2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
90 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
92 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
102 static void process_nmi(struct kvm_vcpu
*vcpu
);
103 static void enter_smm(struct kvm_vcpu
*vcpu
);
104 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
105 static void store_regs(struct kvm_vcpu
*vcpu
);
106 static int sync_regs(struct kvm_vcpu
*vcpu
);
108 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
111 static bool __read_mostly ignore_msrs
= 0;
112 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
114 static bool __read_mostly report_ignored_msrs
= true;
115 module_param(report_ignored_msrs
, bool, S_IRUGO
| S_IWUSR
);
117 unsigned int min_timer_period_us
= 200;
118 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
120 static bool __read_mostly kvmclock_periodic_sync
= true;
121 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
123 bool __read_mostly kvm_has_tsc_control
;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
125 u32 __read_mostly kvm_max_guest_tsc_khz
;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm
= 250;
136 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
140 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns
);
143 static bool __read_mostly vector_hashing
= true;
144 module_param(vector_hashing
, bool, S_IRUGO
);
146 bool __read_mostly enable_vmware_backdoor
= false;
147 module_param(enable_vmware_backdoor
, bool, S_IRUGO
);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor
);
150 static bool __read_mostly force_emulation_prefix
= false;
151 module_param(force_emulation_prefix
, bool, S_IRUGO
);
153 #define KVM_NR_SHARED_MSRS 16
155 struct kvm_shared_msrs_global
{
157 u32 msrs
[KVM_NR_SHARED_MSRS
];
160 struct kvm_shared_msrs
{
161 struct user_return_notifier urn
;
163 struct kvm_shared_msr_values
{
166 } values
[KVM_NR_SHARED_MSRS
];
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
170 static struct kvm_shared_msrs __percpu
*shared_msrs
;
172 struct kvm_stats_debugfs_item debugfs_entries
[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed
) },
174 { "pf_guest", VCPU_STAT(pf_guest
) },
175 { "tlb_flush", VCPU_STAT(tlb_flush
) },
176 { "invlpg", VCPU_STAT(invlpg
) },
177 { "exits", VCPU_STAT(exits
) },
178 { "io_exits", VCPU_STAT(io_exits
) },
179 { "mmio_exits", VCPU_STAT(mmio_exits
) },
180 { "signal_exits", VCPU_STAT(signal_exits
) },
181 { "irq_window", VCPU_STAT(irq_window_exits
) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
183 { "halt_exits", VCPU_STAT(halt_exits
) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
188 { "hypercalls", VCPU_STAT(hypercalls
) },
189 { "request_irq", VCPU_STAT(request_irq_exits
) },
190 { "irq_exits", VCPU_STAT(irq_exits
) },
191 { "host_state_reload", VCPU_STAT(host_state_reload
) },
192 { "fpu_reload", VCPU_STAT(fpu_reload
) },
193 { "insn_emulation", VCPU_STAT(insn_emulation
) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
195 { "irq_injections", VCPU_STAT(irq_injections
) },
196 { "nmi_injections", VCPU_STAT(nmi_injections
) },
197 { "req_event", VCPU_STAT(req_event
) },
198 { "l1d_flush", VCPU_STAT(l1d_flush
) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
203 { "mmu_flooded", VM_STAT(mmu_flooded
) },
204 { "mmu_recycled", VM_STAT(mmu_recycled
) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
206 { "mmu_unsync", VM_STAT(mmu_unsync
) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
208 { "largepages", VM_STAT(lpages
) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions
) },
214 u64 __read_mostly host_xcr0
;
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
221 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
222 vcpu
->arch
.apf
.gfns
[i
] = ~0;
225 static void kvm_on_user_return(struct user_return_notifier
*urn
)
228 struct kvm_shared_msrs
*locals
229 = container_of(urn
, struct kvm_shared_msrs
, urn
);
230 struct kvm_shared_msr_values
*values
;
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
237 local_irq_save(flags
);
238 if (locals
->registered
) {
239 locals
->registered
= false;
240 user_return_notifier_unregister(urn
);
242 local_irq_restore(flags
);
243 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
244 values
= &locals
->values
[slot
];
245 if (values
->host
!= values
->curr
) {
246 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
247 values
->curr
= values
->host
;
252 static void shared_msr_update(unsigned slot
, u32 msr
)
255 unsigned int cpu
= smp_processor_id();
256 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot
>= shared_msrs_global
.nr
) {
261 printk(KERN_ERR
"kvm: invalid MSR slot!");
264 rdmsrl_safe(msr
, &value
);
265 smsr
->values
[slot
].host
= value
;
266 smsr
->values
[slot
].curr
= value
;
269 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
271 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
272 shared_msrs_global
.msrs
[slot
] = msr
;
273 if (slot
>= shared_msrs_global
.nr
)
274 shared_msrs_global
.nr
= slot
+ 1;
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
278 static void kvm_shared_msr_cpu_online(void)
282 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
283 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
286 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
288 unsigned int cpu
= smp_processor_id();
289 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
292 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
294 smsr
->values
[slot
].curr
= value
;
295 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
299 if (!smsr
->registered
) {
300 smsr
->urn
.on_user_return
= kvm_on_user_return
;
301 user_return_notifier_register(&smsr
->urn
);
302 smsr
->registered
= true;
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
308 static void drop_user_return_notifiers(void)
310 unsigned int cpu
= smp_processor_id();
311 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
313 if (smsr
->registered
)
314 kvm_on_user_return(&smsr
->urn
);
317 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
319 return vcpu
->arch
.apic_base
;
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
323 enum lapic_mode
kvm_get_apic_mode(struct kvm_vcpu
*vcpu
)
325 return kvm_apic_mode(kvm_get_apic_base(vcpu
));
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode
);
329 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
331 enum lapic_mode old_mode
= kvm_get_apic_mode(vcpu
);
332 enum lapic_mode new_mode
= kvm_apic_mode(msr_info
->data
);
333 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) | 0x2ff |
334 (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) ? 0 : X2APIC_ENABLE
);
336 if ((msr_info
->data
& reserved_bits
) != 0 || new_mode
== LAPIC_MODE_INVALID
)
338 if (!msr_info
->host_initiated
) {
339 if (old_mode
== LAPIC_MODE_X2APIC
&& new_mode
== LAPIC_MODE_XAPIC
)
341 if (old_mode
== LAPIC_MODE_DISABLED
&& new_mode
== LAPIC_MODE_X2APIC
)
345 kvm_lapic_set_base(vcpu
, msr_info
->data
);
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
350 asmlinkage __visible
void kvm_spurious_fault(void)
352 /* Fault while not rebooting. We want the trace. */
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
361 static int exception_class(int vector
)
371 return EXCPT_CONTRIBUTORY
;
378 #define EXCPT_FAULT 0
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
383 static int exception_type(int vector
)
387 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
388 return EXCPT_INTERRUPT
;
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
396 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
399 /* Reserved exceptions will result in fault */
403 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
404 unsigned nr
, bool has_error
, u32 error_code
,
410 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
412 if (!vcpu
->arch
.exception
.pending
&& !vcpu
->arch
.exception
.injected
) {
414 if (has_error
&& !is_protmode(vcpu
))
418 * On vmentry, vcpu->arch.exception.pending is only
419 * true if an event injection was blocked by
420 * nested_run_pending. In that case, however,
421 * vcpu_enter_guest requests an immediate exit,
422 * and the guest shouldn't proceed far enough to
425 WARN_ON_ONCE(vcpu
->arch
.exception
.pending
);
426 vcpu
->arch
.exception
.injected
= true;
428 vcpu
->arch
.exception
.pending
= true;
429 vcpu
->arch
.exception
.injected
= false;
431 vcpu
->arch
.exception
.has_error_code
= has_error
;
432 vcpu
->arch
.exception
.nr
= nr
;
433 vcpu
->arch
.exception
.error_code
= error_code
;
437 /* to check exception */
438 prev_nr
= vcpu
->arch
.exception
.nr
;
439 if (prev_nr
== DF_VECTOR
) {
440 /* triple fault -> shutdown */
441 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
444 class1
= exception_class(prev_nr
);
445 class2
= exception_class(nr
);
446 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
447 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
449 * Generate double fault per SDM Table 5-5. Set
450 * exception.pending = true so that the double fault
451 * can trigger a nested vmexit.
453 vcpu
->arch
.exception
.pending
= true;
454 vcpu
->arch
.exception
.injected
= false;
455 vcpu
->arch
.exception
.has_error_code
= true;
456 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
457 vcpu
->arch
.exception
.error_code
= 0;
459 /* replace previous exception with a new one in a hope
460 that instruction re-execution will regenerate lost
465 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
467 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
469 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
471 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
473 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
477 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
480 kvm_inject_gp(vcpu
, 0);
482 return kvm_skip_emulated_instruction(vcpu
);
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
488 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
490 ++vcpu
->stat
.pf_guest
;
491 vcpu
->arch
.exception
.nested_apf
=
492 is_guest_mode(vcpu
) && fault
->async_page_fault
;
493 if (vcpu
->arch
.exception
.nested_apf
)
494 vcpu
->arch
.apf
.nested_apf_token
= fault
->address
;
496 vcpu
->arch
.cr2
= fault
->address
;
497 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
501 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
503 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
504 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
506 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
508 return fault
->nested_page_fault
;
511 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
513 atomic_inc(&vcpu
->arch
.nmi_queued
);
514 kvm_make_request(KVM_REQ_NMI
, vcpu
);
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
518 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
520 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
524 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
526 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
531 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
532 * a #GP and return false.
534 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
536 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
538 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
541 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
543 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
545 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
548 kvm_queue_exception(vcpu
, UD_VECTOR
);
551 EXPORT_SYMBOL_GPL(kvm_require_dr
);
554 * This function will be used to read from the physical memory of the currently
555 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556 * can read from guest physical or from the guest's guest physical memory.
558 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
559 gfn_t ngfn
, void *data
, int offset
, int len
,
562 struct x86_exception exception
;
566 ngpa
= gfn_to_gpa(ngfn
);
567 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
568 if (real_gfn
== UNMAPPED_GVA
)
571 real_gfn
= gpa_to_gfn(real_gfn
);
573 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
577 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
578 void *data
, int offset
, int len
, u32 access
)
580 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
581 data
, offset
, len
, access
);
585 * Load the pae pdptrs. Return true is they are all valid.
587 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
589 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
590 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
593 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
595 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
596 offset
* sizeof(u64
), sizeof(pdpte
),
597 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
602 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
603 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
605 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
612 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
613 __set_bit(VCPU_EXREG_PDPTR
,
614 (unsigned long *)&vcpu
->arch
.regs_avail
);
615 __set_bit(VCPU_EXREG_PDPTR
,
616 (unsigned long *)&vcpu
->arch
.regs_dirty
);
621 EXPORT_SYMBOL_GPL(load_pdptrs
);
623 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
625 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
631 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
634 if (!test_bit(VCPU_EXREG_PDPTR
,
635 (unsigned long *)&vcpu
->arch
.regs_avail
))
638 gfn
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) >> PAGE_SHIFT
;
639 offset
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) & (PAGE_SIZE
- 1);
640 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
641 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
644 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
649 EXPORT_SYMBOL_GPL(pdptrs_changed
);
651 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
653 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
654 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
659 if (cr0
& 0xffffffff00000000UL
)
663 cr0
&= ~CR0_RESERVED_BITS
;
665 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
668 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
671 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
673 if ((vcpu
->arch
.efer
& EFER_LME
)) {
678 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
683 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
688 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
691 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
693 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
694 kvm_clear_async_pf_completion_queue(vcpu
);
695 kvm_async_pf_hash_reset(vcpu
);
698 if ((cr0
^ old_cr0
) & update_bits
)
699 kvm_mmu_reset_context(vcpu
);
701 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
702 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
703 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
704 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
708 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
710 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
712 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
714 EXPORT_SYMBOL_GPL(kvm_lmsw
);
716 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
718 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
719 !vcpu
->guest_xcr0_loaded
) {
720 /* kvm_set_xcr() also depends on this */
721 if (vcpu
->arch
.xcr0
!= host_xcr0
)
722 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
723 vcpu
->guest_xcr0_loaded
= 1;
727 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
729 if (vcpu
->guest_xcr0_loaded
) {
730 if (vcpu
->arch
.xcr0
!= host_xcr0
)
731 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
732 vcpu
->guest_xcr0_loaded
= 0;
736 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
739 u64 old_xcr0
= vcpu
->arch
.xcr0
;
742 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
743 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
745 if (!(xcr0
& XFEATURE_MASK_FP
))
747 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
751 * Do not allow the guest to set bits that we do not support
752 * saving. However, xcr0 bit 0 is always set, even if the
753 * emulated CPU does not support XSAVE (see fx_init).
755 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
756 if (xcr0
& ~valid_bits
)
759 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
760 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
763 if (xcr0
& XFEATURE_MASK_AVX512
) {
764 if (!(xcr0
& XFEATURE_MASK_YMM
))
766 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
769 vcpu
->arch
.xcr0
= xcr0
;
771 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
772 kvm_update_cpuid(vcpu
);
776 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
778 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
779 __kvm_set_xcr(vcpu
, index
, xcr
)) {
780 kvm_inject_gp(vcpu
, 0);
785 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
787 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
789 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
790 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
791 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
793 if (cr4
& CR4_RESERVED_BITS
)
796 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) && (cr4
& X86_CR4_OSXSAVE
))
799 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMEP
) && (cr4
& X86_CR4_SMEP
))
802 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMAP
) && (cr4
& X86_CR4_SMAP
))
805 if (!guest_cpuid_has(vcpu
, X86_FEATURE_FSGSBASE
) && (cr4
& X86_CR4_FSGSBASE
))
808 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PKU
) && (cr4
& X86_CR4_PKE
))
811 if (!guest_cpuid_has(vcpu
, X86_FEATURE_LA57
) && (cr4
& X86_CR4_LA57
))
814 if (!guest_cpuid_has(vcpu
, X86_FEATURE_UMIP
) && (cr4
& X86_CR4_UMIP
))
817 if (is_long_mode(vcpu
)) {
818 if (!(cr4
& X86_CR4_PAE
))
820 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
821 && ((cr4
^ old_cr4
) & pdptr_bits
)
822 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
826 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
827 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PCID
))
830 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
835 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
838 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
839 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
840 kvm_mmu_reset_context(vcpu
);
842 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
843 kvm_update_cpuid(vcpu
);
847 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
849 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
852 bool pcid_enabled
= kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
);
855 cr3
&= ~CR3_PCID_INVD
;
858 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
859 kvm_mmu_sync_roots(vcpu
);
860 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
864 if (is_long_mode(vcpu
) &&
865 (cr3
& rsvd_bits(cpuid_maxphyaddr(vcpu
), 63)))
867 else if (is_pae(vcpu
) && is_paging(vcpu
) &&
868 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
871 vcpu
->arch
.cr3
= cr3
;
872 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
873 kvm_mmu_new_cr3(vcpu
);
876 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
878 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
880 if (cr8
& CR8_RESERVED_BITS
)
882 if (lapic_in_kernel(vcpu
))
883 kvm_lapic_set_tpr(vcpu
, cr8
);
885 vcpu
->arch
.cr8
= cr8
;
888 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
890 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
892 if (lapic_in_kernel(vcpu
))
893 return kvm_lapic_get_cr8(vcpu
);
895 return vcpu
->arch
.cr8
;
897 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
899 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
903 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
904 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
905 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
906 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
910 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
912 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
913 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
916 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
920 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
921 dr7
= vcpu
->arch
.guest_debug_dr7
;
923 dr7
= vcpu
->arch
.dr7
;
924 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
925 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
926 if (dr7
& DR7_BP_EN_MASK
)
927 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
930 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
932 u64 fixed
= DR6_FIXED_1
;
934 if (!guest_cpuid_has(vcpu
, X86_FEATURE_RTM
))
939 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
943 vcpu
->arch
.db
[dr
] = val
;
944 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
945 vcpu
->arch
.eff_db
[dr
] = val
;
950 if (val
& 0xffffffff00000000ULL
)
952 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
953 kvm_update_dr6(vcpu
);
958 if (val
& 0xffffffff00000000ULL
)
960 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
961 kvm_update_dr7(vcpu
);
968 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
970 if (__kvm_set_dr(vcpu
, dr
, val
)) {
971 kvm_inject_gp(vcpu
, 0);
976 EXPORT_SYMBOL_GPL(kvm_set_dr
);
978 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
982 *val
= vcpu
->arch
.db
[dr
];
987 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
988 *val
= vcpu
->arch
.dr6
;
990 *val
= kvm_x86_ops
->get_dr6(vcpu
);
995 *val
= vcpu
->arch
.dr7
;
1000 EXPORT_SYMBOL_GPL(kvm_get_dr
);
1002 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
1004 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
1008 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
1011 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
1012 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
1015 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
1018 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1019 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1021 * This list is modified at module load time to reflect the
1022 * capabilities of the host cpu. This capabilities test skips MSRs that are
1023 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1024 * may depend on host virtualization features rather than host cpu features.
1027 static u32 msrs_to_save
[] = {
1028 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
1030 #ifdef CONFIG_X86_64
1031 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
1033 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
1034 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
1035 MSR_IA32_SPEC_CTRL
, MSR_IA32_ARCH_CAPABILITIES
1038 static unsigned num_msrs_to_save
;
1040 static u32 emulated_msrs
[] = {
1041 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
1042 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
1043 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
1044 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
1045 HV_X64_MSR_TSC_FREQUENCY
, HV_X64_MSR_APIC_FREQUENCY
,
1046 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
1047 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
1049 HV_X64_MSR_VP_INDEX
,
1050 HV_X64_MSR_VP_RUNTIME
,
1051 HV_X64_MSR_SCONTROL
,
1052 HV_X64_MSR_STIMER0_CONFIG
,
1053 HV_X64_MSR_VP_ASSIST_PAGE
,
1054 HV_X64_MSR_REENLIGHTENMENT_CONTROL
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
1055 HV_X64_MSR_TSC_EMULATION_STATUS
,
1057 MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1060 MSR_IA32_TSC_ADJUST
,
1061 MSR_IA32_TSCDEADLINE
,
1062 MSR_IA32_MISC_ENABLE
,
1063 MSR_IA32_MCG_STATUS
,
1065 MSR_IA32_MCG_EXT_CTL
,
1069 MSR_MISC_FEATURES_ENABLES
,
1070 MSR_AMD64_VIRT_SPEC_CTRL
,
1073 static unsigned num_emulated_msrs
;
1076 * List of msr numbers which are used to expose MSR-based features that
1077 * can be used by a hypervisor to validate requested CPU features.
1079 static u32 msr_based_features
[] = {
1081 MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
1082 MSR_IA32_VMX_PINBASED_CTLS
,
1083 MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
1084 MSR_IA32_VMX_PROCBASED_CTLS
,
1085 MSR_IA32_VMX_TRUE_EXIT_CTLS
,
1086 MSR_IA32_VMX_EXIT_CTLS
,
1087 MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
1088 MSR_IA32_VMX_ENTRY_CTLS
,
1090 MSR_IA32_VMX_CR0_FIXED0
,
1091 MSR_IA32_VMX_CR0_FIXED1
,
1092 MSR_IA32_VMX_CR4_FIXED0
,
1093 MSR_IA32_VMX_CR4_FIXED1
,
1094 MSR_IA32_VMX_VMCS_ENUM
,
1095 MSR_IA32_VMX_PROCBASED_CTLS2
,
1096 MSR_IA32_VMX_EPT_VPID_CAP
,
1097 MSR_IA32_VMX_VMFUNC
,
1101 MSR_IA32_ARCH_CAPABILITIES
,
1104 static unsigned int num_msr_based_features
;
1106 u64
kvm_get_arch_capabilities(void)
1110 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES
, &data
);
1113 * If we're doing cache flushes (either "always" or "cond")
1114 * we will do one whenever the guest does a vmlaunch/vmresume.
1115 * If an outer hypervisor is doing the cache flush for us
1116 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1117 * capability to the guest too, and if EPT is disabled we're not
1118 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1119 * require a nested hypervisor to do a flush of its own.
1121 if (l1tf_vmx_mitigation
!= VMENTER_L1D_FLUSH_NEVER
)
1122 data
|= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH
;
1126 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities
);
1128 static int kvm_get_msr_feature(struct kvm_msr_entry
*msr
)
1130 switch (msr
->index
) {
1131 case MSR_IA32_ARCH_CAPABILITIES
:
1132 msr
->data
= kvm_get_arch_capabilities();
1134 case MSR_IA32_UCODE_REV
:
1135 rdmsrl_safe(msr
->index
, &msr
->data
);
1138 if (kvm_x86_ops
->get_msr_feature(msr
))
1144 static int do_get_msr_feature(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1146 struct kvm_msr_entry msr
;
1150 r
= kvm_get_msr_feature(&msr
);
1159 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1161 if (efer
& efer_reserved_bits
)
1164 if (efer
& EFER_FFXSR
&& !guest_cpuid_has(vcpu
, X86_FEATURE_FXSR_OPT
))
1167 if (efer
& EFER_SVME
&& !guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
1172 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1174 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1176 u64 old_efer
= vcpu
->arch
.efer
;
1178 if (!kvm_valid_efer(vcpu
, efer
))
1182 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1186 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1188 kvm_x86_ops
->set_efer(vcpu
, efer
);
1190 /* Update reserved bits */
1191 if ((efer
^ old_efer
) & EFER_NX
)
1192 kvm_mmu_reset_context(vcpu
);
1197 void kvm_enable_efer_bits(u64 mask
)
1199 efer_reserved_bits
&= ~mask
;
1201 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1204 * Writes msr value into into the appropriate "register".
1205 * Returns 0 on success, non-0 otherwise.
1206 * Assumes vcpu_load() was already called.
1208 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1210 switch (msr
->index
) {
1213 case MSR_KERNEL_GS_BASE
:
1216 if (is_noncanonical_address(msr
->data
, vcpu
))
1219 case MSR_IA32_SYSENTER_EIP
:
1220 case MSR_IA32_SYSENTER_ESP
:
1222 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1223 * non-canonical address is written on Intel but not on
1224 * AMD (which ignores the top 32-bits, because it does
1225 * not implement 64-bit SYSENTER).
1227 * 64-bit code should hence be able to write a non-canonical
1228 * value on AMD. Making the address canonical ensures that
1229 * vmentry does not fail on Intel after writing a non-canonical
1230 * value, and that something deterministic happens if the guest
1231 * invokes 64-bit SYSENTER.
1233 msr
->data
= get_canonical(msr
->data
, vcpu_virt_addr_bits(vcpu
));
1235 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1237 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1240 * Adapt set_msr() to msr_io()'s calling convention
1242 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1244 struct msr_data msr
;
1248 msr
.host_initiated
= true;
1249 r
= kvm_get_msr(vcpu
, &msr
);
1257 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1259 struct msr_data msr
;
1263 msr
.host_initiated
= true;
1264 return kvm_set_msr(vcpu
, &msr
);
1267 #ifdef CONFIG_X86_64
1268 struct pvclock_gtod_data
{
1271 struct { /* extract of a clocksource struct */
1284 static struct pvclock_gtod_data pvclock_gtod_data
;
1286 static void update_pvclock_gtod(struct timekeeper
*tk
)
1288 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1291 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1293 write_seqcount_begin(&vdata
->seq
);
1295 /* copy pvclock gtod data */
1296 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1297 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1298 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1299 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1300 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1302 vdata
->boot_ns
= boot_ns
;
1303 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1305 vdata
->wall_time_sec
= tk
->xtime_sec
;
1307 write_seqcount_end(&vdata
->seq
);
1311 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1314 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1315 * vcpu_enter_guest. This function is only called from
1316 * the physical CPU that is running vcpu.
1318 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1321 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1325 struct pvclock_wall_clock wc
;
1326 struct timespec64 boot
;
1331 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1336 ++version
; /* first time write, random junk */
1340 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1344 * The guest calculates current wall clock time by adding
1345 * system time (updated by kvm_guest_time_update below) to the
1346 * wall clock specified here. guest system time equals host
1347 * system time for us, thus we must fill in host boot time here.
