2 * AMD Memory Encryption Support
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #define DISABLE_BRANCH_PROFILING
16 * Since we're dealing with identity mappings, physical and virtual
17 * addresses are the same, so override these defines which are ultimately
18 * used by the headers in misc.h.
20 #define __pa(x) ((unsigned long)(x))
21 #define __va(x) ((void *)((unsigned long)(x)))
24 * Special hack: we have to be careful, because no indirections are
25 * allowed here, and paravirt_ops is a kind of one. As it will only run in
26 * baremetal anyway, we just keep it from happening. (This list needs to
27 * be extended when new paravirt and debugging variants are added.)
29 #undef CONFIG_PARAVIRT
30 #undef CONFIG_PARAVIRT_SPINLOCKS
32 #include <linux/kernel.h>
34 #include <linux/mem_encrypt.h>
36 #include <asm/setup.h>
37 #include <asm/sections.h>
38 #include <asm/cmdline.h>
40 #include "mm_internal.h"
42 #define PGD_FLAGS _KERNPG_TABLE_NOENC
43 #define P4D_FLAGS _KERNPG_TABLE_NOENC
44 #define PUD_FLAGS _KERNPG_TABLE_NOENC
45 #define PMD_FLAGS _KERNPG_TABLE_NOENC
47 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
49 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
50 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
51 (_PAGE_PAT | _PAGE_PWT))
53 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
55 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
57 #define PTE_FLAGS_DEC PTE_FLAGS
58 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
59 (_PAGE_PAT | _PAGE_PWT))
61 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
63 struct sme_populate_pgd_data
{
72 unsigned long vaddr_end
;
75 static char sme_cmdline_arg
[] __initdata
= "mem_encrypt";
76 static char sme_cmdline_on
[] __initdata
= "on";
77 static char sme_cmdline_off
[] __initdata
= "off";
79 static void __init
sme_clear_pgd(struct sme_populate_pgd_data
*ppd
)
81 unsigned long pgd_start
, pgd_end
, pgd_size
;
84 pgd_start
= ppd
->vaddr
& PGDIR_MASK
;
85 pgd_end
= ppd
->vaddr_end
& PGDIR_MASK
;
87 pgd_size
= (((pgd_end
- pgd_start
) / PGDIR_SIZE
) + 1) * sizeof(pgd_t
);
89 pgd_p
= ppd
->pgd
+ pgd_index(ppd
->vaddr
);
91 memset(pgd_p
, 0, pgd_size
);
94 static pud_t __init
*sme_prepare_pgd(struct sme_populate_pgd_data
*ppd
)
101 pgd
= ppd
->pgd
+ pgd_index(ppd
->vaddr
);
102 if (pgd_none(*pgd
)) {
103 p4d
= ppd
->pgtable_area
;
104 memset(p4d
, 0, sizeof(*p4d
) * PTRS_PER_P4D
);
105 ppd
->pgtable_area
+= sizeof(*p4d
) * PTRS_PER_P4D
;
106 set_pgd(pgd
, __pgd(PGD_FLAGS
| __pa(p4d
)));
109 p4d
= p4d_offset(pgd
, ppd
->vaddr
);
110 if (p4d_none(*p4d
)) {
111 pud
= ppd
->pgtable_area
;
112 memset(pud
, 0, sizeof(*pud
) * PTRS_PER_PUD
);
113 ppd
->pgtable_area
+= sizeof(*pud
) * PTRS_PER_PUD
;
114 set_p4d(p4d
, __p4d(P4D_FLAGS
| __pa(pud
)));
117 pud
= pud_offset(p4d
, ppd
->vaddr
);
118 if (pud_none(*pud
)) {
119 pmd
= ppd
->pgtable_area
;
120 memset(pmd
, 0, sizeof(*pmd
) * PTRS_PER_PMD
);
121 ppd
->pgtable_area
+= sizeof(*pmd
) * PTRS_PER_PMD
;
