2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
27 #include <asm/set_memory.h>
30 * The current flushing context - we pass it instead of 5 arguments:
37 unsigned long numpages
;
40 unsigned force_split
: 1;
46 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48 * entries change the page attribute in parallel to some other cpu
49 * splitting a large page entry along with changing the attribute.
51 static DEFINE_SPINLOCK(cpa_lock
);
53 #define CPA_FLUSHTLB 1
55 #define CPA_PAGES_ARRAY 4
56 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
59 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
61 void update_page_count(int level
, unsigned long pages
)
63 /* Protect against CPA */
65 direct_pages_count
[level
] += pages
;
66 spin_unlock(&pgd_lock
);
69 static void split_page_count(int level
)
71 if (direct_pages_count
[level
] == 0)
74 direct_pages_count
[level
]--;
75 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
78 void arch_report_meminfo(struct seq_file
*m
)
80 seq_printf(m
, "DirectMap4k: %8lu kB\n",
81 direct_pages_count
[PG_LEVEL_4K
] << 2);
82 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
83 seq_printf(m
, "DirectMap2M: %8lu kB\n",
84 direct_pages_count
[PG_LEVEL_2M
] << 11);
86 seq_printf(m
, "DirectMap4M: %8lu kB\n",
87 direct_pages_count
[PG_LEVEL_2M
] << 12);
90 seq_printf(m
, "DirectMap1G: %8lu kB\n",
91 direct_pages_count
[PG_LEVEL_1G
] << 20);
94 static inline void split_page_count(int level
) { }
98 within(unsigned long addr
, unsigned long start
, unsigned long end
)
100 return addr
>= start
&& addr
< end
;
104 within_inclusive(unsigned long addr
, unsigned long start
, unsigned long end
)
106 return addr
>= start
&& addr
<= end
;
111 static inline unsigned long highmap_start_pfn(void)
113 return __pa_symbol(_text
) >> PAGE_SHIFT
;
116 static inline unsigned long highmap_end_pfn(void)
118 /* Do not reference physical address outside the kernel. */
119 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
) - 1) >> PAGE_SHIFT
;
122 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
125 * Kernel text has an alias mapping at a high address, known
128 return within_inclusive(pfn
, highmap_start_pfn(), highmap_end_pfn());
133 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
135 /* There is no highmap on 32-bit */
146 * clflush_cache_range - flush a cache range with clflush
147 * @vaddr: virtual start address
148 * @size: number of bytes to flush
150 * clflushopt is an unordered instruction which needs fencing with mfence or
151 * sfence to avoid ordering issues.
153 void clflush_cache_range(void *vaddr
, unsigned int size
)
155 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
156 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
157 void *vend
= vaddr
+ size
;
164 for (; p
< vend
; p
+= clflush_size
)
169 EXPORT_SYMBOL_GPL(clflush_cache_range
);
171 void arch_invalidate_pmem(void *addr
, size_t size
)
173 clflush_cache_range(addr
, size
);
175 EXPORT_SYMBOL_GPL(arch_invalidate_pmem
);
177 static void __cpa_flush_all(void *arg
)
179 unsigned long cache
= (unsigned long)arg
;
182 * Flush all to work around Errata in early athlons regarding
183 * large page flushing.
187 if (cache
&& boot_cpu_data
.x86
>= 4)
191 static void cpa_flush_all(unsigned long cache
)
193 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
195 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
198 static void __cpa_flush_range(void *arg
)
201 * We could optimize that further and do individual per page
202 * tlb invalidates for a low number of pages. Caveat: we must
203 * flush the high aliases on 64bit as well.
208 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
210 unsigned int i
, level
;
213 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
214 WARN_ON(PAGE_ALIGN(start
) != start
);
216 on_each_cpu(__cpa_flush_range
, NULL
, 1);
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
227 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
228 pte_t
*pte
= lookup_address(addr
, &level
);
231 * Only flush present addresses:
233 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
234 clflush_cache_range((void *) addr
, PAGE_SIZE
);
238 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
239 int in_flags
, struct page
**pages
)
241 unsigned int i
, level
;
242 #ifdef CONFIG_PREEMPT
244 * Avoid wbinvd() because it causes latencies on all CPUs,
245 * regardless of any CPU isolation that may be in effect.
247 * This should be extended for CAT enabled systems independent of
248 * PREEMPT because wbinvd() does not respect the CAT partitions and
249 * this is exposed to unpriviledged users through the graphics
252 unsigned long do_wbinvd
= 0;
254 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
257 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
259 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
261 if (!cache
|| do_wbinvd
)
265 * We only need to flush on one CPU,
266 * clflush is a MESI-coherent instruction that
267 * will cause all other CPUs to flush the same
270 for (i
= 0; i
< numpages
; i
++) {
274 if (in_flags
& CPA_PAGES_ARRAY
)
275 addr
= (unsigned long)page_address(pages
[i
]);
279 pte
= lookup_address(addr
, &level
);
282 * Only flush present addresses:
284 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
285 clflush_cache_range((void *)addr
, PAGE_SIZE
);
290 * Certain areas of memory on x86 require very specific protection flags,
291 * for example the BIOS area or kernel text. Callers don't always get this
292 * right (again, ioremap() on BIOS memory is not uncommon) so this function
293 * checks and fixes these known static required protection bits.
