Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / mm / pgtable.c
blobe3deefb891dac90ac9d1c0f54d432efd3456c8aa
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
18 #ifdef CONFIG_HIGHPTE
19 #define PGALLOC_USER_GFP __GFP_HIGHMEM
20 #else
21 #define PGALLOC_USER_GFP 0
22 #endif
24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
28 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
31 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
33 struct page *pte;
35 pte = alloc_pages(__userpte_alloc_gfp, 0);
36 if (!pte)
37 return NULL;
38 if (!pgtable_page_ctor(pte)) {
39 __free_page(pte);
40 return NULL;
42 return pte;
45 static int __init setup_userpte(char *arg)
47 if (!arg)
48 return -EINVAL;
51 * "userpte=nohigh" disables allocation of user pagetables in
52 * high memory.
54 if (strcmp(arg, "nohigh") == 0)
55 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
56 else
57 return -EINVAL;
58 return 0;
60 early_param("userpte", setup_userpte);
62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
64 pgtable_page_dtor(pte);
65 paravirt_release_pte(page_to_pfn(pte));
66 tlb_remove_table(tlb, pte);
69 #if CONFIG_PGTABLE_LEVELS > 2
70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
72 struct page *page = virt_to_page(pmd);
73 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
75 * NOTE! For PAE, any changes to the top page-directory-pointer-table
76 * entries need a full cr3 reload to flush.
78 #ifdef CONFIG_X86_PAE
79 tlb->need_flush_all = 1;
80 #endif
81 pgtable_pmd_page_dtor(page);
82 tlb_remove_table(tlb, page);
85 #if CONFIG_PGTABLE_LEVELS > 3
86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
88 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
89 tlb_remove_table(tlb, virt_to_page(pud));
92 #if CONFIG_PGTABLE_LEVELS > 4
93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
95 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
96 tlb_remove_table(tlb, virt_to_page(p4d));
98 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
99 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
100 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
102 static inline void pgd_list_add(pgd_t *pgd)
104 struct page *page = virt_to_page(pgd);
106 list_add(&page->lru, &pgd_list);
109 static inline void pgd_list_del(pgd_t *pgd)
111 struct page *page = virt_to_page(pgd);
113 list_del(&page->lru);
116 #define UNSHARED_PTRS_PER_PGD \
117 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
120 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
122 virt_to_page(pgd)->pt_mm = mm;
125 struct mm_struct *pgd_page_get_mm(struct page *page)
127 return page->pt_mm;
130 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
132 /* If the pgd points to a shared pagetable level (either the
133 ptes in non-PAE, or shared PMD in PAE), then just copy the
134 references from swapper_pg_dir. */
135 if (CONFIG_PGTABLE_LEVELS == 2 ||
136 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
137 CONFIG_PGTABLE_LEVELS >= 4) {
138 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
139 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
140 KERNEL_PGD_PTRS);
143 /* list required to sync kernel mapping updates */
144 if (!SHARED_KERNEL_PMD) {
145 pgd_set_mm(pgd, mm);
146 pgd_list_add(pgd);
150 static void pgd_dtor(pgd_t *pgd)
152 if (SHARED_KERNEL_PMD)
153 return;
155 spin_lock(&pgd_lock);
156 pgd_list_del(pgd);
157 spin_unlock(&pgd_lock);
161 * List of all pgd's needed for non-PAE so it can invalidate entries
162 * in both cached and uncached pgd's; not needed for PAE since the
163 * kernel pmd is shared. If PAE were not to share the pmd a similar
164 * tactic would be needed. This is essentially codepath-based locking
165 * against pageattr.c; it is the unique case in which a valid change
166 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
167 * vmalloc faults work because attached pagetables are never freed.
168 * -- nyc
171 #ifdef CONFIG_X86_PAE
173 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
174 * updating the top-level pagetable entries to guarantee the
175 * processor notices the update. Since this is expensive, and
176 * all 4 top-level entries are used almost immediately in a
177 * new process's life, we just pre-populate them here.
179 * Also, if we're in a paravirt environment where the kernel pmd is
180 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
181 * and initialize the kernel pmds here.
183 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
185 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
187 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
189 /* Note: almost everything apart from _PAGE_PRESENT is
190 reserved at the pmd (PDPT) level. */
191 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
194 * According to Intel App note "TLBs, Paging-Structure Caches,
195 * and Their Invalidation", April 2007, document 317080-001,
196 * section 8.1: in PAE mode we explicitly have to flush the
197 * TLB via cr3 if the top-level pgd is changed...