122 set_pud(pud
, __pud(PUD_FLAGS
| __pa(pmd
)));
131 static void __init
sme_populate_pgd_large(struct sme_populate_pgd_data
*ppd
)
136 pud
= sme_prepare_pgd(ppd
);
140 pmd
= pmd_offset(pud
, ppd
->vaddr
);
144 set_pmd(pmd
, __pmd(ppd
->paddr
| ppd
->pmd_flags
));
147 static void __init
sme_populate_pgd(struct sme_populate_pgd_data
*ppd
)
153 pud
= sme_prepare_pgd(ppd
);
157 pmd
= pmd_offset(pud
, ppd
->vaddr
);
158 if (pmd_none(*pmd
)) {
159 pte
= ppd
->pgtable_area
;
160 memset(pte
, 0, sizeof(pte
) * PTRS_PER_PTE
);
161 ppd
->pgtable_area
+= sizeof(pte
) * PTRS_PER_PTE
;
162 set_pmd(pmd
, __pmd(PMD_FLAGS
| __pa(pte
)));
168 pte
= pte_offset_map(pmd
, ppd
->vaddr
);
170 set_pte(pte
, __pte(ppd
->paddr
| ppd
->pte_flags
));
173 static void __init
__sme_map_range_pmd(struct sme_populate_pgd_data
*ppd
)
175 while (ppd
->vaddr
< ppd
->vaddr_end
) {
176 sme_populate_pgd_large(ppd
);
178 ppd
->vaddr
+= PMD_PAGE_SIZE
;
179 ppd
->paddr
+= PMD_PAGE_SIZE
;
183 static void __init
__sme_map_range_pte(struct sme_populate_pgd_data
*ppd
)
185 while (ppd
->vaddr
< ppd
->vaddr_end
) {
186 sme_populate_pgd(ppd
);
188 ppd
->vaddr
+= PAGE_SIZE
;
189 ppd
->paddr
+= PAGE_SIZE
;
193 static void __init
__sme_map_range(struct sme_populate_pgd_data
*ppd
,
194 pmdval_t pmd_flags
, pteval_t pte_flags
)
196 unsigned long vaddr_end
;
198 ppd
->pmd_flags
= pmd_flags
;
199 ppd
->pte_flags
= pte_flags
;
201 /* Save original end value since we modify the struct value */
202 vaddr_end
= ppd
->vaddr_end
;
204 /* If start is not 2MB aligned, create PTE entries */
205 ppd
->vaddr_end
= ALIGN(ppd
->vaddr
, PMD_PAGE_SIZE
);
206 __sme_map_range_pte(ppd
);
208 /* Create PMD entries */
209 ppd
->vaddr_end
= vaddr_end
& PMD_PAGE_MASK
;
210 __sme_map_range_pmd(ppd
);
212 /* If end is not 2MB aligned, create PTE entries */
213 ppd
->vaddr_end
= vaddr_end
;
214 __sme_map_range_pte(ppd
);
217 static void __init
sme_map_range_encrypted(struct sme_populate_pgd_data
*ppd
)
219 __sme_map_range(ppd
, PMD_FLAGS_ENC
, PTE_FLAGS_ENC
);
222 static void __init
sme_map_range_decrypted(struct sme_populate_pgd_data
*ppd
)
224 __sme_map_range(ppd
, PMD_FLAGS_DEC
, PTE_FLAGS_DEC
);
227 static void __init
sme_map_range_decrypted_wp(struct sme_populate_pgd_data
*ppd
)
229 __sme_map_range(ppd
, PMD_FLAGS_DEC_WP
, PTE_FLAGS_DEC_WP
);
232 static unsigned long __init
sme_pgtable_calc(unsigned long len
)
234 unsigned long entries
= 0, tables
= 0;
237 * Perform a relatively simplistic calculation of the pagetable
238 * entries that are needed. Those mappings will be covered mostly
239 * by 2MB PMD entries so we can conservatively calculate the required
240 * number of P4D, PUD and PMD structures needed to perform the
241 * mappings. For mappings that are not 2MB aligned, PTE mappings
242 * would be needed for the start and end portion of the address range
243 * that fall outside of the 2MB alignment. This results in, at most,
244 * two extra pages to hold PTE entries for each range that is mapped.