1349 getboottime64(&boot
);
1351 if (kvm
->arch
.kvmclock_offset
) {
1352 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1353 boot
= timespec64_sub(boot
, ts
);
1355 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1356 wc
.nsec
= boot
.tv_nsec
;
1357 wc
.version
= version
;
1359 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1362 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1365 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1367 do_shl32_div32(dividend
, divisor
);
1371 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1372 s8
*pshift
, u32
*pmultiplier
)
1380 scaled64
= scaled_hz
;
1381 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1386 tps32
= (uint32_t)tps64
;
1387 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1388 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1396 *pmultiplier
= div_frac(scaled64
, tps32
);
1398 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1399 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1402 #ifdef CONFIG_X86_64
1403 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1407 static unsigned long max_tsc_khz
;
1409 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1411 u64 v
= (u64
)khz
* (1000000 + ppm
);
1416 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1420 /* Guest TSC same frequency as host TSC? */
1422 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1426 /* TSC scaling supported? */
1427 if (!kvm_has_tsc_control
) {
1428 if (user_tsc_khz
> tsc_khz
) {
1429 vcpu
->arch
.tsc_catchup
= 1;
1430 vcpu
->arch
.tsc_always_catchup
= 1;
1433 WARN(1, "user requested TSC rate below hardware speed\n");
1438 /* TSC scaling required - calculate ratio */
1439 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1440 user_tsc_khz
, tsc_khz
);
1442 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1443 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1448 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1452 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1454 u32 thresh_lo
, thresh_hi
;
1455 int use_scaling
= 0;
1457 /* tsc_khz can be zero if TSC calibration fails */
1458 if (user_tsc_khz
== 0) {
1459 /* set tsc_scaling_ratio to a safe value */
1460 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1464 /* Compute a scale to convert nanoseconds in TSC cycles */
1465 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1466 &vcpu
->arch
.virtual_tsc_shift
,
1467 &vcpu
->arch
.virtual_tsc_mult
);
1468 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1471 * Compute the variation in TSC rate which is acceptable
1472 * within the range of tolerance and decide if the
1473 * rate being applied is within that bounds of the hardware
1474 * rate. If so, no scaling or compensation need be done.
1476 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1477 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1478 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1479 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1482 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1485 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1487 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1488 vcpu
->arch
.virtual_tsc_mult
,
1489 vcpu
->arch
.virtual_tsc_shift
);
1490 tsc
+= vcpu
->arch
.this_tsc_write
;
1494 static inline int gtod_is_based_on_tsc(int mode
)
1496 return mode
== VCLOCK_TSC
|| mode
== VCLOCK_HVCLOCK
;
1499 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1501 #ifdef CONFIG_X86_64
1503 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1504 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1506 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1507 atomic_read(&vcpu
->kvm
->online_vcpus
));
1510 * Once the masterclock is enabled, always perform request in
1511 * order to update it.
1513 * In order to enable masterclock, the host clocksource must be TSC
1514 * and the vcpus need to have matched TSCs. When that happens,
1515 * perform request to enable masterclock.
1517 if (ka
->use_master_clock
||
1518 (gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) && vcpus_matched
))
1519 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1521 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1522 atomic_read(&vcpu
->kvm
->online_vcpus
),
1523 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1527 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1529 u64 curr_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1530 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1534 * Multiply tsc by a fixed point number represented by ratio.
1536 * The most significant 64-N bits (mult) of ratio represent the
1537 * integral part of the fixed point number; the remaining N bits
1538 * (frac) represent the fractional part, ie. ratio represents a fixed
1539 * point number (mult + frac * 2^(-N)).
1541 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1543 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1545 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1548 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1551 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1553 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1554 _tsc
= __scale_tsc(ratio
, tsc
);
1558 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1560 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1564 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1566 return target_tsc
- tsc
;
1569 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1571 u64 tsc_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1573 return tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1575 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1577 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1579 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1580 vcpu
->arch
.tsc_offset
= offset
;
1583 static inline bool kvm_check_tsc_unstable(void)
1585 #ifdef CONFIG_X86_64
1587 * TSC is marked unstable when we're running on Hyper-V,
1588 * 'TSC page' clocksource is good.
1590 if (pvclock_gtod_data
.clock
.vclock_mode
== VCLOCK_HVCLOCK
)
1593 return check_tsc_unstable();
1596 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1598 struct kvm
*kvm
= vcpu
->kvm
;
1599 u64 offset
, ns
, elapsed
;
1600 unsigned long flags
;
1602 bool already_matched
;
1603 u64 data
= msr
->data
;
1604 bool synchronizing
= false;
1606 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1607 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1608 ns
= ktime_get_boot_ns();
1609 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1611 if (vcpu
->arch
.virtual_tsc_khz
) {
1612 if (data
== 0 && msr
->host_initiated
) {
1614 * detection of vcpu initialization -- need to sync
1615 * with other vCPUs. This particularly helps to keep
1616 * kvm_clock stable after CPU hotplug
1618 synchronizing
= true;
1620 u64 tsc_exp
= kvm
->arch
.last_tsc_write
+
1621 nsec_to_cycles(vcpu
, elapsed
);
1622 u64 tsc_hz
= vcpu
->arch
.virtual_tsc_khz
* 1000LL;
1624 * Special case: TSC write with a small delta (1 second)
1625 * of virtual cycle time against real time is
1626 * interpreted as an attempt to synchronize the CPU.
1628 synchronizing
= data
< tsc_exp
+ tsc_hz
&&
1629 data
+ tsc_hz
> tsc_exp
;
1634 * For a reliable TSC, we can match TSC offsets, and for an unstable
1635 * TSC, we add elapsed time in this computation. We could let the
1636 * compensation code attempt to catch up if we fall behind, but
1637 * it's better to try to match offsets from the beginning.
1639 if (synchronizing
&&
1640 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1641 if (!kvm_check_tsc_unstable()) {
1642 offset
= kvm
->arch
.cur_tsc_offset
;
1643 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1645 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1647 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1648 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1651 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1654 * We split periods of matched TSC writes into generations.
1655 * For each generation, we track the original measured
1656 * nanosecond time, offset, and write, so if TSCs are in
1657 * sync, we can match exact offset, and if not, we can match
1658 * exact software computation in compute_guest_tsc()
1660 * These values are tracked in kvm->arch.cur_xxx variables.
1662 kvm
->arch
.cur_tsc_generation
++;
1663 kvm
->arch
.cur_tsc_nsec
= ns
;
1664 kvm
->arch
.cur_tsc_write
= data
;
1665 kvm
->arch
.cur_tsc_offset
= offset
;
1667 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1668 kvm
->arch
.cur_tsc_generation
, data
);
1672 * We also track th most recent recorded KHZ, write and time to
1673 * allow the matching interval to be extended at each write.
1675 kvm
->arch
.last_tsc_nsec
= ns
;
1676 kvm
->arch
.last_tsc_write
= data
;
1677 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1679 vcpu
->arch
.last_guest_tsc
= data
;
1681 /* Keep track of which generation this VCPU has synchronized to */
1682 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1683 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1684 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1686 if (!msr
->host_initiated
&& guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
))
1687 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1689 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1690 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1692 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1694 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1695 } else if (!already_matched
) {
1696 kvm
->arch
.nr_vcpus_matched_tsc
++;
1699 kvm_track_tsc_matching(vcpu
);
1700 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1703 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1705 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1708 kvm_vcpu_write_tsc_offset(vcpu
, vcpu
->arch
.tsc_offset
+ adjustment
);
1711 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1713 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1714 WARN_ON(adjustment
< 0);
1715 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1716 adjust_tsc_offset_guest(vcpu
, adjustment
);
1719 #ifdef CONFIG_X86_64
1721 static u64
read_tsc(void)
1723 u64 ret
= (u64
)rdtsc_ordered();
1724 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1726 if (likely(ret
>= last
))
1730 * GCC likes to generate cmov here, but this branch is extremely
1731 * predictable (it's just a function of time and the likely is
1732 * very likely) and there's a data dependence, so force GCC
1733 * to generate a branch instead. I don't barrier() because
1734 * we don't actually need a barrier, and if this function
1735 * ever gets inlined it will generate worse code.
1741 static inline u64
vgettsc(u64
*tsc_timestamp
, int *mode
)
1744 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1747 switch (gtod
->clock
.vclock_mode
) {
1748 case VCLOCK_HVCLOCK
:
1749 tsc_pg_val
= hv_read_tsc_page_tsc(hv_get_tsc_page(),
1751 if (tsc_pg_val
!= U64_MAX
) {
1752 /* TSC page valid */
1753 *mode
= VCLOCK_HVCLOCK
;
1754 v
= (tsc_pg_val
- gtod
->clock
.cycle_last
) &
1757 /* TSC page invalid */
1758 *mode
= VCLOCK_NONE
;
1763 *tsc_timestamp
= read_tsc();
1764 v
= (*tsc_timestamp
- gtod
->clock
.cycle_last
) &
1768 *mode
= VCLOCK_NONE
;
1771 if (*mode
== VCLOCK_NONE
)
1772 *tsc_timestamp
= v
= 0;
1774 return v
* gtod
->clock
.mult
;
1777 static int do_monotonic_boot(s64
*t
, u64
*tsc_timestamp
)
1779 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1785 seq
= read_seqcount_begin(>od
->seq
);
1786 ns
= gtod
->nsec_base
;
1787 ns
+= vgettsc(tsc_timestamp
, &mode
);
1788 ns
>>= gtod
->clock
.shift
;
1789 ns
+= gtod
->boot_ns
;
1790 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1796 static int do_realtime(struct timespec64
*ts
, u64
*tsc_timestamp
)
1798 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1804 seq
= read_seqcount_begin(>od
->seq
);
1805 ts
->tv_sec
= gtod
->wall_time_sec
;
1806 ns
= gtod
->nsec_base
;
1807 ns
+= vgettsc(tsc_timestamp
, &mode
);
1808 ns
>>= gtod
->clock
.shift
;
1809 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1811 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
1817 /* returns true if host is using TSC based clocksource */
1818 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*tsc_timestamp
)
1820 /* checked again under seqlock below */
1821 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
1824 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns
,
1828 /* returns true if host is using TSC based clocksource */
1829 static bool kvm_get_walltime_and_clockread(struct timespec64
*ts
,
1832 /* checked again under seqlock below */
1833 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
1836 return gtod_is_based_on_tsc(do_realtime(ts
, tsc_timestamp
));
1842 * Assuming a stable TSC across physical CPUS, and a stable TSC
1843 * across virtual CPUs, the following condition is possible.
1844 * Each numbered line represents an event visible to both
1845 * CPUs at the next numbered event.
1847 * "timespecX" represents host monotonic time. "tscX" represents
1850 * VCPU0 on CPU0 | VCPU1 on CPU1
1852 * 1. read timespec0,tsc0
1853 * 2. | timespec1 = timespec0 + N
1855 * 3. transition to guest | transition to guest
1856 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1857 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1858 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1860 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1863 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1865 * - 0 < N - M => M < N
1867 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1868 * always the case (the difference between two distinct xtime instances
1869 * might be smaller then the difference between corresponding TSC reads,
1870 * when updating guest vcpus pvclock areas).
1872 * To avoid that problem, do not allow visibility of distinct
1873 * system_timestamp/tsc_timestamp values simultaneously: use a master
1874 * copy of host monotonic time values. Update that master copy
1877 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1881 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1883 #ifdef CONFIG_X86_64
1884 struct kvm_arch
*ka
= &kvm
->arch
;
1886 bool host_tsc_clocksource
, vcpus_matched
;
1888 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1889 atomic_read(&kvm
->online_vcpus
));
1892 * If the host uses TSC clock, then passthrough TSC as stable
1895 host_tsc_clocksource
= kvm_get_time_and_clockread(
1896 &ka
->master_kernel_ns
,
1897 &ka
->master_cycle_now
);
1899 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1900 && !ka
->backwards_tsc_observed
1901 && !ka
->boot_vcpu_runs_old_kvmclock
;
1903 if (ka
->use_master_clock
)
1904 atomic_set(&kvm_guest_has_master_clock
, 1);
1906 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1907 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1912 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1914 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1917 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1919 #ifdef CONFIG_X86_64
1921 struct kvm_vcpu
*vcpu
;
1922 struct kvm_arch
*ka
= &kvm
->arch
;
1924 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1925 kvm_make_mclock_inprogress_request(kvm
);
1926 /* no guest entries from this point */
1927 pvclock_update_vm_gtod_copy(kvm
);
1929 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1930 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1932 /* guest entries allowed */
1933 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1934 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
1936 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1940 u64
get_kvmclock_ns(struct kvm
*kvm
)
1942 struct kvm_arch
*ka
= &kvm
->arch
;
1943 struct pvclock_vcpu_time_info hv_clock
;
1946 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1947 if (!ka
->use_master_clock
) {
1948 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1949 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
1952 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
1953 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
1954 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1956 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1959 if (__this_cpu_read(cpu_tsc_khz
)) {
1960 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
1961 &hv_clock
.tsc_shift
,
1962 &hv_clock
.tsc_to_system_mul
);
1963 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
1965 ret
= ktime_get_boot_ns() + ka
->kvmclock_offset
;
1972 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
1974 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1975 struct pvclock_vcpu_time_info guest_hv_clock
;
1977 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1978 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1981 /* This VCPU is paused, but it's legal for a guest to read another
1982 * VCPU's kvmclock, so we really have to follow the specification where
1983 * it says that version is odd if data is being modified, and even after
1986 * Version field updates must be kept separate. This is because
1987 * kvm_write_guest_cached might use a "rep movs" instruction, and
1988 * writes within a string instruction are weakly ordered. So there
1989 * are three writes overall.
1991 * As a small optimization, only write the version field in the first
1992 * and third write. The vcpu->pv_time cache is still valid, because the
1993 * version field is the first in the struct.
1995 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1997 if (guest_hv_clock
.version
& 1)
1998 ++guest_hv_clock
.version
; /* first time write, random junk */
2000 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
2001 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2003 sizeof(vcpu
->hv_clock
.version
));
2007 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2008 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
2010 if (vcpu
->pvclock_set_guest_stopped_request
) {
2011 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
2012 vcpu
->pvclock_set_guest_stopped_request
= false;
2015 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
2017 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2019 sizeof(vcpu
->hv_clock
));
2023 vcpu
->hv_clock
.version
++;
2024 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2026 sizeof(vcpu
->hv_clock
.version
));
2029 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
2031 unsigned long flags
, tgt_tsc_khz
;
2032 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
2033 struct kvm_arch
*ka
= &v
->kvm
->arch
;
2035 u64 tsc_timestamp
, host_tsc
;
2037 bool use_master_clock
;
2043 * If the host uses TSC clock, then passthrough TSC as stable
2046 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2047 use_master_clock
= ka
->use_master_clock
;
2048 if (use_master_clock
) {
2049 host_tsc
= ka
->master_cycle_now
;
2050 kernel_ns
= ka
->master_kernel_ns
;
2052 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2054 /* Keep irq disabled to prevent changes to the clock */
2055 local_irq_save(flags
);
2056 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
2057 if (unlikely(tgt_tsc_khz
== 0)) {
2058 local_irq_restore(flags
);
2059 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2062 if (!use_master_clock
) {
2064 kernel_ns
= ktime_get_boot_ns();
2067 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
2070 * We may have to catch up the TSC to match elapsed wall clock
2071 * time for two reasons, even if kvmclock is used.
2072 * 1) CPU could have been running below the maximum TSC rate
2073 * 2) Broken TSC compensation resets the base at each VCPU
2074 * entry to avoid unknown leaps of TSC even when running
2075 * again on the same CPU. This may cause apparent elapsed
2076 * time to disappear, and the guest to stand still or run
2079 if (vcpu
->tsc_catchup
) {
2080 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
2081 if (tsc
> tsc_timestamp
) {
2082 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
2083 tsc_timestamp
= tsc
;
2087 local_irq_restore(flags
);
2089 /* With all the info we got, fill in the values */
2091 if (kvm_has_tsc_control
)
2092 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
2094 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
2095 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
2096 &vcpu
->hv_clock
.tsc_shift
,
2097 &vcpu
->hv_clock
.tsc_to_system_mul
);
2098 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
2101 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
2102 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
2103 vcpu
->last_guest_tsc
= tsc_timestamp
;
2105 /* If the host uses TSC clocksource, then it is stable */
2107 if (use_master_clock
)
2108 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
2110 vcpu
->hv_clock
.flags
= pvclock_flags
;
2112 if (vcpu
->pv_time_enabled
)
2113 kvm_setup_pvclock_page(v
);
2114 if (v
== kvm_get_vcpu(v
->kvm
, 0))
2115 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
2120 * kvmclock updates which are isolated to a given vcpu, such as
2121 * vcpu->cpu migration, should not allow system_timestamp from
2122 * the rest of the vcpus to remain static. Otherwise ntp frequency
2123 * correction applies to one vcpu's system_timestamp but not
2126 * So in those cases, request a kvmclock update for all vcpus.
2127 * We need to rate-limit these requests though, as they can
2128 * considerably slow guests that have a large number of vcpus.
2129 * The time for a remote vcpu to update its kvmclock is bound
2130 * by the delay we use to rate-limit the updates.
2133 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2135 static void kvmclock_update_fn(struct work_struct
*work
)
2138 struct delayed_work
*dwork
= to_delayed_work(work
);
2139 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2140 kvmclock_update_work
);
2141 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2142 struct kvm_vcpu
*vcpu
;
2144 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2145 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2146 kvm_vcpu_kick(vcpu
);
2150 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
2152 struct kvm
*kvm
= v
->kvm
;
2154 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2155 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
2156 KVMCLOCK_UPDATE_DELAY
);
2159 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2161 static void kvmclock_sync_fn(struct work_struct
*work
)
2163 struct delayed_work
*dwork
= to_delayed_work(work
);
2164 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2165 kvmclock_sync_work
);
2166 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2168 if (!kvmclock_periodic_sync
)
2171 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
2172 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
2173 KVMCLOCK_SYNC_PERIOD
);
2176 static int set_msr_mce(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2178 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2179 unsigned bank_num
= mcg_cap
& 0xff;
2180 u32 msr
= msr_info
->index
;
2181 u64 data
= msr_info
->data
;
2184 case MSR_IA32_MCG_STATUS
:
2185 vcpu
->arch
.mcg_status
= data
;
2187 case MSR_IA32_MCG_CTL
:
2188 if (!(mcg_cap
& MCG_CTL_P
) &&
2189 (data
|| !msr_info
->host_initiated
))
2191 if (data
!= 0 && data
!= ~(u64
)0)
2193 vcpu
->arch
.mcg_ctl
= data
;
2196 if (msr
>= MSR_IA32_MC0_CTL
&&
2197 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2198 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2199 /* only 0 or all 1s can be written to IA32_MCi_CTL
2200 * some Linux kernels though clear bit 10 in bank 4 to
2201 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2202 * this to avoid an uncatched #GP in the guest
2204 if ((offset
& 0x3) == 0 &&
2205 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2207 if (!msr_info
->host_initiated
&&
2208 (offset
& 0x3) == 1 && data
!= 0)
2210 vcpu
->arch
.mce_banks
[offset
] = data
;
2218 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2220 struct kvm
*kvm
= vcpu
->kvm
;
2221 int lm
= is_long_mode(vcpu
);
2222 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2223 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2224 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2225 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2226 u32 page_num
= data
& ~PAGE_MASK
;
2227 u64 page_addr
= data
& PAGE_MASK
;
2232 if (page_num
>= blob_size
)
2235 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2240 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2249 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2251 gpa_t gpa
= data
& ~0x3f;
2253 /* Bits 3:5 are reserved, Should be zero */
2257 vcpu
->arch
.apf
.msr_val
= data
;
2259 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2260 kvm_clear_async_pf_completion_queue(vcpu
);
2261 kvm_async_pf_hash_reset(vcpu
);
2265 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2269 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2270 vcpu
->arch
.apf
.delivery_as_pf_vmexit
= data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
;
2271 kvm_async_pf_wakeup_all(vcpu
);
2275 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2277 vcpu
->arch
.pv_time_enabled
= false;
2280 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
2282 ++vcpu
->stat
.tlb_flush
;
2283 kvm_x86_ops
->tlb_flush(vcpu
, invalidate_gpa
);
2286 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2288 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2291 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2292 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2296 * Doing a TLB flush here, on the guest's behalf, can avoid
2299 if (xchg(&vcpu
->arch
.st
.steal
.preempted
, 0) & KVM_VCPU_FLUSH_TLB
)
2300 kvm_vcpu_flush_tlb(vcpu
, false);
2302 if (vcpu
->arch
.st
.steal
.version
& 1)
2303 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2305 vcpu
->arch
.st
.steal
.version
+= 1;
2307 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2308 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2312 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2313 vcpu
->arch
.st
.last_steal
;
2314 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2316 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2317 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2321 vcpu
->arch
.st
.steal
.version
+= 1;
2323 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2324 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2327 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2330 u32 msr
= msr_info
->index
;
2331 u64 data
= msr_info
->data
;
2334 case MSR_AMD64_NB_CFG
:
2335 case MSR_IA32_UCODE_WRITE
:
2336 case MSR_VM_HSAVE_PA
:
2337 case MSR_AMD64_PATCH_LOADER
:
2338 case MSR_AMD64_BU_CFG2
:
2339 case MSR_AMD64_DC_CFG
:
2342 case MSR_IA32_UCODE_REV
:
2343 if (msr_info
->host_initiated
)
2344 vcpu
->arch
.microcode_version
= data
;
2347 return set_efer(vcpu
, data
);
2349 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2350 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2351 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2352 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2354 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2359 case MSR_FAM10H_MMIO_CONF_BASE
:
2361 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2366 case MSR_IA32_DEBUGCTLMSR
:
2368 /* We support the non-activated case already */
2370 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2371 /* Values other than LBR and BTF are vendor-specific,
2372 thus reserved and should throw a #GP */
2375 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2378 case 0x200 ... 0x2ff:
2379 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2380 case MSR_IA32_APICBASE
:
2381 return kvm_set_apic_base(vcpu
, msr_info
);
2382 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2383 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2384 case MSR_IA32_TSCDEADLINE
:
2385 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2387 case MSR_IA32_TSC_ADJUST
:
2388 if (guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
)) {
2389 if (!msr_info
->host_initiated
) {
2390 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2391 adjust_tsc_offset_guest(vcpu
, adj
);
2393 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2396 case MSR_IA32_MISC_ENABLE
:
2397 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2399 case MSR_IA32_SMBASE
:
2400 if (!msr_info
->host_initiated
)
2402 vcpu
->arch
.smbase
= data
;
2405 kvm_write_tsc(vcpu
, msr_info
);
2408 if (!msr_info
->host_initiated
)
2410 vcpu
->arch
.smi_count
= data
;
2412 case MSR_KVM_WALL_CLOCK_NEW
:
2413 case MSR_KVM_WALL_CLOCK
:
2414 vcpu
->kvm
->arch
.wall_clock
= data
;
2415 kvm_write_wall_clock(vcpu
->kvm
, data
);
2417 case MSR_KVM_SYSTEM_TIME_NEW
:
2418 case MSR_KVM_SYSTEM_TIME
: {
2419 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2421 kvmclock_reset(vcpu
);
2423 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2424 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2426 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2427 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2429 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2432 vcpu
->arch
.time
= data
;
2433 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2435 /* we verify if the enable bit is set... */
2439 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2440 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2441 sizeof(struct pvclock_vcpu_time_info
)))
2442 vcpu
->arch
.pv_time_enabled
= false;
2444 vcpu
->arch
.pv_time_enabled
= true;
2448 case MSR_KVM_ASYNC_PF_EN
:
2449 if (kvm_pv_enable_async_pf(vcpu
, data
))
2452 case MSR_KVM_STEAL_TIME
:
2454 if (unlikely(!sched_info_on()))
2457 if (data
& KVM_STEAL_RESERVED_MASK
)
2460 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2461 data
& KVM_STEAL_VALID_BITS
,
2462 sizeof(struct kvm_steal_time
)))
2465 vcpu
->arch
.st
.msr_val
= data
;
2467 if (!(data
& KVM_MSR_ENABLED
))
2470 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2473 case MSR_KVM_PV_EOI_EN
:
2474 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2478 case MSR_IA32_MCG_CTL
:
2479 case MSR_IA32_MCG_STATUS
:
2480 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2481 return set_msr_mce(vcpu
, msr_info
);
2483 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2484 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2485 pr
= true; /* fall through */
2486 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2487 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2488 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2489 return kvm_pmu_set_msr(vcpu
, msr_info
);
2491 if (pr
|| data
!= 0)
2492 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2493 "0x%x data 0x%llx\n", msr
, data
);
2495 case MSR_K7_CLK_CTL
:
2497 * Ignore all writes to this no longer documented MSR.