295 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
298 pgprot_t forbidden
= __pgprot(0);
301 * The BIOS area between 640k and 1Mb needs to be executable for
302 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
304 #ifdef CONFIG_PCI_BIOS
305 if (pcibios_enabled
&& within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
306 pgprot_val(forbidden
) |= _PAGE_NX
;
310 * The kernel text needs to be executable for obvious reasons
311 * Does not cover __inittext since that is gone later on. On
312 * 64bit we do not enforce !NX on the low mapping
314 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
315 pgprot_val(forbidden
) |= _PAGE_NX
;
318 * The .rodata section needs to be read-only. Using the pfn
319 * catches all aliases. This also includes __ro_after_init,
320 * so do not enforce until kernel_set_to_readonly is true.
322 if (kernel_set_to_readonly
&&
323 within(pfn
, __pa_symbol(__start_rodata
) >> PAGE_SHIFT
,
324 __pa_symbol(__end_rodata
) >> PAGE_SHIFT
))
325 pgprot_val(forbidden
) |= _PAGE_RW
;
327 #if defined(CONFIG_X86_64)
329 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
330 * kernel text mappings for the large page aligned text, rodata sections
331 * will be always read-only. For the kernel identity mappings covering
332 * the holes caused by this alignment can be anything that user asks.
334 * This will preserve the large page mappings for kernel text/data
337 if (kernel_set_to_readonly
&&
338 within(address
, (unsigned long)_text
,
339 (unsigned long)__end_rodata_hpage_align
)) {
343 * Don't enforce the !RW mapping for the kernel text mapping,
344 * if the current mapping is already using small page mapping.
345 * No need to work hard to preserve large page mappings in this
348 * This also fixes the Linux Xen paravirt guest boot failure
349 * (because of unexpected read-only mappings for kernel identity
350 * mappings). In this paravirt guest case, the kernel text
351 * mapping and the kernel identity mapping share the same
352 * page-table pages. Thus we can't really use different
353 * protections for the kernel text and identity mappings. Also,
354 * these shared mappings are made of small page mappings.
355 * Thus this don't enforce !RW mapping for small page kernel
356 * text mapping logic will help Linux Xen parvirt guest boot
359 if (lookup_address(address
, &level
) && (level
!= PG_LEVEL_4K
))
360 pgprot_val(forbidden
) |= _PAGE_RW
;
364 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
370 * Lookup the page table entry for a virtual address in a specific pgd.
371 * Return a pointer to the entry and the level of the mapping.
373 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
380 *level
= PG_LEVEL_NONE
;
385 p4d
= p4d_offset(pgd
, address
);
389 *level
= PG_LEVEL_512G
;
390 if (p4d_large(*p4d
) || !p4d_present(*p4d
))
393 pud
= pud_offset(p4d
, address
);
397 *level
= PG_LEVEL_1G
;
398 if (pud_large(*pud
) || !pud_present(*pud
))
401 pmd
= pmd_offset(pud
, address
);
405 *level
= PG_LEVEL_2M
;
406 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
409 *level
= PG_LEVEL_4K
;
411 return pte_offset_kernel(pmd
, address
);
415 * Lookup the page table entry for a virtual address. Return a pointer
416 * to the entry and the level of the mapping.
418 * Note: We return pud and pmd either when the entry is marked large
419 * or when the present bit is not set. Otherwise we would return a
420 * pointer to a nonexisting mapping.
422 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
424 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
426 EXPORT_SYMBOL_GPL(lookup_address
);
428 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
432 return lookup_address_in_pgd(cpa
->pgd
+ pgd_index(address
),
435 return lookup_address(address
, level
);
439 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
440 * or NULL if not present.
442 pmd_t
*lookup_pmd_address(unsigned long address
)
448 pgd
= pgd_offset_k(address
);
452 p4d
= p4d_offset(pgd
, address
);
453 if (p4d_none(*p4d
) || p4d_large(*p4d
) || !p4d_present(*p4d
))
456 pud
= pud_offset(p4d
, address
);
457 if (pud_none(*pud
) || pud_large(*pud
) || !pud_present(*pud
))
460 return pmd_offset(pud
, address
);
464 * This is necessary because __pa() does not work on some
465 * kinds of memory, like vmalloc() or the alloc_remap()
466 * areas on 32-bit NUMA systems. The percpu areas can
467 * end up in this kind of memory, for instance.
469 * This could be optimized, but it is only intended to be
470 * used at inititalization time, and keeping it
471 * unoptimized should increase the testing coverage for
472 * the more obscure platforms.
474 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
476 unsigned long virt_addr
= (unsigned long)__virt_addr
;
477 phys_addr_t phys_addr
;
478 unsigned long offset
;
482 pte
= lookup_address(virt_addr
, &level
);
486 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
487 * before being left-shifted PAGE_SHIFT bits -- this trick is to
488 * make 32-PAE kernel work correctly.
492 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
493 offset
= virt_addr
& ~PUD_PAGE_MASK
;
496 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
497 offset
= virt_addr
& ~PMD_PAGE_MASK
;
500 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
501 offset
= virt_addr
& ~PAGE_MASK
;
504 return (phys_addr_t
)(phys_addr
| offset
);
506 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
509 * Set the new pmd in all the pgds we know about:
511 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
514 set_pte_atomic(kpte
, pte
);
516 if (!SHARED_KERNEL_PMD
) {
519 list_for_each_entry(page
, &pgd_list
, lru
) {
525 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
526 p4d
= p4d_offset(pgd
, address
);
527 pud
= pud_offset(p4d
, address
);
528 pmd
= pmd_offset(pud
, address
);
529 set_pte_atomic((pte_t
*)pmd
, pte
);
535 static pgprot_t
pgprot_clear_protnone_bits(pgprot_t prot
)
538 * _PAGE_GLOBAL means "global page" for present PTEs.
