1 #include <linux/extable.h>
2 #include <linux/uaccess.h>
3 #include <linux/sched/debug.h>
6 #include <asm/fpu/internal.h>
8 #include <asm/kdebug.h>
10 typedef bool (*ex_handler_t
)(const struct exception_table_entry
*,
11 struct pt_regs
*, int);
13 static inline unsigned long
14 ex_fixup_addr(const struct exception_table_entry
*x
)
16 return (unsigned long)&x
->fixup
+ x
->fixup
;
18 static inline ex_handler_t
19 ex_fixup_handler(const struct exception_table_entry
*x
)
21 return (ex_handler_t
)((unsigned long)&x
->handler
+ x
->handler
);
24 __visible
bool ex_handler_default(const struct exception_table_entry
*fixup
,
25 struct pt_regs
*regs
, int trapnr
)
27 regs
->ip
= ex_fixup_addr(fixup
);
30 EXPORT_SYMBOL(ex_handler_default
);
32 __visible
bool ex_handler_fault(const struct exception_table_entry
*fixup
,
33 struct pt_regs
*regs
, int trapnr
)
35 regs
->ip
= ex_fixup_addr(fixup
);
39 EXPORT_SYMBOL_GPL(ex_handler_fault
);
42 * Handler for UD0 exception following a failed test against the
43 * result of a refcount inc/dec/add/sub.
45 __visible
bool ex_handler_refcount(const struct exception_table_entry
*fixup
,
46 struct pt_regs
*regs
, int trapnr
)
48 /* First unconditionally saturate the refcount. */
49 *(int *)regs
->cx
= INT_MIN
/ 2;
52 * Strictly speaking, this reports the fixup destination, not
53 * the fault location, and not the actually overflowing
54 * instruction, which is the instruction before the "js", but
55 * since that instruction could be a variety of lengths, just
56 * report the location after the overflow, which should be close
57 * enough for finding the overflow, as it's at least back in
58 * the function, having returned from .text.unlikely.
60 regs
->ip
= ex_fixup_addr(fixup
);
63 * This function has been called because either a negative refcount
64 * value was seen by any of the refcount functions, or a zero
65 * refcount value was seen by refcount_dec().
67 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
68 * wrapped around) will be set. Additionally, seeing the refcount
69 * reach 0 will set ZF (Zero Flag: result was zero). In each of
70 * these cases we want a report, since it's a boundary condition.
71 * The SF case is not reported since it indicates post-boundary
72 * manipulations below zero or above INT_MAX. And if none of the
73 * flags are set, something has gone very wrong, so report it.
75 if (regs
->flags
& (X86_EFLAGS_OF
| X86_EFLAGS_ZF
)) {
76 bool zero
= regs
->flags
& X86_EFLAGS_ZF
;
78 refcount_error_report(regs
, zero
? "hit zero" : "overflow");
79 } else if ((regs
->flags
& X86_EFLAGS_SF
) == 0) {
80 /* Report if none of OF, ZF, nor SF are set. */
81 refcount_error_report(regs
, "unexpected saturation");
86 EXPORT_SYMBOL(ex_handler_refcount
);
89 * Handler for when we fail to restore a task's FPU state. We should never get
90 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
91 * should always be valid. However, past bugs have allowed userspace to set
92 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
93 * These caused XRSTOR to fail when switching to the task, leaking the FPU
94 * registers of the task previously executing on the CPU. Mitigate this class
95 * of vulnerability by restoring from the initial state (essentially, zeroing
96 * out all the FPU registers) if we can't restore from the task's FPU state.
