Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / mm / pageattr.c
blob8d6c34fe49be9567157b65fa69d8d1059f7779ee
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
30 * The current flushing context - we pass it instead of 5 arguments:
32 struct cpa_data {
33 unsigned long *vaddr;
34 pgd_t *pgd;
35 pgprot_t mask_set;
36 pgprot_t mask_clr;
37 unsigned long numpages;
38 int flags;
39 unsigned long pfn;
40 unsigned force_split : 1;
41 int curpage;
42 struct page **pages;
46 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48 * entries change the page attribute in parallel to some other cpu
49 * splitting a large page entry along with changing the attribute.
51 static DEFINE_SPINLOCK(cpa_lock);
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
58 #ifdef CONFIG_PROC_FS
59 static unsigned long direct_pages_count[PG_LEVEL_NUM];
61 void update_page_count(int level, unsigned long pages)
63 /* Protect against CPA */
64 spin_lock(&pgd_lock);
65 direct_pages_count[level] += pages;
66 spin_unlock(&pgd_lock);
69 static void split_page_count(int level)
71 if (direct_pages_count[level] == 0)
72 return;
74 direct_pages_count[level]--;
75 direct_pages_count[level - 1] += PTRS_PER_PTE;
78 void arch_report_meminfo(struct seq_file *m)
80 seq_printf(m, "DirectMap4k: %8lu kB\n",
81 direct_pages_count[PG_LEVEL_4K] << 2);
82 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
83 seq_printf(m, "DirectMap2M: %8lu kB\n",
84 direct_pages_count[PG_LEVEL_2M] << 11);
85 #else
86 seq_printf(m, "DirectMap4M: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_2M] << 12);
88 #endif
89 if (direct_gbpages)
90 seq_printf(m, "DirectMap1G: %8lu kB\n",
91 direct_pages_count[PG_LEVEL_1G] << 20);
93 #else
94 static inline void split_page_count(int level) { }
95 #endif
97 static inline int
98 within(unsigned long addr, unsigned long start, unsigned long end)
100 return addr >= start && addr < end;
103 static inline int
104 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
106 return addr >= start && addr <= end;
109 #ifdef CONFIG_X86_64
111 static inline unsigned long highmap_start_pfn(void)
113 return __pa_symbol(_text) >> PAGE_SHIFT;
116 static inline unsigned long highmap_end_pfn(void)
118 /* Do not reference physical address outside the kernel. */
119 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
122 static bool __cpa_pfn_in_highmap(unsigned long pfn)
125 * Kernel text has an alias mapping at a high address, known
126 * here as "highmap".
128 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
131 #else
133 static bool __cpa_pfn_in_highmap(unsigned long pfn)
135 /* There is no highmap on 32-bit */
136 return false;
139 #endif
142 * Flushing functions
146 * clflush_cache_range - flush a cache range with clflush
147 * @vaddr: virtual start address
148 * @size: number of bytes to flush
150 * clflushopt is an unordered instruction which needs fencing with mfence or
151 * sfence to avoid ordering issues.
153 void clflush_cache_range(void *vaddr, unsigned int size)
155 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
156 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
157 void *vend = vaddr + size;
159 if (p >= vend)
160 return;
162 mb();
164 for (; p < vend; p += clflush_size)
165 clflushopt(p);
167 mb();
169 EXPORT_SYMBOL_GPL(clflush_cache_range);
171 void arch_invalidate_pmem(void *addr, size_t size)
173 clflush_cache_range(addr, size);
175 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
177 static void __cpa_flush_all(void *arg)
179 unsigned long cache = (unsigned long)arg;
182 * Flush all to work around Errata in early athlons regarding
183 * large page flushing.
185 __flush_tlb_all();
187 if (cache && boot_cpu_data.x86 >= 4)
188 wbinvd();
191 static void cpa_flush_all(unsigned long cache)
193 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
195 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
198 static void __cpa_flush_range(void *arg)
201 * We could optimize that further and do individual per page
202 * tlb invalidates for a low number of pages. Caveat: we must
203 * flush the high aliases on 64bit as well.
205 __flush_tlb_all();
208 static void cpa_flush_range(unsigned long start, int numpages, int cache)
210 unsigned int i, level;
211 unsigned long addr;
213 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
214 WARN_ON(PAGE_ALIGN(start) != start);
216 on_each_cpu(__cpa_flush_range, NULL, 1);
218 if (!cache)
219 return;
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
225 * cachelines:
227 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
228 pte_t *pte = lookup_address(addr, &level);
231 * Only flush present addresses:
233 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
234 clflush_cache_range((void *) addr, PAGE_SIZE);
238 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
239 int in_flags, struct page **pages)
241 unsigned int i, level;
242 #ifdef CONFIG_PREEMPT
244 * Avoid wbinvd() because it causes latencies on all CPUs,
245 * regardless of any CPU isolation that may be in effect.
247 * This should be extended for CAT enabled systems independent of
248 * PREEMPT because wbinvd() does not respect the CAT partitions and
249 * this is exposed to unpriviledged users through the graphics
250 * subsystem.
252 unsigned long do_wbinvd = 0;
253 #else
254 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
255 #endif
257 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
259 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
261 if (!cache || do_wbinvd)
262 return;
265 * We only need to flush on one CPU,
266 * clflush is a MESI-coherent instruction that
267 * will cause all other CPUs to flush the same
268 * cachelines:
270 for (i = 0; i < numpages; i++) {
271 unsigned long addr;
272 pte_t *pte;
274 if (in_flags & CPA_PAGES_ARRAY)
275 addr = (unsigned long)page_address(pages[i]);
276 else
277 addr = start[i];
279 pte = lookup_address(addr, &level);
282 * Only flush present addresses:
284 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
285 clflush_cache_range((void *)addr, PAGE_SIZE);
290 * Certain areas of memory on x86 require very specific protection flags,
291 * for example the BIOS area or kernel text. Callers don't always get this
292 * right (again, ioremap() on BIOS memory is not uncommon) so this function
293 * checks and fixes these known static required protection bits.
295 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
296 unsigned long pfn)
298 pgprot_t forbidden = __pgprot(0);
301 * The BIOS area between 640k and 1Mb needs to be executable for
302 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
304 #ifdef CONFIG_PCI_BIOS
305 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
306 pgprot_val(forbidden) |= _PAGE_NX;
307 #endif
310 * The kernel text needs to be executable for obvious reasons
311 * Does not cover __inittext since that is gone later on. On
312 * 64bit we do not enforce !NX on the low mapping
314 if (within(address, (unsigned long)_text, (unsigned long)_etext))
315 pgprot_val(forbidden) |= _PAGE_NX;
318 * The .rodata section needs to be read-only. Using the pfn
319 * catches all aliases. This also includes __ro_after_init,
320 * so do not enforce until kernel_set_to_readonly is true.