539 * But, it is also used to indicate _PAGE_PROTNONE
540 * for non-present PTEs.
542 * This ensures that a _PAGE_GLOBAL PTE going from
543 * present to non-present is not confused as
546 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
547 pgprot_val(prot
) &= ~_PAGE_GLOBAL
;
553 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
554 struct cpa_data
*cpa
)
556 unsigned long nextpage_addr
, numpages
, pmask
, psize
, addr
, pfn
, old_pfn
;
557 pte_t new_pte
, old_pte
, *tmp
;
558 pgprot_t old_prot
, new_prot
, req_prot
;
562 if (cpa
->force_split
)
565 spin_lock(&pgd_lock
);
567 * Check for races, another CPU might have split this page
570 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
576 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
577 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
580 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
581 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
588 psize
= page_level_size(level
);
589 pmask
= page_level_mask(level
);
592 * Calculate the number of pages, which fit into this large
593 * page starting at address:
595 nextpage_addr
= (address
+ psize
) & pmask
;
596 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
597 if (numpages
< cpa
->numpages
)
598 cpa
->numpages
= numpages
;
601 * We are safe now. Check whether the new pgprot is the same:
602 * Convert protection attributes to 4k-format, as cpa->mask* are set
606 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
607 req_prot
= pgprot_large_2_4k(old_prot
);
609 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
610 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
613 * req_prot is in format of 4k pages. It must be converted to large
614 * page format: the caching mode includes the PAT bit located at
615 * different bit positions in the two formats.
617 req_prot
= pgprot_4k_2_large(req_prot
);
618 req_prot
= pgprot_clear_protnone_bits(req_prot
);
619 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
620 pgprot_val(req_prot
) |= _PAGE_PSE
;
623 * old_pfn points to the large page base pfn. So we need
624 * to add the offset of the virtual address:
626 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
629 new_prot
= static_protections(req_prot
, address
, pfn
);
632 * We need to check the full range, whether
633 * static_protection() requires a different pgprot for one of
634 * the pages in the range we try to preserve:
636 addr
= address
& pmask
;
638 for (i
= 0; i
< (psize
>> PAGE_SHIFT
); i
++, addr
+= PAGE_SIZE
, pfn
++) {
639 pgprot_t chk_prot
= static_protections(req_prot
, addr
, pfn
);
641 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
646 * If there are no changes, return. maxpages has been updated
649 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
655 * We need to change the attributes. Check, whether we can
656 * change the large page in one go. We request a split, when
657 * the address is not aligned and the number of pages is
658 * smaller than the number of pages in the large page. Note
659 * that we limited the number of possible pages already to
660 * the number of pages in the large page.
662 if (address
== (address
& pmask
) && cpa
->numpages
== (psize
>> PAGE_SHIFT
)) {
664 * The address is aligned and the number of pages
665 * covers the full page.
667 new_pte
= pfn_pte(old_pfn
, new_prot
);
668 __set_pmd_pte(kpte
, address
, new_pte
);
669 cpa
->flags
|= CPA_FLUSHTLB
;
674 spin_unlock(&pgd_lock
);
680 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
683 pte_t
*pbase
= (pte_t
*)page_address(base
);
684 unsigned long ref_pfn
, pfn
, pfninc
= 1;
685 unsigned int i
, level
;
689 spin_lock(&pgd_lock
);
691 * Check for races, another CPU might have split this page
694 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
696 spin_unlock(&pgd_lock
);
700 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
704 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
706 * Clear PSE (aka _PAGE_PAT) and move
707 * PAT bit to correct position.
709 ref_prot
= pgprot_large_2_4k(ref_prot
);
711 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
715 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
716 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
717 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
720 * Clear the PSE flags if the PRESENT flag is not set
721 * otherwise pmd_present/pmd_huge will return true
722 * even on a non present pmd.
724 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
725 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
729 spin_unlock(&pgd_lock
);
733 ref_prot
= pgprot_clear_protnone_bits(ref_prot
);
736 * Get the target pfn from the original entry:
739 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
740 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
742 if (virt_addr_valid(address
)) {
743 unsigned long pfn
= PFN_DOWN(__pa(address
));
745 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
746 split_page_count(level
);
750 * Install the new, split up pagetable.
752 * We use the standard kernel pagetable protections for the new
753 * pagetable protections, the actual ptes set above control the
754 * primary protection behavior:
756 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
759 * Intel Atom errata AAH41 workaround.
761 * The real fix should be in hw or in a microcode update, but
762 * we also probabilistically try to reduce the window of having
763 * a large TLB mixed with 4K TLBs while instruction fetches are
767 spin_unlock(&pgd_lock
);
772 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
773 unsigned long address
)
777 if (!debug_pagealloc_enabled())
778 spin_unlock(&cpa_lock
);
779 base
= alloc_pages(GFP_KERNEL
, 0);
780 if (!debug_pagealloc_enabled())
781 spin_lock(&cpa_lock
);
785 if (__split_large_page(cpa
, kpte
, address
, base
))
791 static bool try_to_free_pte_page(pte_t
*pte
)
795 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
796 if (!pte_none(pte
[i
]))
799 free_page((unsigned long)pte
);
803 static bool try_to_free_pmd_page(pmd_t
*pmd
)
807 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
808 if (!pmd_none(pmd
[i
]))
811 free_page((unsigned long)pmd
);
815 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
817 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
819 while (start
< end
) {
820 set_pte(pte
, __pte(0));
826 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
833 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
834 unsigned long start
, unsigned long end
)
836 if (unmap_pte_range(pmd
, start
, end
))
837 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
841 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
843 pmd_t
*pmd
= pmd_offset(pud
, start
);
846 * Not on a 2MB page boundary?