2498 * Writes are only relevant for old K7 processors,
2499 * all pre-dating SVM, but a recommended workaround from
2500 * AMD for these chips. It is possible to specify the
2501 * affected processor models on the command line, hence
2502 * the need to ignore the workaround.
2505 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2506 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2507 case HV_X64_MSR_CRASH_CTL
:
2508 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2509 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2510 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
2511 case HV_X64_MSR_TSC_EMULATION_STATUS
:
2512 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2513 msr_info
->host_initiated
);
2514 case MSR_IA32_BBL_CR_CTL3
:
2515 /* Drop writes to this legacy MSR -- see rdmsr
2516 * counterpart for further detail.
2518 if (report_ignored_msrs
)
2519 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2522 case MSR_AMD64_OSVW_ID_LENGTH
:
2523 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2525 vcpu
->arch
.osvw
.length
= data
;
2527 case MSR_AMD64_OSVW_STATUS
:
2528 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2530 vcpu
->arch
.osvw
.status
= data
;
2532 case MSR_PLATFORM_INFO
:
2533 if (!msr_info
->host_initiated
||
2534 data
& ~MSR_PLATFORM_INFO_CPUID_FAULT
||
2535 (!(data
& MSR_PLATFORM_INFO_CPUID_FAULT
) &&
2536 cpuid_fault_enabled(vcpu
)))
2538 vcpu
->arch
.msr_platform_info
= data
;
2540 case MSR_MISC_FEATURES_ENABLES
:
2541 if (data
& ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
||
2542 (data
& MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
&&
2543 !supports_cpuid_fault(vcpu
)))
2545 vcpu
->arch
.msr_misc_features_enables
= data
;
2548 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2549 return xen_hvm_config(vcpu
, data
);
2550 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2551 return kvm_pmu_set_msr(vcpu
, msr_info
);
2553 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2557 if (report_ignored_msrs
)
2559 "ignored wrmsr: 0x%x data 0x%llx\n",
2566 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2570 * Reads an msr value (of 'msr_index') into 'pdata'.
2571 * Returns 0 on success, non-0 otherwise.
2572 * Assumes vcpu_load() was already called.
2574 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2576 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2578 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2580 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
2583 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2584 unsigned bank_num
= mcg_cap
& 0xff;
2587 case MSR_IA32_P5_MC_ADDR
:
2588 case MSR_IA32_P5_MC_TYPE
:
2591 case MSR_IA32_MCG_CAP
:
2592 data
= vcpu
->arch
.mcg_cap
;
2594 case MSR_IA32_MCG_CTL
:
2595 if (!(mcg_cap
& MCG_CTL_P
) && !host
)
2597 data
= vcpu
->arch
.mcg_ctl
;
2599 case MSR_IA32_MCG_STATUS
:
2600 data
= vcpu
->arch
.mcg_status
;
2603 if (msr
>= MSR_IA32_MC0_CTL
&&
2604 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2605 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2606 data
= vcpu
->arch
.mce_banks
[offset
];
2615 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2617 switch (msr_info
->index
) {
2618 case MSR_IA32_PLATFORM_ID
:
2619 case MSR_IA32_EBL_CR_POWERON
:
2620 case MSR_IA32_DEBUGCTLMSR
:
2621 case MSR_IA32_LASTBRANCHFROMIP
:
2622 case MSR_IA32_LASTBRANCHTOIP
:
2623 case MSR_IA32_LASTINTFROMIP
:
2624 case MSR_IA32_LASTINTTOIP
:
2626 case MSR_K8_TSEG_ADDR
:
2627 case MSR_K8_TSEG_MASK
:
2629 case MSR_VM_HSAVE_PA
:
2630 case MSR_K8_INT_PENDING_MSG
:
2631 case MSR_AMD64_NB_CFG
:
2632 case MSR_FAM10H_MMIO_CONF_BASE
:
2633 case MSR_AMD64_BU_CFG2
:
2634 case MSR_IA32_PERF_CTL
:
2635 case MSR_AMD64_DC_CFG
:
2638 case MSR_F15H_PERF_CTL0
... MSR_F15H_PERF_CTR5
:
2639 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2640 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2641 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2642 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2643 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2644 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2647 case MSR_IA32_UCODE_REV
:
2648 msr_info
->data
= vcpu
->arch
.microcode_version
;
2651 msr_info
->data
= kvm_scale_tsc(vcpu
, rdtsc()) + vcpu
->arch
.tsc_offset
;
2654 case 0x200 ... 0x2ff:
2655 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2656 case 0xcd: /* fsb frequency */
2660 * MSR_EBC_FREQUENCY_ID
2661 * Conservative value valid for even the basic CPU models.
2662 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2663 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2664 * and 266MHz for model 3, or 4. Set Core Clock
2665 * Frequency to System Bus Frequency Ratio to 1 (bits
2666 * 31:24) even though these are only valid for CPU
2667 * models > 2, however guests may end up dividing or
2668 * multiplying by zero otherwise.
2670 case MSR_EBC_FREQUENCY_ID
:
2671 msr_info
->data
= 1 << 24;
2673 case MSR_IA32_APICBASE
:
2674 msr_info
->data
= kvm_get_apic_base(vcpu
);
2676 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2677 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2679 case MSR_IA32_TSCDEADLINE
:
2680 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2682 case MSR_IA32_TSC_ADJUST
:
2683 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2685 case MSR_IA32_MISC_ENABLE
:
2686 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2688 case MSR_IA32_SMBASE
:
2689 if (!msr_info
->host_initiated
)
2691 msr_info
->data
= vcpu
->arch
.smbase
;
2694 msr_info
->data
= vcpu
->arch
.smi_count
;
2696 case MSR_IA32_PERF_STATUS
:
2697 /* TSC increment by tick */
2698 msr_info
->data
= 1000ULL;
2699 /* CPU multiplier */
2700 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2703 msr_info
->data
= vcpu
->arch
.efer
;
2705 case MSR_KVM_WALL_CLOCK
:
2706 case MSR_KVM_WALL_CLOCK_NEW
:
2707 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2709 case MSR_KVM_SYSTEM_TIME
:
2710 case MSR_KVM_SYSTEM_TIME_NEW
:
2711 msr_info
->data
= vcpu
->arch
.time
;
2713 case MSR_KVM_ASYNC_PF_EN
:
2714 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2716 case MSR_KVM_STEAL_TIME
:
2717 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2719 case MSR_KVM_PV_EOI_EN
:
2720 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2722 case MSR_IA32_P5_MC_ADDR
:
2723 case MSR_IA32_P5_MC_TYPE
:
2724 case MSR_IA32_MCG_CAP
:
2725 case MSR_IA32_MCG_CTL
:
2726 case MSR_IA32_MCG_STATUS
:
2727 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2728 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
,
2729 msr_info
->host_initiated
);
2730 case MSR_K7_CLK_CTL
:
2732 * Provide expected ramp-up count for K7. All other
2733 * are set to zero, indicating minimum divisors for
2736 * This prevents guest kernels on AMD host with CPU
2737 * type 6, model 8 and higher from exploding due to
2738 * the rdmsr failing.
2740 msr_info
->data
= 0x20000000;
2742 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2743 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2744 case HV_X64_MSR_CRASH_CTL
:
2745 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2746 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2747 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
2748 case HV_X64_MSR_TSC_EMULATION_STATUS
:
2749 return kvm_hv_get_msr_common(vcpu
,
2750 msr_info
->index
, &msr_info
->data
,
2751 msr_info
->host_initiated
);
2753 case MSR_IA32_BBL_CR_CTL3
:
2754 /* This legacy MSR exists but isn't fully documented in current
2755 * silicon. It is however accessed by winxp in very narrow
2756 * scenarios where it sets bit #19, itself documented as
2757 * a "reserved" bit. Best effort attempt to source coherent
2758 * read data here should the balance of the register be
2759 * interpreted by the guest:
2761 * L2 cache control register 3: 64GB range, 256KB size,
2762 * enabled, latency 0x1, configured
2764 msr_info
->data
= 0xbe702111;
2766 case MSR_AMD64_OSVW_ID_LENGTH
:
2767 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2769 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2771 case MSR_AMD64_OSVW_STATUS
:
2772 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2774 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2776 case MSR_PLATFORM_INFO
:
2777 msr_info
->data
= vcpu
->arch
.msr_platform_info
;
2779 case MSR_MISC_FEATURES_ENABLES
:
2780 msr_info
->data
= vcpu
->arch
.msr_misc_features_enables
;
2783 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2784 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2786 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
2790 if (report_ignored_msrs
)
2791 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n",
2799 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2802 * Read or write a bunch of msrs. All parameters are kernel addresses.
2804 * @return number of msrs set successfully.
2806 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2807 struct kvm_msr_entry
*entries
,
2808 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2809 unsigned index
, u64
*data
))
2813 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2814 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2821 * Read or write a bunch of msrs. Parameters are user addresses.
2823 * @return number of msrs set successfully.
2825 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2826 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2827 unsigned index
, u64
*data
),
2830 struct kvm_msrs msrs
;
2831 struct kvm_msr_entry
*entries
;
2836 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2840 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2843 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2844 entries
= memdup_user(user_msrs
->entries
, size
);
2845 if (IS_ERR(entries
)) {
2846 r
= PTR_ERR(entries
);
2850 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2855 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2866 static inline bool kvm_can_mwait_in_guest(void)
2868 return boot_cpu_has(X86_FEATURE_MWAIT
) &&
2869 !boot_cpu_has_bug(X86_BUG_MONITOR
) &&
2870 boot_cpu_has(X86_FEATURE_ARAT
);
2873 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2878 case KVM_CAP_IRQCHIP
:
2880 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2881 case KVM_CAP_SET_TSS_ADDR
:
2882 case KVM_CAP_EXT_CPUID
:
2883 case KVM_CAP_EXT_EMUL_CPUID
:
2884 case KVM_CAP_CLOCKSOURCE
:
2886 case KVM_CAP_NOP_IO_DELAY
:
2887 case KVM_CAP_MP_STATE
:
2888 case KVM_CAP_SYNC_MMU
:
2889 case KVM_CAP_USER_NMI
:
2890 case KVM_CAP_REINJECT_CONTROL
:
2891 case KVM_CAP_IRQ_INJECT_STATUS
:
2892 case KVM_CAP_IOEVENTFD
:
2893 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2895 case KVM_CAP_PIT_STATE2
:
2896 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2897 case KVM_CAP_XEN_HVM
:
2898 case KVM_CAP_VCPU_EVENTS
:
2899 case KVM_CAP_HYPERV
:
2900 case KVM_CAP_HYPERV_VAPIC
:
2901 case KVM_CAP_HYPERV_SPIN
:
2902 case KVM_CAP_HYPERV_SYNIC
:
2903 case KVM_CAP_HYPERV_SYNIC2
:
2904 case KVM_CAP_HYPERV_VP_INDEX
:
2905 case KVM_CAP_HYPERV_EVENTFD
:
2906 case KVM_CAP_HYPERV_TLBFLUSH
:
2907 case KVM_CAP_PCI_SEGMENT
:
2908 case KVM_CAP_DEBUGREGS
:
2909 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2911 case KVM_CAP_ASYNC_PF
:
2912 case KVM_CAP_GET_TSC_KHZ
:
2913 case KVM_CAP_KVMCLOCK_CTRL
:
2914 case KVM_CAP_READONLY_MEM
:
2915 case KVM_CAP_HYPERV_TIME
:
2916 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2917 case KVM_CAP_TSC_DEADLINE_TIMER
:
2918 case KVM_CAP_ENABLE_CAP_VM
:
2919 case KVM_CAP_DISABLE_QUIRKS
:
2920 case KVM_CAP_SET_BOOT_CPU_ID
:
2921 case KVM_CAP_SPLIT_IRQCHIP
:
2922 case KVM_CAP_IMMEDIATE_EXIT
:
2923 case KVM_CAP_GET_MSR_FEATURES
:
2926 case KVM_CAP_SYNC_REGS
:
2927 r
= KVM_SYNC_X86_VALID_FIELDS
;
2929 case KVM_CAP_ADJUST_CLOCK
:
2930 r
= KVM_CLOCK_TSC_STABLE
;
2932 case KVM_CAP_X86_DISABLE_EXITS
:
2933 r
|= KVM_X86_DISABLE_EXITS_HLT
| KVM_X86_DISABLE_EXITS_PAUSE
;
2934 if(kvm_can_mwait_in_guest())
2935 r
|= KVM_X86_DISABLE_EXITS_MWAIT
;
2937 case KVM_CAP_X86_SMM
:
2938 /* SMBASE is usually relocated above 1M on modern chipsets,
2939 * and SMM handlers might indeed rely on 4G segment limits,
2940 * so do not report SMM to be available if real mode is
2941 * emulated via vm86 mode. Still, do not go to great lengths
2942 * to avoid userspace's usage of the feature, because it is a
2943 * fringe case that is not enabled except via specific settings
2944 * of the module parameters.
2946 r
= kvm_x86_ops
->has_emulated_msr(MSR_IA32_SMBASE
);
2949 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2951 case KVM_CAP_NR_VCPUS
:
2952 r
= KVM_SOFT_MAX_VCPUS
;
2954 case KVM_CAP_MAX_VCPUS
:
2957 case KVM_CAP_NR_MEMSLOTS
:
2958 r
= KVM_USER_MEM_SLOTS
;
2960 case KVM_CAP_PV_MMU
: /* obsolete */
2964 r
= KVM_MAX_MCE_BANKS
;
2967 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2969 case KVM_CAP_TSC_CONTROL
:
2970 r
= kvm_has_tsc_control
;
2972 case KVM_CAP_X2APIC_API
:
2973 r
= KVM_X2APIC_API_VALID_FLAGS
;
2982 long kvm_arch_dev_ioctl(struct file
*filp
,
2983 unsigned int ioctl
, unsigned long arg
)
2985 void __user
*argp
= (void __user
*)arg
;
2989 case KVM_GET_MSR_INDEX_LIST
: {
2990 struct kvm_msr_list __user
*user_msr_list
= argp
;
2991 struct kvm_msr_list msr_list
;
2995 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2998 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2999 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
3002 if (n
< msr_list
.nmsrs
)
3005 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
3006 num_msrs_to_save
* sizeof(u32
)))
3008 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
3010 num_emulated_msrs
* sizeof(u32
)))
3015 case KVM_GET_SUPPORTED_CPUID
:
3016 case KVM_GET_EMULATED_CPUID
: {
3017 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3018 struct kvm_cpuid2 cpuid
;
3021 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3024 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
3030 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3035 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
3037 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
3038 sizeof(kvm_mce_cap_supported
)))
3042 case KVM_GET_MSR_FEATURE_INDEX_LIST
: {
3043 struct kvm_msr_list __user
*user_msr_list
= argp
;
3044 struct kvm_msr_list msr_list
;
3048 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
3051 msr_list
.nmsrs
= num_msr_based_features
;
3052 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
3055 if (n
< msr_list
.nmsrs
)
3058 if (copy_to_user(user_msr_list
->indices
, &msr_based_features
,
3059 num_msr_based_features
* sizeof(u32
)))
3065 r
= msr_io(NULL
, argp
, do_get_msr_feature
, 1);
3075 static void wbinvd_ipi(void *garbage
)
3080 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
3082 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
3085 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
3087 /* Address WBINVD may be executed by guest */
3088 if (need_emulate_wbinvd(vcpu
)) {
3089 if (kvm_x86_ops
->has_wbinvd_exit())
3090 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
3091 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
3092 smp_call_function_single(vcpu
->cpu
,
3093 wbinvd_ipi
, NULL
, 1);
3096 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
3098 /* Apply any externally detected TSC adjustments (due to suspend) */
3099 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
3100 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
3101 vcpu
->arch
.tsc_offset_adjustment
= 0;
3102 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3105 if (unlikely(vcpu
->cpu
!= cpu
) || kvm_check_tsc_unstable()) {
3106 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
3107 rdtsc() - vcpu
->arch
.last_host_tsc
;
3109 mark_tsc_unstable("KVM discovered backwards TSC");
3111 if (kvm_check_tsc_unstable()) {
3112 u64 offset
= kvm_compute_tsc_offset(vcpu
,
3113 vcpu
->arch
.last_guest_tsc
);
3114 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
3115 vcpu
->arch
.tsc_catchup
= 1;
3118 if (kvm_lapic_hv_timer_in_use(vcpu
))
3119 kvm_lapic_restart_hv_timer(vcpu
);
3122 * On a host with synchronized TSC, there is no need to update
3123 * kvmclock on vcpu->cpu migration
3125 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
3126 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
3127 if (vcpu
->cpu
!= cpu
)
3128 kvm_make_request(KVM_REQ_MIGRATE_TIMER
, vcpu
);
3132 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
3135 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
3137 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
3140 vcpu
->arch
.st
.steal
.preempted
= KVM_VCPU_PREEMPTED
;
3142 kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
3143 &vcpu
->arch
.st
.steal
.preempted
,
3144 offsetof(struct kvm_steal_time
, preempted
),
3145 sizeof(vcpu
->arch
.st
.steal
.preempted
));
3148 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
3152 if (vcpu
->preempted
)
3153 vcpu
->arch
.preempted_in_kernel
= !kvm_x86_ops
->get_cpl(vcpu
);
3156 * Disable page faults because we're in atomic context here.
3157 * kvm_write_guest_offset_cached() would call might_fault()
3158 * that relies on pagefault_disable() to tell if there's a
3159 * bug. NOTE: the write to guest memory may not go through if
3160 * during postcopy live migration or if there's heavy guest
3163 pagefault_disable();
3165 * kvm_memslots() will be called by
3166 * kvm_write_guest_offset_cached() so take the srcu lock.
3168 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3169 kvm_steal_time_set_preempted(vcpu
);
3170 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3172 kvm_x86_ops
->vcpu_put(vcpu
);
3173 vcpu
->arch
.last_host_tsc
= rdtsc();
3175 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3176 * on every vmexit, but if not, we might have a stale dr6 from the
3177 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3182 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
3183 struct kvm_lapic_state
*s
)
3185 if (vcpu
->arch
.apicv_active
)
3186 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
3188 return kvm_apic_get_state(vcpu
, s
);
3191 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
3192 struct kvm_lapic_state
*s
)
3196 r
= kvm_apic_set_state(vcpu
, s
);
3199 update_cr8_intercept(vcpu
);
3204 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
3206 return (!lapic_in_kernel(vcpu
) ||
3207 kvm_apic_accept_pic_intr(vcpu
));
3211 * if userspace requested an interrupt window, check that the
3212 * interrupt window is open.
3214 * No need to exit to userspace if we already have an interrupt queued.
3216 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
3218 return kvm_arch_interrupt_allowed(vcpu
) &&
3219 !kvm_cpu_has_interrupt(vcpu
) &&
3220 !kvm_event_needs_reinjection(vcpu
) &&
3221 kvm_cpu_accept_dm_intr(vcpu
);
3224 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
3225 struct kvm_interrupt
*irq
)
3227 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
3230 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3231 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
3232 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3237 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3238 * fail for in-kernel 8259.
3240 if (pic_in_kernel(vcpu
->kvm
))
3243 if (vcpu
->arch
.pending_external_vector
!= -1)
3246 vcpu
->arch
.pending_external_vector
= irq
->irq
;
3247 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3251 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
3253 kvm_inject_nmi(vcpu
);
3258 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
3260 kvm_make_request(KVM_REQ_SMI
, vcpu
);
3265 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3266 struct kvm_tpr_access_ctl
*tac
)
3270 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3274 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3278 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3281 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3283 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
3286 vcpu
->arch
.mcg_cap
= mcg_cap
;
3287 /* Init IA32_MCG_CTL to all 1s */
3288 if (mcg_cap
& MCG_CTL_P
)
3289 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3290 /* Init IA32_MCi_CTL to all 1s */
3291 for (bank
= 0; bank
< bank_num
; bank
++)
3292 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3294 if (kvm_x86_ops
->setup_mce
)
3295 kvm_x86_ops
->setup_mce(vcpu
);
3300 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3301 struct kvm_x86_mce
*mce
)
3303 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3304 unsigned bank_num
= mcg_cap
& 0xff;
3305 u64
*banks
= vcpu
->arch
.mce_banks
;
3307 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3310 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3311 * reporting is disabled
3313 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3314 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3316 banks
+= 4 * mce
->bank
;
3318 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3319 * reporting is disabled for the bank
3321 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3323 if (mce
->status
& MCI_STATUS_UC
) {
3324 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3325 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3326 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3329 if (banks
[1] & MCI_STATUS_VAL
)
3330 mce
->status
|= MCI_STATUS_OVER
;
3331 banks
[2] = mce
->addr
;
3332 banks
[3] = mce
->misc
;
3333 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3334 banks
[1] = mce
->status
;
3335 kvm_queue_exception(vcpu
, MC_VECTOR
);
3336 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3337 || !(banks
[1] & MCI_STATUS_UC
)) {
3338 if (banks
[1] & MCI_STATUS_VAL
)
3339 mce
->status
|= MCI_STATUS_OVER
;
3340 banks
[2] = mce
->addr
;
3341 banks
[3] = mce
->misc
;
3342 banks
[1] = mce
->status
;
3344 banks
[1] |= MCI_STATUS_OVER
;
3348 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3349 struct kvm_vcpu_events
*events
)
3353 * FIXME: pass injected and pending separately. This is only
3354 * needed for nested virtualization, whose state cannot be
3355 * migrated yet. For now we can combine them.
3357 events
->exception
.injected
=
3358 (vcpu
->arch
.exception
.pending
||
3359 vcpu
->arch
.exception
.injected
) &&
3360 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3361 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3362 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3363 events
->exception
.pad
= 0;
3364 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3366 events
->interrupt
.injected
=
3367 vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
;
3368 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3369 events
->interrupt
.soft
= 0;
3370 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3372 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3373 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3374 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3375 events
->nmi
.pad
= 0;
3377 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3379 events
->smi
.smm
= is_smm(vcpu
);
3380 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3381 events
->smi
.smm_inside_nmi
=
3382 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3383 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3385 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3386 | KVM_VCPUEVENT_VALID_SHADOW
3387 | KVM_VCPUEVENT_VALID_SMM
);
3388 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3391 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
);
3393 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3394 struct kvm_vcpu_events
*events
)
3396 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3397 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3398 | KVM_VCPUEVENT_VALID_SHADOW
3399 | KVM_VCPUEVENT_VALID_SMM
))
3402 if (events
->exception
.injected
&&
3403 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
||
3404 is_guest_mode(vcpu
)))
3407 /* INITs are latched while in SMM */
3408 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3409 (events
->smi
.smm
|| events
->smi
.pending
) &&
3410 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3414 vcpu
->arch
.exception
.injected
= false;
3415 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3416 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3417 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3418 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3420 vcpu
->arch
.interrupt
.injected
= events
->interrupt
.injected
;
3421 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3422 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3423 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3424 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3425 events
->interrupt
.shadow
);
3427 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3428 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3429 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3430 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3432 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3433 lapic_in_kernel(vcpu
))
3434 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3436 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3437 u32 hflags
= vcpu
->arch
.hflags
;
3438 if (events
->smi
.smm
)
3439 hflags
|= HF_SMM_MASK
;
3441 hflags
&= ~HF_SMM_MASK
;
3442 kvm_set_hflags(vcpu
, hflags
);
3444 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3446 if (events
->smi
.smm
) {
3447 if (events
->smi
.smm_inside_nmi
)
3448 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3450 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3451 if (lapic_in_kernel(vcpu
)) {
3452 if (events
->smi
.latched_init
)
3453 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3455 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3460 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3465 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3466 struct kvm_debugregs
*dbgregs
)
3470 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3471 kvm_get_dr(vcpu
, 6, &val
);
3473 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3475 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3478 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3479 struct kvm_debugregs
*dbgregs
)
3484 if (dbgregs
->dr6
& ~0xffffffffull
)
3486 if (dbgregs
->dr7
& ~0xffffffffull
)
3489 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3490 kvm_update_dr0123(vcpu
);
3491 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3492 kvm_update_dr6(vcpu
);
3493 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3494 kvm_update_dr7(vcpu
);
3499 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3501 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3503 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3504 u64 xstate_bv
= xsave
->header
.xfeatures
;
3508 * Copy legacy XSAVE area, to avoid complications with CPUID
3509 * leaves 0 and 1 in the loop below.