199 flush_tlb_mm(mm);
201 #else /* !CONFIG_X86_PAE */
203 /* No need to prepopulate any pagetable entries in non-PAE modes. */
204 #define PREALLOCATED_PMDS 0
206 #endif /* CONFIG_X86_PAE */
208 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
210 int i;
212 for(i = 0; i < PREALLOCATED_PMDS; i++)
213 if (pmds[i]) {
214 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
215 free_page((unsigned long)pmds[i]);
216 mm_dec_nr_pmds(mm);
220 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
222 int i;
223 bool failed = false;
224 gfp_t gfp = PGALLOC_GFP;
226 if (mm == &init_mm)
227 gfp &= ~__GFP_ACCOUNT;
229 for(i = 0; i < PREALLOCATED_PMDS; i++) {
230 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
231 if (!pmd)
232 failed = true;
233 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
234 free_page((unsigned long)pmd);
235 pmd = NULL;
236 failed = true;
238 if (pmd)
239 mm_inc_nr_pmds(mm);
240 pmds[i] = pmd;
243 if (failed) {
244 free_pmds(mm, pmds);
245 return -ENOMEM;
248 return 0;
252 * Mop up any pmd pages which may still be attached to the pgd.
253 * Normally they will be freed by munmap/exit_mmap, but any pmd we
254 * preallocate which never got a corresponding vma will need to be
255 * freed manually.
257 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
259 int i;
261 for(i = 0; i < PREALLOCATED_PMDS; i++) {
262 pgd_t pgd = pgdp[i];
264 if (pgd_val(pgd) != 0) {
265 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
267 pgdp[i] = native_make_pgd(0);
269 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
270 pmd_free(mm, pmd);
271 mm_dec_nr_pmds(mm);
276 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
278 p4d_t *p4d;
279 pud_t *pud;
280 int i;
282 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
283 return;
285 p4d = p4d_offset(pgd, 0);
286 pud = pud_offset(p4d, 0);
288 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
289 pmd_t *pmd = pmds[i];
291 if (i >= KERNEL_PGD_BOUNDARY)
292 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
293 sizeof(pmd_t) * PTRS_PER_PMD);
295 pud_populate(mm, pud, pmd);
300 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
301 * assumes that pgd should be in one page.
303 * But kernel with PAE paging that is not running as a Xen domain
304 * only needs to allocate 32 bytes for pgd instead of one page.
306 #ifdef CONFIG_X86_PAE
308 #include <linux/slab.h>
310 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
311 #define PGD_ALIGN 32
313 static struct kmem_cache *pgd_cache;
315 static int __init pgd_cache_init(void)
318 * When PAE kernel is running as a Xen domain, it does not use
319 * shared kernel pmd. And this requires a whole page for pgd.
321 if (!SHARED_KERNEL_PMD)
322 return 0;
325 * when PAE kernel is not running as a Xen domain, it uses
326 * shared kernel pmd. Shared kernel pmd does not require a whole
327 * page for pgd. We are able to just allocate a 32-byte for pgd.
328 * During boot time, we create a 32-byte slab for pgd table allocation.
330 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
331 SLAB_PANIC, NULL);
332 if (!pgd_cache)
333 return -ENOMEM;
335 return 0;
337 core_initcall(pgd_cache_init);
339 static inline pgd_t *_pgd_alloc(void)
342 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
343 * We allocate one page for pgd.
345 if (!SHARED_KERNEL_PMD)
346 return (pgd_t *)__get_free_page(PGALLOC_GFP);
349 * Now PAE kernel is not running as a Xen domain. We can allocate
350 * a 32-byte slab for pgd to save memory space.
352 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
355 static inline void _pgd_free(pgd_t *pgd)
357 if (!SHARED_KERNEL_PMD)
358 free_page((unsigned long)pgd);
359 else
360 kmem_cache_free(pgd_cache, pgd);
362 #else
364 static inline pgd_t *_pgd_alloc(void)
366 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
369 static inline void _pgd_free(pgd_t *pgd)
371 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
373 #endif /* CONFIG_X86_PAE */
375 pgd_t *pgd_alloc(struct mm_struct *mm)
377 pgd_t *pgd;
378 pmd_t *pmds[PREALLOCATED_PMDS];
380 pgd = _pgd_alloc();
382 if (pgd == NULL)
383 goto out;
385 mm->pgd = pgd;
387 if (preallocate_pmds(mm, pmds) != 0)
388 goto out_free_pgd;
390 if (paravirt_pgd_alloc(mm) != 0)
391 goto out_free_pmds;
394 * Make sure that pre-populating the pmds is atomic with
395 * respect to anything walking the pgd_list, so that they
396 * never see a partially populated pgd.
398 spin_lock(&pgd_lock);
400 pgd_ctor(mm, pgd);
401 pgd_prepopulate_pmd(mm, pgd, pmds);
403 spin_unlock(&pgd_lock);
405 return pgd;
407 out_free_pmds:
408 free_pmds(mm, pmds);
409 out_free_pgd:
410 _pgd_free(pgd);
411 out:
412 return NULL;
415 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
417 pgd_mop_up_pmds(mm, pgd);
418 pgd_dtor(pgd);
419 paravirt_pgd_free(mm, pgd);
420 _pgd_free(pgd);
424 * Used to set accessed or dirty bits in the page table entries
425 * on other architectures. On x86, the accessed and dirty bits
426 * are tracked by hardware. However, do_wp_page calls this function
427 * to also make the pte writeable at the same time the dirty bit is
428 * set. In that case we do actually need to write the PTE.