848 if (start
& (PMD_SIZE
- 1)) {
849 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
850 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
852 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
859 * Try to unmap in 2M chunks.
861 while (end
- start
>= PMD_SIZE
) {
865 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
875 return __unmap_pmd_range(pud
, pmd
, start
, end
);
878 * Try again to free the PMD page if haven't succeeded above.
881 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
885 static void unmap_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
)
887 pud_t
*pud
= pud_offset(p4d
, start
);
890 * Not on a GB page boundary?
892 if (start
& (PUD_SIZE
- 1)) {
893 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
894 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
896 unmap_pmd_range(pud
, start
, pre_end
);
903 * Try to unmap in 1G chunks?
905 while (end
- start
>= PUD_SIZE
) {
910 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
920 unmap_pmd_range(pud
, start
, end
);
923 * No need to try to free the PUD page because we'll free it in
924 * populate_pgd's error path
928 static int alloc_pte_page(pmd_t
*pmd
)
930 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
934 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
938 static int alloc_pmd_page(pud_t
*pud
)
940 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
944 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
948 static void populate_pte(struct cpa_data
*cpa
,
949 unsigned long start
, unsigned long end
,
950 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
954 pte
= pte_offset_kernel(pmd
, start
);
956 pgprot
= pgprot_clear_protnone_bits(pgprot
);
958 while (num_pages
-- && start
< end
) {
959 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
967 static long populate_pmd(struct cpa_data
*cpa
,
968 unsigned long start
, unsigned long end
,
969 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
976 * Not on a 2M boundary?
978 if (start
& (PMD_SIZE
- 1)) {
979 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
980 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
982 pre_end
= min_t(unsigned long, pre_end
, next_page
);
983 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
984 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
989 pmd
= pmd_offset(pud
, start
);
991 if (alloc_pte_page(pmd
))
994 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
1000 * We mapped them all?
1002 if (num_pages
== cur_pages
)
1005 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
1007 while (end
- start
>= PMD_SIZE
) {
1010 * We cannot use a 1G page so allocate a PMD page if needed.
1013 if (alloc_pmd_page(pud
))
1016 pmd
= pmd_offset(pud
, start
);
1018 set_pmd(pmd
, pmd_mkhuge(pfn_pmd(cpa
->pfn
,
1019 canon_pgprot(pmd_pgprot
))));
1022 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
1023 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
1027 * Map trailing 4K pages.
1030 pmd
= pmd_offset(pud
, start
);
1032 if (alloc_pte_page(pmd
))
1035 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1041 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, p4d_t
*p4d
,
1047 pgprot_t pud_pgprot
;
1049 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1052 * Not on a Gb page boundary? => map everything up to it with
1055 if (start
& (PUD_SIZE
- 1)) {
1056 unsigned long pre_end
;
1057 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1059 pre_end
= min_t(unsigned long, end
, next_page
);
1060 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1061 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1063 pud
= pud_offset(p4d
, start
);
1069 if (alloc_pmd_page(pud
))
1072 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1080 /* We mapped them all? */
1081 if (cpa
->numpages
== cur_pages
)
1084 pud
= pud_offset(p4d
, start
);
1085 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1088 * Map everything starting from the Gb boundary, possibly with 1G pages
1090 while (boot_cpu_has(X86_FEATURE_GBPAGES
) && end
- start
>= PUD_SIZE
) {
1091 set_pud(pud
, pud_mkhuge(pfn_pud(cpa
->pfn
,
1092 canon_pgprot(pud_pgprot
))));
1095 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1096 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1100 /* Map trailing leftover */
1104 pud
= pud_offset(p4d
, start
);
1106 if (alloc_pmd_page(pud
))
1109 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1120 * Restrictions for kernel page table do not necessarily apply when mapping in
1123 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1125 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1126 pud_t
*pud
= NULL
; /* shut up gcc */
1131 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1133 if (pgd_none(*pgd_entry
)) {
1134 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
1138 set_pgd(pgd_entry
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
1142 * Allocate a PUD page and hand it down for mapping.
1144 p4d
= p4d_offset(pgd_entry
, addr
);
1145 if (p4d_none(*p4d
)) {
1146 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
1150 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
1153 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1154 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1156 ret
= populate_pud(cpa
, addr
, p4d
, pgprot
);
1159 * Leave the PUD page in place in case some other CPU or thread
1160 * already found it, but remove any useless entries we just
1163 unmap_pud_range(p4d
, addr
,
1164 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1168 cpa
->numpages
= ret
;
1172 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1177 * Right now, we only execute this code path when mapping
1178 * the EFI virtual memory map regions, no other users
1179 * provide a ->pgd value. This may change in the future.
1181 return populate_pgd(cpa
, vaddr
);
1185 * Ignore all non primary paths.