245 * Incrementing the count for each covers the case where the addresses
249 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
250 if (PTRS_PER_P4D
> 1)
251 entries
+= (DIV_ROUND_UP(len
, PGDIR_SIZE
) + 1) * sizeof(p4d_t
) * PTRS_PER_P4D
;
252 entries
+= (DIV_ROUND_UP(len
, P4D_SIZE
) + 1) * sizeof(pud_t
) * PTRS_PER_PUD
;
253 entries
+= (DIV_ROUND_UP(len
, PUD_SIZE
) + 1) * sizeof(pmd_t
) * PTRS_PER_PMD
;
254 entries
+= 2 * sizeof(pte_t
) * PTRS_PER_PTE
;
257 * Now calculate the added pagetable structures needed to populate
258 * the new pagetables.
261 if (PTRS_PER_P4D
> 1)
262 tables
+= DIV_ROUND_UP(entries
, PGDIR_SIZE
) * sizeof(p4d_t
) * PTRS_PER_P4D
;
263 tables
+= DIV_ROUND_UP(entries
, P4D_SIZE
) * sizeof(pud_t
) * PTRS_PER_PUD
;
264 tables
+= DIV_ROUND_UP(entries
, PUD_SIZE
) * sizeof(pmd_t
) * PTRS_PER_PMD
;
266 return entries
+ tables
;
269 void __init
sme_encrypt_kernel(struct boot_params
*bp
)
271 unsigned long workarea_start
, workarea_end
, workarea_len
;
272 unsigned long execute_start
, execute_end
, execute_len
;
273 unsigned long kernel_start
, kernel_end
, kernel_len
;
274 unsigned long initrd_start
, initrd_end
, initrd_len
;
275 struct sme_populate_pgd_data ppd
;
276 unsigned long pgtable_area_len
;
277 unsigned long decrypted_base
;
283 * Prepare for encrypting the kernel and initrd by building new
284 * pagetables with the necessary attributes needed to encrypt the
287 * One range of virtual addresses will map the memory occupied
288 * by the kernel and initrd as encrypted.
290 * Another range of virtual addresses will map the memory occupied
291 * by the kernel and initrd as decrypted and write-protected.
293 * The use of write-protect attribute will prevent any of the
294 * memory from being cached.
297 /* Physical addresses gives us the identity mapped virtual addresses */
298 kernel_start
= __pa_symbol(_text
);
299 kernel_end
= ALIGN(__pa_symbol(_end
), PMD_PAGE_SIZE
);
300 kernel_len
= kernel_end
- kernel_start
;
305 #ifdef CONFIG_BLK_DEV_INITRD
306 initrd_len
= (unsigned long)bp
->hdr
.ramdisk_size
|
307 ((unsigned long)bp
->ext_ramdisk_size
<< 32);
309 initrd_start
= (unsigned long)bp
->hdr
.ramdisk_image
|
310 ((unsigned long)bp
->ext_ramdisk_image
<< 32);
311 initrd_end
= PAGE_ALIGN(initrd_start
+ initrd_len
);
312 initrd_len
= initrd_end
- initrd_start
;
316 /* Set the encryption workarea to be immediately after the kernel */
317 workarea_start
= kernel_end
;
320 * Calculate required number of workarea bytes needed:
321 * executable encryption area size:
322 * stack page (PAGE_SIZE)
323 * encryption routine page (PAGE_SIZE)
324 * intermediate copy buffer (PMD_PAGE_SIZE)
325 * pagetable structures for the encryption of the kernel
326 * pagetable structures for workarea (in case not currently mapped)
328 execute_start
= workarea_start
;
329 execute_end
= execute_start
+ (PAGE_SIZE
* 2) + PMD_PAGE_SIZE
;
330 execute_len
= execute_end
- execute_start
;
333 * One PGD for both encrypted and decrypted mappings and a set of
334 * PUDs and PMDs for each of the encrypted and decrypted mappings.
336 pgtable_area_len
= sizeof(pgd_t
) * PTRS_PER_PGD
;
337 pgtable_area_len
+= sme_pgtable_calc(execute_end
- kernel_start
) * 2;
339 pgtable_area_len
+= sme_pgtable_calc(initrd_len
) * 2;
341 /* PUDs and PMDs needed in the current pagetables for the workarea */
342 pgtable_area_len
+= sme_pgtable_calc(execute_len
+ pgtable_area_len
);
345 * The total workarea includes the executable encryption area and
346 * the pagetable area. The start of the workarea is already 2MB
347 * aligned, align the end of the workarea on a 2MB boundary so that
348 * we don't try to create/allocate PTE entries from the workarea
349 * before it is mapped.