98 __visible
bool ex_handler_fprestore(const struct exception_table_entry
*fixup
,
99 struct pt_regs
*regs
, int trapnr
)
101 regs
->ip
= ex_fixup_addr(fixup
);
103 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
104 (void *)instruction_pointer(regs
));
106 __copy_kernel_to_fpregs(&init_fpstate
, -1);
109 EXPORT_SYMBOL_GPL(ex_handler_fprestore
);
111 __visible
bool ex_handler_ext(const struct exception_table_entry
*fixup
,
112 struct pt_regs
*regs
, int trapnr
)
114 /* Special hack for uaccess_err */
115 current
->thread
.uaccess_err
= 1;
116 regs
->ip
= ex_fixup_addr(fixup
);
119 EXPORT_SYMBOL(ex_handler_ext
);
121 __visible
bool ex_handler_rdmsr_unsafe(const struct exception_table_entry
*fixup
,
122 struct pt_regs
*regs
, int trapnr
)
124 if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n",
125 (unsigned int)regs
->cx
, regs
->ip
, (void *)regs
->ip
))
126 show_stack_regs(regs
);
128 /* Pretend that the read succeeded and returned 0. */
129 regs
->ip
= ex_fixup_addr(fixup
);
134 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe
);
136 __visible
bool ex_handler_wrmsr_unsafe(const struct exception_table_entry
*fixup
,
137 struct pt_regs
*regs
, int trapnr
)
139 if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n",
140 (unsigned int)regs
->cx
, (unsigned int)regs
->dx
,
141 (unsigned int)regs
->ax
, regs
->ip
, (void *)regs
->ip
))
142 show_stack_regs(regs
);
144 /* Pretend that the write succeeded. */
145 regs
->ip
= ex_fixup_addr(fixup
);
148 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe
);
150 __visible
bool ex_handler_clear_fs(const struct exception_table_entry
*fixup
,
151 struct pt_regs
*regs
, int trapnr
)
153 if (static_cpu_has(X86_BUG_NULL_SEG
))
154 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS
));
155 asm volatile ("mov %0, %%fs" : : "rm" (0));
156 return ex_handler_default(fixup
, regs
, trapnr
);
158 EXPORT_SYMBOL(ex_handler_clear_fs
);
160 __visible
bool ex_has_fault_handler(unsigned long ip
)
162 const struct exception_table_entry
*e
;
163 ex_handler_t handler
;
165 e
= search_exception_tables(ip
);
168 handler
= ex_fixup_handler(e
);
170 return handler
== ex_handler_fault
;
173 int fixup_exception(struct pt_regs
*regs
, int trapnr
)
175 const struct exception_table_entry
*e
;
176 ex_handler_t handler
;
178 #ifdef CONFIG_PNPBIOS
179 if (unlikely(SEGMENT_IS_PNP_CODE(regs
->cs
))) {
180 extern u32 pnp_bios_fault_eip
, pnp_bios_fault_esp
;
181 extern u32 pnp_bios_is_utter_crap
;
182 pnp_bios_is_utter_crap
= 1;
183 printk(KERN_CRIT
"PNPBIOS fault.. attempting recovery.\n");
187 : : "g" (pnp_bios_fault_esp
), "g" (pnp_bios_fault_eip
));
188 panic("do_trap: can't hit this");
192 e
= search_exception_tables(regs
->ip
);
196 handler
= ex_fixup_handler(e
);
197 return handler(e
, regs
, trapnr
);
200 extern unsigned int early_recursion_flag
;
202 /* Restricted version used during very early boot */
203 void __init
early_fixup_exception(struct pt_regs
*regs
, int trapnr
)
205 /* Ignore early NMIs. */
206 if (trapnr
== X86_TRAP_NMI
)
209 if (early_recursion_flag
> 2)
213 * Old CPUs leave the high bits of CS on the stack
214 * undefined. I'm not sure which CPUs do this, but at least
215 * the 486 DX works this way.
216 * Xen pv domains are not using the default __KERNEL_CS.
218 if (!xen_pv_domain() && regs
->cs
!= __KERNEL_CS
)
222 * The full exception fixup machinery is available as soon as
223 * the early IDT is loaded. This means that it is the
224 * responsibility of extable users to either function correctly
225 * when handlers are invoked early or to simply avoid causing
226 * exceptions before they're ready to handle them.
228 * This is better than filtering which handlers can be used,
229 * because refusing to call a handler here is guaranteed to
230 * result in a hard-to-debug panic.
232 * Keep in mind that not all vectors actually get here. Early
233 * fage faults, for example, are special.
235 if (fixup_exception(regs
, trapnr
))
238 if (fixup_bug(regs
, trapnr
))
242 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
243 (unsigned)trapnr
, (unsigned long)regs
->cs
, regs
->ip
,
244 regs
->orig_ax
, read_cr2());