3511 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3514 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3515 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3518 * Copy each region from the possibly compacted offset to the
3519 * non-compacted offset.
3521 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3523 u64 feature
= valid
& -valid
;
3524 int index
= fls64(feature
) - 1;
3525 void *src
= get_xsave_addr(xsave
, feature
);
3528 u32 size
, offset
, ecx
, edx
;
3529 cpuid_count(XSTATE_CPUID
, index
,
3530 &size
, &offset
, &ecx
, &edx
);
3531 if (feature
== XFEATURE_MASK_PKRU
)
3532 memcpy(dest
+ offset
, &vcpu
->arch
.pkru
,
3533 sizeof(vcpu
->arch
.pkru
));
3535 memcpy(dest
+ offset
, src
, size
);
3543 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3545 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3546 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3550 * Copy legacy XSAVE area, to avoid complications with CPUID
3551 * leaves 0 and 1 in the loop below.
3553 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3555 /* Set XSTATE_BV and possibly XCOMP_BV. */
3556 xsave
->header
.xfeatures
= xstate_bv
;
3557 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3558 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3561 * Copy each region from the non-compacted offset to the
3562 * possibly compacted offset.
3564 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3566 u64 feature
= valid
& -valid
;
3567 int index
= fls64(feature
) - 1;
3568 void *dest
= get_xsave_addr(xsave
, feature
);
3571 u32 size
, offset
, ecx
, edx
;
3572 cpuid_count(XSTATE_CPUID
, index
,
3573 &size
, &offset
, &ecx
, &edx
);
3574 if (feature
== XFEATURE_MASK_PKRU
)
3575 memcpy(&vcpu
->arch
.pkru
, src
+ offset
,
3576 sizeof(vcpu
->arch
.pkru
));
3578 memcpy(dest
, src
+ offset
, size
);
3585 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3586 struct kvm_xsave
*guest_xsave
)
3588 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3589 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3590 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3592 memcpy(guest_xsave
->region
,
3593 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3594 sizeof(struct fxregs_state
));
3595 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3596 XFEATURE_MASK_FPSSE
;
3600 #define XSAVE_MXCSR_OFFSET 24
3602 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3603 struct kvm_xsave
*guest_xsave
)
3606 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3607 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
3609 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3611 * Here we allow setting states that are not present in
3612 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3613 * with old userspace.
3615 if (xstate_bv
& ~kvm_supported_xcr0() ||
3616 mxcsr
& ~mxcsr_feature_mask
)
3618 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3620 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
3621 mxcsr
& ~mxcsr_feature_mask
)
3623 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3624 guest_xsave
->region
, sizeof(struct fxregs_state
));
3629 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3630 struct kvm_xcrs
*guest_xcrs
)
3632 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3633 guest_xcrs
->nr_xcrs
= 0;
3637 guest_xcrs
->nr_xcrs
= 1;
3638 guest_xcrs
->flags
= 0;
3639 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3640 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3643 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3644 struct kvm_xcrs
*guest_xcrs
)
3648 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3651 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3654 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3655 /* Only support XCR0 currently */
3656 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3657 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3658 guest_xcrs
->xcrs
[i
].value
);
3667 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3668 * stopped by the hypervisor. This function will be called from the host only.
3669 * EINVAL is returned when the host attempts to set the flag for a guest that
3670 * does not support pv clocks.
3672 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3674 if (!vcpu
->arch
.pv_time_enabled
)
3676 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3677 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3681 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3682 struct kvm_enable_cap
*cap
)
3688 case KVM_CAP_HYPERV_SYNIC2
:
3691 case KVM_CAP_HYPERV_SYNIC
:
3692 if (!irqchip_in_kernel(vcpu
->kvm
))
3694 return kvm_hv_activate_synic(vcpu
, cap
->cap
==
3695 KVM_CAP_HYPERV_SYNIC2
);
3701 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3702 unsigned int ioctl
, unsigned long arg
)
3704 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3705 void __user
*argp
= (void __user
*)arg
;
3708 struct kvm_lapic_state
*lapic
;
3709 struct kvm_xsave
*xsave
;
3710 struct kvm_xcrs
*xcrs
;
3718 case KVM_GET_LAPIC
: {
3720 if (!lapic_in_kernel(vcpu
))
3722 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3727 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3731 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3736 case KVM_SET_LAPIC
: {
3738 if (!lapic_in_kernel(vcpu
))
3740 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3741 if (IS_ERR(u
.lapic
)) {
3742 r
= PTR_ERR(u
.lapic
);
3746 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3749 case KVM_INTERRUPT
: {
3750 struct kvm_interrupt irq
;
3753 if (copy_from_user(&irq
, argp
, sizeof irq
))
3755 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3759 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3763 r
= kvm_vcpu_ioctl_smi(vcpu
);
3766 case KVM_SET_CPUID
: {
3767 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3768 struct kvm_cpuid cpuid
;
3771 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3773 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3776 case KVM_SET_CPUID2
: {
3777 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3778 struct kvm_cpuid2 cpuid
;
3781 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3783 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3784 cpuid_arg
->entries
);
3787 case KVM_GET_CPUID2
: {
3788 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3789 struct kvm_cpuid2 cpuid
;
3792 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3794 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3795 cpuid_arg
->entries
);
3799 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3804 case KVM_GET_MSRS
: {
3805 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3806 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3807 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3810 case KVM_SET_MSRS
: {
3811 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3812 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3813 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3816 case KVM_TPR_ACCESS_REPORTING
: {
3817 struct kvm_tpr_access_ctl tac
;
3820 if (copy_from_user(&tac
, argp
, sizeof tac
))
3822 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3826 if (copy_to_user(argp
, &tac
, sizeof tac
))
3831 case KVM_SET_VAPIC_ADDR
: {
3832 struct kvm_vapic_addr va
;
3836 if (!lapic_in_kernel(vcpu
))
3839 if (copy_from_user(&va
, argp
, sizeof va
))
3841 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3842 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3843 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3846 case KVM_X86_SETUP_MCE
: {
3850 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3852 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3855 case KVM_X86_SET_MCE
: {
3856 struct kvm_x86_mce mce
;
3859 if (copy_from_user(&mce
, argp
, sizeof mce
))
3861 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3864 case KVM_GET_VCPU_EVENTS
: {
3865 struct kvm_vcpu_events events
;
3867 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3870 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3875 case KVM_SET_VCPU_EVENTS
: {
3876 struct kvm_vcpu_events events
;
3879 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3882 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3885 case KVM_GET_DEBUGREGS
: {
3886 struct kvm_debugregs dbgregs
;
3888 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3891 if (copy_to_user(argp
, &dbgregs
,
3892 sizeof(struct kvm_debugregs
)))
3897 case KVM_SET_DEBUGREGS
: {
3898 struct kvm_debugregs dbgregs
;
3901 if (copy_from_user(&dbgregs
, argp
,
3902 sizeof(struct kvm_debugregs
)))
3905 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3908 case KVM_GET_XSAVE
: {
3909 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3914 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3917 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3922 case KVM_SET_XSAVE
: {
3923 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3924 if (IS_ERR(u
.xsave
)) {
3925 r
= PTR_ERR(u
.xsave
);
3929 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3932 case KVM_GET_XCRS
: {
3933 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3938 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3941 if (copy_to_user(argp
, u
.xcrs
,
3942 sizeof(struct kvm_xcrs
)))
3947 case KVM_SET_XCRS
: {
3948 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3949 if (IS_ERR(u
.xcrs
)) {
3950 r
= PTR_ERR(u
.xcrs
);
3954 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3957 case KVM_SET_TSC_KHZ
: {
3961 user_tsc_khz
= (u32
)arg
;
3963 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3966 if (user_tsc_khz
== 0)
3967 user_tsc_khz
= tsc_khz
;
3969 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3974 case KVM_GET_TSC_KHZ
: {
3975 r
= vcpu
->arch
.virtual_tsc_khz
;
3978 case KVM_KVMCLOCK_CTRL
: {
3979 r
= kvm_set_guest_paused(vcpu
);
3982 case KVM_ENABLE_CAP
: {
3983 struct kvm_enable_cap cap
;
3986 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3988 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
4001 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
4003 return VM_FAULT_SIGBUS
;
4006 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
4010 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
4012 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
4016 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
4019 return kvm_x86_ops
->set_identity_map_addr(kvm
, ident_addr
);
4022 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
4023 u32 kvm_nr_mmu_pages
)
4025 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
4028 mutex_lock(&kvm
->slots_lock
);
4030 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
4031 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
4033 mutex_unlock(&kvm
->slots_lock
);
4037 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
4039 return kvm
->arch
.n_max_mmu_pages
;
4042 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
4044 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
4048 switch (chip
->chip_id
) {
4049 case KVM_IRQCHIP_PIC_MASTER
:
4050 memcpy(&chip
->chip
.pic
, &pic
->pics
[0],
4051 sizeof(struct kvm_pic_state
));
4053 case KVM_IRQCHIP_PIC_SLAVE
:
4054 memcpy(&chip
->chip
.pic
, &pic
->pics
[1],
4055 sizeof(struct kvm_pic_state
));
4057 case KVM_IRQCHIP_IOAPIC
:
4058 kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
4067 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
4069 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
4073 switch (chip
->chip_id
) {
4074 case KVM_IRQCHIP_PIC_MASTER
:
4075 spin_lock(&pic
->lock
);
4076 memcpy(&pic
->pics
[0], &chip
->chip
.pic
,
4077 sizeof(struct kvm_pic_state
));
4078 spin_unlock(&pic
->lock
);
4080 case KVM_IRQCHIP_PIC_SLAVE
:
4081 spin_lock(&pic
->lock
);
4082 memcpy(&pic
->pics
[1], &chip
->chip
.pic
,
4083 sizeof(struct kvm_pic_state
));
4084 spin_unlock(&pic
->lock
);
4086 case KVM_IRQCHIP_IOAPIC
:
4087 kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
4093 kvm_pic_update_irq(pic
);
4097 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
4099 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
4101 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
4103 mutex_lock(&kps
->lock
);
4104 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
4105 mutex_unlock(&kps
->lock
);
4109 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
4112 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4114 mutex_lock(&pit
->pit_state
.lock
);
4115 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
4116 for (i
= 0; i
< 3; i
++)
4117 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
4118 mutex_unlock(&pit
->pit_state
.lock
);
4122 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
4124 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
4125 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
4126 sizeof(ps
->channels
));
4127 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
4128 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
4129 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
4133 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
4137 u32 prev_legacy
, cur_legacy
;
4138 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4140 mutex_lock(&pit
->pit_state
.lock
);
4141 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
4142 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
4143 if (!prev_legacy
&& cur_legacy
)
4145 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
4146 sizeof(pit
->pit_state
.channels
));
4147 pit
->pit_state
.flags
= ps
->flags
;
4148 for (i
= 0; i
< 3; i
++)
4149 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
4151 mutex_unlock(&pit
->pit_state
.lock
);
4155 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
4156 struct kvm_reinject_control
*control
)
4158 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4163 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4164 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4165 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4167 mutex_lock(&pit
->pit_state
.lock
);
4168 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
4169 mutex_unlock(&pit
->pit_state
.lock
);
4175 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4176 * @kvm: kvm instance
4177 * @log: slot id and address to which we copy the log
4179 * Steps 1-4 below provide general overview of dirty page logging. See
4180 * kvm_get_dirty_log_protect() function description for additional details.
4182 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4183 * always flush the TLB (step 4) even if previous step failed and the dirty
4184 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4185 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4186 * writes will be marked dirty for next log read.
4188 * 1. Take a snapshot of the bit and clear it if needed.
4189 * 2. Write protect the corresponding page.
4190 * 3. Copy the snapshot to the userspace.
4191 * 4. Flush TLB's if needed.
4193 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
4195 bool is_dirty
= false;
4198 mutex_lock(&kvm
->slots_lock
);
4201 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4203 if (kvm_x86_ops
->flush_log_dirty
)
4204 kvm_x86_ops
->flush_log_dirty(kvm
);
4206 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
4209 * All the TLBs can be flushed out of mmu lock, see the comments in
4210 * kvm_mmu_slot_remove_write_access().
4212 lockdep_assert_held(&kvm
->slots_lock
);
4214 kvm_flush_remote_tlbs(kvm
);
4216 mutex_unlock(&kvm
->slots_lock
);
4220 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
4223 if (!irqchip_in_kernel(kvm
))
4226 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
4227 irq_event
->irq
, irq_event
->level
,
4232 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
4233 struct kvm_enable_cap
*cap
)
4241 case KVM_CAP_DISABLE_QUIRKS
:
4242 kvm
->arch
.disabled_quirks
= cap
->args
[0];
4245 case KVM_CAP_SPLIT_IRQCHIP
: {
4246 mutex_lock(&kvm
->lock
);
4248 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
4249 goto split_irqchip_unlock
;
4251 if (irqchip_in_kernel(kvm
))
4252 goto split_irqchip_unlock
;
4253 if (kvm
->created_vcpus
)
4254 goto split_irqchip_unlock
;
4255 r
= kvm_setup_empty_irq_routing(kvm
);
4257 goto split_irqchip_unlock
;
4258 /* Pairs with irqchip_in_kernel. */
4260 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
4261 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
4263 split_irqchip_unlock
:
4264 mutex_unlock(&kvm
->lock
);
4267 case KVM_CAP_X2APIC_API
:
4269 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
4272 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
4273 kvm
->arch
.x2apic_format
= true;
4274 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
4275 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
4279 case KVM_CAP_X86_DISABLE_EXITS
:
4281 if (cap
->args
[0] & ~KVM_X86_DISABLE_VALID_EXITS
)
4284 if ((cap
->args
[0] & KVM_X86_DISABLE_EXITS_MWAIT
) &&
4285 kvm_can_mwait_in_guest())
4286 kvm
->arch
.mwait_in_guest
= true;
4287 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_HLT
)
4288 kvm
->arch
.hlt_in_guest
= true;
4289 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_PAUSE
)
4290 kvm
->arch
.pause_in_guest
= true;
4300 long kvm_arch_vm_ioctl(struct file
*filp
,
4301 unsigned int ioctl
, unsigned long arg
)
4303 struct kvm
*kvm
= filp
->private_data
;
4304 void __user
*argp
= (void __user
*)arg
;
4307 * This union makes it completely explicit to gcc-3.x
4308 * that these two variables' stack usage should be
4309 * combined, not added together.
4312 struct kvm_pit_state ps
;
4313 struct kvm_pit_state2 ps2
;
4314 struct kvm_pit_config pit_config
;
4318 case KVM_SET_TSS_ADDR
:
4319 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
4321 case KVM_SET_IDENTITY_MAP_ADDR
: {
4324 mutex_lock(&kvm
->lock
);
4326 if (kvm
->created_vcpus
)
4327 goto set_identity_unlock
;
4329 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
4330 goto set_identity_unlock
;
4331 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
4332 set_identity_unlock
:
4333 mutex_unlock(&kvm
->lock
);
4336 case KVM_SET_NR_MMU_PAGES
:
4337 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
4339 case KVM_GET_NR_MMU_PAGES
:
4340 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
4342 case KVM_CREATE_IRQCHIP
: {
4343 mutex_lock(&kvm
->lock
);
4346 if (irqchip_in_kernel(kvm
))
4347 goto create_irqchip_unlock
;
4350 if (kvm
->created_vcpus
)
4351 goto create_irqchip_unlock
;
4353 r
= kvm_pic_init(kvm
);
4355 goto create_irqchip_unlock
;
4357 r
= kvm_ioapic_init(kvm
);
4359 kvm_pic_destroy(kvm
);
4360 goto create_irqchip_unlock
;
4363 r
= kvm_setup_default_irq_routing(kvm
);
4365 kvm_ioapic_destroy(kvm
);
4366 kvm_pic_destroy(kvm
);
4367 goto create_irqchip_unlock
;
4369 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4371 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
4372 create_irqchip_unlock
:
4373 mutex_unlock(&kvm
->lock
);
4376 case KVM_CREATE_PIT
:
4377 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
4379 case KVM_CREATE_PIT2
:
4381 if (copy_from_user(&u
.pit_config
, argp
,
4382 sizeof(struct kvm_pit_config
)))
4385 mutex_lock(&kvm
->lock
);
4388 goto create_pit_unlock
;
4390 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4394 mutex_unlock(&kvm
->lock
);
4396 case KVM_GET_IRQCHIP
: {
4397 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4398 struct kvm_irqchip
*chip
;
4400 chip
= memdup_user(argp
, sizeof(*chip
));
4407 if (!irqchip_kernel(kvm
))
4408 goto get_irqchip_out
;
4409 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4411 goto get_irqchip_out
;
4413 if (copy_to_user(argp
, chip
, sizeof *chip
))
4414 goto get_irqchip_out
;
4420 case KVM_SET_IRQCHIP
: {
4421 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4422 struct kvm_irqchip
*chip
;
4424 chip
= memdup_user(argp
, sizeof(*chip
));
4431 if (!irqchip_kernel(kvm
))
4432 goto set_irqchip_out
;
4433 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4435 goto set_irqchip_out
;
4443 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4446 if (!kvm
->arch
.vpit
)
4448 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4452 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4459 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4462 if (!kvm
->arch
.vpit
)
4464 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4467 case KVM_GET_PIT2
: {
4469 if (!kvm
->arch
.vpit
)
4471 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4475 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4480 case KVM_SET_PIT2
: {
4482 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4485 if (!kvm
->arch
.vpit
)
4487 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4490 case KVM_REINJECT_CONTROL
: {
4491 struct kvm_reinject_control control
;
4493 if (copy_from_user(&control
, argp
, sizeof(control
)))
4495 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4498 case KVM_SET_BOOT_CPU_ID
:
4500 mutex_lock(&kvm
->lock
);
4501 if (kvm
->created_vcpus
)
4504 kvm
->arch
.bsp_vcpu_id
= arg
;
4505 mutex_unlock(&kvm
->lock
);
4507 case KVM_XEN_HVM_CONFIG
: {
4508 struct kvm_xen_hvm_config xhc
;
4510 if (copy_from_user(&xhc
, argp
, sizeof(xhc
)))
4515 memcpy(&kvm
->arch
.xen_hvm_config
, &xhc
, sizeof(xhc
));
4519 case KVM_SET_CLOCK
: {
4520 struct kvm_clock_data user_ns
;
4524 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4533 * TODO: userspace has to take care of races with VCPU_RUN, so
4534 * kvm_gen_update_masterclock() can be cut down to locked
4535 * pvclock_update_vm_gtod_copy().
4537 kvm_gen_update_masterclock(kvm
);
4538 now_ns
= get_kvmclock_ns(kvm
);
4539 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4540 kvm_make_all_cpus_request(kvm
, KVM_REQ_CLOCK_UPDATE
);
4543 case KVM_GET_CLOCK
: {
4544 struct kvm_clock_data user_ns
;
4547 now_ns
= get_kvmclock_ns(kvm
);
4548 user_ns
.clock
= now_ns
;
4549 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4550 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4553 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4558 case KVM_ENABLE_CAP
: {
4559 struct kvm_enable_cap cap
;
4562 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4564 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4567 case KVM_MEMORY_ENCRYPT_OP
: {
4569 if (kvm_x86_ops
->mem_enc_op
)
4570 r
= kvm_x86_ops
->mem_enc_op(kvm
, argp
);
4573 case KVM_MEMORY_ENCRYPT_REG_REGION
: {
4574 struct kvm_enc_region region
;
4577 if (copy_from_user(®ion
, argp
, sizeof(region
)))
4581 if (kvm_x86_ops
->mem_enc_reg_region
)
4582 r
= kvm_x86_ops
->mem_enc_reg_region(kvm
, ®ion
);
4585 case KVM_MEMORY_ENCRYPT_UNREG_REGION
: {
4586 struct kvm_enc_region region
;
4589 if (copy_from_user(®ion
, argp
, sizeof(region
)))
4593 if (kvm_x86_ops
->mem_enc_unreg_region
)
4594 r
= kvm_x86_ops
->mem_enc_unreg_region(kvm
, ®ion
);
4597 case KVM_HYPERV_EVENTFD
: {
4598 struct kvm_hyperv_eventfd hvevfd
;
4601 if (copy_from_user(&hvevfd
, argp
, sizeof(hvevfd
)))
4603 r
= kvm_vm_ioctl_hv_eventfd(kvm
, &hvevfd
);
4613 static void kvm_init_msr_list(void)
4618 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4619 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4623 * Even MSRs that are valid in the host may not be exposed
4624 * to the guests in some cases.