1193 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1195 * Also set numpages to '1' indicating that we processed cpa req for
1196 * one virtual address page and its pfn. TBD: numpages can be set based
1197 * on the initial value and the level returned by lookup_address().
1199 if (within(vaddr
, PAGE_OFFSET
,
1200 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1202 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1205 } else if (__cpa_pfn_in_highmap(cpa
->pfn
)) {
1206 /* Faults in the highmap are OK, so do not warn: */
1209 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1210 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1217 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1219 unsigned long address
;
1222 pte_t
*kpte
, old_pte
;
1224 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1225 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1226 if (unlikely(PageHighMem(page
)))
1228 address
= (unsigned long)page_address(page
);
1229 } else if (cpa
->flags
& CPA_ARRAY
)
1230 address
= cpa
->vaddr
[cpa
->curpage
];
1232 address
= *cpa
->vaddr
;
1234 kpte
= _lookup_address_cpa(cpa
, address
, &level
);
1236 return __cpa_process_fault(cpa
, address
, primary
);
1239 if (pte_none(old_pte
))
1240 return __cpa_process_fault(cpa
, address
, primary
);
1242 if (level
== PG_LEVEL_4K
) {
1244 pgprot_t new_prot
= pte_pgprot(old_pte
);
1245 unsigned long pfn
= pte_pfn(old_pte
);
1247 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1248 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1250 new_prot
= static_protections(new_prot
, address
, pfn
);
1252 new_prot
= pgprot_clear_protnone_bits(new_prot
);
1255 * We need to keep the pfn from the existing PTE,
1256 * after all we're only going to change it's attributes
1257 * not the memory it points to
1259 new_pte
= pfn_pte(pfn
, new_prot
);
1262 * Do we really change anything ?
1264 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1265 set_pte_atomic(kpte
, new_pte
);
1266 cpa
->flags
|= CPA_FLUSHTLB
;
1273 * Check, whether we can keep the large page intact
1274 * and just change the pte:
1276 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
1278 * When the range fits into the existing large page,
1279 * return. cp->numpages and cpa->tlbflush have been updated in
1286 * We have to split the large page:
1288 err
= split_large_page(cpa
, kpte
, address
);
1291 * Do a global flush tlb after splitting the large page
1292 * and before we do the actual change page attribute in the PTE.
1294 * With out this, we violate the TLB application note, that says
1295 * "The TLBs may contain both ordinary and large-page
1296 * translations for a 4-KByte range of linear addresses. This
1297 * may occur if software modifies the paging structures so that
1298 * the page size used for the address range changes. If the two
1299 * translations differ with respect to page frame or attributes
1300 * (e.g., permissions), processor behavior is undefined and may
1301 * be implementation-specific."
1303 * We do this global tlb flush inside the cpa_lock, so that we
1304 * don't allow any other cpu, with stale tlb entries change the
1305 * page attribute in parallel, that also falls into the
1306 * just split large page entry.
1315 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
1317 static int cpa_process_alias(struct cpa_data
*cpa
)
1319 struct cpa_data alias_cpa
;
1320 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1321 unsigned long vaddr
;
1324 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1328 * No need to redo, when the primary call touched the direct
1331 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1332 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1333 if (unlikely(PageHighMem(page
)))
1335 vaddr
= (unsigned long)page_address(page
);
1336 } else if (cpa
->flags
& CPA_ARRAY
)
1337 vaddr
= cpa
->vaddr
[cpa
->curpage
];
1339 vaddr
= *cpa
->vaddr
;
1341 if (!(within(vaddr
, PAGE_OFFSET
,
1342 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1345 alias_cpa
.vaddr
= &laddr
;
1346 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1348 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1353 #ifdef CONFIG_X86_64
1355 * If the primary call didn't touch the high mapping already
1356 * and the physical address is inside the kernel map, we need
1357 * to touch the high mapped kernel as well:
1359 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1360 __cpa_pfn_in_highmap(cpa
->pfn
)) {
1361 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1362 __START_KERNEL_map
- phys_base
;
1364 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1365 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1368 * The high mapping range is imprecise, so ignore the
1371 __change_page_attr_set_clr(&alias_cpa
, 0);
1378 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
1380 unsigned long numpages
= cpa
->numpages
;
1385 * Store the remaining nr of pages for the large page
1386 * preservation check.
1388 cpa
->numpages
= numpages
;
1389 /* for array changes, we can't use large page */
1390 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1393 if (!debug_pagealloc_enabled())
1394 spin_lock(&cpa_lock
);
1395 ret
= __change_page_attr(cpa
, checkalias
);
1396 if (!debug_pagealloc_enabled())
1397 spin_unlock(&cpa_lock
);
1402 ret
= cpa_process_alias(cpa
);
1408 * Adjust the number of pages with the result of the
1409 * CPA operation. Either a large page has been
1410 * preserved or a single page update happened.
1412 BUG_ON(cpa
->numpages
> numpages
|| !cpa
->numpages
);
1413 numpages
-= cpa
->numpages
;
1414 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
1417 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
1423 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1424 pgprot_t mask_set
, pgprot_t mask_clr
,
1425 int force_split
, int in_flag
,
1426 struct page
**pages
)
1428 struct cpa_data cpa
;
1429 int ret
, cache
, checkalias
;
1430 unsigned long baddr
= 0;
1432 memset(&cpa
, 0, sizeof(cpa
));
1435 * Check, if we are requested to set a not supported
1436 * feature. Clearing non-supported features is OK.
