index,
204 hv_vcpu->stimer_pending_bitmap);
205 stimers_pending++;
208 if (stimers_pending)
209 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
211 idx = srcu_read_lock(&kvm->irq_srcu);
212 gsi = atomic_read(&synic->sint_to_gsi[sint]);
213 if (gsi != -1)
214 kvm_notify_acked_gsi(kvm, gsi);
215 srcu_read_unlock(&kvm->irq_srcu, idx);
218 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
220 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
221 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
223 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
224 hv_vcpu->exit.u.synic.msr = msr;
225 hv_vcpu->exit.u.synic.control = synic->control;
226 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
227 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
229 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
232 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
233 u32 msr, u64 data, bool host)
235 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
236 int ret;
238 if (!synic->active && !host)
239 return 1;
241 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
243 ret = 0;
244 switch (msr) {
245 case HV_X64_MSR_SCONTROL:
246 synic->control = data;
247 if (!host)
248 synic_exit(synic, msr);
249 break;
250 case HV_X64_MSR_SVERSION:
251 if (!host) {
252 ret = 1;
253 break;
255 synic->version = data;
256 break;
257 case HV_X64_MSR_SIEFP:
258 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
259 !synic->dont_zero_synic_pages)
260 if (kvm_clear_guest(vcpu->kvm,
261 data & PAGE_MASK, PAGE_SIZE)) {
262 ret = 1;
263 break;
265 synic->evt_page = data;
266 if (!host)
267 synic_exit(synic, msr);
268 break;
269 case HV_X64_MSR_SIMP:
270 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
271 !synic->dont_zero_synic_pages)
272 if (kvm_clear_guest(vcpu->kvm,
273 data & PAGE_MASK, PAGE_SIZE)) {
274 ret = 1;
275 break;
277 synic->msg_page = data;
278 if (!host)
279 synic_exit(synic, msr);
280 break;
281 case HV_X64_MSR_EOM: {
282 int i;
284 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
285 kvm_hv_notify_acked_sint(vcpu, i);
286 break;
288 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
289 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
290 break;
291 default:
292 ret = 1;
293 break;
295 return ret;
298 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
299 bool host)
301 int ret;
303 if (!synic->active && !host)
304 return 1;
306 ret = 0;
307 switch (msr) {
308 case HV_X64_MSR_SCONTROL:
309 *pdata = synic->control;
310 break;
311 case HV_X64_MSR_SVERSION:
312 *pdata = synic->version;
313 break;
314 case HV_X64_MSR_SIEFP:
315 *pdata = synic->evt_page;
316 break;
317 case HV_X64_MSR_SIMP:
318 *pdata = synic->msg_page;
319 break;
320 case HV_X64_MSR_EOM:
321 *pdata = 0;
322 break;
323 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
324 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
325 break;
326 default:
327 ret = 1;
328 break;
330 return ret;
333 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
335 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
336 struct kvm_lapic_irq irq;
337 int ret, vector;
339 if (sint >= ARRAY_SIZE(synic->sint))
340 return -EINVAL;
342 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
343 if (vector < 0)
344 return -ENOENT;
346 memset(&irq, 0, sizeof(irq));
347 irq.shorthand = APIC_DEST_SELF;
348 irq.dest_mode = APIC_DEST_PHYSICAL;
349 irq.delivery_mode = APIC_DM_FIXED;
350 irq.vector = vector;
351 irq.level = 1;
353 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
354 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
355 return ret;
358 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
360 struct kvm_vcpu_hv_synic *synic;
362 synic = synic_get(kvm, vpidx);
363 if (!synic)
364 return -EINVAL;
366 return synic_set_irq(synic, sint);
369 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
371 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
372 int i;
374 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
376 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
377 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
378 kvm_hv_notify_acked_sint(vcpu, i);
381 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
383 struct kvm_vcpu_hv_synic *synic;
385 synic = synic_get(kvm, vpidx);
386 if (!synic)
387 return -EINVAL;
389 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
390 return -EINVAL;
392 atomic_set(&synic->sint_to_gsi[sint], gsi);
393 return 0;
396 void kvm_hv_irq_routing_update(struct kvm *kvm)
398 struct kvm_irq_routing_table *irq_rt;
399 struct kvm_kernel_irq_routing_entry *e;
400 u32 gsi;
402 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
403 lockdep_is_held(&kvm->irq_lock));
405 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
406 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
407 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
408 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
409 e->hv_sint.sint, gsi);
414 static void synic_init(struct kvm_vcpu_hv_synic *synic)
416 int i;
418 memset(synic, 0, sizeof(*synic));
419 synic->version = HV_SYNIC_VERSION_1;
420 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
421 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
422 atomic_set(&synic->sint_to_gsi[i], -1);
426 static u64 get_time_ref_counter(struct kvm *kvm)
428 struct kvm_hv *hv = &kvm->arch.hyperv;
429 struct kvm_vcpu *vcpu;
430 u64 tsc;
433 * The guest has not set up the TSC page or the clock isn't
434 * stable, fall back to get_kvmclock_ns.