322 if (kernel_set_to_readonly &&
323 within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
324 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
325 pgprot_val(forbidden) |= _PAGE_RW;
327 #if defined(CONFIG_X86_64)
329 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
330 * kernel text mappings for the large page aligned text, rodata sections
331 * will be always read-only. For the kernel identity mappings covering
332 * the holes caused by this alignment can be anything that user asks.
334 * This will preserve the large page mappings for kernel text/data
335 * at no extra cost.
337 if (kernel_set_to_readonly &&
338 within(address, (unsigned long)_text,
339 (unsigned long)__end_rodata_hpage_align)) {
340 unsigned int level;
343 * Don't enforce the !RW mapping for the kernel text mapping,
344 * if the current mapping is already using small page mapping.
345 * No need to work hard to preserve large page mappings in this
346 * case.
348 * This also fixes the Linux Xen paravirt guest boot failure
349 * (because of unexpected read-only mappings for kernel identity
350 * mappings). In this paravirt guest case, the kernel text
351 * mapping and the kernel identity mapping share the same
352 * page-table pages. Thus we can't really use different
353 * protections for the kernel text and identity mappings. Also,
354 * these shared mappings are made of small page mappings.
355 * Thus this don't enforce !RW mapping for small page kernel
356 * text mapping logic will help Linux Xen parvirt guest boot
357 * as well.
359 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
360 pgprot_val(forbidden) |= _PAGE_RW;
362 #endif
364 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
366 return prot;
370 * Lookup the page table entry for a virtual address in a specific pgd.
371 * Return a pointer to the entry and the level of the mapping.
373 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
374 unsigned int *level)
376 p4d_t *p4d;
377 pud_t *pud;
378 pmd_t *pmd;
380 *level = PG_LEVEL_NONE;
382 if (pgd_none(*pgd))
383 return NULL;
385 p4d = p4d_offset(pgd, address);
386 if (p4d_none(*p4d))
387 return NULL;
389 *level = PG_LEVEL_512G;
390 if (p4d_large(*p4d) || !p4d_present(*p4d))
391 return (pte_t *)p4d;
393 pud = pud_offset(p4d, address);
394 if (pud_none(*pud))
395 return NULL;
397 *level = PG_LEVEL_1G;
398 if (pud_large(*pud) || !pud_present(*pud))
399 return (pte_t *)pud;
401 pmd = pmd_offset(pud, address);
402 if (pmd_none(*pmd))
403 return NULL;
405 *level = PG_LEVEL_2M;
406 if (pmd_large(*pmd) || !pmd_present(*pmd))
407 return (pte_t *)pmd;
409 *level = PG_LEVEL_4K;
411 return pte_offset_kernel(pmd, address);
415 * Lookup the page table entry for a virtual address. Return a pointer
416 * to the entry and the level of the mapping.
418 * Note: We return pud and pmd either when the entry is marked large
419 * or when the present bit is not set. Otherwise we would return a
420 * pointer to a nonexisting mapping.
422 pte_t *lookup_address(unsigned long address, unsigned int *level)
424 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
426 EXPORT_SYMBOL_GPL(lookup_address);
428 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
429 unsigned int *level)
431 if (cpa->pgd)
432 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
433 address, level);
435 return lookup_address(address, level);
439 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
440 * or NULL if not present.
442 pmd_t *lookup_pmd_address(unsigned long address)
444 pgd_t *pgd;
445 p4d_t *p4d;
446 pud_t *pud;
448 pgd = pgd_offset_k(address);
449 if (pgd_none(*pgd))
450 return NULL;
452 p4d = p4d_offset(pgd, address);
453 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
454 return NULL;
456 pud = pud_offset(p4d, address);
457 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
458 return NULL;
460 return pmd_offset(pud, address);
464 * This is necessary because __pa() does not work on some
465 * kinds of memory, like vmalloc() or the alloc_remap()
466 * areas on 32-bit NUMA systems. The percpu areas can
467 * end up in this kind of memory, for instance.
469 * This could be optimized, but it is only intended to be
470 * used at inititalization time, and keeping it
471 * unoptimized should increase the testing coverage for
472 * the more obscure platforms.
474 phys_addr_t slow_virt_to_phys(void *__virt_addr)
476 unsigned long virt_addr = (unsigned long)__virt_addr;
477 phys_addr_t phys_addr;
478 unsigned long offset;
479 enum pg_level level;
480 pte_t *pte;
482 pte = lookup_address(virt_addr, &level);
483 BUG_ON(!pte);
486 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
487 * before being left-shifted PAGE_SHIFT bits -- this trick is to
488 * make 32-PAE kernel work correctly.
490 switch (level) {
491 case PG_LEVEL_1G:
492 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
493 offset = virt_addr & ~PUD_PAGE_MASK;
494 break;
495 case PG_LEVEL_2M:
496 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
497 offset = virt_addr & ~PMD_PAGE_MASK;
498 break;
499 default:
500 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
501 offset = virt_addr & ~PAGE_MASK;
504 return (phys_addr_t)(phys_addr | offset);
506 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
509 * Set the new pmd in all the pgds we know about:
511 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
513 /* change init_mm */
514 set_pte_atomic(kpte, pte);
515 #ifdef CONFIG_X86_32
516 if (!SHARED_KERNEL_PMD) {
517 struct page *page;
519 list_for_each_entry(page, &pgd_list, lru) {
520 pgd_t *pgd;
521 p4d_t *p4d;
522 pud_t *pud;
523 pmd_t *pmd;
525 pgd = (pgd_t *)page_address(page) + pgd_index(address);
526 p4d = p4d_offset(pgd, address);
527 pud = pud_offset(p4d, address);
528 pmd = pmd_offset(pud, address);
529 set_pte_atomic((pte_t *)pmd, pte);
532 #endif
535 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
538 * _PAGE_GLOBAL means "global page" for present PTEs.
539 * But, it is also used to indicate _PAGE_PROTNONE
540 * for non-present PTEs.
542 * This ensures that a _PAGE_GLOBAL PTE going from
543 * present to non-present is not confused as
544 * _PAGE_PROTNONE.