1438 mask_set
= canon_pgprot(mask_set
);
1440 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1443 /* Ensure we are PAGE_SIZE aligned */
1444 if (in_flag
& CPA_ARRAY
) {
1446 for (i
= 0; i
< numpages
; i
++) {
1447 if (addr
[i
] & ~PAGE_MASK
) {
1448 addr
[i
] &= PAGE_MASK
;
1452 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1454 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1455 * No need to cehck in that case
1457 if (*addr
& ~PAGE_MASK
) {
1460 * People should not be passing in unaligned addresses:
1465 * Save address for cache flush. *addr is modified in the call
1466 * to __change_page_attr_set_clr() below.
1471 /* Must avoid aliasing mappings in the highmem code */
1472 kmap_flush_unused();
1478 cpa
.numpages
= numpages
;
1479 cpa
.mask_set
= mask_set
;
1480 cpa
.mask_clr
= mask_clr
;
1483 cpa
.force_split
= force_split
;
1485 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1486 cpa
.flags
|= in_flag
;
1488 /* No alias checking for _NX bit modifications */
1489 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
1490 /* Has caller explicitly disabled alias checking? */
1491 if (in_flag
& CPA_NO_CHECK_ALIAS
)
1494 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
1497 * Check whether we really changed something:
1499 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1503 * No need to flush, when we did not set any of the caching
1506 cache
= !!pgprot2cachemode(mask_set
);
1509 * On success we use CLFLUSH, when the CPU supports it to
1510 * avoid the WBINVD. If the CPU does not support it and in the
1511 * error case we fall back to cpa_flush_all (which uses
1514 if (!ret
&& boot_cpu_has(X86_FEATURE_CLFLUSH
)) {
1515 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
1516 cpa_flush_array(addr
, numpages
, cache
,
1519 cpa_flush_range(baddr
, numpages
, cache
);
1521 cpa_flush_all(cache
);
1527 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1528 pgprot_t mask
, int array
)
1530 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1531 (array
? CPA_ARRAY
: 0), NULL
);
1534 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1535 pgprot_t mask
, int array
)
1537 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1538 (array
? CPA_ARRAY
: 0), NULL
);
1541 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1544 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1545 CPA_PAGES_ARRAY
, pages
);
1548 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1551 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1552 CPA_PAGES_ARRAY
, pages
);
1555 int _set_memory_uc(unsigned long addr
, int numpages
)
1558 * for now UC MINUS. see comments in ioremap_nocache()
1559 * If you really need strong UC use ioremap_uc(), but note
1560 * that you cannot override IO areas with set_memory_*() as
1561 * these helpers cannot work with IO memory.
1563 return change_page_attr_set(&addr
, numpages
,
1564 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1568 int set_memory_uc(unsigned long addr
, int numpages
)
1573 * for now UC MINUS. see comments in ioremap_nocache()
1575 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1576 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1580 ret
= _set_memory_uc(addr
, numpages
);
1587 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1591 EXPORT_SYMBOL(set_memory_uc
);
1593 static int _set_memory_array(unsigned long *addr
, int addrinarray
,
1594 enum page_cache_mode new_type
)
1596 enum page_cache_mode set_type
;
1600 for (i
= 0; i
< addrinarray
; i
++) {
1601 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
1607 /* If WC, set to UC- first and then WC */
1608 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1609 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1611 ret
= change_page_attr_set(addr
, addrinarray
,
1612 cachemode2pgprot(set_type
), 1);
1614 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1615 ret
= change_page_attr_set_clr(addr
, addrinarray
,
1617 _PAGE_CACHE_MODE_WC
),
1618 __pgprot(_PAGE_CACHE_MASK
),
1619 0, CPA_ARRAY
, NULL
);
1626 for (j
= 0; j
< i
; j
++)
1627 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1632 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
1634 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1636 EXPORT_SYMBOL(set_memory_array_uc
);
1638 int set_memory_array_wc(unsigned long *addr
, int addrinarray
)
1640 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1642 EXPORT_SYMBOL(set_memory_array_wc
);
1644 int set_memory_array_wt(unsigned long *addr
, int addrinarray
)
1646 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1648 EXPORT_SYMBOL_GPL(set_memory_array_wt
);
1650 int _set_memory_wc(unsigned long addr
, int numpages
)
1653 unsigned long addr_copy
= addr
;
1655 ret
= change_page_attr_set(&addr
, numpages
,
1656 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1659 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1661 _PAGE_CACHE_MODE_WC
),
1662 __pgprot(_PAGE_CACHE_MASK
),
1668 int set_memory_wc(unsigned long addr
, int numpages
)
1672 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1673 _PAGE_CACHE_MODE_WC
, NULL
);
1677 ret
= _set_memory_wc(addr
, numpages
);
1679 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1683 EXPORT_SYMBOL(set_memory_wc
);