436 if (!hv->tsc_ref.tsc_sequence)
437 return div_u64(get_kvmclock_ns(kvm), 100);
439 vcpu = kvm_get_vcpu(kvm, 0);
440 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
441 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
442 + hv->tsc_ref.tsc_offset;
445 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
446 bool vcpu_kick)
448 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
450 set_bit(stimer->index,
451 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
452 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
453 if (vcpu_kick)
454 kvm_vcpu_kick(vcpu);
457 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
459 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
461 trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
462 stimer->index);
464 hrtimer_cancel(&stimer->timer);
465 clear_bit(stimer->index,
466 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
467 stimer->msg_pending = false;
468 stimer->exp_time = 0;
471 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
473 struct kvm_vcpu_hv_stimer *stimer;
475 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
476 trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
477 stimer->index);
478 stimer_mark_pending(stimer, true);
480 return HRTIMER_NORESTART;
484 * stimer_start() assumptions:
485 * a) stimer->count is not equal to 0
486 * b) stimer->config has HV_STIMER_ENABLE flag
488 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
490 u64 time_now;
491 ktime_t ktime_now;
493 time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
494 ktime_now = ktime_get();
496 if (stimer->config & HV_STIMER_PERIODIC) {
497 if (stimer->exp_time) {
498 if (time_now >= stimer->exp_time) {
499 u64 remainder;
501 div64_u64_rem(time_now - stimer->exp_time,
502 stimer->count, &remainder);
503 stimer->exp_time =
504 time_now + (stimer->count - remainder);
506 } else
507 stimer->exp_time = time_now + stimer->count;
509 trace_kvm_hv_stimer_start_periodic(
510 stimer_to_vcpu(stimer)->vcpu_id,
511 stimer->index,
512 time_now, stimer->exp_time);
514 hrtimer_start(&stimer->timer,
515 ktime_add_ns(ktime_now,
516 100 * (stimer->exp_time - time_now)),
517 HRTIMER_MODE_ABS);
518 return 0;
520 stimer->exp_time = stimer->count;
521 if (time_now >= stimer->count) {
523 * Expire timer according to Hypervisor Top-Level Functional
524 * specification v4(15.3.1):
525 * "If a one shot is enabled and the specified count is in
526 * the past, it will expire immediately."