4626 switch (msrs_to_save
[i
]) {
4627 case MSR_IA32_BNDCFGS
:
4628 if (!kvm_x86_ops
->mpx_supported())
4632 if (!kvm_x86_ops
->rdtscp_supported())
4640 msrs_to_save
[j
] = msrs_to_save
[i
];
4643 num_msrs_to_save
= j
;
4645 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4646 if (!kvm_x86_ops
->has_emulated_msr(emulated_msrs
[i
]))
4650 emulated_msrs
[j
] = emulated_msrs
[i
];
4653 num_emulated_msrs
= j
;
4655 for (i
= j
= 0; i
< ARRAY_SIZE(msr_based_features
); i
++) {
4656 struct kvm_msr_entry msr
;
4658 msr
.index
= msr_based_features
[i
];
4659 if (kvm_get_msr_feature(&msr
))
4663 msr_based_features
[j
] = msr_based_features
[i
];
4666 num_msr_based_features
= j
;
4669 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4677 if (!(lapic_in_kernel(vcpu
) &&
4678 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4679 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4690 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4697 if (!(lapic_in_kernel(vcpu
) &&
4698 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4700 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4702 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, v
);
4712 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4713 struct kvm_segment
*var
, int seg
)
4715 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4718 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4719 struct kvm_segment
*var
, int seg
)
4721 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4724 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4725 struct x86_exception
*exception
)
4729 BUG_ON(!mmu_is_nested(vcpu
));
4731 /* NPT walks are always user-walks */
4732 access
|= PFERR_USER_MASK
;
4733 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4738 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4739 struct x86_exception
*exception
)
4741 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4742 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4745 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4746 struct x86_exception
*exception
)
4748 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4749 access
|= PFERR_FETCH_MASK
;
4750 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4753 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4754 struct x86_exception
*exception
)
4756 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4757 access
|= PFERR_WRITE_MASK
;
4758 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4761 /* uses this to access any guest's mapped memory without checking CPL */
4762 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4763 struct x86_exception
*exception
)
4765 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4768 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4769 struct kvm_vcpu
*vcpu
, u32 access
,
4770 struct x86_exception
*exception
)
4773 int r
= X86EMUL_CONTINUE
;
4776 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4778 unsigned offset
= addr
& (PAGE_SIZE
-1);
4779 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4782 if (gpa
== UNMAPPED_GVA
)
4783 return X86EMUL_PROPAGATE_FAULT
;
4784 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4787 r
= X86EMUL_IO_NEEDED
;
4799 /* used for instruction fetching */
4800 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4801 gva_t addr
, void *val
, unsigned int bytes
,
4802 struct x86_exception
*exception
)
4804 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4805 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4809 /* Inline kvm_read_guest_virt_helper for speed. */
4810 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4812 if (unlikely(gpa
== UNMAPPED_GVA
))
4813 return X86EMUL_PROPAGATE_FAULT
;
4815 offset
= addr
& (PAGE_SIZE
-1);
4816 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4817 bytes
= (unsigned)PAGE_SIZE
- offset
;
4818 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4820 if (unlikely(ret
< 0))
4821 return X86EMUL_IO_NEEDED
;
4823 return X86EMUL_CONTINUE
;
4826 int kvm_read_guest_virt(struct kvm_vcpu
*vcpu
,
4827 gva_t addr
, void *val
, unsigned int bytes
,
4828 struct x86_exception
*exception
)
4830 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4832 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4835 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4837 static int emulator_read_std(struct x86_emulate_ctxt
*ctxt
,
4838 gva_t addr
, void *val
, unsigned int bytes
,
4839 struct x86_exception
*exception
, bool system
)
4841 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4844 if (!system
&& kvm_x86_ops
->get_cpl(vcpu
) == 3)
4845 access
|= PFERR_USER_MASK
;
4847 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
, exception
);
4850 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4851 unsigned long addr
, void *val
, unsigned int bytes
)
4853 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4854 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4856 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4859 static int kvm_write_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4860 struct kvm_vcpu
*vcpu
, u32 access
,
4861 struct x86_exception
*exception
)
4864 int r
= X86EMUL_CONTINUE
;
4867 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4870 unsigned offset
= addr
& (PAGE_SIZE
-1);
4871 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4874 if (gpa
== UNMAPPED_GVA
)
4875 return X86EMUL_PROPAGATE_FAULT
;
4876 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4878 r
= X86EMUL_IO_NEEDED
;
4890 static int emulator_write_std(struct x86_emulate_ctxt
*ctxt
, gva_t addr
, void *val
,
4891 unsigned int bytes
, struct x86_exception
*exception
,
4894 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4895 u32 access
= PFERR_WRITE_MASK
;
4897 if (!system
&& kvm_x86_ops
->get_cpl(vcpu
) == 3)
4898 access
|= PFERR_USER_MASK
;
4900 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
4904 int kvm_write_guest_virt_system(struct kvm_vcpu
*vcpu
, gva_t addr
, void *val
,
4905 unsigned int bytes
, struct x86_exception
*exception
)
4907 /* kvm_write_guest_virt_system can pull in tons of pages. */
4908 vcpu
->arch
.l1tf_flush_l1d
= true;
4910 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
4911 PFERR_WRITE_MASK
, exception
);
4913 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4915 int handle_ud(struct kvm_vcpu
*vcpu
)
4917 int emul_type
= EMULTYPE_TRAP_UD
;
4918 enum emulation_result er
;
4919 char sig
[5]; /* ud2; .ascii "kvm" */
4920 struct x86_exception e
;
4922 if (force_emulation_prefix
&&
4923 kvm_read_guest_virt(vcpu
, kvm_get_linear_rip(vcpu
),
4924 sig
, sizeof(sig
), &e
) == 0 &&
4925 memcmp(sig
, "\xf\xbkvm", sizeof(sig
)) == 0) {
4926 kvm_rip_write(vcpu
, kvm_rip_read(vcpu
) + sizeof(sig
));
4930 er
= emulate_instruction(vcpu
, emul_type
);
4931 if (er
== EMULATE_USER_EXIT
)
4933 if (er
!= EMULATE_DONE
)
4934 kvm_queue_exception(vcpu
, UD_VECTOR
);
4937 EXPORT_SYMBOL_GPL(handle_ud
);
4939 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4940 gpa_t gpa
, bool write
)
4942 /* For APIC access vmexit */
4943 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4946 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
4947 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
4954 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4955 gpa_t
*gpa
, struct x86_exception
*exception
,
4958 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4959 | (write
? PFERR_WRITE_MASK
: 0);
4962 * currently PKRU is only applied to ept enabled guest so
4963 * there is no pkey in EPT page table for L1 guest or EPT
4964 * shadow page table for L2 guest.
4966 if (vcpu_match_mmio_gva(vcpu
, gva
)
4967 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4968 vcpu
->arch
.access
, 0, access
)) {
4969 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4970 (gva
& (PAGE_SIZE
- 1));
4971 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4975 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4977 if (*gpa
== UNMAPPED_GVA
)
4980 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
4983 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4984 const void *val
, int bytes
)
4988 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4991 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4995 struct read_write_emulator_ops
{
4996 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4998 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4999 void *val
, int bytes
);
5000 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5001 int bytes
, void *val
);
5002 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5003 void *val
, int bytes
);
5007 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
5009 if (vcpu
->mmio_read_completed
) {
5010 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
5011 vcpu
->mmio_fragments
[0].gpa
, val
);
5012 vcpu
->mmio_read_completed
= 0;
5019 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5020 void *val
, int bytes
)
5022 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
5025 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5026 void *val
, int bytes
)
5028 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
5031 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
5033 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, val
);
5034 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
5037 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5038 void *val
, int bytes
)
5040 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, NULL
);
5041 return X86EMUL_IO_NEEDED
;
5044 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5045 void *val
, int bytes
)
5047 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
5049 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
5050 return X86EMUL_CONTINUE
;
5053 static const struct read_write_emulator_ops read_emultor
= {
5054 .read_write_prepare
= read_prepare
,
5055 .read_write_emulate
= read_emulate
,
5056 .read_write_mmio
= vcpu_mmio_read
,
5057 .read_write_exit_mmio
= read_exit_mmio
,
5060 static const struct read_write_emulator_ops write_emultor
= {
5061 .read_write_emulate
= write_emulate
,
5062 .read_write_mmio
= write_mmio
,
5063 .read_write_exit_mmio
= write_exit_mmio
,
5067 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
5069 struct x86_exception
*exception
,
5070 struct kvm_vcpu
*vcpu
,
5071 const struct read_write_emulator_ops
*ops
)
5075 bool write
= ops
->write
;
5076 struct kvm_mmio_fragment
*frag
;
5077 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5080 * If the exit was due to a NPF we may already have a GPA.
5081 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5082 * Note, this cannot be used on string operations since string
5083 * operation using rep will only have the initial GPA from the NPF
5086 if (vcpu
->arch
.gpa_available
&&
5087 emulator_can_use_gpa(ctxt
) &&
5088 (addr
& ~PAGE_MASK
) == (vcpu
->arch
.gpa_val
& ~PAGE_MASK
)) {
5089 gpa
= vcpu
->arch
.gpa_val
;
5090 ret
= vcpu_is_mmio_gpa(vcpu
, addr
, gpa
, write
);
5092 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
5094 return X86EMUL_PROPAGATE_FAULT
;
5097 if (!ret
&& ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
5098 return X86EMUL_CONTINUE
;
5101 * Is this MMIO handled locally?
5103 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
5104 if (handled
== bytes
)
5105 return X86EMUL_CONTINUE
;
5111 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
5112 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
5116 return X86EMUL_CONTINUE
;
5119 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
5121 void *val
, unsigned int bytes
,
5122 struct x86_exception
*exception
,
5123 const struct read_write_emulator_ops
*ops
)
5125 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5129 if (ops
->read_write_prepare
&&
5130 ops
->read_write_prepare(vcpu
, val
, bytes
))
5131 return X86EMUL_CONTINUE
;
5133 vcpu
->mmio_nr_fragments
= 0;
5135 /* Crossing a page boundary? */
5136 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
5139 now
= -addr
& ~PAGE_MASK
;
5140 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
5143 if (rc
!= X86EMUL_CONTINUE
)
5146 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
5152 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
5154 if (rc
!= X86EMUL_CONTINUE
)
5157 if (!vcpu
->mmio_nr_fragments
)
5160 gpa
= vcpu
->mmio_fragments
[0].gpa
;
5162 vcpu
->mmio_needed
= 1;
5163 vcpu
->mmio_cur_fragment
= 0;
5165 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
5166 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
5167 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
5168 vcpu
->run
->mmio
.phys_addr
= gpa
;
5170 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
5173 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
5177 struct x86_exception
*exception
)
5179 return emulator_read_write(ctxt
, addr
, val
, bytes
,
5180 exception
, &read_emultor
);
5183 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
5187 struct x86_exception
*exception
)
5189 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
5190 exception
, &write_emultor
);
5193 #define CMPXCHG_TYPE(t, ptr, old, new) \
5194 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5196 #ifdef CONFIG_X86_64
5197 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5199 # define CMPXCHG64(ptr, old, new) \
5200 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5203 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
5208 struct x86_exception
*exception
)
5210 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5216 /* guests cmpxchg8b have to be emulated atomically */
5217 if (bytes
> 8 || (bytes
& (bytes
- 1)))
5220 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
5222 if (gpa
== UNMAPPED_GVA
||
5223 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
5226 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
5229 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
5230 if (is_error_page(page
))
5233 kaddr
= kmap_atomic(page
);
5234 kaddr
+= offset_in_page(gpa
);
5237 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
5240 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
5243 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
5246 exchanged
= CMPXCHG64(kaddr
, old
, new);
5251 kunmap_atomic(kaddr
);
5252 kvm_release_page_dirty(page
);
5255 return X86EMUL_CMPXCHG_FAILED
;
5257 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
5258 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
5260 return X86EMUL_CONTINUE
;
5263 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
5265 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
5268 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
5272 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
5273 if (vcpu
->arch
.pio
.in
)
5274 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
5275 vcpu
->arch
.pio
.size
, pd
);
5277 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
5278 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
5282 pd
+= vcpu
->arch
.pio
.size
;
5287 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
5288 unsigned short port
, void *val
,
5289 unsigned int count
, bool in
)
5291 vcpu
->arch
.pio
.port
= port
;
5292 vcpu
->arch
.pio
.in
= in
;
5293 vcpu
->arch
.pio
.count
= count
;
5294 vcpu
->arch
.pio
.size
= size
;
5296 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
5297 vcpu
->arch
.pio
.count
= 0;
5301 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
5302 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
5303 vcpu
->run
->io
.size
= size
;
5304 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
5305 vcpu
->run
->io
.count
= count
;
5306 vcpu
->run
->io
.port
= port
;
5311 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
5312 int size
, unsigned short port
, void *val
,
5315 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5318 if (vcpu
->arch
.pio
.count
)
5321 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
5323 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
5326 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
5327 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
5328 vcpu
->arch
.pio
.count
= 0;
5335 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
5336 int size
, unsigned short port
,
5337 const void *val
, unsigned int count
)
5339 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5341 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
5342 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
5343 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
5346 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
5348 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
5351 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
5353 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
5356 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
5358 if (!need_emulate_wbinvd(vcpu
))
5359 return X86EMUL_CONTINUE
;
5361 if (kvm_x86_ops
->has_wbinvd_exit()) {
5362 int cpu
= get_cpu();
5364 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
5365 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
5366 wbinvd_ipi
, NULL
, 1);
5368 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
5371 return X86EMUL_CONTINUE
;
5374 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
5376 kvm_emulate_wbinvd_noskip(vcpu
);
5377 return kvm_skip_emulated_instruction(vcpu
);
5379 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
5383 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
5385 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
5388 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5389 unsigned long *dest
)
5391 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
5394 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5395 unsigned long value
)
5398 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
5401 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
5403 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
5406 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
5408 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5409 unsigned long value
;
5413 value
= kvm_read_cr0(vcpu
);
5416 value
= vcpu
->arch
.cr2
;
5419 value
= kvm_read_cr3(vcpu
);
5422 value
= kvm_read_cr4(vcpu
);
5425 value
= kvm_get_cr8(vcpu
);
5428 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5435 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
5437 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5442 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
5445 vcpu
->arch
.cr2
= val
;
5448 res
= kvm_set_cr3(vcpu
, val
);
5451 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
5454 res
= kvm_set_cr8(vcpu
, val
);
5457 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5464 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
5466 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
5469 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5471 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
5474 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5476 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
5479 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5481 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
5484 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5486 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
5489 static unsigned long emulator_get_cached_segment_base(
5490 struct x86_emulate_ctxt
*ctxt
, int seg
)
5492 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
5495 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
5496 struct desc_struct
*desc
, u32
*base3
,
5499 struct kvm_segment var
;
5501 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
5502 *selector
= var
.selector
;
5505 memset(desc
, 0, sizeof(*desc
));
5513 set_desc_limit(desc
, var
.limit
);
5514 set_desc_base(desc
, (unsigned long)var
.base
);
5515 #ifdef CONFIG_X86_64
5517 *base3
= var
.base
>> 32;
5519 desc
->type
= var
.type
;
5521 desc
->dpl
= var
.dpl
;
5522 desc
->p
= var
.present
;
5523 desc
->avl
= var
.avl
;
5531 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5532 struct desc_struct
*desc
, u32 base3
,
5535 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5536 struct kvm_segment var
;
5538 var
.selector
= selector
;
5539 var
.base
= get_desc_base(desc
);
5540 #ifdef CONFIG_X86_64
5541 var
.base
|= ((u64
)base3
) << 32;
5543 var
.limit
= get_desc_limit(desc
);
5545 var
.limit
= (var
.limit
<< 12) | 0xfff;
5546 var
.type
= desc
->type
;
5547 var
.dpl
= desc
->dpl
;
5552 var
.avl
= desc
->avl
;
5553 var
.present
= desc
->p
;
5554 var
.unusable
= !var
.present
;
5557 kvm_set_segment(vcpu
, &var
, seg
);
5561 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5562 u32 msr_index
, u64
*pdata
)
5564 struct msr_data msr
;
5567 msr
.index
= msr_index
;
5568 msr
.host_initiated
= false;
5569 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5577 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5578 u32 msr_index
, u64 data
)
5580 struct msr_data msr
;
5583 msr
.index
= msr_index
;
5584 msr
.host_initiated
= false;
5585 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5588 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5590 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5592 return vcpu
->arch
.smbase
;
5595 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5597 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5599 vcpu
->arch
.smbase
= smbase
;
5602 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5605 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5608 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5609 u32 pmc
, u64
*pdata
)
5611 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5614 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5616 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5619 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5620 struct x86_instruction_info
*info
,
5621 enum x86_intercept_stage stage
)
5623 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5626 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5627 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
, bool check_limit
)
5629 return kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
, check_limit
);
5632 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5634 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5637 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5639 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5642 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5644 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5647 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
5649 return emul_to_vcpu(ctxt
)->arch
.hflags
;
5652 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
5654 kvm_set_hflags(emul_to_vcpu(ctxt
), emul_flags
);
5657 static int emulator_pre_leave_smm(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5659 return kvm_x86_ops
->pre_leave_smm(emul_to_vcpu(ctxt
), smbase
);
5662 static const struct x86_emulate_ops emulate_ops
= {
5663 .read_gpr
= emulator_read_gpr
,
5664 .write_gpr
= emulator_write_gpr
,
5665 .read_std
= emulator_read_std
,
5666 .write_std
= emulator_write_std
,
5667 .read_phys
= kvm_read_guest_phys_system
,
5668 .fetch
= kvm_fetch_guest_virt
,
5669 .read_emulated
= emulator_read_emulated
,
5670 .write_emulated
= emulator_write_emulated
,
5671 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5672 .invlpg
= emulator_invlpg
,
5673 .pio_in_emulated
= emulator_pio_in_emulated
,
5674 .pio_out_emulated
= emulator_pio_out_emulated
,
5675 .get_segment
= emulator_get_segment
,
5676 .set_segment
= emulator_set_segment
,
5677 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5678 .get_gdt
= emulator_get_gdt
,
5679 .get_idt
= emulator_get_idt
,
5680 .set_gdt
= emulator_set_gdt
,
5681 .set_idt
= emulator_set_idt
,
5682 .get_cr
= emulator_get_cr
,
5683 .set_cr
= emulator_set_cr
,
5684 .cpl
= emulator_get_cpl
,
5685 .get_dr
= emulator_get_dr
,
5686 .set_dr
= emulator_set_dr
,
5687 .get_smbase
= emulator_get_smbase
,
5688 .set_smbase
= emulator_set_smbase
,
5689 .set_msr
= emulator_set_msr
,
5690 .get_msr
= emulator_get_msr
,
5691 .check_pmc
= emulator_check_pmc
,
5692 .read_pmc
= emulator_read_pmc
,
5693 .halt
= emulator_halt
,
5694 .wbinvd
= emulator_wbinvd
,
5695 .fix_hypercall
= emulator_fix_hypercall
,
5696 .intercept
= emulator_intercept
,
5697 .get_cpuid
= emulator_get_cpuid
,
5698 .set_nmi_mask
= emulator_set_nmi_mask
,
5699 .get_hflags
= emulator_get_hflags
,
5700 .set_hflags
= emulator_set_hflags
,
5701 .pre_leave_smm
= emulator_pre_leave_smm
,
5704 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5706 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5708 * an sti; sti; sequence only disable interrupts for the first
5709 * instruction. So, if the last instruction, be it emulated or
5710 * not, left the system with the INT_STI flag enabled, it
5711 * means that the last instruction is an sti. We should not
5712 * leave the flag on in this case. The same goes for mov ss
5714 if (int_shadow
& mask
)
5716 if (unlikely(int_shadow
|| mask
)) {
5717 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5719 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5723 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5725 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5726 if (ctxt
->exception
.vector
== PF_VECTOR
)
5727 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5729 if (ctxt
->exception
.error_code_valid
)
5730 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5731 ctxt
->exception
.error_code
);
5733 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5737 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5739 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5742 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5744 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5745 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
5747 ctxt
->eip
= kvm_rip_read(vcpu
);
5748 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5749 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5750 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5751 cs_db
? X86EMUL_MODE_PROT32
:
5752 X86EMUL_MODE_PROT16
;
5753 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5754 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5755 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5757 init_decode_cache(ctxt
);
5758 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5761 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5763 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5766 init_emulate_ctxt(vcpu
);
5770 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5771 ret
= emulate_int_real(ctxt
, irq
);
5773 if (ret
!= X86EMUL_CONTINUE
)
5774 return EMULATE_FAIL
;
5776 ctxt
->eip
= ctxt
->_eip
;
5777 kvm_rip_write(vcpu
, ctxt
->eip
);
5778 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5780 return EMULATE_DONE
;
5782 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5784 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
, int emulation_type
)
5786 int r
= EMULATE_DONE
;
5788 ++vcpu
->stat
.insn_emulation_fail
;
5789 trace_kvm_emulate_insn_failed(vcpu
);
5791 if (emulation_type
& EMULTYPE_NO_UD_ON_FAIL
)
5792 return EMULATE_FAIL
;
5794 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5795 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5796 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5797 vcpu
->run
->internal
.ndata
= 0;
5798 r
= EMULATE_USER_EXIT
;
5801 kvm_queue_exception(vcpu
, UD_VECTOR
);
5806 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5807 bool write_fault_to_shadow_pgtable
,
5813 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY
))
5816 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
5819 if (!vcpu
->arch
.mmu
.direct_map
) {
5821 * Write permission should be allowed since only
5822 * write access need to be emulated.
5824 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5827 * If the mapping is invalid in guest, let cpu retry
5828 * it to generate fault.
5830 if (gpa
== UNMAPPED_GVA
)
5835 * Do not retry the unhandleable instruction if it faults on the
5836 * readonly host memory, otherwise it will goto a infinite loop:
5837 * retry instruction -> write #PF -> emulation fail -> retry
5838 * instruction -> ...
5840 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5843 * If the instruction failed on the error pfn, it can not be fixed,
5844 * report the error to userspace.
5846 if (is_error_noslot_pfn(pfn
))
5849 kvm_release_pfn_clean(pfn
);
5851 /* The instructions are well-emulated on direct mmu. */
5852 if (vcpu
->arch
.mmu
.direct_map
) {
5853 unsigned int indirect_shadow_pages
;
5855 spin_lock(&vcpu
->kvm
->mmu_lock
);
5856 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5857 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5859 if (indirect_shadow_pages
)
5860 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5866 * if emulation was due to access to shadowed page table
5867 * and it failed try to unshadow page and re-enter the
5868 * guest to let CPU execute the instruction.
5870 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5873 * If the access faults on its page table, it can not
5874 * be fixed by unprotecting shadow page and it should
5875 * be reported to userspace.
5877 return !write_fault_to_shadow_pgtable
;
5880 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5881 unsigned long cr2
, int emulation_type
)
5883 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5884 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5886 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5887 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5890 * If the emulation is caused by #PF and it is non-page_table
5891 * writing instruction, it means the VM-EXIT is caused by shadow
5892 * page protected, we can zap the shadow page and retry this
5893 * instruction directly.
5895 * Note: if the guest uses a non-page-table modifying instruction
5896 * on the PDE that points to the instruction, then we will unmap
5897 * the instruction and go to an infinite loop. So, we cache the
5898 * last retried eip and the last fault address, if we meet the eip
5899 * and the address again, we can break out of the potential infinite
5902 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5904 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY
))
5907 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
5910 if (x86_page_table_writing_insn(ctxt
))
5913 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5916 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5917 vcpu
->arch
.last_retry_addr
= cr2
;
5919 if (!vcpu
->arch
.mmu
.direct_map
)
5920 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5922 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5927 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5928 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5930 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5932 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5933 /* This is a good place to trace that we are exiting SMM. */
5934 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5936 /* Process a latched INIT or SMI, if any. */
5937 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5940 kvm_mmu_reset_context(vcpu
);
5943 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5945 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5947 vcpu
->arch
.hflags
= emul_flags
;
5949 if (changed
& HF_SMM_MASK
)
5950 kvm_smm_changed(vcpu
);
5953 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5962 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5963 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5968 static void kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
5970 struct kvm_run
*kvm_run
= vcpu
->run
;
5972 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5973 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
| DR6_RTM
;
5974 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5975 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5976 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5977 *r
= EMULATE_USER_EXIT
;
5980 * "Certain debug exceptions may clear bit 0-3. The
5981 * remaining contents of the DR6 register are never
5982 * cleared by the processor".
5984 vcpu
->arch
.dr6
&= ~15;
5985 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5986 kvm_queue_exception(vcpu
, DB_VECTOR
);
5990 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
5992 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5993 int r
= EMULATE_DONE
;
5995 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5998 * rflags is the old, "raw" value of the flags. The new value has
5999 * not been saved yet.
6001 * This is correct even for TF set by the guest, because "the
6002 * processor will not generate this exception after the instruction
6003 * that sets the TF flag".