1685 int _set_memory_wt(unsigned long addr
, int numpages
)
1687 return change_page_attr_set(&addr
, numpages
,
1688 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
1691 int set_memory_wt(unsigned long addr
, int numpages
)
1695 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1696 _PAGE_CACHE_MODE_WT
, NULL
);
1700 ret
= _set_memory_wt(addr
, numpages
);
1702 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1706 EXPORT_SYMBOL_GPL(set_memory_wt
);
1708 int _set_memory_wb(unsigned long addr
, int numpages
)
1710 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1711 return change_page_attr_clear(&addr
, numpages
,
1712 __pgprot(_PAGE_CACHE_MASK
), 0);
1715 int set_memory_wb(unsigned long addr
, int numpages
)
1719 ret
= _set_memory_wb(addr
, numpages
);
1723 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1726 EXPORT_SYMBOL(set_memory_wb
);
1728 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1733 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1734 ret
= change_page_attr_clear(addr
, addrinarray
,
1735 __pgprot(_PAGE_CACHE_MASK
), 1);
1739 for (i
= 0; i
< addrinarray
; i
++)
1740 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1744 EXPORT_SYMBOL(set_memory_array_wb
);
1746 int set_memory_x(unsigned long addr
, int numpages
)
1748 if (!(__supported_pte_mask
& _PAGE_NX
))
1751 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1753 EXPORT_SYMBOL(set_memory_x
);
1755 int set_memory_nx(unsigned long addr
, int numpages
)
1757 if (!(__supported_pte_mask
& _PAGE_NX
))
1760 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1762 EXPORT_SYMBOL(set_memory_nx
);
1764 int set_memory_ro(unsigned long addr
, int numpages
)
1766 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1769 int set_memory_rw(unsigned long addr
, int numpages
)
1771 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1774 int set_memory_np(unsigned long addr
, int numpages
)
1776 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1779 int set_memory_np_noalias(unsigned long addr
, int numpages
)
1781 int cpa_flags
= CPA_NO_CHECK_ALIAS
;
1783 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1784 __pgprot(_PAGE_PRESENT
), 0,
1788 int set_memory_4k(unsigned long addr
, int numpages
)
1790 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1791 __pgprot(0), 1, 0, NULL
);
1794 int set_memory_nonglobal(unsigned long addr
, int numpages
)
1796 return change_page_attr_clear(&addr
, numpages
,
1797 __pgprot(_PAGE_GLOBAL
), 0);
1800 int set_memory_global(unsigned long addr
, int numpages
)
1802 return change_page_attr_set(&addr
, numpages
,
1803 __pgprot(_PAGE_GLOBAL
), 0);
1806 static int __set_memory_enc_dec(unsigned long addr
, int numpages
, bool enc
)
1808 struct cpa_data cpa
;
1809 unsigned long start
;
1812 /* Nothing to do if memory encryption is not active */
1813 if (!mem_encrypt_active())
1816 /* Should not be working on unaligned addresses */
1817 if (WARN_ONCE(addr
& ~PAGE_MASK
, "misaligned address: %#lx\n", addr
))
1822 memset(&cpa
, 0, sizeof(cpa
));
1824 cpa
.numpages
= numpages
;
1825 cpa
.mask_set
= enc
? __pgprot(_PAGE_ENC
) : __pgprot(0);
1826 cpa
.mask_clr
= enc
? __pgprot(0) : __pgprot(_PAGE_ENC
);
1827 cpa
.pgd
= init_mm
.pgd
;
1829 /* Must avoid aliasing mappings in the highmem code */
1830 kmap_flush_unused();
1834 * Before changing the encryption attribute, we need to flush caches.
1836 if (static_cpu_has(X86_FEATURE_CLFLUSH
))
1837 cpa_flush_range(start
, numpages
, 1);
1841 ret
= __change_page_attr_set_clr(&cpa
, 1);
1844 * After changing the encryption attribute, we need to flush TLBs
1845 * again in case any speculative TLB caching occurred (but no need
1846 * to flush caches again). We could just use cpa_flush_all(), but
1847 * in case TLB flushing gets optimized in the cpa_flush_range()
1848 * path use the same logic as above.
1850 if (static_cpu_has(X86_FEATURE_CLFLUSH
))
1851 cpa_flush_range(start
, numpages
, 0);
1858 int set_memory_encrypted(unsigned long addr
, int numpages
)
1860 return __set_memory_enc_dec(addr
, numpages
, true);
1862 EXPORT_SYMBOL_GPL(set_memory_encrypted
);
1864 int set_memory_decrypted(unsigned long addr
, int numpages
)
1866 return __set_memory_enc_dec(addr
, numpages
, false);
1868 EXPORT_SYMBOL_GPL(set_memory_decrypted
);
1870 int set_pages_uc(struct page
*page
, int numpages
)
1872 unsigned long addr
= (unsigned long)page_address(page
);
1874 return set_memory_uc(addr
, numpages
);
1876 EXPORT_SYMBOL(set_pages_uc
);
1878 static int _set_pages_array(struct page
**pages
, int addrinarray
,
1879 enum page_cache_mode new_type
)
1881 unsigned long start
;
1883 enum page_cache_mode set_type
;
1888 for (i
= 0; i
< addrinarray
; i
++) {
1889 if (PageHighMem(pages
[i
]))
1891 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1892 end
= start
+ PAGE_SIZE
;
1893 if (reserve_memtype(start
, end
, new_type
, NULL
))
1897 /* If WC, set to UC- first and then WC */
1898 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1899 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1901 ret
= cpa_set_pages_array(pages
, addrinarray
,
1902 cachemode2pgprot(set_type
));
1903 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1904 ret
= change_page_attr_set_clr(NULL
, addrinarray
,
1906 _PAGE_CACHE_MODE_WC