528 stimer_mark_pending(stimer, false);
529 return 0;
532 trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
533 stimer->index,
534 time_now, stimer->count);
536 hrtimer_start(&stimer->timer,
537 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
538 HRTIMER_MODE_ABS);
539 return 0;
542 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
543 bool host)
545 trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
546 stimer->index, config, host);
548 stimer_cleanup(stimer);
549 if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0)
550 config &= ~HV_STIMER_ENABLE;
551 stimer->config = config;
552 stimer_mark_pending(stimer, false);
553 return 0;
556 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
557 bool host)
559 trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
560 stimer->index, count, host);
562 stimer_cleanup(stimer);
563 stimer->count = count;
564 if (stimer->count == 0)
565 stimer->config &= ~HV_STIMER_ENABLE;
566 else if (stimer->config & HV_STIMER_AUTOENABLE)
567 stimer->config |= HV_STIMER_ENABLE;
568 stimer_mark_pending(stimer, false);
569 return 0;
572 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
574 *pconfig = stimer->config;
575 return 0;
578 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
580 *pcount = stimer->count;
581 return 0;
584 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
585 struct hv_message *src_msg)
587 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
588 struct page *page;
589 gpa_t gpa;
590 struct hv_message *dst_msg;
591 int r;
592 struct hv_message_page *msg_page;
594 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
595 return -ENOENT;
597 gpa = synic->msg_page & PAGE_MASK;
598 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
599 if (is_error_page(page))
600 return -EFAULT;
602 msg_page = kmap_atomic(page);
603 dst_msg = &msg_page->sint_message[sint];
604 if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE,
605 src_msg->header.message_type) != HVMSG_NONE) {
606 dst_msg->header.message_flags.msg_pending = 1;
607 r = -EAGAIN;
608 } else {
609 memcpy(&dst_msg->u.payload, &src_msg->u.payload,
610 src_msg->header.payload_size);
611 dst_msg->header.message_type = src_msg->header.message_type;
612 dst_msg->header.payload_size = src_msg->header.payload_size;
613 r = synic_set_irq(synic, sint);
614 if (r >= 1)
615 r = 0;
616 else if (r == 0)
617 r = -EFAULT;
619 kunmap_atomic(msg_page);
620 kvm_release_page_dirty(page);
621 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
622 return r;
625 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
627 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
628 struct hv_message *msg = &stimer->msg;
629 struct hv_timer_message_payload *payload =
630 (struct hv_timer_message_payload *)&msg->u.payload;
632 payload->expiration_time = stimer->exp_time;
633 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
634 return synic_deliver_msg(vcpu_to_synic(vcpu),
635 HV_STIMER_SINT(stimer->config), msg);
638 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
640 int r;
642 stimer->msg_pending = true;
643 r = stimer_send_msg(stimer);
644 trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
645 stimer->index, r);
646 if (!r) {
647 stimer->msg_pending = false;
648 if (!(stimer->config & HV_STIMER_PERIODIC))
649 stimer->config &= ~HV_STIMER_ENABLE;
653 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
655 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
656 struct kvm_vcpu_hv_stimer *stimer;
657 u64 time_now, exp_time;
658 int i;
660 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
661 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
662 stimer = &hv_vcpu->stimer[i];
663 if (stimer->config & HV_STIMER_ENABLE) {
664 exp_time = stimer->exp_time;
666 if (exp_time) {
667 time_now =
668 get_time_ref_counter(vcpu->kvm);
669 if (time_now >= exp_time)
670 stimer_expiration(stimer);
673 if ((stimer->config & HV_STIMER_ENABLE) &&
674 stimer->count) {
675 if (!stimer->msg_pending)
676 stimer_start(stimer);
677 } else
678 stimer_cleanup(stimer);
683 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
685 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
686 int i;
688 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
689 stimer_cleanup(&hv_vcpu->stimer[i]);
692 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
694 struct hv_message *msg = &stimer->msg;
695 struct hv_timer_message_payload *payload =
696 (struct hv_timer_message_payload *)&msg->u.payload;
698 memset(&msg->header, 0, sizeof(msg->header));
699 msg->header.message_type = HVMSG_TIMER_EXPIRED;
700 msg->header.payload_size = sizeof(*payload);
702 payload->timer_index = stimer->index;
703 payload->expiration_time = 0;
704 payload->delivery_time = 0;
707 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
709 memset(stimer, 0, sizeof(*stimer));
710 stimer->index = timer_index;
711 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
712 stimer->timer.function = stimer_timer_callback;
713 stimer_prepare_msg(stimer);
716 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
718 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
719 int i;
721 synic_init(&hv_vcpu->synic);
723 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
724 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
725 stimer_init(&hv_vcpu->stimer[i], i);
728 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
730 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
732 hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
735 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
737 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