6005 if (unlikely(rflags
& X86_EFLAGS_TF
))
6006 kvm_vcpu_do_singlestep(vcpu
, &r
);
6007 return r
== EMULATE_DONE
;
6009 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
6011 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
6013 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
6014 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
6015 struct kvm_run
*kvm_run
= vcpu
->run
;
6016 unsigned long eip
= kvm_get_linear_rip(vcpu
);
6017 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
6018 vcpu
->arch
.guest_debug_dr7
,
6022 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
6023 kvm_run
->debug
.arch
.pc
= eip
;
6024 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
6025 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
6026 *r
= EMULATE_USER_EXIT
;
6031 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
6032 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
6033 unsigned long eip
= kvm_get_linear_rip(vcpu
);
6034 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
6039 vcpu
->arch
.dr6
&= ~15;
6040 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
6041 kvm_queue_exception(vcpu
, DB_VECTOR
);
6050 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt
*ctxt
)
6052 switch (ctxt
->opcode_len
) {
6059 case 0xe6: /* OUT */
6063 case 0x6c: /* INS */
6065 case 0x6e: /* OUTS */
6072 case 0x33: /* RDPMC */
6081 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
6088 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6089 bool writeback
= true;
6090 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
6092 vcpu
->arch
.l1tf_flush_l1d
= true;
6095 * Clear write_fault_to_shadow_pgtable here to ensure it is
6098 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
6099 kvm_clear_exception_queue(vcpu
);
6101 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
6102 init_emulate_ctxt(vcpu
);
6105 * We will reenter on the same instruction since
6106 * we do not set complete_userspace_io. This does not
6107 * handle watchpoints yet, those would be handled in
6110 if (!(emulation_type
& EMULTYPE_SKIP
) &&
6111 kvm_vcpu_check_breakpoint(vcpu
, &r
))
6114 ctxt
->interruptibility
= 0;
6115 ctxt
->have_exception
= false;
6116 ctxt
->exception
.vector
= -1;
6117 ctxt
->perm_ok
= false;
6119 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
6121 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
6123 trace_kvm_emulate_insn_start(vcpu
);
6124 ++vcpu
->stat
.insn_emulation
;
6125 if (r
!= EMULATION_OK
) {
6126 if (emulation_type
& EMULTYPE_TRAP_UD
)
6127 return EMULATE_FAIL
;
6128 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
6130 return EMULATE_DONE
;
6131 if (ctxt
->have_exception
&& inject_emulated_exception(vcpu
))
6132 return EMULATE_DONE
;
6133 if (emulation_type
& EMULTYPE_SKIP
)
6134 return EMULATE_FAIL
;
6135 return handle_emulation_failure(vcpu
, emulation_type
);
6139 if ((emulation_type
& EMULTYPE_VMWARE
) &&
6140 !is_vmware_backdoor_opcode(ctxt
))
6141 return EMULATE_FAIL
;
6143 if (emulation_type
& EMULTYPE_SKIP
) {
6144 kvm_rip_write(vcpu
, ctxt
->_eip
);
6145 if (ctxt
->eflags
& X86_EFLAGS_RF
)
6146 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
6147 return EMULATE_DONE
;
6150 if (retry_instruction(ctxt
, cr2
, emulation_type
))
6151 return EMULATE_DONE
;
6153 /* this is needed for vmware backdoor interface to work since it
6154 changes registers values during IO operation */
6155 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
6156 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
6157 emulator_invalidate_register_cache(ctxt
);
6161 /* Save the faulting GPA (cr2) in the address field */
6162 ctxt
->exception
.address
= cr2
;
6164 r
= x86_emulate_insn(ctxt
);
6166 if (r
== EMULATION_INTERCEPTED
)
6167 return EMULATE_DONE
;
6169 if (r
== EMULATION_FAILED
) {
6170 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
6172 return EMULATE_DONE
;
6174 return handle_emulation_failure(vcpu
, emulation_type
);
6177 if (ctxt
->have_exception
) {
6179 if (inject_emulated_exception(vcpu
))
6181 } else if (vcpu
->arch
.pio
.count
) {
6182 if (!vcpu
->arch
.pio
.in
) {
6183 /* FIXME: return into emulator if single-stepping. */
6184 vcpu
->arch
.pio
.count
= 0;
6187 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
6189 r
= EMULATE_USER_EXIT
;
6190 } else if (vcpu
->mmio_needed
) {
6191 if (!vcpu
->mmio_is_write
)
6193 r
= EMULATE_USER_EXIT
;
6194 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6195 } else if (r
== EMULATION_RESTART
)
6201 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6202 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
6203 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6204 kvm_rip_write(vcpu
, ctxt
->eip
);
6205 if (r
== EMULATE_DONE
&&
6206 (ctxt
->tf
|| (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)))
6207 kvm_vcpu_do_singlestep(vcpu
, &r
);
6208 if (!ctxt
->have_exception
||
6209 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
6210 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
6213 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6214 * do nothing, and it will be requested again as soon as
6215 * the shadow expires. But we still need to check here,
6216 * because POPF has no interrupt shadow.
6218 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
6219 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6221 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
6225 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
6227 static int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
,
6228 unsigned short port
)
6230 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6231 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
6232 size
, port
, &val
, 1);
6233 /* do not return to emulator after return from userspace */
6234 vcpu
->arch
.pio
.count
= 0;
6238 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
6242 /* We should only ever be called with arch.pio.count equal to 1 */
6243 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
6245 /* For size less than 4 we merge, else we zero extend */
6246 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
)
6250 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6251 * the copy and tracing
6253 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
6254 vcpu
->arch
.pio
.port
, &val
, 1);
6255 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
6260 static int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
,
6261 unsigned short port
)
6266 /* For size less than 4 we merge, else we zero extend */
6267 val
= (size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
) : 0;
6269 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
6272 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
6276 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
6281 int kvm_fast_pio(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
, int in
)
6283 int ret
= kvm_skip_emulated_instruction(vcpu
);
6286 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6287 * KVM_EXIT_DEBUG here.
6290 return kvm_fast_pio_in(vcpu
, size
, port
) && ret
;
6292 return kvm_fast_pio_out(vcpu
, size
, port
) && ret
;
6294 EXPORT_SYMBOL_GPL(kvm_fast_pio
);
6296 static int kvmclock_cpu_down_prep(unsigned int cpu
)
6298 __this_cpu_write(cpu_tsc_khz
, 0);
6302 static void tsc_khz_changed(void *data
)
6304 struct cpufreq_freqs
*freq
= data
;
6305 unsigned long khz
= 0;
6309 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6310 khz
= cpufreq_quick_get(raw_smp_processor_id());
6313 __this_cpu_write(cpu_tsc_khz
, khz
);
6316 #ifdef CONFIG_X86_64
6317 static void kvm_hyperv_tsc_notifier(void)
6320 struct kvm_vcpu
*vcpu
;
6323 spin_lock(&kvm_lock
);
6324 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6325 kvm_make_mclock_inprogress_request(kvm
);
6327 hyperv_stop_tsc_emulation();
6329 /* TSC frequency always matches when on Hyper-V */
6330 for_each_present_cpu(cpu
)
6331 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
6332 kvm_max_guest_tsc_khz
= tsc_khz
;
6334 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6335 struct kvm_arch
*ka
= &kvm
->arch
;
6337 spin_lock(&ka
->pvclock_gtod_sync_lock
);
6339 pvclock_update_vm_gtod_copy(kvm
);
6341 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
6342 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6344 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
6345 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
6347 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
6349 spin_unlock(&kvm_lock
);
6353 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
6356 struct cpufreq_freqs
*freq
= data
;
6358 struct kvm_vcpu
*vcpu
;
6359 int i
, send_ipi
= 0;
6362 * We allow guests to temporarily run on slowing clocks,
6363 * provided we notify them after, or to run on accelerating
6364 * clocks, provided we notify them before. Thus time never
6367 * However, we have a problem. We can't atomically update
6368 * the frequency of a given CPU from this function; it is
6369 * merely a notifier, which can be called from any CPU.
6370 * Changing the TSC frequency at arbitrary points in time
6371 * requires a recomputation of local variables related to
6372 * the TSC for each VCPU. We must flag these local variables
6373 * to be updated and be sure the update takes place with the
6374 * new frequency before any guests proceed.
6376 * Unfortunately, the combination of hotplug CPU and frequency
6377 * change creates an intractable locking scenario; the order
6378 * of when these callouts happen is undefined with respect to
6379 * CPU hotplug, and they can race with each other. As such,
6380 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6381 * undefined; you can actually have a CPU frequency change take
6382 * place in between the computation of X and the setting of the
6383 * variable. To protect against this problem, all updates of
6384 * the per_cpu tsc_khz variable are done in an interrupt
6385 * protected IPI, and all callers wishing to update the value
6386 * must wait for a synchronous IPI to complete (which is trivial
6387 * if the caller is on the CPU already). This establishes the
6388 * necessary total order on variable updates.
6390 * Note that because a guest time update may take place
6391 * anytime after the setting of the VCPU's request bit, the
6392 * correct TSC value must be set before the request. However,
6393 * to ensure the update actually makes it to any guest which
6394 * starts running in hardware virtualization between the set
6395 * and the acquisition of the spinlock, we must also ping the
6396 * CPU after setting the request bit.
6400 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
6402 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
6405 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
6407 spin_lock(&kvm_lock
);
6408 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6409 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6410 if (vcpu
->cpu
!= freq
->cpu
)
6412 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6413 if (vcpu
->cpu
!= smp_processor_id())
6417 spin_unlock(&kvm_lock
);
6419 if (freq
->old
< freq
->new && send_ipi
) {
6421 * We upscale the frequency. Must make the guest
6422 * doesn't see old kvmclock values while running with
6423 * the new frequency, otherwise we risk the guest sees
6424 * time go backwards.
6426 * In case we update the frequency for another cpu
6427 * (which might be in guest context) send an interrupt
6428 * to kick the cpu out of guest context. Next time
6429 * guest context is entered kvmclock will be updated,
6430 * so the guest will not see stale values.
6432 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
6437 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
6438 .notifier_call
= kvmclock_cpufreq_notifier
6441 static int kvmclock_cpu_online(unsigned int cpu
)
6443 tsc_khz_changed(NULL
);
6447 static void kvm_timer_init(void)
6449 max_tsc_khz
= tsc_khz
;
6451 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
6452 #ifdef CONFIG_CPU_FREQ
6453 struct cpufreq_policy policy
;
6456 memset(&policy
, 0, sizeof(policy
));
6458 cpufreq_get_policy(&policy
, cpu
);
6459 if (policy
.cpuinfo
.max_freq
)
6460 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
6463 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
6464 CPUFREQ_TRANSITION_NOTIFIER
);
6466 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
6468 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
6469 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
6472 DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
6473 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu
);
6475 int kvm_is_in_guest(void)
6477 return __this_cpu_read(current_vcpu
) != NULL
;
6480 static int kvm_is_user_mode(void)
6484 if (__this_cpu_read(current_vcpu
))
6485 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
6487 return user_mode
!= 0;
6490 static unsigned long kvm_get_guest_ip(void)
6492 unsigned long ip
= 0;
6494 if (__this_cpu_read(current_vcpu
))
6495 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
6500 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
6501 .is_in_guest
= kvm_is_in_guest
,
6502 .is_user_mode
= kvm_is_user_mode
,
6503 .get_guest_ip
= kvm_get_guest_ip
,
6506 static void kvm_set_mmio_spte_mask(void)
6509 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
6512 * Set the reserved bits and the present bit of an paging-structure
6513 * entry to generate page fault with PFER.RSV = 1.
6517 * Mask the uppermost physical address bit, which would be reserved as
6518 * long as the supported physical address width is less than 52.
6522 /* Set the present bit. */
6526 * If reserved bit is not supported, clear the present bit to disable
6529 if (IS_ENABLED(CONFIG_X86_64
) && maxphyaddr
== 52)
6532 kvm_mmu_set_mmio_spte_mask(mask
, mask
);
6535 #ifdef CONFIG_X86_64
6536 static void pvclock_gtod_update_fn(struct work_struct
*work
)
6540 struct kvm_vcpu
*vcpu
;
6543 spin_lock(&kvm_lock
);
6544 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6545 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6546 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
6547 atomic_set(&kvm_guest_has_master_clock
, 0);
6548 spin_unlock(&kvm_lock
);
6551 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
6554 * Notification about pvclock gtod data update.
6556 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
6559 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
6560 struct timekeeper
*tk
= priv
;
6562 update_pvclock_gtod(tk
);
6564 /* disable master clock if host does not trust, or does not
6565 * use, TSC based clocksource.
6567 if (!gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) &&
6568 atomic_read(&kvm_guest_has_master_clock
) != 0)
6569 queue_work(system_long_wq
, &pvclock_gtod_work
);
6574 static struct notifier_block pvclock_gtod_notifier
= {
6575 .notifier_call
= pvclock_gtod_notify
,
6579 int kvm_arch_init(void *opaque
)
6582 struct kvm_x86_ops
*ops
= opaque
;
6585 printk(KERN_ERR
"kvm: already loaded the other module\n");
6590 if (!ops
->cpu_has_kvm_support()) {
6591 printk(KERN_ERR
"kvm: no hardware support\n");
6595 if (ops
->disabled_by_bios()) {
6596 printk(KERN_ERR
"kvm: disabled by bios\n");
6602 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
6604 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
6608 r
= kvm_mmu_module_init();
6610 goto out_free_percpu
;
6612 kvm_set_mmio_spte_mask();
6616 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
6617 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
6618 PT_PRESENT_MASK
, 0, sme_me_mask
);
6621 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
6623 if (boot_cpu_has(X86_FEATURE_XSAVE
))
6624 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
6627 #ifdef CONFIG_X86_64
6628 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
6630 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
6631 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier
);
6637 free_percpu(shared_msrs
);
6642 void kvm_arch_exit(void)
6644 #ifdef CONFIG_X86_64
6645 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
6646 clear_hv_tscchange_cb();
6649 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6651 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6652 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6653 CPUFREQ_TRANSITION_NOTIFIER
);
6654 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6655 #ifdef CONFIG_X86_64
6656 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6659 kvm_mmu_module_exit();
6660 free_percpu(shared_msrs
);
6663 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6665 ++vcpu
->stat
.halt_exits
;
6666 if (lapic_in_kernel(vcpu
)) {
6667 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6670 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6674 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6676 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6678 int ret
= kvm_skip_emulated_instruction(vcpu
);
6680 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6681 * KVM_EXIT_DEBUG here.
6683 return kvm_vcpu_halt(vcpu
) && ret
;
6685 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6687 #ifdef CONFIG_X86_64
6688 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
6689 unsigned long clock_type
)
6691 struct kvm_clock_pairing clock_pairing
;
6692 struct timespec64 ts
;
6696 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
6697 return -KVM_EOPNOTSUPP
;
6699 if (kvm_get_walltime_and_clockread(&ts
, &cycle
) == false)
6700 return -KVM_EOPNOTSUPP
;
6702 clock_pairing
.sec
= ts
.tv_sec
;
6703 clock_pairing
.nsec
= ts
.tv_nsec
;
6704 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
6705 clock_pairing
.flags
= 0;
6708 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
6709 sizeof(struct kvm_clock_pairing
)))
6717 * kvm_pv_kick_cpu_op: Kick a vcpu.
6719 * @apicid - apicid of vcpu to be kicked.
6721 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6723 struct kvm_lapic_irq lapic_irq
;
6725 lapic_irq
.shorthand
= 0;
6726 lapic_irq
.dest_mode
= 0;
6727 lapic_irq
.level
= 0;
6728 lapic_irq
.dest_id
= apicid
;
6729 lapic_irq
.msi_redir_hint
= false;
6731 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6732 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6735 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6737 vcpu
->arch
.apicv_active
= false;
6738 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6741 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6743 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6746 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6747 return kvm_hv_hypercall(vcpu
);
6749 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6750 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6751 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6752 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6753 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6755 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6757 op_64_bit
= is_64_bit_mode(vcpu
);
6766 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6772 case KVM_HC_VAPIC_POLL_IRQ
:
6775 case KVM_HC_KICK_CPU
:
6776 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6779 #ifdef CONFIG_X86_64
6780 case KVM_HC_CLOCK_PAIRING
:
6781 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
6791 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6793 ++vcpu
->stat
.hypercalls
;
6794 return kvm_skip_emulated_instruction(vcpu
);
6796 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6798 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6800 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6801 char instruction
[3];
6802 unsigned long rip
= kvm_rip_read(vcpu
);
6804 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6806 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
6810 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6812 return vcpu
->run
->request_interrupt_window
&&
6813 likely(!pic_in_kernel(vcpu
->kvm
));
6816 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6818 struct kvm_run
*kvm_run
= vcpu
->run
;
6820 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6821 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6822 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6823 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6824 kvm_run
->ready_for_interrupt_injection
=
6825 pic_in_kernel(vcpu
->kvm
) ||
6826 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6829 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6833 if (!kvm_x86_ops
->update_cr8_intercept
)
6836 if (!lapic_in_kernel(vcpu
))
6839 if (vcpu
->arch
.apicv_active
)
6842 if (!vcpu
->arch
.apic
->vapic_addr
)
6843 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6850 tpr
= kvm_lapic_get_cr8(vcpu
);
6852 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6855 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6859 /* try to reinject previous events if any */
6861 if (vcpu
->arch
.exception
.injected
)
6862 kvm_x86_ops
->queue_exception(vcpu
);
6864 * Do not inject an NMI or interrupt if there is a pending
6865 * exception. Exceptions and interrupts are recognized at
6866 * instruction boundaries, i.e. the start of an instruction.
6867 * Trap-like exceptions, e.g. #DB, have higher priority than
6868 * NMIs and interrupts, i.e. traps are recognized before an
6869 * NMI/interrupt that's pending on the same instruction.
6870 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6871 * priority, but are only generated (pended) during instruction
6872 * execution, i.e. a pending fault-like exception means the
6873 * fault occurred on the *previous* instruction and must be
6874 * serviced prior to recognizing any new events in order to
6875 * fully complete the previous instruction.
6877 else if (!vcpu
->arch
.exception
.pending
) {
6878 if (vcpu
->arch
.nmi_injected
)
6879 kvm_x86_ops
->set_nmi(vcpu
);
6880 else if (vcpu
->arch
.interrupt
.injected
)
6881 kvm_x86_ops
->set_irq(vcpu
);
6885 * Call check_nested_events() even if we reinjected a previous event
6886 * in order for caller to determine if it should require immediate-exit
6887 * from L2 to L1 due to pending L1 events which require exit
6890 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6891 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6896 /* try to inject new event if pending */
6897 if (vcpu
->arch
.exception
.pending
) {
6898 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6899 vcpu
->arch
.exception
.has_error_code
,
6900 vcpu
->arch
.exception
.error_code
);
6902 WARN_ON_ONCE(vcpu
->arch
.exception
.injected
);
6903 vcpu
->arch
.exception
.pending
= false;
6904 vcpu
->arch
.exception
.injected
= true;
6906 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6907 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6910 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6911 (vcpu
->arch
.dr7
& DR7_GD
)) {
6912 vcpu
->arch
.dr7
&= ~DR7_GD
;
6913 kvm_update_dr7(vcpu
);
6916 kvm_x86_ops
->queue_exception(vcpu
);
6919 /* Don't consider new event if we re-injected an event */
6920 if (kvm_event_needs_reinjection(vcpu
))
6923 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
) &&
6924 kvm_x86_ops
->smi_allowed(vcpu
)) {
6925 vcpu
->arch
.smi_pending
= false;
6926 ++vcpu
->arch
.smi_count
;
6928 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6929 --vcpu
->arch
.nmi_pending
;
6930 vcpu
->arch
.nmi_injected
= true;
6931 kvm_x86_ops
->set_nmi(vcpu
);
6932 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6934 * Because interrupts can be injected asynchronously, we are
6935 * calling check_nested_events again here to avoid a race condition.
6936 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6937 * proposal and current concerns. Perhaps we should be setting
6938 * KVM_REQ_EVENT only on certain events and not unconditionally?
6940 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6941 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6945 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6946 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6948 kvm_x86_ops
->set_irq(vcpu
);
6955 static void process_nmi(struct kvm_vcpu
*vcpu
)
6960 * x86 is limited to one NMI running, and one NMI pending after it.
6961 * If an NMI is already in progress, limit further NMIs to just one.
6962 * Otherwise, allow two (and we'll inject the first one immediately).
6964 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6967 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6968 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6969 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6972 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6975 flags
|= seg
->g
<< 23;
6976 flags
|= seg
->db
<< 22;
6977 flags
|= seg
->l
<< 21;
6978 flags
|= seg
->avl
<< 20;
6979 flags
|= seg
->present
<< 15;
6980 flags
|= seg
->dpl
<< 13;
6981 flags
|= seg
->s
<< 12;
6982 flags
|= seg
->type
<< 8;
6986 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6988 struct kvm_segment seg
;
6991 kvm_get_segment(vcpu
, &seg
, n
);
6992 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6995 offset
= 0x7f84 + n
* 12;
6997 offset
= 0x7f2c + (n
- 3) * 12;
6999 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
7000 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
7001 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
7004 #ifdef CONFIG_X86_64
7005 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
7007 struct kvm_segment seg
;
7011 kvm_get_segment(vcpu
, &seg
, n
);
7012 offset
= 0x7e00 + n
* 16;
7014 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
7015 put_smstate(u16
, buf
, offset
, seg
.selector
);
7016 put_smstate(u16
, buf
, offset
+ 2, flags
);
7017 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
7018 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
7022 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
7025 struct kvm_segment seg
;
7029 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
7030 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
7031 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
7032 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
7034 for (i
= 0; i
< 8; i
++)
7035 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
7037 kvm_get_dr(vcpu
, 6, &val
);
7038 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
7039 kvm_get_dr(vcpu
, 7, &val
);
7040 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
7042 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
7043 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
7044 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
7045 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
7046 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
7048 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
7049 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
7050 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
7051 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
7052 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
7054 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7055 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
7056 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
7058 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7059 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
7060 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
7062 for (i
= 0; i
< 6; i
++)
7063 enter_smm_save_seg_32(vcpu
, buf
, i
);
7065 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
7068 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
7069 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
7072 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
7074 #ifdef CONFIG_X86_64
7076 struct kvm_segment seg
;
7080 for (i
= 0; i
< 16; i
++)
7081 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
7083 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
7084 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
7086 kvm_get_dr(vcpu
, 6, &val
);
7087 put_smstate(u64
, buf
, 0x7f68, val
);
7088 kvm_get_dr(vcpu
, 7, &val
);
7089 put_smstate(u64
, buf
, 0x7f60, val
);
7091 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
7092 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
7093 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
7095 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
7098 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
7100 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
7102 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
7103 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
7104 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
7105 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
7106 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
7108 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7109 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
7110 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
7112 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
7113 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
7114 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
7115 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
7116 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
7118 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7119 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
7120 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
7122 for (i
= 0; i
< 6; i
++)
7123 enter_smm_save_seg_64(vcpu
, buf
, i
);
7129 static void enter_smm(struct kvm_vcpu
*vcpu
)
7131 struct kvm_segment cs
, ds
;
7136 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
7137 memset(buf
, 0, 512);
7138 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
7139 enter_smm_save_state_64(vcpu
, buf
);
7141 enter_smm_save_state_32(vcpu
, buf
);
7144 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7145 * vCPU state (e.g. leave guest mode) after we've saved the state into
7146 * the SMM state-save area.
7148 kvm_x86_ops
->pre_enter_smm(vcpu
, buf
);
7150 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
7151 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
7153 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
7154 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
7156 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
7158 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
7159 kvm_rip_write(vcpu
, 0x8000);
7161 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
7162 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
7163 vcpu
->arch
.cr0
= cr0
;
7165 kvm_x86_ops
->set_cr4(vcpu
, 0);
7167 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7168 dt
.address
= dt
.size
= 0;
7169 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7171 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
7173 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
7174 cs
.base
= vcpu
->arch
.smbase
;
7179 cs
.limit
= ds
.limit
= 0xffffffff;
7180 cs
.type
= ds
.type
= 0x3;
7181 cs
.dpl
= ds
.dpl
= 0;
7186 cs
.avl
= ds
.avl
= 0;
7187 cs
.present
= ds
.present
= 1;
7188 cs
.unusable
= ds
.unusable
= 0;
7189 cs
.padding
= ds
.padding
= 0;
7191 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7192 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
7193 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
7194 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
7195 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
7196 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
7198 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
7199 kvm_x86_ops
->set_efer(vcpu
, 0);
7201 kvm_update_cpuid(vcpu
);
7202 kvm_mmu_reset_context(vcpu
);
7205 static void process_smi(struct kvm_vcpu
*vcpu
)
7207 vcpu
->arch
.smi_pending
= true;
7208 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7211 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
7213 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
7216 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
7218 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
7221 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
7223 if (irqchip_split(vcpu
->kvm
))
7224 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
7226 if (vcpu
->arch
.apicv_active
)
7227 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
7228 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
7231 if (is_guest_mode(vcpu
))
7232 vcpu
->arch
.load_eoi_exitmap_pending
= true;
7234 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
);
7237 static void vcpu_load_eoi_exitmap(struct kvm_vcpu
*vcpu
)
7239 u64 eoi_exit_bitmap
[4];
7241 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
7244 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
7245 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
7246 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
7249 void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
7250 unsigned long start
, unsigned long end
)
7252 unsigned long apic_address
;
7255 * The physical address of apic access page is stored in the VMCS.
7256 * Update it when it becomes invalid.
