Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kvm / mmu_audit.c
blob1272861e77b9ec9868ea3b3f640a962d3cb18631
1 /*
2 * mmu_audit.c:
4 * Audit code for KVM MMU
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
20 #include <linux/ratelimit.h>
22 static char const *audit_point_name[] = {
23 "pre page fault",
24 "post page fault",
25 "pre pte write",
26 "post pte write",
27 "pre sync",
28 "post sync"
31 #define audit_printk(kvm, fmt, args...) \
32 printk(KERN_ERR "audit: (%s) error: " \
33 fmt, audit_point_name[kvm->arch.audit_point], ##args)
35 typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level);
37 static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
38 inspect_spte_fn fn, int level)
40 int i;
42 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
43 u64 *ent = sp->spt;
45 fn(vcpu, ent + i, level);
47 if (is_shadow_present_pte(ent[i]) &&
48 !is_last_spte(ent[i], level)) {
49 struct kvm_mmu_page *child;
51 child = page_header(ent[i] & PT64_BASE_ADDR_MASK);
52 __mmu_spte_walk(vcpu, child, fn, level - 1);
57 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
59 int i;
60 struct kvm_mmu_page *sp;
62 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
63 return;
65 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
66 hpa_t root = vcpu->arch.mmu.root_hpa;
68 sp = page_header(root);
69 __mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu.root_level);
70 return;
73 for (i = 0; i < 4; ++i) {
74 hpa_t root = vcpu->arch.mmu.pae_root[i];
76 if (root && VALID_PAGE(root)) {
77 root &= PT64_BASE_ADDR_MASK;
78 sp = page_header(root);
79 __mmu_spte_walk(vcpu, sp, fn, 2);
83 return;
86 typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp);
88 static void walk_all_active_sps(struct kvm *kvm, sp_handler fn)
90 struct kvm_mmu_page *sp;
92 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link)
93 fn(kvm, sp);
96 static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
98 struct kvm_mmu_page *sp;
99 gfn_t gfn;
100 kvm_pfn_t pfn;
101 hpa_t hpa;
103 sp = page_header(__pa(sptep));
105 if (sp->unsync) {
106 if (level != PT_PAGE_TABLE_LEVEL) {
107 audit_printk(vcpu->kvm, "unsync sp: %p "
108 "level = %d\n", sp, level);
109 return;
113 if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
114 return;
116 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
117 pfn = kvm_vcpu_gfn_to_pfn_atomic(vcpu, gfn);
119 if (is_error_pfn(pfn))
120 return;
122 hpa = pfn << PAGE_SHIFT;
123 if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
124 audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
125 "ent %llxn", vcpu->arch.mmu.root_level, pfn,
126 hpa, *sptep);
129 static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
131 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
132 struct kvm_rmap_head *rmap_head;
133 struct kvm_mmu_page *rev_sp;
134 struct kvm_memslots *slots;
135 struct kvm_memory_slot *slot;
136 gfn_t gfn;
138 rev_sp = page_header(__pa(sptep));
139 gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
141 slots = kvm_memslots_for_spte_role(kvm, rev_sp->role);
142 slot = __gfn_to_memslot(slots, gfn);
143 if (!slot) {
144 if (!__ratelimit(&ratelimit_state))
145 return;
146 audit_printk(kvm, "no memslot for gfn %llx\n", gfn);
147 audit_printk(kvm, "index %ld of sp (gfn=%llx)\n",
148 (long int)(sptep - rev_sp->spt), rev_sp->gfn);
149 dump_stack();
150 return;
153 rmap_head = __gfn_to_rmap(gfn, rev_sp->role.level, slot);
154 if (!rmap_head->val) {
155 if (!__ratelimit(&ratelimit_state))
156 return;
157 audit_printk(kvm, "no rmap for writable spte %llx\n",
158 *sptep);
159 dump_stack();
163 static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level)
165 if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level))
166 inspect_spte_has_rmap(vcpu->kvm, sptep);
169 static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level)
171 struct kvm_mmu_page *sp = page_header(__pa(sptep));
173 if (vcpu->kvm->arch.audit_point == AUDIT_POST_SYNC && sp->unsync)
174 audit_printk(vcpu->kvm, "meet unsync sp(%p) after sync "
175 "root.\n", sp);
178 static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
180 int i;
182 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
183 return;
185 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
186 if (!is_shadow_present_pte(sp->spt[i]))
187 continue;
189 inspect_spte_has_rmap(kvm, sp->spt + i);
193 static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
195 struct kvm_rmap_head *rmap_head;
196 u64 *sptep;
197 struct rmap_iterator iter;
198 struct kvm_memslots *slots;
199 struct kvm_memory_slot *slot;
201 if (sp->role.direct || sp->unsync || sp->role.invalid)
202 return;
204 slots = kvm_memslots_for_spte_role(kvm, sp->role);
205 slot = __gfn_to_memslot(slots, sp->gfn);
206 rmap_head = __gfn_to_rmap(sp->gfn, PT_PAGE_TABLE_LEVEL, slot);
208 for_each_rmap_spte(rmap_head, &iter, sptep) {
209 if (is_writable_pte(*sptep))
210 audit_printk(kvm, "shadow page has writable "
211 "mappings: gfn %llx role %x\n",
212 sp->gfn, sp->role.word);
216 static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
218 check_mappings_rmap(kvm, sp);
219 audit_write_protection(kvm, sp);
222 static void audit_all_active_sps(struct kvm *kvm)
224 walk_all_active_sps(kvm, audit_sp);
227 static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level)
229 audit_sptes_have_rmaps(vcpu, sptep, level);
230 audit_mappings(vcpu, sptep, level);
231 audit_spte_after_sync(vcpu, sptep, level);
234 static void audit_vcpu_spte(struct kvm_vcpu *vcpu)
236 mmu_spte_walk(vcpu, audit_spte);
239 static bool mmu_audit;
240 static struct static_key mmu_audit_key;
242 static void __kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
244 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
246 if (!__ratelimit(&ratelimit_state))
247 return;
249 vcpu->kvm->arch.audit_point = point;
250 audit_all_active_sps(vcpu->kvm);
251 audit_vcpu_spte(vcpu);
254 static inline void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
256 if (static_key_false((&mmu_audit_key)))
257 __kvm_mmu_audit(vcpu, point);
260 static void mmu_audit_enable(void)
262 if (mmu_audit)
263 return;
265 static_key_slow_inc(&mmu_audit_key);
266 mmu_audit = true;
269 static void mmu_audit_disable(void)
271 if (!mmu_audit)
272 return;
274 static_key_slow_dec(&mmu_audit_key);
275 mmu_audit = false;
278 static int mmu_audit_set(const char *val, const struct kernel_param *kp)
280 int ret;
281 unsigned long enable;
283 ret = kstrtoul(val, 10, &enable);
284 if (ret < 0)
285 return -EINVAL;
287 switch (enable) {
288 case 0:
289 mmu_audit_disable();
290 break;
291 case 1:
292 mmu_audit_enable();
293 break;
294 default:
295 return -EINVAL;
298 return 0;
301 static const struct kernel_param_ops audit_param_ops = {
302 .set = mmu_audit_set,
303 .get = param_get_bool,
306 arch_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644);