351 workarea_len
= execute_len
+ pgtable_area_len
;
352 workarea_end
= ALIGN(workarea_start
+ workarea_len
, PMD_PAGE_SIZE
);
355 * Set the address to the start of where newly created pagetable
356 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
357 * structures are created when the workarea is added to the current
358 * pagetables and when the new encrypted and decrypted kernel
359 * mappings are populated.
361 ppd
.pgtable_area
= (void *)execute_end
;
364 * Make sure the current pagetable structure has entries for
365 * addressing the workarea.
367 ppd
.pgd
= (pgd_t
*)native_read_cr3_pa();
368 ppd
.paddr
= workarea_start
;
369 ppd
.vaddr
= workarea_start
;
370 ppd
.vaddr_end
= workarea_end
;
371 sme_map_range_decrypted(&ppd
);
373 /* Flush the TLB - no globals so cr3 is enough */
374 native_write_cr3(__native_read_cr3());
377 * A new pagetable structure is being built to allow for the kernel
378 * and initrd to be encrypted. It starts with an empty PGD that will
379 * then be populated with new PUDs and PMDs as the encrypted and
380 * decrypted kernel mappings are created.
382 ppd
.pgd
= ppd
.pgtable_area
;
383 memset(ppd
.pgd
, 0, sizeof(pgd_t
) * PTRS_PER_PGD
);
384 ppd
.pgtable_area
+= sizeof(pgd_t
) * PTRS_PER_PGD
;
387 * A different PGD index/entry must be used to get different
388 * pagetable entries for the decrypted mapping. Choose the next
389 * PGD index and convert it to a virtual address to be used as
390 * the base of the mapping.
392 decrypted_base
= (pgd_index(workarea_end
) + 1) & (PTRS_PER_PGD
- 1);
394 unsigned long check_base
;
396 check_base
= (pgd_index(initrd_end
) + 1) & (PTRS_PER_PGD
- 1);
397 decrypted_base
= max(decrypted_base
, check_base
);
399 decrypted_base
<<= PGDIR_SHIFT
;
401 /* Add encrypted kernel (identity) mappings */
402 ppd
.paddr
= kernel_start
;
403 ppd
.vaddr
= kernel_start
;
404 ppd
.vaddr_end
= kernel_end
;
405 sme_map_range_encrypted(&ppd
);
407 /* Add decrypted, write-protected kernel (non-identity) mappings */
408 ppd
.paddr
= kernel_start
;
409 ppd
.vaddr
= kernel_start
+ decrypted_base
;
410 ppd
.vaddr_end
= kernel_end
+ decrypted_base
;
411 sme_map_range_decrypted_wp(&ppd
);
414 /* Add encrypted initrd (identity) mappings */
415 ppd
.paddr
= initrd_start
;
416 ppd
.vaddr
= initrd_start
;
417 ppd
.vaddr_end
= initrd_end
;
418 sme_map_range_encrypted(&ppd
);
420 * Add decrypted, write-protected initrd (non-identity) mappings
422 ppd
.paddr
= initrd_start
;
423 ppd
.vaddr
= initrd_start
+ decrypted_base
;
424 ppd
.vaddr_end
= initrd_end
+ decrypted_base
;
425 sme_map_range_decrypted_wp(&ppd
);
428 /* Add decrypted workarea mappings to both kernel mappings */
429 ppd
.paddr
= workarea_start
;
430 ppd
.vaddr
= workarea_start
;
431 ppd
.vaddr_end
= workarea_end
;
432 sme_map_range_decrypted(&ppd
);
434 ppd
.paddr
= workarea_start
;
435 ppd
.vaddr
= workarea_start
+ decrypted_base
;
436 ppd
.vaddr_end
= workarea_end
+ decrypted_base
;
437 sme_map_range_decrypted(&ppd
);
439 /* Perform the encryption */
440 sme_encrypt_execute(kernel_start
, kernel_start
+ decrypted_base
,
441 kernel_len
, workarea_start
, (unsigned long)ppd
.pgd
);
444 sme_encrypt_execute(initrd_start
, initrd_start
+ decrypted_base
,
445 initrd_len
, workarea_start
,
446 (unsigned long)ppd
.pgd
);
449 * At this point we are running encrypted. Remove the mappings for
450 * the decrypted areas - all that is needed for this is to remove
451 * the PGD entry/entries.