7258 apic_address
= gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
7259 if (start
<= apic_address
&& apic_address
< end
)
7260 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
7263 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
7265 struct page
*page
= NULL
;
7267 if (!lapic_in_kernel(vcpu
))
7270 if (!kvm_x86_ops
->set_apic_access_page_addr
)
7273 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
7274 if (is_error_page(page
))
7276 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
7279 * Do not pin apic access page in memory, the MMU notifier
7280 * will call us again if it is migrated or swapped out.
7284 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
7287 * Returns 1 to let vcpu_run() continue the guest execution loop without
7288 * exiting to the userspace. Otherwise, the value will be returned to the
7291 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
7295 dm_request_for_irq_injection(vcpu
) &&
7296 kvm_cpu_accept_dm_intr(vcpu
);
7298 bool req_immediate_exit
= false;
7300 if (kvm_request_pending(vcpu
)) {
7301 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
7302 kvm_mmu_unload(vcpu
);
7303 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
7304 __kvm_migrate_timers(vcpu
);
7305 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
7306 kvm_gen_update_masterclock(vcpu
->kvm
);
7307 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
7308 kvm_gen_kvmclock_update(vcpu
);
7309 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
7310 r
= kvm_guest_time_update(vcpu
);
7314 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
7315 kvm_mmu_sync_roots(vcpu
);
7316 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
7317 kvm_vcpu_flush_tlb(vcpu
, true);
7318 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
7319 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
7323 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
7324 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
7325 vcpu
->mmio_needed
= 0;
7329 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
7330 /* Page is swapped out. Do synthetic halt */
7331 vcpu
->arch
.apf
.halted
= true;
7335 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
7336 record_steal_time(vcpu
);
7337 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
7339 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
7341 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
7342 kvm_pmu_handle_event(vcpu
);
7343 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
7344 kvm_pmu_deliver_pmi(vcpu
);
7345 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
7346 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
7347 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
7348 vcpu
->arch
.ioapic_handled_vectors
)) {
7349 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
7350 vcpu
->run
->eoi
.vector
=
7351 vcpu
->arch
.pending_ioapic_eoi
;
7356 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
7357 vcpu_scan_ioapic(vcpu
);
7358 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
))
7359 vcpu_load_eoi_exitmap(vcpu
);
7360 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
7361 kvm_vcpu_reload_apic_access_page(vcpu
);
7362 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
7363 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
7364 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
7368 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
7369 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
7370 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
7374 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
7375 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
7376 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
7382 * KVM_REQ_HV_STIMER has to be processed after
7383 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7384 * depend on the guest clock being up-to-date
7386 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
7387 kvm_hv_process_stimers(vcpu
);
7390 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
7391 ++vcpu
->stat
.req_event
;
7392 kvm_apic_accept_events(vcpu
);
7393 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
7398 if (inject_pending_event(vcpu
, req_int_win
) != 0)
7399 req_immediate_exit
= true;
7401 /* Enable SMI/NMI/IRQ window open exits if needed.
7403 * SMIs have three cases:
7404 * 1) They can be nested, and then there is nothing to
7405 * do here because RSM will cause a vmexit anyway.
7406 * 2) There is an ISA-specific reason why SMI cannot be
7407 * injected, and the moment when this changes can be
7409 * 3) Or the SMI can be pending because
7410 * inject_pending_event has completed the injection
7411 * of an IRQ or NMI from the previous vmexit, and
7412 * then we request an immediate exit to inject the
7415 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
7416 if (!kvm_x86_ops
->enable_smi_window(vcpu
))
7417 req_immediate_exit
= true;
7418 if (vcpu
->arch
.nmi_pending
)
7419 kvm_x86_ops
->enable_nmi_window(vcpu
);
7420 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
7421 kvm_x86_ops
->enable_irq_window(vcpu
);
7422 WARN_ON(vcpu
->arch
.exception
.pending
);
7425 if (kvm_lapic_enabled(vcpu
)) {
7426 update_cr8_intercept(vcpu
);
7427 kvm_lapic_sync_to_vapic(vcpu
);
7431 r
= kvm_mmu_reload(vcpu
);
7433 goto cancel_injection
;
7438 kvm_x86_ops
->prepare_guest_switch(vcpu
);
7441 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7442 * IPI are then delayed after guest entry, which ensures that they
7443 * result in virtual interrupt delivery.
7445 local_irq_disable();
7446 vcpu
->mode
= IN_GUEST_MODE
;
7448 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7451 * 1) We should set ->mode before checking ->requests. Please see
7452 * the comment in kvm_vcpu_exiting_guest_mode().
7454 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7455 * pairs with the memory barrier implicit in pi_test_and_set_on
7456 * (see vmx_deliver_posted_interrupt).
7458 * 3) This also orders the write to mode from any reads to the page
7459 * tables done while the VCPU is running. Please see the comment
7460 * in kvm_flush_remote_tlbs.
7462 smp_mb__after_srcu_read_unlock();
7465 * This handles the case where a posted interrupt was
7466 * notified with kvm_vcpu_kick.
7468 if (kvm_lapic_enabled(vcpu
) && vcpu
->arch
.apicv_active
)
7469 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
7471 if (vcpu
->mode
== EXITING_GUEST_MODE
|| kvm_request_pending(vcpu
)
7472 || need_resched() || signal_pending(current
)) {
7473 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7477 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7479 goto cancel_injection
;
7482 kvm_load_guest_xcr0(vcpu
);
7484 if (req_immediate_exit
) {
7485 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7486 smp_send_reschedule(vcpu
->cpu
);
7489 trace_kvm_entry(vcpu
->vcpu_id
);
7490 if (lapic_timer_advance_ns
)
7491 wait_lapic_expire(vcpu
);
7492 guest_enter_irqoff();
7494 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
7496 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
7497 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
7498 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
7499 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
7500 set_debugreg(vcpu
->arch
.dr6
, 6);
7501 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7504 kvm_x86_ops
->run(vcpu
);
7507 * Do this here before restoring debug registers on the host. And
7508 * since we do this before handling the vmexit, a DR access vmexit
7509 * can (a) read the correct value of the debug registers, (b) set
7510 * KVM_DEBUGREG_WONT_EXIT again.
7512 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
7513 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
7514 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
7515 kvm_update_dr0123(vcpu
);
7516 kvm_update_dr6(vcpu
);
7517 kvm_update_dr7(vcpu
);
7518 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7522 * If the guest has used debug registers, at least dr7
7523 * will be disabled while returning to the host.
7524 * If we don't have active breakpoints in the host, we don't
7525 * care about the messed up debug address registers. But if
7526 * we have some of them active, restore the old state.
7528 if (hw_breakpoint_active())
7529 hw_breakpoint_restore();
7531 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
7533 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7536 kvm_put_guest_xcr0(vcpu
);
7538 kvm_before_interrupt(vcpu
);
7539 kvm_x86_ops
->handle_external_intr(vcpu
);
7540 kvm_after_interrupt(vcpu
);
7544 guest_exit_irqoff();
7549 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7552 * Profile KVM exit RIPs:
7554 if (unlikely(prof_on
== KVM_PROFILING
)) {
7555 unsigned long rip
= kvm_rip_read(vcpu
);
7556 profile_hit(KVM_PROFILING
, (void *)rip
);
7559 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
7560 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7562 if (vcpu
->arch
.apic_attention
)
7563 kvm_lapic_sync_from_vapic(vcpu
);
7565 vcpu
->arch
.gpa_available
= false;
7566 r
= kvm_x86_ops
->handle_exit(vcpu
);
7570 kvm_x86_ops
->cancel_injection(vcpu
);
7571 if (unlikely(vcpu
->arch
.apic_attention
))
7572 kvm_lapic_sync_from_vapic(vcpu
);
7577 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
7579 if (!kvm_arch_vcpu_runnable(vcpu
) &&
7580 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
7581 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7582 kvm_vcpu_block(vcpu
);
7583 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7585 if (kvm_x86_ops
->post_block
)
7586 kvm_x86_ops
->post_block(vcpu
);
7588 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
7592 kvm_apic_accept_events(vcpu
);
7593 switch(vcpu
->arch
.mp_state
) {
7594 case KVM_MP_STATE_HALTED
:
7595 vcpu
->arch
.pv
.pv_unhalted
= false;
7596 vcpu
->arch
.mp_state
=
7597 KVM_MP_STATE_RUNNABLE
;
7598 case KVM_MP_STATE_RUNNABLE
:
7599 vcpu
->arch
.apf
.halted
= false;
7601 case KVM_MP_STATE_INIT_RECEIVED
:
7610 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
7612 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7613 kvm_x86_ops
->check_nested_events(vcpu
, false);
7615 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7616 !vcpu
->arch
.apf
.halted
);
7619 static int vcpu_run(struct kvm_vcpu
*vcpu
)
7622 struct kvm
*kvm
= vcpu
->kvm
;
7624 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7625 vcpu
->arch
.l1tf_flush_l1d
= true;
7628 if (kvm_vcpu_running(vcpu
)) {
7629 r
= vcpu_enter_guest(vcpu
);
7631 r
= vcpu_block(kvm
, vcpu
);
7637 kvm_clear_request(KVM_REQ_PENDING_TIMER
, vcpu
);
7638 if (kvm_cpu_has_pending_timer(vcpu
))
7639 kvm_inject_pending_timer_irqs(vcpu
);
7641 if (dm_request_for_irq_injection(vcpu
) &&
7642 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
7644 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
7645 ++vcpu
->stat
.request_irq_exits
;
7649 kvm_check_async_pf_completion(vcpu
);
7651 if (signal_pending(current
)) {
7653 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7654 ++vcpu
->stat
.signal_exits
;
7657 if (need_resched()) {
7658 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7660 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7664 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7669 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
7672 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7673 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
7674 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7675 if (r
!= EMULATE_DONE
)
7680 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
7682 BUG_ON(!vcpu
->arch
.pio
.count
);
7684 return complete_emulated_io(vcpu
);
7688 * Implements the following, as a state machine:
7692 * for each mmio piece in the fragment
7700 * for each mmio piece in the fragment
7705 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
7707 struct kvm_run
*run
= vcpu
->run
;
7708 struct kvm_mmio_fragment
*frag
;
7711 BUG_ON(!vcpu
->mmio_needed
);
7713 /* Complete previous fragment */
7714 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
7715 len
= min(8u, frag
->len
);
7716 if (!vcpu
->mmio_is_write
)
7717 memcpy(frag
->data
, run
->mmio
.data
, len
);
7719 if (frag
->len
<= 8) {
7720 /* Switch to the next fragment. */
7722 vcpu
->mmio_cur_fragment
++;
7724 /* Go forward to the next mmio piece. */
7730 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
7731 vcpu
->mmio_needed
= 0;
7733 /* FIXME: return into emulator if single-stepping. */
7734 if (vcpu
->mmio_is_write
)
7736 vcpu
->mmio_read_completed
= 1;
7737 return complete_emulated_io(vcpu
);
7740 run
->exit_reason
= KVM_EXIT_MMIO
;
7741 run
->mmio
.phys_addr
= frag
->gpa
;
7742 if (vcpu
->mmio_is_write
)
7743 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7744 run
->mmio
.len
= min(8u, frag
->len
);
7745 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7746 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7750 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
7755 kvm_sigset_activate(vcpu
);
7756 kvm_load_guest_fpu(vcpu
);
7758 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
7759 if (kvm_run
->immediate_exit
) {
7763 kvm_vcpu_block(vcpu
);
7764 kvm_apic_accept_events(vcpu
);
7765 kvm_clear_request(KVM_REQ_UNHALT
, vcpu
);
7767 if (signal_pending(current
)) {
7769 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7770 ++vcpu
->stat
.signal_exits
;
7775 if (vcpu
->run
->kvm_valid_regs
& ~KVM_SYNC_X86_VALID_FIELDS
) {
7780 if (vcpu
->run
->kvm_dirty_regs
) {
7781 r
= sync_regs(vcpu
);
7786 /* re-sync apic's tpr */
7787 if (!lapic_in_kernel(vcpu
)) {
7788 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
7794 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
7795 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
7796 vcpu
->arch
.complete_userspace_io
= NULL
;
7801 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
7803 if (kvm_run
->immediate_exit
)
7809 kvm_put_guest_fpu(vcpu
);
7810 if (vcpu
->run
->kvm_valid_regs
)
7812 post_kvm_run_save(vcpu
);
7813 kvm_sigset_deactivate(vcpu
);
7819 static void __get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7821 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
7823 * We are here if userspace calls get_regs() in the middle of
7824 * instruction emulation. Registers state needs to be copied
7825 * back from emulation context to vcpu. Userspace shouldn't do
7826 * that usually, but some bad designed PV devices (vmware
7827 * backdoor interface) need this to work
7829 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
7830 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7832 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
7833 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
7834 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7835 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
7836 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
7837 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
7838 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7839 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
7840 #ifdef CONFIG_X86_64
7841 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
7842 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
7843 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
7844 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
7845 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
7846 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
7847 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
7848 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
7851 regs
->rip
= kvm_rip_read(vcpu
);
7852 regs
->rflags
= kvm_get_rflags(vcpu
);
7855 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7858 __get_regs(vcpu
, regs
);
7863 static void __set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7865 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
7866 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7868 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7869 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7870 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7871 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7872 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7873 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7874 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7875 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7876 #ifdef CONFIG_X86_64
7877 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7878 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7879 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7880 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7881 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7882 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7883 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7884 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7887 kvm_rip_write(vcpu
, regs
->rip
);
7888 kvm_set_rflags(vcpu
, regs
->rflags
| X86_EFLAGS_FIXED
);
7890 vcpu
->arch
.exception
.pending
= false;
7892 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7895 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7898 __set_regs(vcpu
, regs
);
7903 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7905 struct kvm_segment cs
;
7907 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7911 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7913 static void __get_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
7917 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7918 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7919 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7920 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7921 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7922 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7924 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7925 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7927 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7928 sregs
->idt
.limit
= dt
.size
;
7929 sregs
->idt
.base
= dt
.address
;
7930 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7931 sregs
->gdt
.limit
= dt
.size
;
7932 sregs
->gdt
.base
= dt
.address
;
7934 sregs
->cr0
= kvm_read_cr0(vcpu
);
7935 sregs
->cr2
= vcpu
->arch
.cr2
;
7936 sregs
->cr3
= kvm_read_cr3(vcpu
);
7937 sregs
->cr4
= kvm_read_cr4(vcpu
);
7938 sregs
->cr8
= kvm_get_cr8(vcpu
);
7939 sregs
->efer
= vcpu
->arch
.efer
;
7940 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7942 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7944 if (vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
)
7945 set_bit(vcpu
->arch
.interrupt
.nr
,
7946 (unsigned long *)sregs
->interrupt_bitmap
);
7949 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7950 struct kvm_sregs
*sregs
)
7953 __get_sregs(vcpu
, sregs
);
7958 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7959 struct kvm_mp_state
*mp_state
)
7963 kvm_apic_accept_events(vcpu
);
7964 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7965 vcpu
->arch
.pv
.pv_unhalted
)
7966 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7968 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7974 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7975 struct kvm_mp_state
*mp_state
)
7981 if (!lapic_in_kernel(vcpu
) &&
7982 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7985 /* INITs are latched while in SMM */
7986 if ((is_smm(vcpu
) || vcpu
->arch
.smi_pending
) &&
7987 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
7988 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
7991 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7992 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7993 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7995 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7996 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8004 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
8005 int reason
, bool has_error_code
, u32 error_code
)
8007 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
8010 init_emulate_ctxt(vcpu
);
8012 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
8013 has_error_code
, error_code
);
8016 return EMULATE_FAIL
;
8018 kvm_rip_write(vcpu
, ctxt
->eip
);
8019 kvm_set_rflags(vcpu
, ctxt
->eflags
);
8020 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8021 return EMULATE_DONE
;
8023 EXPORT_SYMBOL_GPL(kvm_task_switch
);
8025 static int kvm_valid_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8027 if ((sregs
->efer
& EFER_LME
) && (sregs
->cr0
& X86_CR0_PG
)) {
8029 * When EFER.LME and CR0.PG are set, the processor is in
8030 * 64-bit mode (though maybe in a 32-bit code segment).
8031 * CR4.PAE and EFER.LMA must be set.
8033 if (!(sregs
->cr4
& X86_CR4_PAE
)
8034 || !(sregs
->efer
& EFER_LMA
))
8038 * Not in 64-bit mode: EFER.LMA is clear and the code
8039 * segment cannot be 64-bit.
8041 if (sregs
->efer
& EFER_LMA
|| sregs
->cs
.l
)
8048 static int __set_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8050 struct msr_data apic_base_msr
;
8051 int mmu_reset_needed
= 0;
8052 int cpuid_update_needed
= 0;
8053 int pending_vec
, max_bits
, idx
;
8057 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
8058 (sregs
->cr4
& X86_CR4_OSXSAVE
))
8061 if (kvm_valid_sregs(vcpu
, sregs
))
8064 apic_base_msr
.data
= sregs
->apic_base
;
8065 apic_base_msr
.host_initiated
= true;
8066 if (kvm_set_apic_base(vcpu
, &apic_base_msr
))
8069 dt
.size
= sregs
->idt
.limit
;
8070 dt
.address
= sregs
->idt
.base
;
8071 kvm_x86_ops
->set_idt(vcpu
, &dt
);
8072 dt
.size
= sregs
->gdt
.limit
;
8073 dt
.address
= sregs
->gdt
.base
;
8074 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
8076 vcpu
->arch
.cr2
= sregs
->cr2
;
8077 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
8078 vcpu
->arch
.cr3
= sregs
->cr3
;
8079 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
8081 kvm_set_cr8(vcpu
, sregs
->cr8
);
8083 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
8084 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
8086 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
8087 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
8088 vcpu
->arch
.cr0
= sregs
->cr0
;
8090 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
8091 cpuid_update_needed
|= ((kvm_read_cr4(vcpu
) ^ sregs
->cr4
) &
8092 (X86_CR4_OSXSAVE
| X86_CR4_PKE
));
8093 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
8094 if (cpuid_update_needed
)
8095 kvm_update_cpuid(vcpu
);
8097 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8098 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
8099 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
8100 mmu_reset_needed
= 1;
8102 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8104 if (mmu_reset_needed
)
8105 kvm_mmu_reset_context(vcpu
);
8107 max_bits
= KVM_NR_INTERRUPTS
;
8108 pending_vec
= find_first_bit(
8109 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
8110 if (pending_vec
< max_bits
) {
8111 kvm_queue_interrupt(vcpu
, pending_vec
, false);
8112 pr_debug("Set back pending irq %d\n", pending_vec
);
8115 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
8116 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
8117 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
8118 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
8119 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
8120 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
8122 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
8123 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
8125 update_cr8_intercept(vcpu
);
8127 /* Older userspace won't unhalt the vcpu on reset. */
8128 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
8129 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
8131 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8133 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8140 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
8141 struct kvm_sregs
*sregs
)
8146 ret
= __set_sregs(vcpu
, sregs
);
8151 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
8152 struct kvm_guest_debug
*dbg
)
8154 unsigned long rflags
;
8159 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
8161 if (vcpu
->arch
.exception
.pending
)
8163 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
8164 kvm_queue_exception(vcpu
, DB_VECTOR
);
8166 kvm_queue_exception(vcpu
, BP_VECTOR
);
8170 * Read rflags as long as potentially injected trace flags are still
8173 rflags
= kvm_get_rflags(vcpu
);
8175 vcpu
->guest_debug
= dbg
->control
;
8176 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
8177 vcpu
->guest_debug
= 0;
8179 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
8180 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
8181 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
8182 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
8184 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
8185 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
8187 kvm_update_dr7(vcpu
);
8189 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8190 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
8191 get_segment_base(vcpu
, VCPU_SREG_CS
);
8194 * Trigger an rflags update that will inject or remove the trace
8197 kvm_set_rflags(vcpu
, rflags
);
8199 kvm_x86_ops
->update_bp_intercept(vcpu
);
8209 * Translate a guest virtual address to a guest physical address.
8211 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
8212 struct kvm_translation
*tr
)
8214 unsigned long vaddr
= tr
->linear_address
;
8220 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8221 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
8222 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8223 tr
->physical_address
= gpa
;
8224 tr
->valid
= gpa
!= UNMAPPED_GVA
;
8232 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
8234 struct fxregs_state
*fxsave
;
8238 fxsave
= &vcpu
->arch
.guest_fpu
.state
.fxsave
;
8239 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
8240 fpu
->fcw
= fxsave
->cwd
;
8241 fpu
->fsw
= fxsave
->swd
;
8242 fpu
->ftwx
= fxsave
->twd
;
8243 fpu
->last_opcode
= fxsave
->fop
;
8244 fpu
->last_ip
= fxsave
->rip
;
8245 fpu
->last_dp
= fxsave
->rdp
;
8246 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
8252 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
8254 struct fxregs_state
*fxsave
;
8258 fxsave
= &vcpu
->arch
.guest_fpu
.state
.fxsave
;
8260 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
8261 fxsave
->cwd
= fpu
->fcw
;
8262 fxsave
->swd
= fpu
->fsw
;
8263 fxsave
->twd
= fpu
->ftwx
;
8264 fxsave
->fop
= fpu
->last_opcode
;
8265 fxsave
->rip
= fpu
->last_ip
;
8266 fxsave
->rdp
= fpu
->last_dp
;
8267 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
8273 static void store_regs(struct kvm_vcpu
*vcpu
)
8275 BUILD_BUG_ON(sizeof(struct kvm_sync_regs
) > SYNC_REGS_SIZE_BYTES
);
8277 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_REGS
)
8278 __get_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
8280 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_SREGS
)
8281 __get_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
);
8283 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_EVENTS
)
8284 kvm_vcpu_ioctl_x86_get_vcpu_events(
8285 vcpu
, &vcpu
->run
->s
.regs
.events
);
8288 static int sync_regs(struct kvm_vcpu
*vcpu
)
8290 if (vcpu
->run
->kvm_dirty_regs
& ~KVM_SYNC_X86_VALID_FIELDS
)
8293 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_REGS
) {
8294 __set_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
8295 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_REGS
;
8297 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_SREGS
) {
8298 if (__set_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
))
8300 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_SREGS
;
8302 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_EVENTS
) {
8303 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8304 vcpu
, &vcpu
->run
->s
.regs
.events
))
8306 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_EVENTS
;
8312 static void fx_init(struct kvm_vcpu
*vcpu
)
8314 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
8315 if (boot_cpu_has(X86_FEATURE_XSAVES
))
8316 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
8317 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
8320 * Ensure guest xcr0 is valid for loading
8322 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
8324 vcpu
->arch
.cr0
|= X86_CR0_ET
;
8327 /* Swap (qemu) user FPU context for the guest FPU context. */
8328 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
8331 copy_fpregs_to_fpstate(&vcpu
->arch
.user_fpu
);
8332 /* PKRU is separately restored in kvm_x86_ops->run. */
8333 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
,
8334 ~XFEATURE_MASK_PKRU
);
8339 /* When vcpu_run ends, restore user space FPU context. */
8340 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
8343 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
8344 copy_kernel_to_fpregs(&vcpu
->arch
.user_fpu
.state
);
8346 ++vcpu
->stat
.fpu_reload
;
8350 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
8352 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
8354 kvmclock_reset(vcpu
);
8356 kvm_x86_ops
->vcpu_free(vcpu
);
8357 free_cpumask_var(wbinvd_dirty_mask
);
8360 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
8363 struct kvm_vcpu
*vcpu
;
8365 if (kvm_check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
8366 printk_once(KERN_WARNING
8367 "kvm: SMP vm created on host with unstable TSC; "
8368 "guest TSC will not be reliable\n");
8370 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
8375 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
8377 kvm_vcpu_mtrr_init(vcpu
);
8379 kvm_vcpu_reset(vcpu
, false);
8380 kvm_mmu_setup(vcpu
);
8385 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
8387 struct msr_data msr
;
8388 struct kvm
*kvm
= vcpu
->kvm
;
8390 kvm_hv_vcpu_postcreate(vcpu
);
8392 if (mutex_lock_killable(&vcpu
->mutex
))
8396 msr
.index
= MSR_IA32_TSC
;
8397 msr
.host_initiated
= true;
8398 kvm_write_tsc(vcpu
, &msr
);
8400 mutex_unlock(&vcpu
->mutex
);
8402 if (!kvmclock_periodic_sync
)
8405 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
8406 KVMCLOCK_SYNC_PERIOD
);
8409 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
8411 vcpu
->arch
.apf
.msr_val
= 0;
8414 kvm_mmu_unload(vcpu
);
8417 kvm_x86_ops
->vcpu_free(vcpu
);
8420 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
8422 kvm_lapic_reset(vcpu
, init_event
);
8424 vcpu
->arch
.hflags
= 0;
8426 vcpu
->arch
.smi_pending
= 0;
8427 vcpu
->arch
.smi_count
= 0;
8428 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
8429 vcpu
->arch
.nmi_pending
= 0;
8430 vcpu
->arch
.nmi_injected
= false;
8431 kvm_clear_interrupt_queue(vcpu
);
8432 kvm_clear_exception_queue(vcpu
);
8433 vcpu
->arch
.exception
.pending
= false;
8435 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
8436 kvm_update_dr0123(vcpu
);
8437 vcpu
->arch
.dr6
= DR6_INIT
;
8438 kvm_update_dr6(vcpu
);
8439 vcpu
->arch
.dr7
= DR7_FIXED_1
;
8440 kvm_update_dr7(vcpu
);
8444 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8445 vcpu
->arch
.apf
.msr_val
= 0;
8446 vcpu
->arch
.st
.msr_val
= 0;
8448 kvmclock_reset(vcpu
);
8450 kvm_clear_async_pf_completion_queue(vcpu
);
8451 kvm_async_pf_hash_reset(vcpu
);
8452 vcpu
->arch
.apf
.halted
= false;
8454 if (kvm_mpx_supported()) {
8455 void *mpx_state_buffer
;
8458 * To avoid have the INIT path from kvm_apic_has_events() that be
8459 * called with loaded FPU and does not let userspace fix the state.