546 if (!(pgprot_val(prot) & _PAGE_PRESENT))
547 pgprot_val(prot) &= ~_PAGE_GLOBAL;
549 return prot;
552 static int
553 try_preserve_large_page(pte_t *kpte, unsigned long address,
554 struct cpa_data *cpa)
556 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
557 pte_t new_pte, old_pte, *tmp;
558 pgprot_t old_prot, new_prot, req_prot;
559 int i, do_split = 1;
560 enum pg_level level;
562 if (cpa->force_split)
563 return 1;
565 spin_lock(&pgd_lock);
567 * Check for races, another CPU might have split this page
568 * up already:
570 tmp = _lookup_address_cpa(cpa, address, &level);
571 if (tmp != kpte)
572 goto out_unlock;
574 switch (level) {
575 case PG_LEVEL_2M:
576 old_prot = pmd_pgprot(*(pmd_t *)kpte);
577 old_pfn = pmd_pfn(*(pmd_t *)kpte);
578 break;
579 case PG_LEVEL_1G:
580 old_prot = pud_pgprot(*(pud_t *)kpte);
581 old_pfn = pud_pfn(*(pud_t *)kpte);
582 break;
583 default:
584 do_split = -EINVAL;
585 goto out_unlock;
588 psize = page_level_size(level);
589 pmask = page_level_mask(level);
592 * Calculate the number of pages, which fit into this large
593 * page starting at address:
595 nextpage_addr = (address + psize) & pmask;
596 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
597 if (numpages < cpa->numpages)
598 cpa->numpages = numpages;
601 * We are safe now. Check whether the new pgprot is the same:
602 * Convert protection attributes to 4k-format, as cpa->mask* are set
603 * up accordingly.
605 old_pte = *kpte;
606 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
607 req_prot = pgprot_large_2_4k(old_prot);
609 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
610 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
613 * req_prot is in format of 4k pages. It must be converted to large
614 * page format: the caching mode includes the PAT bit located at
615 * different bit positions in the two formats.
617 req_prot = pgprot_4k_2_large(req_prot);
618 req_prot = pgprot_clear_protnone_bits(req_prot);
619 if (pgprot_val(req_prot) & _PAGE_PRESENT)
620 pgprot_val(req_prot) |= _PAGE_PSE;
623 * old_pfn points to the large page base pfn. So we need
624 * to add the offset of the virtual address:
626 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
627 cpa->pfn = pfn;
629 new_prot = static_protections(req_prot, address, pfn);
632 * We need to check the full range, whether
633 * static_protection() requires a different pgprot for one of
634 * the pages in the range we try to preserve:
636 addr = address & pmask;
637 pfn = old_pfn;
638 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
639 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
641 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
642 goto out_unlock;
646 * If there are no changes, return. maxpages has been updated
647 * above:
649 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
650 do_split = 0;
651 goto out_unlock;
655 * We need to change the attributes. Check, whether we can
656 * change the large page in one go. We request a split, when
657 * the address is not aligned and the number of pages is
658 * smaller than the number of pages in the large page. Note
659 * that we limited the number of possible pages already to
660 * the number of pages in the large page.
662 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
664 * The address is aligned and the number of pages
665 * covers the full page.
667 new_pte = pfn_pte(old_pfn, new_prot);
668 __set_pmd_pte(kpte, address, new_pte);
669 cpa->flags |= CPA_FLUSHTLB;
670 do_split = 0;
673 out_unlock:
674 spin_unlock(&pgd_lock);
676 return do_split;
679 static int
680 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
681 struct page *base)
683 pte_t *pbase = (pte_t *)page_address(base);
684 unsigned long ref_pfn, pfn, pfninc = 1;
685 unsigned int i, level;
686 pte_t *tmp;
687 pgprot_t ref_prot;
689 spin_lock(&pgd_lock);
691 * Check for races, another CPU might have split this page
692 * up for us already:
694 tmp = _lookup_address_cpa(cpa, address, &level);
695 if (tmp != kpte) {
696 spin_unlock(&pgd_lock);
697 return 1;
700 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
702 switch (level) {
703 case PG_LEVEL_2M:
704 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
706 * Clear PSE (aka _PAGE_PAT) and move
707 * PAT bit to correct position.
709 ref_prot = pgprot_large_2_4k(ref_prot);
711 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
712 break;
714 case PG_LEVEL_1G:
715 ref_prot = pud_pgprot(*(pud_t *)kpte);
716 ref_pfn = pud_pfn(*(pud_t *)kpte);
717 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
720 * Clear the PSE flags if the PRESENT flag is not set
721 * otherwise pmd_present/pmd_huge will return true
722 * even on a non present pmd.
724 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
725 pgprot_val(ref_prot) &= ~_PAGE_PSE;
726 break;
728 default:
729 spin_unlock(&pgd_lock);
730 return 1;
733 ref_prot = pgprot_clear_protnone_bits(ref_prot);
736 * Get the target pfn from the original entry:
738 pfn = ref_pfn;
739 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
740 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
742 if (virt_addr_valid(address)) {
743 unsigned long pfn = PFN_DOWN(__pa(address));
745 if (pfn_range_is_mapped(pfn, pfn + 1))
746 split_page_count(level);
750 * Install the new, split up pagetable.
752 * We use the standard kernel pagetable protections for the new
753 * pagetable protections, the actual ptes set above control the
754 * primary protection behavior:
756 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
759 * Intel Atom errata AAH41 workaround.
761 * The real fix should be in hw or in a microcode update, but
762 * we also probabilistically try to reduce the window of having
763 * a large TLB mixed with 4K TLBs while instruction fetches are
764 * going on.
766 __flush_tlb_all();
767 spin_unlock(&pgd_lock);
769 return 0;
772 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
773 unsigned long address)
775 struct page *base;
777 if (!debug_pagealloc_enabled())
778 spin_unlock(&cpa_lock);
779 base = alloc_pages(GFP_KERNEL, 0);
780 if (!debug_pagealloc_enabled())
781 spin_lock(&cpa_lock);
782 if (!base)
783 return -ENOMEM;
785 if (__split_large_page(cpa, kpte, address, base))
786 __free_page(base);
788 return 0;
791 static bool try_to_free_pte_page(pte_t *pte)
793 int i;
795 for (i = 0; i < PTRS_PER_PTE; i++)
796 if (!pte_none(pte[i]))
797 return false;
799 free_page((unsigned long)pte);
800 return true;
803 static bool try_to_free_pmd_page(pmd_t *pmd)
805 int i;
807 for (i = 0; i < PTRS_PER_PMD; i++)
808 if (!pmd_none(pmd[i]))
809 return false;
811 free_page((unsigned long)pmd);
812 return true;
815 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
817 pte_t *pte = pte_offset_kernel(pmd, start);
819 while (start < end) {
820 set_pte(pte, __pte(0));
822 start += PAGE_SIZE;
823 pte++;
826 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
827 pmd_clear(pmd);
828 return true;
830 return false;
833 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
834 unsigned long start, unsigned long end)
836 if (unmap_pte_range(pmd, start, end))
837 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
838 pud_clear(pud);
841 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
843 pmd_t *pmd = pmd_offset(pud, start);
846 * Not on a 2MB page boundary?
