Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / mm / mem_encrypt.c
blobb2de398d1fd3380003860215a22686cde5bdcada
1 /*
2 * AMD Memory Encryption Support
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #define DISABLE_BRANCH_PROFILING
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-direct.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/processor-flags.h>
29 #include <asm/msr.h>
30 #include <asm/cmdline.h>
32 #include "mm_internal.h"
35 * Since SME related variables are set early in the boot process they must
36 * reside in the .data section so as not to be zeroed out when the .bss
37 * section is later cleared.
39 u64 sme_me_mask __section(.data) = 0;
40 EXPORT_SYMBOL(sme_me_mask);
41 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
42 EXPORT_SYMBOL_GPL(sev_enable_key);
44 bool sev_enabled __section(.data);
46 /* Buffer used for early in-place encryption by BSP, no locking needed */
47 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
50 * This routine does not change the underlying encryption setting of the
51 * page(s) that map this memory. It assumes that eventually the memory is
52 * meant to be accessed as either encrypted or decrypted but the contents
53 * are currently not in the desired state.
55 * This routine follows the steps outlined in the AMD64 Architecture
56 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
58 static void __init __sme_early_enc_dec(resource_size_t paddr,
59 unsigned long size, bool enc)
61 void *src, *dst;
62 size_t len;
64 if (!sme_me_mask)
65 return;
67 wbinvd();
70 * There are limited number of early mapping slots, so map (at most)
71 * one page at time.
73 while (size) {
74 len = min_t(size_t, sizeof(sme_early_buffer), size);
77 * Create mappings for the current and desired format of
78 * the memory. Use a write-protected mapping for the source.
80 src = enc ? early_memremap_decrypted_wp(paddr, len) :
81 early_memremap_encrypted_wp(paddr, len);
83 dst = enc ? early_memremap_encrypted(paddr, len) :
84 early_memremap_decrypted(paddr, len);
87 * If a mapping can't be obtained to perform the operation,
88 * then eventual access of that area in the desired mode
89 * will cause a crash.
91 BUG_ON(!src || !dst);
94 * Use a temporary buffer, of cache-line multiple size, to
95 * avoid data corruption as documented in the APM.
97 memcpy(sme_early_buffer, src, len);
98 memcpy(dst, sme_early_buffer, len);
100 early_memunmap(dst, len);
101 early_memunmap(src, len);
103 paddr += len;
104 size -= len;
108 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
110 __sme_early_enc_dec(paddr, size, true);
113 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
115 __sme_early_enc_dec(paddr, size, false);
118 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
119 bool map)
121 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
122 pmdval_t pmd_flags, pmd;
124 /* Use early_pmd_flags but remove the encryption mask */
125 pmd_flags = __sme_clr(early_pmd_flags);
127 do {
128 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
129 __early_make_pgtable((unsigned long)vaddr, pmd);
131 vaddr += PMD_SIZE;
132 paddr += PMD_SIZE;
133 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
134 } while (size);
136 __native_flush_tlb();
139 void __init sme_unmap_bootdata(char *real_mode_data)
141 struct boot_params *boot_data;
142 unsigned long cmdline_paddr;
144 if (!sme_active())
145 return;
147 /* Get the command line address before unmapping the real_mode_data */
148 boot_data = (struct boot_params *)real_mode_data;
149 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
151 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
153 if (!cmdline_paddr)
154 return;
156 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
159 void __init sme_map_bootdata(char *real_mode_data)
161 struct boot_params *boot_data;
162 unsigned long cmdline_paddr;
164 if (!sme_active())
165 return;
167 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
169 /* Get the command line address after mapping the real_mode_data */
170 boot_data = (struct boot_params *)real_mode_data;
171 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
173 if (!cmdline_paddr)
174 return;
176 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
179 void __init sme_early_init(void)
181 unsigned int i;
183 if (!sme_me_mask)
184 return;
186 early_pmd_flags = __sme_set(early_pmd_flags);
188 __supported_pte_mask = __sme_set(__supported_pte_mask);
190 /* Update the protection map with memory encryption mask */
191 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
192 protection_map[i] = pgprot_encrypted(protection_map[i]);
194 if (sev_active())
195 swiotlb_force = SWIOTLB_FORCE;
198 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
200 pgprot_t old_prot, new_prot;
201 unsigned long pfn, pa, size;
202 pte_t new_pte;
204 switch (level) {
205 case PG_LEVEL_4K:
206 pfn = pte_pfn(*kpte);
207 old_prot = pte_pgprot(*kpte);
208 break;
209 case PG_LEVEL_2M:
210 pfn = pmd_pfn(*(pmd_t *)kpte);
211 old_prot = pmd_pgprot(*(pmd_t *)kpte);
212 break;
213 case PG_LEVEL_1G:
214 pfn = pud_pfn(*(pud_t *)kpte);
215 old_prot = pud_pgprot(*(pud_t *)kpte);
216 break;
217 default:
218 return;
221 new_prot = old_prot;
222 if (enc)
223 pgprot_val(new_prot) |= _PAGE_ENC;
224 else
225 pgprot_val(new_prot) &= ~_PAGE_ENC;
227 /* If prot is same then do nothing. */
228 if (pgprot_val(old_prot) == pgprot_val(new_prot))
229 return;
231 pa = pfn << page_level_shift(level);
232 size = page_level_size(level);
235 * We are going to perform in-place en-/decryption and change the
236 * physical page attribute from C=1 to C=0 or vice versa. Flush the
237 * caches to ensure that data gets accessed with the correct C-bit.