8462 kvm_put_guest_fpu(vcpu
);
8463 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
8464 XFEATURE_MASK_BNDREGS
);
8465 if (mpx_state_buffer
)
8466 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndreg_state
));
8467 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
8468 XFEATURE_MASK_BNDCSR
);
8469 if (mpx_state_buffer
)
8470 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndcsr
));
8472 kvm_load_guest_fpu(vcpu
);
8476 kvm_pmu_reset(vcpu
);
8477 vcpu
->arch
.smbase
= 0x30000;
8479 vcpu
->arch
.msr_platform_info
= MSR_PLATFORM_INFO_CPUID_FAULT
;
8480 vcpu
->arch
.msr_misc_features_enables
= 0;
8482 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
8485 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
8486 vcpu
->arch
.regs_avail
= ~0;
8487 vcpu
->arch
.regs_dirty
= ~0;
8489 vcpu
->arch
.ia32_xss
= 0;
8491 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
8494 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
8496 struct kvm_segment cs
;
8498 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8499 cs
.selector
= vector
<< 8;
8500 cs
.base
= vector
<< 12;
8501 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8502 kvm_rip_write(vcpu
, 0);
8505 int kvm_arch_hardware_enable(void)
8508 struct kvm_vcpu
*vcpu
;
8513 bool stable
, backwards_tsc
= false;
8515 kvm_shared_msr_cpu_online();
8516 ret
= kvm_x86_ops
->hardware_enable();
8520 local_tsc
= rdtsc();
8521 stable
= !kvm_check_tsc_unstable();
8522 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
8523 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8524 if (!stable
&& vcpu
->cpu
== smp_processor_id())
8525 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
8526 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
8527 backwards_tsc
= true;
8528 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
8529 max_tsc
= vcpu
->arch
.last_host_tsc
;
8535 * Sometimes, even reliable TSCs go backwards. This happens on
8536 * platforms that reset TSC during suspend or hibernate actions, but
8537 * maintain synchronization. We must compensate. Fortunately, we can
8538 * detect that condition here, which happens early in CPU bringup,
8539 * before any KVM threads can be running. Unfortunately, we can't
8540 * bring the TSCs fully up to date with real time, as we aren't yet far
8541 * enough into CPU bringup that we know how much real time has actually
8542 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8543 * variables that haven't been updated yet.
8545 * So we simply find the maximum observed TSC above, then record the
8546 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8547 * the adjustment will be applied. Note that we accumulate
8548 * adjustments, in case multiple suspend cycles happen before some VCPU
8549 * gets a chance to run again. In the event that no KVM threads get a
8550 * chance to run, we will miss the entire elapsed period, as we'll have
8551 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8552 * loose cycle time. This isn't too big a deal, since the loss will be
8553 * uniform across all VCPUs (not to mention the scenario is extremely
8554 * unlikely). It is possible that a second hibernate recovery happens
8555 * much faster than a first, causing the observed TSC here to be
8556 * smaller; this would require additional padding adjustment, which is
8557 * why we set last_host_tsc to the local tsc observed here.
8559 * N.B. - this code below runs only on platforms with reliable TSC,
8560 * as that is the only way backwards_tsc is set above. Also note
8561 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8562 * have the same delta_cyc adjustment applied if backwards_tsc
8563 * is detected. Note further, this adjustment is only done once,
8564 * as we reset last_host_tsc on all VCPUs to stop this from being
8565 * called multiple times (one for each physical CPU bringup).
8567 * Platforms with unreliable TSCs don't have to deal with this, they
8568 * will be compensated by the logic in vcpu_load, which sets the TSC to
8569 * catchup mode. This will catchup all VCPUs to real time, but cannot
8570 * guarantee that they stay in perfect synchronization.
8572 if (backwards_tsc
) {
8573 u64 delta_cyc
= max_tsc
- local_tsc
;
8574 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
8575 kvm
->arch
.backwards_tsc_observed
= true;
8576 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8577 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
8578 vcpu
->arch
.last_host_tsc
= local_tsc
;
8579 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
8583 * We have to disable TSC offset matching.. if you were
8584 * booting a VM while issuing an S4 host suspend....
8585 * you may have some problem. Solving this issue is
8586 * left as an exercise to the reader.
8588 kvm
->arch
.last_tsc_nsec
= 0;
8589 kvm
->arch
.last_tsc_write
= 0;
8596 void kvm_arch_hardware_disable(void)
8598 kvm_x86_ops
->hardware_disable();
8599 drop_user_return_notifiers();
8602 int kvm_arch_hardware_setup(void)
8606 r
= kvm_x86_ops
->hardware_setup();
8610 if (kvm_has_tsc_control
) {
8612 * Make sure the user can only configure tsc_khz values that
8613 * fit into a signed integer.
8614 * A min value is not calculated because it will always
8615 * be 1 on all machines.
8617 u64 max
= min(0x7fffffffULL
,
8618 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
8619 kvm_max_guest_tsc_khz
= max
;
8621 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
8624 kvm_init_msr_list();
8628 void kvm_arch_hardware_unsetup(void)
8630 kvm_x86_ops
->hardware_unsetup();
8633 void kvm_arch_check_processor_compat(void *rtn
)
8635 kvm_x86_ops
->check_processor_compatibility(rtn
);
8638 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
8640 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
8642 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
8644 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
8646 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
8649 struct static_key kvm_no_apic_vcpu __read_mostly
;
8650 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
8652 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
8657 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv(vcpu
);
8658 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
8659 if (!irqchip_in_kernel(vcpu
->kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
8660 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8662 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
8664 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
8669 vcpu
->arch
.pio_data
= page_address(page
);
8671 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
8673 r
= kvm_mmu_create(vcpu
);
8675 goto fail_free_pio_data
;
8677 if (irqchip_in_kernel(vcpu
->kvm
)) {
8678 r
= kvm_create_lapic(vcpu
);
8680 goto fail_mmu_destroy
;
8682 static_key_slow_inc(&kvm_no_apic_vcpu
);
8684 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
8686 if (!vcpu
->arch
.mce_banks
) {
8688 goto fail_free_lapic
;
8690 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
8692 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
8694 goto fail_free_mce_banks
;
8699 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
8701 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
8703 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
8705 kvm_async_pf_hash_reset(vcpu
);
8708 vcpu
->arch
.pending_external_vector
= -1;
8709 vcpu
->arch
.preempted_in_kernel
= false;
8711 kvm_hv_vcpu_init(vcpu
);
8715 fail_free_mce_banks
:
8716 kfree(vcpu
->arch
.mce_banks
);
8718 kvm_free_lapic(vcpu
);
8720 kvm_mmu_destroy(vcpu
);
8722 free_page((unsigned long)vcpu
->arch
.pio_data
);
8727 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
8731 kvm_hv_vcpu_uninit(vcpu
);
8732 kvm_pmu_destroy(vcpu
);
8733 kfree(vcpu
->arch
.mce_banks
);
8734 kvm_free_lapic(vcpu
);
8735 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8736 kvm_mmu_destroy(vcpu
);
8737 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8738 free_page((unsigned long)vcpu
->arch
.pio_data
);
8739 if (!lapic_in_kernel(vcpu
))
8740 static_key_slow_dec(&kvm_no_apic_vcpu
);
8743 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
8745 vcpu
->arch
.l1tf_flush_l1d
= true;
8746 kvm_x86_ops
->sched_in(vcpu
, cpu
);
8749 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
8754 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
8755 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
8756 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
8757 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
8758 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
8760 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8761 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
8762 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8763 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
8764 &kvm
->arch
.irq_sources_bitmap
);
8766 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
8767 mutex_init(&kvm
->arch
.apic_map_lock
);
8768 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
8770 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
8771 pvclock_update_vm_gtod_copy(kvm
);
8773 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
8774 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
8776 kvm_hv_init_vm(kvm
);
8777 kvm_page_track_init(kvm
);
8778 kvm_mmu_init_vm(kvm
);
8780 if (kvm_x86_ops
->vm_init
)
8781 return kvm_x86_ops
->vm_init(kvm
);
8786 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
8789 kvm_mmu_unload(vcpu
);
8793 static void kvm_free_vcpus(struct kvm
*kvm
)
8796 struct kvm_vcpu
*vcpu
;
8799 * Unpin any mmu pages first.
8801 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8802 kvm_clear_async_pf_completion_queue(vcpu
);
8803 kvm_unload_vcpu_mmu(vcpu
);
8805 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8806 kvm_arch_vcpu_free(vcpu
);
8808 mutex_lock(&kvm
->lock
);
8809 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
8810 kvm
->vcpus
[i
] = NULL
;
8812 atomic_set(&kvm
->online_vcpus
, 0);
8813 mutex_unlock(&kvm
->lock
);
8816 void kvm_arch_sync_events(struct kvm
*kvm
)
8818 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
8819 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
8823 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8827 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
8828 struct kvm_memory_slot
*slot
, old
;
8830 /* Called with kvm->slots_lock held. */
8831 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
8834 slot
= id_to_memslot(slots
, id
);
8840 * MAP_SHARED to prevent internal slot pages from being moved
8843 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
8844 MAP_SHARED
| MAP_ANONYMOUS
, 0);
8845 if (IS_ERR((void *)hva
))
8846 return PTR_ERR((void *)hva
);
8855 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
8856 struct kvm_userspace_memory_region m
;
8858 m
.slot
= id
| (i
<< 16);
8860 m
.guest_phys_addr
= gpa
;
8861 m
.userspace_addr
= hva
;
8862 m
.memory_size
= size
;
8863 r
= __kvm_set_memory_region(kvm
, &m
);
8869 vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
8873 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
8875 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8879 mutex_lock(&kvm
->slots_lock
);
8880 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
8881 mutex_unlock(&kvm
->slots_lock
);
8885 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
8887 void kvm_arch_destroy_vm(struct kvm
*kvm
)
8889 if (current
->mm
== kvm
->mm
) {
8891 * Free memory regions allocated on behalf of userspace,
8892 * unless the the memory map has changed due to process exit
8895 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
8896 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
8897 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
8899 if (kvm_x86_ops
->vm_destroy
)
8900 kvm_x86_ops
->vm_destroy(kvm
);
8901 kvm_pic_destroy(kvm
);
8902 kvm_ioapic_destroy(kvm
);
8903 kvm_free_vcpus(kvm
);
8904 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
8905 kvm_mmu_uninit_vm(kvm
);
8906 kvm_page_track_cleanup(kvm
);
8907 kvm_hv_destroy_vm(kvm
);
8910 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
8911 struct kvm_memory_slot
*dont
)
8915 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8916 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
8917 kvfree(free
->arch
.rmap
[i
]);
8918 free
->arch
.rmap
[i
] = NULL
;
8923 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
8924 dont
->arch
.lpage_info
[i
- 1]) {
8925 kvfree(free
->arch
.lpage_info
[i
- 1]);
8926 free
->arch
.lpage_info
[i
- 1] = NULL
;
8930 kvm_page_track_free_memslot(free
, dont
);
8933 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
8934 unsigned long npages
)
8938 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8939 struct kvm_lpage_info
*linfo
;
8944 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
8945 slot
->base_gfn
, level
) + 1;
8947 slot
->arch
.rmap
[i
] =
8948 kvcalloc(lpages
, sizeof(*slot
->arch
.rmap
[i
]),
8950 if (!slot
->arch
.rmap
[i
])
8955 linfo
= kvcalloc(lpages
, sizeof(*linfo
), GFP_KERNEL
);
8959 slot
->arch
.lpage_info
[i
- 1] = linfo
;
8961 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
8962 linfo
[0].disallow_lpage
= 1;
8963 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
8964 linfo
[lpages
- 1].disallow_lpage
= 1;
8965 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
8967 * If the gfn and userspace address are not aligned wrt each
8968 * other, or if explicitly asked to, disable large page
8969 * support for this slot
8971 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
8972 !kvm_largepages_enabled()) {
8975 for (j
= 0; j
< lpages
; ++j
)
8976 linfo
[j
].disallow_lpage
= 1;
8980 if (kvm_page_track_create_memslot(slot
, npages
))
8986 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8987 kvfree(slot
->arch
.rmap
[i
]);
8988 slot
->arch
.rmap
[i
] = NULL
;
8992 kvfree(slot
->arch
.lpage_info
[i
- 1]);
8993 slot
->arch
.lpage_info
[i
- 1] = NULL
;
8998 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
9001 * memslots->generation has been incremented.
9002 * mmio generation may have reached its maximum value.
9004 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
9007 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
9008 struct kvm_memory_slot
*memslot
,
9009 const struct kvm_userspace_memory_region
*mem
,
9010 enum kvm_mr_change change
)
9015 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
9016 struct kvm_memory_slot
*new)
9018 /* Still write protect RO slot */
9019 if (new->flags
& KVM_MEM_READONLY
) {
9020 kvm_mmu_slot_remove_write_access(kvm
, new);
9025 * Call kvm_x86_ops dirty logging hooks when they are valid.
9027 * kvm_x86_ops->slot_disable_log_dirty is called when:
9029 * - KVM_MR_CREATE with dirty logging is disabled
9030 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9032 * The reason is, in case of PML, we need to set D-bit for any slots
9033 * with dirty logging disabled in order to eliminate unnecessary GPA
9034 * logging in PML buffer (and potential PML buffer full VMEXT). This
9035 * guarantees leaving PML enabled during guest's lifetime won't have
9036 * any additonal overhead from PML when guest is running with dirty
9037 * logging disabled for memory slots.
9039 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9040 * to dirty logging mode.
9042 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9044 * In case of write protect:
9046 * Write protect all pages for dirty logging.
9048 * All the sptes including the large sptes which point to this
9049 * slot are set to readonly. We can not create any new large
9050 * spte on this slot until the end of the logging.
9052 * See the comments in fast_page_fault().
9054 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
9055 if (kvm_x86_ops
->slot_enable_log_dirty
)
9056 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
9058 kvm_mmu_slot_remove_write_access(kvm
, new);
9060 if (kvm_x86_ops
->slot_disable_log_dirty
)
9061 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
9065 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
9066 const struct kvm_userspace_memory_region
*mem
,
9067 const struct kvm_memory_slot
*old
,
9068 const struct kvm_memory_slot
*new,
9069 enum kvm_mr_change change
)
9071 int nr_mmu_pages
= 0;
9073 if (!kvm
->arch
.n_requested_mmu_pages
)
9074 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
9077 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
9080 * Dirty logging tracks sptes in 4k granularity, meaning that large
9081 * sptes have to be split. If live migration is successful, the guest
9082 * in the source machine will be destroyed and large sptes will be
9083 * created in the destination. However, if the guest continues to run
9084 * in the source machine (for example if live migration fails), small
9085 * sptes will remain around and cause bad performance.
9087 * Scan sptes if dirty logging has been stopped, dropping those
9088 * which can be collapsed into a single large-page spte. Later
9089 * page faults will create the large-page sptes.
9091 if ((change
!= KVM_MR_DELETE
) &&
9092 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
9093 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
9094 kvm_mmu_zap_collapsible_sptes(kvm
, new);
9097 * Set up write protection and/or dirty logging for the new slot.
9099 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9100 * been zapped so no dirty logging staff is needed for old slot. For
9101 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9102 * new and it's also covered when dealing with the new slot.
9104 * FIXME: const-ify all uses of struct kvm_memory_slot.
9106 if (change
!= KVM_MR_DELETE
)
9107 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
9110 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
9112 kvm_mmu_invalidate_zap_all_pages(kvm
);
9115 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
9116 struct kvm_memory_slot
*slot
)
9118 kvm_page_track_flush_slot(kvm
, slot
);
9121 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
9123 if (!list_empty_careful(&vcpu
->async_pf
.done
))
9126 if (kvm_apic_has_events(vcpu
))
9129 if (vcpu
->arch
.pv
.pv_unhalted
)
9132 if (vcpu
->arch
.exception
.pending
)
9135 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
9136 (vcpu
->arch
.nmi_pending
&&
9137 kvm_x86_ops
->nmi_allowed(vcpu
)))
9140 if (kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
9141 (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)))
9144 if (kvm_arch_interrupt_allowed(vcpu
) &&
9145 kvm_cpu_has_interrupt(vcpu
))
9148 if (kvm_hv_has_stimer_pending(vcpu
))
9154 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
9156 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
9159 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
9161 return vcpu
->arch
.preempted_in_kernel
;
9164 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
9166 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
9169 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
9171 return kvm_x86_ops
->interrupt_allowed(vcpu
);
9174 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
9176 if (is_64_bit_mode(vcpu
))
9177 return kvm_rip_read(vcpu
);
9178 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
9179 kvm_rip_read(vcpu
));
9181 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
9183 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
9185 return kvm_get_linear_rip(vcpu
) == linear_rip
;
9187 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
9189 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
9191 unsigned long rflags
;
9193 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
9194 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
9195 rflags
&= ~X86_EFLAGS_TF
;
9198 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
9200 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
9202 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
9203 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
9204 rflags
|= X86_EFLAGS_TF
;
9205 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
9208 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
9210 __kvm_set_rflags(vcpu
, rflags
);
9211 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9213 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
9215 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
9219 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
9223 r
= kvm_mmu_reload(vcpu
);
9227 if (!vcpu
->arch
.mmu
.direct_map
&&
9228 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
9231 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
9234 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
9236 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
9239 static inline u32
kvm_async_pf_next_probe(u32 key
)
9241 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
9244 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9246 u32 key
= kvm_async_pf_hash_fn(gfn
);
9248 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
9249 key
= kvm_async_pf_next_probe(key
);
9251 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
9254 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9257 u32 key
= kvm_async_pf_hash_fn(gfn
);
9259 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
9260 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
9261 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
9262 key
= kvm_async_pf_next_probe(key
);
9267 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9269 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
9272 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9276 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
9278 vcpu
->arch
.apf
.gfns
[i
] = ~0;
9280 j
= kvm_async_pf_next_probe(j
);
9281 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
9283 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
9285 * k lies cyclically in ]i,j]
9287 * |....j i.k.| or |.k..j i...|
9289 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
9290 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
9295 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
9298 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
9302 static int apf_get_user(struct kvm_vcpu
*vcpu
, u32
*val
)
9305 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, val
,
9309 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
9310 struct kvm_async_pf
*work
)
9312 struct x86_exception fault
;
9314 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
9315 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
9317 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
9318 (vcpu
->arch
.apf
.send_user_only
&&
9319 kvm_x86_ops
->get_cpl(vcpu
) == 0))
9320 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
9321 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
9322 fault
.vector
= PF_VECTOR
;
9323 fault
.error_code_valid
= true;
9324 fault
.error_code
= 0;
9325 fault
.nested_page_fault
= false;
9326 fault
.address
= work
->arch
.token
;
9327 fault
.async_page_fault
= true;
9328 kvm_inject_page_fault(vcpu
, &fault
);
9332 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
9333 struct kvm_async_pf
*work
)
9335 struct x86_exception fault
;
9338 if (work
->wakeup_all
)
9339 work
->arch
.token
= ~0; /* broadcast wakeup */
9341 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
9342 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
9344 if (vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
&&
9345 !apf_get_user(vcpu
, &val
)) {
9346 if (val
== KVM_PV_REASON_PAGE_NOT_PRESENT
&&
9347 vcpu
->arch
.exception
.pending
&&
9348 vcpu
->arch
.exception
.nr
== PF_VECTOR
&&
9349 !apf_put_user(vcpu
, 0)) {
9350 vcpu
->arch
.exception
.injected
= false;
9351 vcpu
->arch
.exception
.pending
= false;
9352 vcpu
->arch
.exception
.nr
= 0;
9353 vcpu
->arch
.exception
.has_error_code
= false;
9354 vcpu
->arch
.exception
.error_code
= 0;
9355 } else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
9356 fault
.vector
= PF_VECTOR
;
9357 fault
.error_code_valid
= true;
9358 fault
.error_code
= 0;
9359 fault
.nested_page_fault
= false;
9360 fault
.address
= work
->arch
.token
;
9361 fault
.async_page_fault
= true;
9362 kvm_inject_page_fault(vcpu
, &fault
);
9365 vcpu
->arch
.apf
.halted
= false;
9366 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
9369 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
9371 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
9374 return kvm_can_do_async_pf(vcpu
);
9377 void kvm_arch_start_assignment(struct kvm
*kvm
)
9379 atomic_inc(&kvm
->arch
.assigned_device_count
);
9381 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
9383 void kvm_arch_end_assignment(struct kvm
*kvm
)
9385 atomic_dec(&kvm
->arch
.assigned_device_count
);
9387 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
9389 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
9391 return atomic_read(&kvm
->arch
.assigned_device_count
);
9393 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
9395 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
9397 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
9399 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
9401 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
9403 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
9405 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
9407 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
9409 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
9411 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
9413 bool kvm_arch_has_irq_bypass(void)
9415 return kvm_x86_ops
->update_pi_irte
!= NULL
;
9418 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
9419 struct irq_bypass_producer
*prod
)
9421 struct kvm_kernel_irqfd
*irqfd
=
9422 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
9424 irqfd
->producer
= prod
;
9426 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
9427 prod
->irq
, irqfd
->gsi
, 1);
9430 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
9431 struct irq_bypass_producer
*prod
)
9434 struct kvm_kernel_irqfd
*irqfd
=
9435 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
9437 WARN_ON(irqfd
->producer
!= prod
);
9438 irqfd
->producer
= NULL
;
9441 * When producer of consumer is unregistered, we change back to
9442 * remapped mode, so we can re-use the current implementation
9443 * when the irq is masked/disabled or the consumer side (KVM
9444 * int this case doesn't want to receive the interrupts.
9446 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
9448 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
9449 " fails: %d\n", irqfd
->consumer
.token
, ret
);
9452 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
9453 uint32_t guest_irq
, bool set
)
9455 if (!kvm_x86_ops
->update_pi_irte
)
9458 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
9461 bool kvm_vector_hashing_enabled(void)
9463 return vector_hashing
;
9465 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
9467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
9468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
9469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
9470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
9471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
9472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
9473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
9474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
9475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
9476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
9477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
9478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
9479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
9480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
9481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
9482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
9483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
9484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
9485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);