740 * Hyper-V SynIC auto EOI SINT's are
741 * not compatible with APICV, so deactivate APICV
743 kvm_vcpu_deactivate_apicv(vcpu);
744 synic->active = true;
745 synic->dont_zero_synic_pages = dont_zero_synic_pages;
746 return 0;
749 static bool kvm_hv_msr_partition_wide(u32 msr)
751 bool r = false;
753 switch (msr) {
754 case HV_X64_MSR_GUEST_OS_ID:
755 case HV_X64_MSR_HYPERCALL:
756 case HV_X64_MSR_REFERENCE_TSC:
757 case HV_X64_MSR_TIME_REF_COUNT:
758 case HV_X64_MSR_CRASH_CTL:
759 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
760 case HV_X64_MSR_RESET:
761 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
762 case HV_X64_MSR_TSC_EMULATION_CONTROL:
763 case HV_X64_MSR_TSC_EMULATION_STATUS:
764 r = true;
765 break;
768 return r;
771 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
772 u32 index, u64 *pdata)
774 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
776 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
777 return -EINVAL;
779 *pdata = hv->hv_crash_param[index];
780 return 0;
783 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
785 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
787 *pdata = hv->hv_crash_ctl;
788 return 0;
791 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
793 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
795 if (host)
796 hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY;
798 if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) {
800 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
801 hv->hv_crash_param[0],
802 hv->hv_crash_param[1],
803 hv->hv_crash_param[2],
804 hv->hv_crash_param[3],
805 hv->hv_crash_param[4]);
807 /* Send notification about crash to user space */
808 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
811 return 0;
814 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
815 u32 index, u64 data)
817 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
819 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
820 return -EINVAL;
822 hv->hv_crash_param[index] = data;
823 return 0;
827 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
828 * between them is possible:
830 * kvmclock formula:
831 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
832 * + system_time
834 * Hyper-V formula:
835 * nsec/100 = ticks * scale / 2^64 + offset
837 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
838 * By dividing the kvmclock formula by 100 and equating what's left we get:
839 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
840 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
841 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
843 * Now expand the kvmclock formula and divide by 100:
844 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
845 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
846 * + system_time
847 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
848 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
849 * + system_time / 100
851 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
852 * nsec/100 = ticks * scale / 2^64
853 * - tsc_timestamp * scale / 2^64
854 * + system_time / 100
856 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
857 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
859 * These two equivalencies are implemented in this function.
861 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
862 HV_REFERENCE_TSC_PAGE *tsc_ref)
864 u64 max_mul;
866 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
867 return false;
870 * check if scale would overflow, if so we use the time ref counter
871 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
872 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
873 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
875 max_mul = 100ull << (32 - hv_clock->tsc_shift);
876 if (hv_clock->tsc_to_system_mul >= max_mul)
877 return false;
880 * Otherwise compute the scale and offset according to the formulas
881 * derived above.
883 tsc_ref->tsc_scale =
884 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
885 hv_clock->tsc_to_system_mul,
886 100);
888 tsc_ref->tsc_offset = hv_clock->system_time;
889 do_div(tsc_ref->tsc_offset, 100);
890 tsc_ref->tsc_offset -=
891 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
892 return true;
895 void kvm_hv_setup_tsc_page(struct kvm *kvm,
896 struct pvclock_vcpu_time_info *hv_clock)
898 struct kvm_hv *hv = &kvm->arch.hyperv;
899 u32 tsc_seq;
900 u64 gfn;
902 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
903 BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
905 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
906 return;
908 mutex_lock(&kvm->arch.hyperv.hv_lock);
909 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
910 goto out_unlock;
912 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
914 * Because the TSC parameters only vary when there is a
915 * change in the master clock, do not bother with caching.
917 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
918 &tsc_seq, sizeof(tsc_seq))))
919 goto out_unlock;
922 * While we're computing and writing the parameters, force the
923 * guest to use the time reference count MSR.
925 hv->tsc_ref.tsc_sequence = 0;
926 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
927 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
928 goto out_unlock;
930 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
931 goto out_unlock;
933 /* Ensure sequence is zero before writing the rest of the struct. */
934 smp_wmb();
935 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
936 goto out_unlock;
939 * Now switch to the TSC page mechanism by writing the sequence.