848 if (start & (PMD_SIZE - 1)) {
849 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
850 unsigned long pre_end = min_t(unsigned long, end, next_page);
852 __unmap_pmd_range(pud, pmd, start, pre_end);
854 start = pre_end;
855 pmd++;
859 * Try to unmap in 2M chunks.
861 while (end - start >= PMD_SIZE) {
862 if (pmd_large(*pmd))
863 pmd_clear(pmd);
864 else
865 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
867 start += PMD_SIZE;
868 pmd++;
872 * 4K leftovers?
874 if (start < end)
875 return __unmap_pmd_range(pud, pmd, start, end);
878 * Try again to free the PMD page if haven't succeeded above.
880 if (!pud_none(*pud))
881 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
882 pud_clear(pud);
885 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
887 pud_t *pud = pud_offset(p4d, start);
890 * Not on a GB page boundary?
892 if (start & (PUD_SIZE - 1)) {
893 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
894 unsigned long pre_end = min_t(unsigned long, end, next_page);
896 unmap_pmd_range(pud, start, pre_end);
898 start = pre_end;
899 pud++;
903 * Try to unmap in 1G chunks?
905 while (end - start >= PUD_SIZE) {
907 if (pud_large(*pud))
908 pud_clear(pud);
909 else
910 unmap_pmd_range(pud, start, start + PUD_SIZE);
912 start += PUD_SIZE;
913 pud++;
917 * 2M leftovers?
919 if (start < end)
920 unmap_pmd_range(pud, start, end);
923 * No need to try to free the PUD page because we'll free it in
924 * populate_pgd's error path
928 static int alloc_pte_page(pmd_t *pmd)
930 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
931 if (!pte)
932 return -1;
934 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
935 return 0;
938 static int alloc_pmd_page(pud_t *pud)
940 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
941 if (!pmd)
942 return -1;
944 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
945 return 0;
948 static void populate_pte(struct cpa_data *cpa,
949 unsigned long start, unsigned long end,
950 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
952 pte_t *pte;
954 pte = pte_offset_kernel(pmd, start);
956 pgprot = pgprot_clear_protnone_bits(pgprot);
958 while (num_pages-- && start < end) {
959 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
961 start += PAGE_SIZE;
962 cpa->pfn++;
963 pte++;
967 static long populate_pmd(struct cpa_data *cpa,
968 unsigned long start, unsigned long end,
969 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
971 long cur_pages = 0;
972 pmd_t *pmd;
973 pgprot_t pmd_pgprot;
976 * Not on a 2M boundary?
978 if (start & (PMD_SIZE - 1)) {
979 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
980 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
982 pre_end = min_t(unsigned long, pre_end, next_page);
983 cur_pages = (pre_end - start) >> PAGE_SHIFT;
984 cur_pages = min_t(unsigned int, num_pages, cur_pages);
987 * Need a PTE page?
989 pmd = pmd_offset(pud, start);
990 if (pmd_none(*pmd))
991 if (alloc_pte_page(pmd))
992 return -1;
994 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
996 start = pre_end;
1000 * We mapped them all?
1002 if (num_pages == cur_pages)
1003 return cur_pages;
1005 pmd_pgprot = pgprot_4k_2_large(pgprot);
1007 while (end - start >= PMD_SIZE) {
1010 * We cannot use a 1G page so allocate a PMD page if needed.
1012 if (pud_none(*pud))
1013 if (alloc_pmd_page(pud))
1014 return -1;
1016 pmd = pmd_offset(pud, start);
1018 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1019 canon_pgprot(pmd_pgprot))));
1021 start += PMD_SIZE;
1022 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1023 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1027 * Map trailing 4K pages.
1029 if (start < end) {
1030 pmd = pmd_offset(pud, start);
1031 if (pmd_none(*pmd))
1032 if (alloc_pte_page(pmd))
1033 return -1;
1035 populate_pte(cpa, start, end, num_pages - cur_pages,
1036 pmd, pgprot);
1038 return num_pages;
1041 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1042 pgprot_t pgprot)
1044 pud_t *pud;
1045 unsigned long end;
1046 long cur_pages = 0;
1047 pgprot_t pud_pgprot;
1049 end = start + (cpa->numpages << PAGE_SHIFT);
1052 * Not on a Gb page boundary? => map everything up to it with
1053 * smaller pages.
1055 if (start & (PUD_SIZE - 1)) {
1056 unsigned long pre_end;
1057 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1059 pre_end = min_t(unsigned long, end, next_page);
1060 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1061 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1063 pud = pud_offset(p4d, start);
1066 * Need a PMD page?
1068 if (pud_none(*pud))
1069 if (alloc_pmd_page(pud))
1070 return -1;
1072 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1073 pud, pgprot);
1074 if (cur_pages < 0)
1075 return cur_pages;
1077 start = pre_end;
1080 /* We mapped them all? */
1081 if (cpa->numpages == cur_pages)
1082 return cur_pages;
1084 pud = pud_offset(p4d, start);
1085 pud_pgprot = pgprot_4k_2_large(pgprot);
1088 * Map everything starting from the Gb boundary, possibly with 1G pages
1090 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1091 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1092 canon_pgprot(pud_pgprot))));
1094 start += PUD_SIZE;
1095 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1096 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1097 pud++;
1100 /* Map trailing leftover */
1101 if (start < end) {
1102 long tmp;
1104 pud = pud_offset(p4d, start);
1105 if (pud_none(*pud))
1106 if (alloc_pmd_page(pud))
1107 return -1;
1109 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1110 pud, pgprot);
1111 if (tmp < 0)
1112 return cur_pages;
1114 cur_pages += tmp;
1116 return cur_pages;
1120 * Restrictions for kernel page table do not necessarily apply when mapping in
1121 * an alternate PGD.