453 ppd
.vaddr
= kernel_start
+ decrypted_base
;
454 ppd
.vaddr_end
= kernel_end
+ decrypted_base
;
458 ppd
.vaddr
= initrd_start
+ decrypted_base
;
459 ppd
.vaddr_end
= initrd_end
+ decrypted_base
;
463 ppd
.vaddr
= workarea_start
+ decrypted_base
;
464 ppd
.vaddr_end
= workarea_end
+ decrypted_base
;
467 /* Flush the TLB - no globals so cr3 is enough */
468 native_write_cr3(__native_read_cr3());
471 void __init
sme_enable(struct boot_params
*bp
)
473 const char *cmdline_ptr
, *cmdline_arg
, *cmdline_on
, *cmdline_off
;
474 unsigned int eax
, ebx
, ecx
, edx
;
475 unsigned long feature_mask
;
476 bool active_by_default
;
477 unsigned long me_mask
;
481 /* Check for the SME/SEV support leaf */
484 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
485 if (eax
< 0x8000001f)
488 #define AMD_SME_BIT BIT(0)
489 #define AMD_SEV_BIT BIT(1)
491 * Set the feature mask (SME or SEV) based on whether we are
492 * running under a hypervisor.
496 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
497 feature_mask
= (ecx
& BIT(31)) ? AMD_SEV_BIT
: AMD_SME_BIT
;
500 * Check for the SME/SEV feature:
501 * CPUID Fn8000_001F[EAX]
502 * - Bit 0 - Secure Memory Encryption support
503 * - Bit 1 - Secure Encrypted Virtualization support
504 * CPUID Fn8000_001F[EBX]
505 * - Bits 5:0 - Pagetable bit position used to indicate encryption
509 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
510 if (!(eax
& feature_mask
))
513 me_mask
= 1UL << (ebx
& 0x3f);
515 /* Check if memory encryption is enabled */
516 if (feature_mask
== AMD_SME_BIT
) {
517 /* For SME, check the SYSCFG MSR */
518 msr
= __rdmsr(MSR_K8_SYSCFG
);
519 if (!(msr
& MSR_K8_SYSCFG_MEM_ENCRYPT
))
522 /* For SEV, check the SEV MSR */
523 msr
= __rdmsr(MSR_AMD64_SEV
);
524 if (!(msr
& MSR_AMD64_SEV_ENABLED
))
527 /* SEV state cannot be controlled by a command line option */
528 sme_me_mask
= me_mask
;
530 physical_mask
&= ~sme_me_mask
;
535 * Fixups have not been applied to phys_base yet and we're running
536 * identity mapped, so we must obtain the address to the SME command
537 * line argument data using rip-relative addressing.
539 asm ("lea sme_cmdline_arg(%%rip), %0"
541 : "p" (sme_cmdline_arg
));
542 asm ("lea sme_cmdline_on(%%rip), %0"
544 : "p" (sme_cmdline_on
));
545 asm ("lea sme_cmdline_off(%%rip), %0"
547 : "p" (sme_cmdline_off
));
549 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
))
550 active_by_default
= true;
552 active_by_default
= false;
554 cmdline_ptr
= (const char *)((u64
)bp
->hdr
.cmd_line_ptr
|
555 ((u64
)bp
->ext_cmd_line_ptr
<< 32));
557 cmdline_find_option(cmdline_ptr
, cmdline_arg
, buffer
, sizeof(buffer
));
559 if (!strncmp(buffer
, cmdline_on
, sizeof(buffer
)))
560 sme_me_mask
= me_mask
;
561 else if (!strncmp(buffer
, cmdline_off
, sizeof(buffer
)))
564 sme_me_mask
= active_by_default
? me_mask
: 0;
566 physical_mask
&= ~sme_me_mask
;