941 tsc_seq++;
942 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
943 tsc_seq = 1;
945 /* Write the struct entirely before the non-zero sequence. */
946 smp_wmb();
948 hv->tsc_ref.tsc_sequence = tsc_seq;
949 kvm_write_guest(kvm, gfn_to_gpa(gfn),
950 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
951 out_unlock:
952 mutex_unlock(&kvm->arch.hyperv.hv_lock);
955 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
956 bool host)
958 struct kvm *kvm = vcpu->kvm;
959 struct kvm_hv *hv = &kvm->arch.hyperv;
961 switch (msr) {
962 case HV_X64_MSR_GUEST_OS_ID:
963 hv->hv_guest_os_id = data;
964 /* setting guest os id to zero disables hypercall page */
965 if (!hv->hv_guest_os_id)
966 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
967 break;
968 case HV_X64_MSR_HYPERCALL: {
969 u64 gfn;
970 unsigned long addr;
971 u8 instructions[4];
973 /* if guest os id is not set hypercall should remain disabled */
974 if (!hv->hv_guest_os_id)
975 break;
976 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
977 hv->hv_hypercall = data;
978 break;
980 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
981 addr = gfn_to_hva(kvm, gfn);
982 if (kvm_is_error_hva(addr))
983 return 1;
984 kvm_x86_ops->patch_hypercall(vcpu, instructions);
985 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
986 if (__copy_to_user((void __user *)addr, instructions, 4))
987 return 1;
988 hv->hv_hypercall = data;
989 mark_page_dirty(kvm, gfn);
990 break;
992 case HV_X64_MSR_REFERENCE_TSC:
993 hv->hv_tsc_page = data;
994 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
995 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
996 break;
997 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
998 return kvm_hv_msr_set_crash_data(vcpu,
999 msr - HV_X64_MSR_CRASH_P0,
1000 data);
1001 case HV_X64_MSR_CRASH_CTL:
1002 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1003 case HV_X64_MSR_RESET:
1004 if (data == 1) {
1005 vcpu_debug(vcpu, "hyper-v reset requested\n");
1006 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1008 break;
1009 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1010 hv->hv_reenlightenment_control = data;
1011 break;
1012 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1013 hv->hv_tsc_emulation_control = data;
1014 break;
1015 case HV_X64_MSR_TSC_EMULATION_STATUS:
1016 hv->hv_tsc_emulation_status = data;
1017 break;
1018 case HV_X64_MSR_TIME_REF_COUNT:
1019 /* read-only, but still ignore it if host-initiated */
1020 if (!host)
1021 return 1;
1022 break;
1023 default:
1024 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1025 msr, data);
1026 return 1;
1028 return 0;
1031 /* Calculate cpu time spent by current task in 100ns units */
1032 static u64 current_task_runtime_100ns(void)
1034 u64 utime, stime;
1036 task_cputime_adjusted(current, &utime, &stime);
1038 return div_u64(utime + stime, 100);
1041 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1043 struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1045 switch (msr) {
1046 case HV_X64_MSR_VP_INDEX:
1047 if (!host)
1048 return 1;
1049 hv->vp_index = (u32)data;
1050 break;
1051 case HV_X64_MSR_VP_ASSIST_PAGE: {
1052 u64 gfn;
1053 unsigned long addr;
1055 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1056 hv->hv_vapic = data;
1057 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1058 return 1;
1059 break;
1061 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1062 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1063 if (kvm_is_error_hva(addr))
1064 return 1;
1065 if (__clear_user((void __user *)addr, PAGE_SIZE))
1066 return 1;
1067 hv->hv_vapic = data;
1068 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1069 if (kvm_lapic_enable_pv_eoi(vcpu,
1070 gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1071 return 1;
1072 break;
1074 case HV_X64_MSR_EOI:
1075 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1076 case HV_X64_MSR_ICR:
1077 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1078 case HV_X64_MSR_TPR:
1079 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1080 case HV_X64_MSR_VP_RUNTIME:
1081 if (!host)
1082 return 1;
1083 hv->runtime_offset = data - current_task_runtime_100ns();
1084 break;
1085 case HV_X64_MSR_SCONTROL:
1086 case HV_X64_MSR_SVERSION:
1087 case HV_X64_MSR_SIEFP:
1088 case HV_X64_MSR_SIMP:
1089 case HV_X64_MSR_EOM:
1090 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1091 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1092 case HV_X64_MSR_STIMER0_CONFIG:
1093 case HV_X64_MSR_STIMER1_CONFIG:
1094 case HV_X64_MSR_STIMER2_CONFIG:
1095 case HV_X64_MSR_STIMER3_CONFIG: {
1096 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1098 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1099 data, host);
1101 case HV_X64_MSR_STIMER0_COUNT:
1102 case HV_X64_MSR_STIMER1_COUNT:
1103 case HV_X64_MSR_STIMER2_COUNT:
1104 case HV_X64_MSR_STIMER3_COUNT: {
1105 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1107 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1108 data, host);
1110 case HV_X64_MSR_TSC_FREQUENCY:
1111 case HV_X64_MSR_APIC_FREQUENCY:
1112 /* read-only, but still ignore it if host-initiated */
1113 if (!host)
1114 return 1;
1115 break;
1116 default:
1117 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1118 msr, data);
1119 return 1;
1122 return 0;
1125 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1127 u64 data = 0;
1128 struct kvm *kvm = vcpu->kvm;
1129 struct kvm_hv *hv = &kvm->arch.hyperv;
1131 switch (msr) {
1132 case HV_X64_MSR_GUEST_OS_ID:
1133 data = hv->hv_guest_os_id;
1134 break;
1135 case HV_X64_MSR_HYPERCALL:
1136 data = hv->hv_hypercall;
1137 break;
1138 case HV_X64_MSR_TIME_REF_COUNT:
1139 data = get_time_ref_counter(kvm);
1140 break;
1141 case HV_X64_MSR_REFERENCE_TSC:
1142 data = hv->hv_tsc_page;
1143 break;
1144 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1145 return kvm_hv_msr_get_crash_data(vcpu,
1146 msr - HV_X64_MSR_CRASH_P0,
1147 pdata);
1148 case HV_X64_MSR_CRASH_CTL:
1149 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1150 case HV_X64_MSR_RESET:
1151 data = 0;
1152 break;
1153 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1154 data = hv->hv_reenlightenment_control;
1155 break;
1156 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1157 data = hv->hv_tsc_emulation_control;
1158 break;
1159 case HV_X64_MSR_TSC_EMULATION_STATUS:
1160 data = hv->hv_tsc_emulation_status;
1161 break;
1162 default:
1163 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1164 return 1;
1167 *pdata = data;
1168 return 0;
1171 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1172 bool host)
1174 u64 data = 0;
1175 struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1177 switch (msr) {
1178 case HV_X64_MSR_VP_INDEX:
1179 data = hv->vp_index;
1180 break;
1181 case HV_X64_MSR_EOI:
1182 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1183 case HV_X64_MSR_ICR:
1184 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1185 case HV_X64_MSR_TPR:
1186 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1187 case HV_X64_MSR_VP_ASSIST_PAGE:
1188 data = hv->hv_vapic;
1189 break;
1190 case HV_X64_MSR_VP_RUNTIME:
1191 data = current_task_runtime_100ns() + hv->runtime_offset;
1192 break;
1193 case HV_X64_MSR_SCONTROL:
1194 case HV_X64_MSR_SVERSION:
1195 case HV_X64_MSR_SIEFP:
1196 case HV_X64_MSR_SIMP:
1197 case HV_X64_MSR_EOM:
1198 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1199 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1200 case HV_X64_MSR_STIMER0_CONFIG:
1201 case HV_X64_MSR_STIMER1_CONFIG:
1202 case HV_X64_MSR_STIMER2_CONFIG:
1203 case HV_X64_MSR_STIMER3_CONFIG: {
1204 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1206 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1207 pdata);
1209 case HV_X64_MSR_STIMER0_COUNT:
1210 case HV_X64_MSR_STIMER1_COUNT:
1211 case HV_X64_MSR_STIMER2_COUNT:
1212 case HV_X64_MSR_STIMER3_COUNT: {
1213 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1215 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1216 pdata);
1218 case HV_X64_MSR_TSC_FREQUENCY:
1219 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1220 break;
1221 case HV_X64_MSR_APIC_FREQUENCY:
1222 data = APIC_BUS_FREQUENCY;
1223 break;
1224 default:
1225 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1226 return 1;
1228 *pdata = data;
1229 return 0;
1232 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1234 if (kvm_hv_msr_partition_wide(msr)) {
1235 int r;
1237 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1238 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1239 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1240 return r;
1241 } else
1242 return kvm_hv_set_msr(vcpu, msr, data, host);
1245 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1247 if (kvm_hv_msr_partition_wide(msr)) {
1248 int r;
1250 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1251 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1252 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1253 return r;