1123 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1125 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1126 pud_t *pud = NULL; /* shut up gcc */
1127 p4d_t *p4d;
1128 pgd_t *pgd_entry;
1129 long ret;
1131 pgd_entry = cpa->pgd + pgd_index(addr);
1133 if (pgd_none(*pgd_entry)) {
1134 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1135 if (!p4d)
1136 return -1;
1138 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1142 * Allocate a PUD page and hand it down for mapping.
1144 p4d = p4d_offset(pgd_entry, addr);
1145 if (p4d_none(*p4d)) {
1146 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1147 if (!pud)
1148 return -1;
1150 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1153 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1154 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1156 ret = populate_pud(cpa, addr, p4d, pgprot);
1157 if (ret < 0) {
1159 * Leave the PUD page in place in case some other CPU or thread
1160 * already found it, but remove any useless entries we just
1161 * added to it.
1163 unmap_pud_range(p4d, addr,
1164 addr + (cpa->numpages << PAGE_SHIFT));
1165 return ret;
1168 cpa->numpages = ret;
1169 return 0;
1172 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1173 int primary)
1175 if (cpa->pgd) {
1177 * Right now, we only execute this code path when mapping
1178 * the EFI virtual memory map regions, no other users
1179 * provide a ->pgd value. This may change in the future.
1181 return populate_pgd(cpa, vaddr);
1185 * Ignore all non primary paths.
1187 if (!primary) {
1188 cpa->numpages = 1;
1189 return 0;
1193 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1194 * to have holes.
1195 * Also set numpages to '1' indicating that we processed cpa req for
1196 * one virtual address page and its pfn. TBD: numpages can be set based
1197 * on the initial value and the level returned by lookup_address().
1199 if (within(vaddr, PAGE_OFFSET,
1200 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1201 cpa->numpages = 1;
1202 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1203 return 0;
1205 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1206 /* Faults in the highmap are OK, so do not warn: */
1207 return -EFAULT;
1208 } else {
1209 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1210 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1211 *cpa->vaddr);
1213 return -EFAULT;
1217 static int __change_page_attr(struct cpa_data *cpa, int primary)
1219 unsigned long address;
1220 int do_split, err;
1221 unsigned int level;
1222 pte_t *kpte, old_pte;
1224 if (cpa->flags & CPA_PAGES_ARRAY) {
1225 struct page *page = cpa->pages[cpa->curpage];
1226 if (unlikely(PageHighMem(page)))
1227 return 0;
1228 address = (unsigned long)page_address(page);
1229 } else if (cpa->flags & CPA_ARRAY)
1230 address = cpa->vaddr[cpa->curpage];
1231 else
1232 address = *cpa->vaddr;
1233 repeat:
1234 kpte = _lookup_address_cpa(cpa, address, &level);
1235 if (!kpte)
1236 return __cpa_process_fault(cpa, address, primary);
1238 old_pte = *kpte;
1239 if (pte_none(old_pte))
1240 return __cpa_process_fault(cpa, address, primary);
1242 if (level == PG_LEVEL_4K) {
1243 pte_t new_pte;
1244 pgprot_t new_prot = pte_pgprot(old_pte);
1245 unsigned long pfn = pte_pfn(old_pte);
1247 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1248 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1250 new_prot = static_protections(new_prot, address, pfn);
1252 new_prot = pgprot_clear_protnone_bits(new_prot);
1255 * We need to keep the pfn from the existing PTE,
1256 * after all we're only going to change it's attributes
1257 * not the memory it points to
1259 new_pte = pfn_pte(pfn, new_prot);
1260 cpa->pfn = pfn;
1262 * Do we really change anything ?
1264 if (pte_val(old_pte) != pte_val(new_pte)) {
1265 set_pte_atomic(kpte, new_pte);
1266 cpa->flags |= CPA_FLUSHTLB;
1268 cpa->numpages = 1;
1269 return 0;
1273 * Check, whether we can keep the large page intact
1274 * and just change the pte:
1276 do_split = try_preserve_large_page(kpte, address, cpa);
1278 * When the range fits into the existing large page,
1279 * return. cp->numpages and cpa->tlbflush have been updated in
1280 * try_large_page:
1282 if (do_split <= 0)
1283 return do_split;
1286 * We have to split the large page:
1288 err = split_large_page(cpa, kpte, address);
1289 if (!err) {
1291 * Do a global flush tlb after splitting the large page
1292 * and before we do the actual change page attribute in the PTE.
1294 * With out this, we violate the TLB application note, that says
1295 * "The TLBs may contain both ordinary and large-page
1296 * translations for a 4-KByte range of linear addresses. This
1297 * may occur if software modifies the paging structures so that
1298 * the page size used for the address range changes. If the two
1299 * translations differ with respect to page frame or attributes
1300 * (e.g., permissions), processor behavior is undefined and may
1301 * be implementation-specific."
1303 * We do this global tlb flush inside the cpa_lock, so that we
1304 * don't allow any other cpu, with stale tlb entries change the
1305 * page attribute in parallel, that also falls into the
1306 * just split large page entry.
1308 flush_tlb_all();
1309 goto repeat;
1312 return err;
1315 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1317 static int cpa_process_alias(struct cpa_data *cpa)
1319 struct cpa_data alias_cpa;
1320 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1321 unsigned long vaddr;
1322 int ret;
1324 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1325 return 0;
1328 * No need to redo, when the primary call touched the direct
1329 * mapping already:
1331 if (cpa->flags & CPA_PAGES_ARRAY) {
1332 struct page *page = cpa->pages[cpa->curpage];
1333 if (unlikely(PageHighMem(page)))
1334 return 0;
1335 vaddr = (unsigned long)page_address(page);
1336 } else if (cpa->flags & CPA_ARRAY)
1337 vaddr = cpa->vaddr[cpa->curpage];
1338 else
1339 vaddr = *cpa->vaddr;
1341 if (!(within(vaddr, PAGE_OFFSET,
1342 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1344 alias_cpa = *cpa;
1345 alias_cpa.vaddr = &laddr;
1346 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1348 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1349 if (ret)
1350 return ret;
1353 #ifdef CONFIG_X86_64
1355 * If the primary call didn't touch the high mapping already
1356 * and the physical address is inside the kernel map, we need
1357 * to touch the high mapped kernel as well:
1359 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1360 __cpa_pfn_in_highmap(cpa->pfn)) {
1361 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1362 __START_KERNEL_map - phys_base;
1363 alias_cpa = *cpa;
1364 alias_cpa.vaddr = &temp_cpa_vaddr;
1365 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1368 * The high mapping range is imprecise, so ignore the
1369 * return value.