239 clflush_cache_range(__va(pa), size);
241 /* Encrypt/decrypt the contents in-place */
242 if (enc)
243 sme_early_encrypt(pa, size);
244 else
245 sme_early_decrypt(pa, size);
247 /* Change the page encryption mask. */
248 new_pte = pfn_pte(pfn, new_prot);
249 set_pte_atomic(kpte, new_pte);
252 static int __init early_set_memory_enc_dec(unsigned long vaddr,
253 unsigned long size, bool enc)
255 unsigned long vaddr_end, vaddr_next;
256 unsigned long psize, pmask;
257 int split_page_size_mask;
258 int level, ret;
259 pte_t *kpte;
261 vaddr_next = vaddr;
262 vaddr_end = vaddr + size;
264 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
265 kpte = lookup_address(vaddr, &level);
266 if (!kpte || pte_none(*kpte)) {
267 ret = 1;
268 goto out;
271 if (level == PG_LEVEL_4K) {
272 __set_clr_pte_enc(kpte, level, enc);
273 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
274 continue;
277 psize = page_level_size(level);
278 pmask = page_level_mask(level);
281 * Check whether we can change the large page in one go.
282 * We request a split when the address is not aligned and
283 * the number of pages to set/clear encryption bit is smaller
284 * than the number of pages in the large page.
286 if (vaddr == (vaddr & pmask) &&
287 ((vaddr_end - vaddr) >= psize)) {
288 __set_clr_pte_enc(kpte, level, enc);
289 vaddr_next = (vaddr & pmask) + psize;
290 continue;
294 * The virtual address is part of a larger page, create the next
295 * level page table mapping (4K or 2M). If it is part of a 2M
296 * page then we request a split of the large page into 4K
297 * chunks. A 1GB large page is split into 2M pages, resp.
299 if (level == PG_LEVEL_2M)
300 split_page_size_mask = 0;
301 else
302 split_page_size_mask = 1 << PG_LEVEL_2M;
304 kernel_physical_mapping_init(__pa(vaddr & pmask),
305 __pa((vaddr_end & pmask) + psize),
306 split_page_size_mask);
309 ret = 0;
311 out:
312 __flush_tlb_all();
313 return ret;
316 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
318 return early_set_memory_enc_dec(vaddr, size, false);
321 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
323 return early_set_memory_enc_dec(vaddr, size, true);
327 * SME and SEV are very similar but they are not the same, so there are
328 * times that the kernel will need to distinguish between SME and SEV. The
329 * sme_active() and sev_active() functions are used for this. When a
330 * distinction isn't needed, the mem_encrypt_active() function can be used.
332 * The trampoline code is a good example for this requirement. Before
333 * paging is activated, SME will access all memory as decrypted, but SEV
334 * will access all memory as encrypted. So, when APs are being brought
335 * up under SME the trampoline area cannot be encrypted, whereas under SEV
336 * the trampoline area must be encrypted.
338 bool sme_active(void)
340 return sme_me_mask && !sev_enabled;
342 EXPORT_SYMBOL(sme_active);
344 bool sev_active(void)
346 return sme_me_mask && sev_enabled;
348 EXPORT_SYMBOL(sev_active);
350 /* Architecture __weak replacement functions */
351 void __init mem_encrypt_init(void)
353 if (!sme_me_mask)
354 return;
356 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
357 swiotlb_update_mem_attributes();
360 * With SEV, DMA operations cannot use encryption, we need to use
361 * SWIOTLB to bounce buffer DMA operation.
363 if (sev_active())
364 dma_ops = &swiotlb_dma_ops;
367 * With SEV, we need to unroll the rep string I/O instructions.
369 if (sev_active())
370 static_branch_enable(&sev_enable_key);
372 pr_info("AMD %s active\n",
373 sev_active() ? "Secure Encrypted Virtualization (SEV)"
374 : "Secure Memory Encryption (SME)");