1254 } else
1255 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1258 static __always_inline int get_sparse_bank_no(u64 valid_bank_mask, int bank_no)
1260 int i = 0, j;
1262 if (!(valid_bank_mask & BIT_ULL(bank_no)))
1263 return -1;
1265 for (j = 0; j < bank_no; j++)
1266 if (valid_bank_mask & BIT_ULL(j))
1267 i++;
1269 return i;
1272 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1273 u16 rep_cnt, bool ex)
1275 struct kvm *kvm = current_vcpu->kvm;
1276 struct kvm_vcpu_hv *hv_current = &current_vcpu->arch.hyperv;
1277 struct hv_tlb_flush_ex flush_ex;
1278 struct hv_tlb_flush flush;
1279 struct kvm_vcpu *vcpu;
1280 unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] = {0};
1281 unsigned long valid_bank_mask = 0;
1282 u64 sparse_banks[64];
1283 int sparse_banks_len, i;
1284 bool all_cpus;
1286 if (!ex) {
1287 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1288 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1290 trace_kvm_hv_flush_tlb(flush.processor_mask,
1291 flush.address_space, flush.flags);
1293 sparse_banks[0] = flush.processor_mask;
1294 all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
1295 } else {
1296 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1297 sizeof(flush_ex))))
1298 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1300 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1301 flush_ex.hv_vp_set.format,
1302 flush_ex.address_space,
1303 flush_ex.flags);
1305 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1306 all_cpus = flush_ex.hv_vp_set.format !=
1307 HV_GENERIC_SET_SPARSE_4K;
1309 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1310 sizeof(sparse_banks[0]);
1312 if (!sparse_banks_len && !all_cpus)
1313 goto ret_success;
1315 if (!all_cpus &&
1316 kvm_read_guest(kvm,
1317 ingpa + offsetof(struct hv_tlb_flush_ex,
1318 hv_vp_set.bank_contents),
1319 sparse_banks,
1320 sparse_banks_len))
1321 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1324 cpumask_clear(&hv_current->tlb_lush);
1326 kvm_for_each_vcpu(i, vcpu, kvm) {
1327 struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1328 int bank = hv->vp_index / 64, sbank = 0;
1330 if (!all_cpus) {
1331 /* Banks >64 can't be represented */
1332 if (bank >= 64)
1333 continue;
1335 /* Non-ex hypercalls can only address first 64 vCPUs */
1336 if (!ex && bank)
1337 continue;
1339 if (ex) {
1341 * Check is the bank of this vCPU is in sparse
1342 * set and get the sparse bank number.
1344 sbank = get_sparse_bank_no(valid_bank_mask,
1345 bank);
1347 if (sbank < 0)
1348 continue;
1351 if (!(sparse_banks[sbank] & BIT_ULL(hv->vp_index % 64)))
1352 continue;
1356 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we
1357 * can't analyze it here, flush TLB regardless of the specified
1358 * address space.
1360 __set_bit(i, vcpu_bitmap);
1363 kvm_make_vcpus_request_mask(kvm,
1364 KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1365 vcpu_bitmap, &hv_current->tlb_lush);
1367 ret_success:
1368 /* We always do full TLB flush, set rep_done = rep_cnt. */
1369 return (u64)HV_STATUS_SUCCESS |
1370 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1373 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1375 return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1378 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1380 bool longmode;
1382 longmode = is_64_bit_mode(vcpu);
1383 if (longmode)
1384 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1385 else {
1386 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1387 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1391 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1393 kvm_hv_hypercall_set_result(vcpu, result);
1394 ++vcpu->stat.hypercalls;
1395 return kvm_skip_emulated_instruction(vcpu);
1398 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1400 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1403 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1405 struct eventfd_ctx *eventfd;
1407 if (unlikely(!fast)) {
1408 int ret;
1409 gpa_t gpa = param;
1411 if ((gpa & (__alignof__(param) - 1)) ||
1412 offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1413 return HV_STATUS_INVALID_ALIGNMENT;
1415 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1416 if (ret < 0)
1417 return HV_STATUS_INVALID_ALIGNMENT;
1421 * Per spec, bits 32-47 contain the extra "flag number". However, we
1422 * have no use for it, and in all known usecases it is zero, so just
1423 * report lookup failure if it isn't.