1371 __change_page_attr_set_clr(&alias_cpa, 0);
1373 #endif
1375 return 0;
1378 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1380 unsigned long numpages = cpa->numpages;
1381 int ret;
1383 while (numpages) {
1385 * Store the remaining nr of pages for the large page
1386 * preservation check.
1388 cpa->numpages = numpages;
1389 /* for array changes, we can't use large page */
1390 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1391 cpa->numpages = 1;
1393 if (!debug_pagealloc_enabled())
1394 spin_lock(&cpa_lock);
1395 ret = __change_page_attr(cpa, checkalias);
1396 if (!debug_pagealloc_enabled())
1397 spin_unlock(&cpa_lock);
1398 if (ret)
1399 return ret;
1401 if (checkalias) {
1402 ret = cpa_process_alias(cpa);
1403 if (ret)
1404 return ret;
1408 * Adjust the number of pages with the result of the
1409 * CPA operation. Either a large page has been
1410 * preserved or a single page update happened.
1412 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1413 numpages -= cpa->numpages;
1414 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1415 cpa->curpage++;
1416 else
1417 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1420 return 0;
1423 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1424 pgprot_t mask_set, pgprot_t mask_clr,
1425 int force_split, int in_flag,
1426 struct page **pages)
1428 struct cpa_data cpa;
1429 int ret, cache, checkalias;
1430 unsigned long baddr = 0;
1432 memset(&cpa, 0, sizeof(cpa));
1435 * Check, if we are requested to set a not supported
1436 * feature. Clearing non-supported features is OK.
1438 mask_set = canon_pgprot(mask_set);
1440 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1441 return 0;
1443 /* Ensure we are PAGE_SIZE aligned */
1444 if (in_flag & CPA_ARRAY) {
1445 int i;
1446 for (i = 0; i < numpages; i++) {
1447 if (addr[i] & ~PAGE_MASK) {
1448 addr[i] &= PAGE_MASK;
1449 WARN_ON_ONCE(1);
1452 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1454 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1455 * No need to cehck in that case
1457 if (*addr & ~PAGE_MASK) {
1458 *addr &= PAGE_MASK;
1460 * People should not be passing in unaligned addresses:
1462 WARN_ON_ONCE(1);
1465 * Save address for cache flush. *addr is modified in the call
1466 * to __change_page_attr_set_clr() below.
1468 baddr = *addr;
1471 /* Must avoid aliasing mappings in the highmem code */
1472 kmap_flush_unused();
1474 vm_unmap_aliases();
1476 cpa.vaddr = addr;
1477 cpa.pages = pages;
1478 cpa.numpages = numpages;
1479 cpa.mask_set = mask_set;
1480 cpa.mask_clr = mask_clr;
1481 cpa.flags = 0;
1482 cpa.curpage = 0;
1483 cpa.force_split = force_split;
1485 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1486 cpa.flags |= in_flag;
1488 /* No alias checking for _NX bit modifications */
1489 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1490 /* Has caller explicitly disabled alias checking? */
1491 if (in_flag & CPA_NO_CHECK_ALIAS)
1492 checkalias = 0;
1494 ret = __change_page_attr_set_clr(&cpa, checkalias);
1497 * Check whether we really changed something:
1499 if (!(cpa.flags & CPA_FLUSHTLB))
1500 goto out;
1503 * No need to flush, when we did not set any of the caching
1504 * attributes:
1506 cache = !!pgprot2cachemode(mask_set);
1509 * On success we use CLFLUSH, when the CPU supports it to
1510 * avoid the WBINVD. If the CPU does not support it and in the
1511 * error case we fall back to cpa_flush_all (which uses
1512 * WBINVD):
1514 if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1515 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1516 cpa_flush_array(addr, numpages, cache,
1517 cpa.flags, pages);
1518 } else
1519 cpa_flush_range(baddr, numpages, cache);
1520 } else
1521 cpa_flush_all(cache);
1523 out:
1524 return ret;
1527 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1528 pgprot_t mask, int array)
1530 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1531 (array ? CPA_ARRAY : 0), NULL);
1534 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1535 pgprot_t mask, int array)
1537 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1538 (array ? CPA_ARRAY : 0), NULL);
1541 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1542 pgprot_t mask)
1544 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1545 CPA_PAGES_ARRAY, pages);
1548 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1549 pgprot_t mask)
1551 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1552 CPA_PAGES_ARRAY, pages);
1555 int _set_memory_uc(unsigned long addr, int numpages)
1558 * for now UC MINUS. see comments in ioremap_nocache()
1559 * If you really need strong UC use ioremap_uc(), but note
1560 * that you cannot override IO areas with set_memory_*() as
1561 * these helpers cannot work with IO memory.