),
1907 __pgprot(_PAGE_CACHE_MASK
),
1908 0, CPA_PAGES_ARRAY
, pages
);
1911 return 0; /* Success */
1914 for (i
= 0; i
< free_idx
; i
++) {
1915 if (PageHighMem(pages
[i
]))
1917 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1918 end
= start
+ PAGE_SIZE
;
1919 free_memtype(start
, end
);
1924 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1926 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1928 EXPORT_SYMBOL(set_pages_array_uc
);
1930 int set_pages_array_wc(struct page
**pages
, int addrinarray
)
1932 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1934 EXPORT_SYMBOL(set_pages_array_wc
);
1936 int set_pages_array_wt(struct page
**pages
, int addrinarray
)
1938 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1940 EXPORT_SYMBOL_GPL(set_pages_array_wt
);
1942 int set_pages_wb(struct page
*page
, int numpages
)
1944 unsigned long addr
= (unsigned long)page_address(page
);
1946 return set_memory_wb(addr
, numpages
);
1948 EXPORT_SYMBOL(set_pages_wb
);
1950 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1953 unsigned long start
;
1957 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1958 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1959 __pgprot(_PAGE_CACHE_MASK
));
1963 for (i
= 0; i
< addrinarray
; i
++) {
1964 if (PageHighMem(pages
[i
]))
1966 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1967 end
= start
+ PAGE_SIZE
;
1968 free_memtype(start
, end
);
1973 EXPORT_SYMBOL(set_pages_array_wb
);
1975 int set_pages_x(struct page
*page
, int numpages
)
1977 unsigned long addr
= (unsigned long)page_address(page
);
1979 return set_memory_x(addr
, numpages
);
1981 EXPORT_SYMBOL(set_pages_x
);
1983 int set_pages_nx(struct page
*page
, int numpages
)
1985 unsigned long addr
= (unsigned long)page_address(page
);
1987 return set_memory_nx(addr
, numpages
);
1989 EXPORT_SYMBOL(set_pages_nx
);
1991 int set_pages_ro(struct page
*page
, int numpages
)
1993 unsigned long addr
= (unsigned long)page_address(page
);
1995 return set_memory_ro(addr
, numpages
);
1998 int set_pages_rw(struct page
*page
, int numpages
)
2000 unsigned long addr
= (unsigned long)page_address(page
);
2002 return set_memory_rw(addr
, numpages
);
2005 #ifdef CONFIG_DEBUG_PAGEALLOC
2007 static int __set_pages_p(struct page
*page
, int numpages
)
2009 unsigned long tempaddr
= (unsigned long) page_address(page
);
2010 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2012 .numpages
= numpages
,
2013 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2014 .mask_clr
= __pgprot(0),
2018 * No alias checking needed for setting present flag. otherwise,
2019 * we may need to break large pages for 64-bit kernel text
2020 * mappings (this adds to complexity if we want to do this from
2021 * atomic context especially). Let's keep it simple!
2023 return __change_page_attr_set_clr(&cpa
, 0);
2026 static int __set_pages_np(struct page
*page
, int numpages
)
2028 unsigned long tempaddr
= (unsigned long) page_address(page
);
2029 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2031 .numpages
= numpages
,
2032 .mask_set
= __pgprot(0),
2033 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2037 * No alias checking needed for setting not present flag. otherwise,
2038 * we may need to break large pages for 64-bit kernel text
2039 * mappings (this adds to complexity if we want to do this from
2040 * atomic context especially). Let's keep it simple!
2042 return __change_page_attr_set_clr(&cpa
, 0);
2045 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
2047 if (PageHighMem(page
))
2050 debug_check_no_locks_freed(page_address(page
),
2051 numpages
* PAGE_SIZE
);
2055 * The return value is ignored as the calls cannot fail.
2056 * Large pages for identity mappings are not used at boot time
2057 * and hence no memory allocations during large page split.
2060 __set_pages_p(page
, numpages
);
2062 __set_pages_np(page
, numpages
);
2065 * We should perform an IPI and flush all tlbs,
2066 * but that can deadlock->flush only current cpu:
2070 arch_flush_lazy_mmu_mode();
2073 #ifdef CONFIG_HIBERNATION
2075 bool kernel_page_present(struct page
*page
)
2080 if (PageHighMem(page
))
2083 pte
= lookup_address((unsigned long)page_address(page
), &level
);
2084 return (pte_val(*pte
) & _PAGE_PRESENT
);
2087 #endif /* CONFIG_HIBERNATION */
2089 #endif /* CONFIG_DEBUG_PAGEALLOC */
2091 int kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
2092 unsigned numpages
, unsigned long page_flags
)
2094 int retval
= -EINVAL
;
2096 struct cpa_data cpa
= {
2100 .numpages
= numpages
,
2101 .mask_set
= __pgprot(0),
2102 .mask_clr
= __pgprot(0),
2106 if (!(__supported_pte_mask
& _PAGE_NX
))
2109 if (!(page_flags
& _PAGE_NX
))
2110 cpa
.mask_clr
= __pgprot(_PAGE_NX
);
2112 if (!(page_flags
& _PAGE_RW
))
2113 cpa
.mask_clr
= __pgprot(_PAGE_RW
);
2115 if (!(page_flags
& _PAGE_ENC
))
2116 cpa
.mask_clr
= pgprot_encrypted(cpa
.mask_clr
);
2118 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
2120 retval
= __change_page_attr_set_clr(&cpa
, 0);
2128 * The testcases use internal knowledge of the implementation that shouldn't
2129 * be exposed to the rest of the kernel. Include these directly here.
2131 #ifdef CONFIG_CPA_DEBUG
2132 #include "pageattr-test.c"