1425 if (param & 0xffff00000000ULL)
1426 return HV_STATUS_INVALID_PORT_ID;
1427 /* remaining bits are reserved-zero */
1428 if (param & ~KVM_HYPERV_CONN_ID_MASK)
1429 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1431 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1432 rcu_read_lock();
1433 eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1434 rcu_read_unlock();
1435 if (!eventfd)
1436 return HV_STATUS_INVALID_PORT_ID;
1438 eventfd_signal(eventfd, 1);
1439 return HV_STATUS_SUCCESS;
1442 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1444 u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1445 uint16_t code, rep_idx, rep_cnt;
1446 bool fast, longmode, rep;
1449 * hypercall generates UD from non zero cpl and real mode
1450 * per HYPER-V spec
1452 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1453 kvm_queue_exception(vcpu, UD_VECTOR);
1454 return 1;
1457 longmode = is_64_bit_mode(vcpu);
1459 if (!longmode) {
1460 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1461 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1462 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1463 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1464 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1465 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1467 #ifdef CONFIG_X86_64
1468 else {
1469 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1470 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1471 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1473 #endif
1475 code = param & 0xffff;
1476 fast = !!(param & HV_HYPERCALL_FAST_BIT);
1477 rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1478 rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1479 rep = !!(rep_cnt || rep_idx);
1481 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1483 switch (code) {
1484 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1485 if (unlikely(rep)) {
1486 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1487 break;
1489 kvm_vcpu_on_spin(vcpu, true);
1490 break;
1491 case HVCALL_SIGNAL_EVENT:
1492 if (unlikely(rep)) {
1493 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1494 break;
1496 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1497 if (ret != HV_STATUS_INVALID_PORT_ID)
1498 break;
1499 /* maybe userspace knows this conn_id: fall through */
1500 case HVCALL_POST_MESSAGE:
1501 /* don't bother userspace if it has no way to handle it */
1502 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1503 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1504 break;
1506 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1507 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1508 vcpu->run->hyperv.u.hcall.input = param;
1509 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1510 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1511 vcpu->arch.complete_userspace_io =
1512 kvm_hv_hypercall_complete_userspace;
1513 return 0;
1514 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1515 if (unlikely(fast || !rep_cnt || rep_idx)) {
1516 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1517 break;
1519 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1520 break;
1521 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1522 if (unlikely(fast || rep)) {
1523 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1524 break;
1526 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1527 break;
1528 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1529 if (unlikely(fast || !rep_cnt || rep_idx)) {
1530 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1531 break;
1533 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1534 break;
1535 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1536 if (unlikely(fast || rep)) {
1537 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1538 break;
1540 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1541 break;
1542 default:
1543 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1544 break;
1547 return kvm_hv_hypercall_complete(vcpu, ret);
1550 void kvm_hv_init_vm(struct kvm *kvm)
1552 mutex_init(&kvm->arch.hyperv.hv_lock);
1553 idr_init(&kvm->arch.hyperv.conn_to_evt);
1556 void kvm_hv_destroy_vm(struct kvm *kvm)
1558 struct eventfd_ctx *eventfd;
1559 int i;
1561 idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1562 eventfd_ctx_put(eventfd);
1563 idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1566 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1568 struct kvm_hv *hv = &kvm->arch.hyperv;
1569 struct eventfd_ctx *eventfd;
1570 int ret;
1572 eventfd = eventfd_ctx_fdget(fd);
1573 if (IS_ERR(eventfd))
1574 return PTR_ERR(eventfd);
1576 mutex_lock(&hv->hv_lock);
1577 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1578 GFP_KERNEL);
1579 mutex_unlock(&hv->hv_lock);
1581 if (ret >= 0)
1582 return 0;
1584 if (ret == -ENOSPC)
1585 ret = -EEXIST;
1586 eventfd_ctx_put(eventfd);
1587 return ret;
1590 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1592 struct kvm_hv *hv = &kvm->arch.hyperv;
1593 struct eventfd_ctx *eventfd;
1595 mutex_lock(&hv->hv_lock);
1596 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1597 mutex_unlock(&hv->hv_lock);
1599 if (!eventfd)
1600 return -ENOENT;
1602 synchronize_srcu(&kvm->srcu);
1603 eventfd_ctx_put(eventfd);
1604 return 0;
1607 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1609 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1610 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1611 return -EINVAL;
1613 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1614 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1615 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);