1563 return change_page_attr_set(&addr, numpages,
1564 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1568 int set_memory_uc(unsigned long addr, int numpages)
1570 int ret;
1573 * for now UC MINUS. see comments in ioremap_nocache()
1575 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1576 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1577 if (ret)
1578 goto out_err;
1580 ret = _set_memory_uc(addr, numpages);
1581 if (ret)
1582 goto out_free;
1584 return 0;
1586 out_free:
1587 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1588 out_err:
1589 return ret;
1591 EXPORT_SYMBOL(set_memory_uc);
1593 static int _set_memory_array(unsigned long *addr, int addrinarray,
1594 enum page_cache_mode new_type)
1596 enum page_cache_mode set_type;
1597 int i, j;
1598 int ret;
1600 for (i = 0; i < addrinarray; i++) {
1601 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1602 new_type, NULL);
1603 if (ret)
1604 goto out_free;
1607 /* If WC, set to UC- first and then WC */
1608 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1609 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1611 ret = change_page_attr_set(addr, addrinarray,
1612 cachemode2pgprot(set_type), 1);
1614 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1615 ret = change_page_attr_set_clr(addr, addrinarray,
1616 cachemode2pgprot(
1617 _PAGE_CACHE_MODE_WC),
1618 __pgprot(_PAGE_CACHE_MASK),
1619 0, CPA_ARRAY, NULL);
1620 if (ret)
1621 goto out_free;
1623 return 0;
1625 out_free:
1626 for (j = 0; j < i; j++)
1627 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1629 return ret;
1632 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1634 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1636 EXPORT_SYMBOL(set_memory_array_uc);
1638 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1640 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1642 EXPORT_SYMBOL(set_memory_array_wc);
1644 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1646 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1648 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1650 int _set_memory_wc(unsigned long addr, int numpages)
1652 int ret;
1653 unsigned long addr_copy = addr;
1655 ret = change_page_attr_set(&addr, numpages,
1656 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1658 if (!ret) {
1659 ret = change_page_attr_set_clr(&addr_copy, numpages,
1660 cachemode2pgprot(
1661 _PAGE_CACHE_MODE_WC),
1662 __pgprot(_PAGE_CACHE_MASK),
1663 0, 0, NULL);
1665 return ret;
1668 int set_memory_wc(unsigned long addr, int numpages)
1670 int ret;
1672 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1673 _PAGE_CACHE_MODE_WC, NULL);
1674 if (ret)
1675 return ret;
1677 ret = _set_memory_wc(addr, numpages);
1678 if (ret)
1679 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1681 return ret;
1683 EXPORT_SYMBOL(set_memory_wc);
1685 int _set_memory_wt(unsigned long addr, int numpages)
1687 return change_page_attr_set(&addr, numpages,
1688 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1691 int set_memory_wt(unsigned long addr, int numpages)
1693 int ret;
1695 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1696 _PAGE_CACHE_MODE_WT, NULL);
1697 if (ret)
1698 return ret;
1700 ret = _set_memory_wt(addr, numpages);
1701 if (ret)
1702 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1704 return ret;
1706 EXPORT_SYMBOL_GPL(set_memory_wt);
1708 int _set_memory_wb(unsigned long addr, int numpages)
1710 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1711 return change_page_attr_clear(&addr, numpages,
1712 __pgprot(_PAGE_CACHE_MASK), 0);
1715 int set_memory_wb(unsigned long addr, int numpages)
1717 int ret;
1719 ret = _set_memory_wb(addr, numpages);
1720 if (ret)
1721 return ret;
1723 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1724 return 0;
1726 EXPORT_SYMBOL(set_memory_wb);
1728 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1730 int i;
1731 int ret;
1733 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1734 ret = change_page_attr_clear(addr, addrinarray,
1735 __pgprot(_PAGE_CACHE_MASK), 1);
1736 if (ret)
1737 return ret;
1739 for (i = 0; i < addrinarray; i++)
1740 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1742 return 0;
1744 EXPORT_SYMBOL(set_memory_array_wb);
1746 int set_memory_x(unsigned long addr, int numpages)
1748 if (!(__supported_pte_mask & _PAGE_NX))
1749 return 0;
1751 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1753 EXPORT_SYMBOL(set_memory_x);
1755 int set_memory_nx(unsigned long addr, int numpages)
1757 if (!(__supported_pte_mask & _PAGE_NX))
1758 return 0;
1760 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1762 EXPORT_SYMBOL(set_memory_nx);
1764 int set_memory_ro(unsigned long addr, int numpages)
1766 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1769 int set_memory_rw(unsigned long addr, int numpages)
1771 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1774 int set_memory_np(unsigned long addr, int numpages)
1776 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1779 int set_memory_np_noalias(unsigned long addr, int numpages)
1781 int cpa_flags = CPA_NO_CHECK_ALIAS;
1783 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1784 __pgprot(_PAGE_PRESENT), 0,
1785 cpa_flags, NULL);
1788 int set_memory_4k(unsigned long addr, int numpages)
1790 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1791 __pgprot(0), 1, 0, NULL);
1794 int set_memory_nonglobal(unsigned long addr, int numpages)
1796 return change_page_attr_clear(&addr, numpages,
1797 __pgprot(_PAGE_GLOBAL), 0);
1800 int set_memory_global(unsigned long addr, int numpages)
1802 return change_page_attr_set(&addr, numpages,
1803 __pgprot(_PAGE_GLOBAL), 0);
1806 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1808 struct cpa_data cpa;
1809 unsigned long start;
1810 int ret;
1812 /* Nothing to do if memory encryption is not active */
1813 if (!mem_encrypt_active())
1814 return 0;
1816 /* Should not be working on unaligned addresses */
1817 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1818 addr &= PAGE_MASK;
1820 start = addr;
1822 memset(&cpa, 0, sizeof(cpa));
1823 cpa.vaddr = &addr;
1824 cpa.numpages = numpages;
1825 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1826 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1827 cpa.pgd = init_mm.pgd;
1829 /* Must avoid aliasing mappings in the highmem code */
1830 kmap_flush_unused();
1831 vm_unmap_aliases();
1834 * Before changing the encryption attribute, we need to flush caches.
1836 if (static_cpu_has(X86_FEATURE_CLFLUSH))
1837 cpa_flush_range(start, numpages, 1);
1838 else
1839 cpa_flush_all(1);
1841 ret = __change_page_attr_set_clr(&cpa, 1);
1844 * After changing the encryption attribute, we need to flush TLBs
1845 * again in case any speculative TLB caching occurred (but no need
1846 * to flush caches again). We could just use cpa_flush_all(), but
1847 * in case TLB flushing gets optimized in the cpa_flush_range()
1848 * path use the same logic as above.
1850 if (static_cpu_has(X86_FEATURE_CLFLUSH))
1851 cpa_flush_range(start, numpages, 0);
1852 else
1853 cpa_flush_all(0);
1855 return ret;
1858 int set_memory_encrypted(unsigned long addr, int numpages)
1860 return __set_memory_enc_dec(addr, numpages, true);
1862 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1864 int set_memory_decrypted(unsigned long addr, int numpages)
1866 return __set_memory_enc_dec(addr, numpages, false);
1868 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1870 int set_pages_uc(struct page *page, int numpages)
1872 unsigned long addr = (unsigned long)page_address(page);
1874 return set_memory_uc(addr, numpages);
1876 EXPORT_SYMBOL(set_pages_uc);
1878 static int _set_pages_array(struct page **pages, int addrinarray,
1879 enum page_cache_mode new_type)
1881 unsigned long start;
1882 unsigned long end;
1883 enum page_cache_mode set_type;
1884 int i;
1885 int free_idx;
1886 int ret;
1888 for (i = 0; i < addrinarray; i++) {
1889 if (PageHighMem(pages[i]))
1890 continue;
1891 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1892 end = start + PAGE_SIZE;
1893 if (reserve_memtype(start, end, new_type, NULL))
1894 goto err_out;
1897 /* If WC, set to UC- first and then WC */
1898 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1899 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1901 ret = cpa_set_pages_array(pages, addrinarray,
1902 cachemode2pgprot(set_type));
1903 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1904 ret = change_page_attr_set_clr(NULL, addrinarray,
1905 cachemode2pgprot(
1906 _PAGE_CACHE_MODE_WC),
1907 __pgprot(_PAGE_CACHE_MASK),
1908 0, CPA_PAGES_ARRAY, pages);
1909 if (ret)
1910 goto err_out;
1911 return 0; /* Success */
1912 err_out:
1913 free_idx = i;
1914 for (i = 0; i < free_idx; i++) {
1915 if (PageHighMem(pages[i]))
1916 continue;
1917 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1918 end = start + PAGE_SIZE;
1919 free_memtype(start, end);
1921 return -EINVAL;
1924 int set_pages_array_uc(struct page **pages, int addrinarray)
1926 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1928 EXPORT_SYMBOL(set_pages_array_uc);
1930 int set_pages_array_wc(struct page **pages, int addrinarray)
1932 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1934 EXPORT_SYMBOL(set_pages_array_wc);
1936 int set_pages_array_wt(struct page **pages, int addrinarray)
1938 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1940 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1942 int set_pages_wb(struct page *page, int numpages)
1944 unsigned long addr = (unsigned long)page_address(page);
1946 return set_memory_wb(addr, numpages);
1948 EXPORT_SYMBOL(set_pages_wb);
1950 int set_pages_array_wb(struct page **pages, int addrinarray)
1952 int retval;
1953 unsigned long start;
1954 unsigned long end;
1955 int i;
1957 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1958 retval = cpa_clear_pages_array(pages, addrinarray,
1959 __pgprot(_PAGE_CACHE_MASK));
1960 if (retval)
1961 return retval;
1963 for (i = 0; i < addrinarray; i++) {
1964 if (PageHighMem(pages[i]))
1965 continue;
1966 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1967 end = start + PAGE_SIZE;
1968 free_memtype(start, end);
1971 return 0;
1973 EXPORT_SYMBOL(set_pages_array_wb);
1975 int set_pages_x(struct page *page, int numpages)
1977 unsigned long addr = (unsigned long)page_address(page);
1979 return set_memory_x(addr, numpages);
1981 EXPORT_SYMBOL(set_pages_x);
1983 int set_pages_nx(struct page *page, int numpages)
1985 unsigned long addr = (unsigned long)page_address(page);
1987 return set_memory_nx(addr, numpages);
1989 EXPORT_SYMBOL(set_pages_nx);
1991 int set_pages_ro(struct page *page, int numpages)
1993 unsigned long addr = (unsigned long)page_address(page);
1995 return set_memory_ro(addr, numpages);
1998 int set_pages_rw(struct page *page, int numpages)
2000 unsigned long addr = (unsigned long)page_address(page);
2002 return set_memory_rw(addr, numpages);
2005 #ifdef CONFIG_DEBUG_PAGEALLOC
2007 static int __set_pages_p(struct page *page, int numpages)
2009 unsigned long tempaddr = (unsigned long) page_address(page);
2010 struct cpa_data cpa = { .vaddr = &tempaddr,
2011 .pgd = NULL,
2012 .numpages = numpages,
2013 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2014 .mask_clr = __pgprot(0),
2015 .flags = 0};
2018 * No alias checking needed for setting present flag. otherwise,
2019 * we may need to break large pages for 64-bit kernel text
2020 * mappings (this adds to complexity if we want to do this from
2021 * atomic context especially). Let's keep it simple!
2023 return __change_page_attr_set_clr(&cpa, 0);
2026 static int __set_pages_np(struct page *page, int numpages)
2028 unsigned long tempaddr = (unsigned long) page_address(page);
2029 struct cpa_data cpa = { .vaddr = &tempaddr,
2030 .pgd = NULL,
2031 .numpages = numpages,
2032 .mask_set = __pgprot(0),
2033 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2034 .flags = 0};
2037 * No alias checking needed for setting not present flag. otherwise,
2038 * we may need to break large pages for 64-bit kernel text
2039 * mappings (this adds to complexity if we want to do this from
2040 * atomic context especially). Let's keep it simple!
2042 return __change_page_attr_set_clr(&cpa, 0);
2045 void __kernel_map_pages(struct page *page, int numpages, int enable)
2047 if (PageHighMem(page))
2048 return;
2049 if (!enable) {
2050 debug_check_no_locks_freed(page_address(page),
2051 numpages * PAGE_SIZE);
2055 * The return value is ignored as the calls cannot fail.
2056 * Large pages for identity mappings are not used at boot time
2057 * and hence no memory allocations during large page split.
2059 if (enable)
2060 __set_pages_p(page, numpages);
2061 else
2062 __set_pages_np(page, numpages);
2065 * We should perform an IPI and flush all tlbs,
2066 * but that can deadlock->flush only current cpu:
2068 __flush_tlb_all();
2070 arch_flush_lazy_mmu_mode();
2073 #ifdef CONFIG_HIBERNATION
2075 bool kernel_page_present(struct page *page)
2077 unsigned int level;
2078 pte_t *pte;
2080 if (PageHighMem(page))
2081 return false;
2083 pte = lookup_address((unsigned long)page_address(page), &level);
2084 return (pte_val(*pte) & _PAGE_PRESENT);
2087 #endif /* CONFIG_HIBERNATION */
2089 #endif /* CONFIG_DEBUG_PAGEALLOC */
2091 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2092 unsigned numpages, unsigned long page_flags)
2094 int retval = -EINVAL;
2096 struct cpa_data cpa = {
2097 .vaddr = &address,
2098 .pfn = pfn,
2099 .pgd = pgd,
2100 .numpages = numpages,
2101 .mask_set = __pgprot(0),
2102 .mask_clr = __pgprot(0),
2103 .flags = 0,
2106 if (!(__supported_pte_mask & _PAGE_NX))
2107 goto out;
2109 if (!(page_flags & _PAGE_NX))
2110 cpa.mask_clr = __pgprot(_PAGE_NX);
2112 if (!(page_flags & _PAGE_RW))
2113 cpa.mask_clr = __pgprot(_PAGE_RW);
2115 if (!(page_flags & _PAGE_ENC))
2116 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2118 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2120 retval = __change_page_attr_set_clr(&cpa, 0);
2121 __flush_tlb_all();
2123 out:
2124 return retval;
2128 * The testcases use internal knowledge of the implementation that shouldn't
2129 * be exposed to the rest of the kernel. Include these directly here.
2131 #ifdef CONFIG_CPA_DEBUG
2132 #include "pageattr-test.c"
2133 #endif