430 int ptep_set_access_flags(struct vm_area_struct *vma,
431 unsigned long address, pte_t *ptep,
432 pte_t entry, int dirty)
434 int changed = !pte_same(*ptep, entry);
436 if (changed && dirty)
437 *ptep = entry;
439 return changed;
442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
443 int pmdp_set_access_flags(struct vm_area_struct *vma,
444 unsigned long address, pmd_t *pmdp,
445 pmd_t entry, int dirty)
447 int changed = !pmd_same(*pmdp, entry);
449 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
451 if (changed && dirty) {
452 *pmdp = entry;
454 * We had a write-protection fault here and changed the pmd
455 * to to more permissive. No need to flush the TLB for that,
456 * #PF is architecturally guaranteed to do that and in the
457 * worst-case we'll generate a spurious fault.
461 return changed;
464 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
465 pud_t *pudp, pud_t entry, int dirty)
467 int changed = !pud_same(*pudp, entry);
469 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
471 if (changed && dirty) {
472 *pudp = entry;
474 * We had a write-protection fault here and changed the pud
475 * to to more permissive. No need to flush the TLB for that,
476 * #PF is architecturally guaranteed to do that and in the
477 * worst-case we'll generate a spurious fault.
481 return changed;
483 #endif
485 int ptep_test_and_clear_young(struct vm_area_struct *vma,
486 unsigned long addr, pte_t *ptep)
488 int ret = 0;
490 if (pte_young(*ptep))
491 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
492 (unsigned long *) &ptep->pte);
494 return ret;
497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
498 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
499 unsigned long addr, pmd_t *pmdp)
501 int ret = 0;
503 if (pmd_young(*pmdp))
504 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
505 (unsigned long *)pmdp);
507 return ret;
509 int pudp_test_and_clear_young(struct vm_area_struct *vma,
510 unsigned long addr, pud_t *pudp)
512 int ret = 0;
514 if (pud_young(*pudp))
515 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
516 (unsigned long *)pudp);
518 return ret;
520 #endif
522 int ptep_clear_flush_young(struct vm_area_struct *vma,
523 unsigned long address, pte_t *ptep)
526 * On x86 CPUs, clearing the accessed bit without a TLB flush
527 * doesn't cause data corruption. [ It could cause incorrect
528 * page aging and the (mistaken) reclaim of hot pages, but the
529 * chance of that should be relatively low. ]
531 * So as a performance optimization don't flush the TLB when
532 * clearing the accessed bit, it will eventually be flushed by
533 * a context switch or a VM operation anyway. [ In the rare
534 * event of it not getting flushed for a long time the delay
535 * shouldn't really matter because there's no real memory
536 * pressure for swapout to react to. ]
538 return ptep_test_and_clear_young(vma, address, ptep);
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 int pmdp_clear_flush_young(struct vm_area_struct *vma,
543 unsigned long address, pmd_t *pmdp)
545 int young;
547 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
549 young = pmdp_test_and_clear_young(vma, address, pmdp);
550 if (young)
551 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
553 return young;
555 #endif
558 * reserve_top_address - reserves a hole in the top of kernel address space
559 * @reserve - size of hole to reserve
561 * Can be used to relocate the fixmap area and poke a hole in the top
562 * of kernel address space to make room for a hypervisor.
564 void __init reserve_top_address(unsigned long reserve)
566 #ifdef CONFIG_X86_32
567 BUG_ON(fixmaps_set > 0);
568 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
569 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
570 -reserve, __FIXADDR_TOP + PAGE_SIZE);
571 #endif
574 int fixmaps_set;
576 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
578 unsigned long address = __fix_to_virt(idx);
580 if (idx >= __end_of_fixed_addresses) {
581 BUG();
582 return;
584 set_pte_vaddr(address, pte);
585 fixmaps_set++;
588 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
589 pgprot_t flags)
591 /* Sanitize 'prot' against any unsupported bits: */
592 pgprot_val(flags) &= __default_kernel_pte_mask;
594 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
597 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
598 #ifdef CONFIG_X86_5LEVEL
600 * p4d_set_huge - setup kernel P4D mapping
602 * No 512GB pages yet -- always return 0
604 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
606 return 0;
610 * p4d_clear_huge - clear kernel P4D mapping when it is set
612 * No 512GB pages yet -- always return 0
614 int p4d_clear_huge(p4d_t *p4d)
616 return 0;
618 #endif
621 * pud_set_huge - setup kernel PUD mapping
623 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
624 * function sets up a huge page only if any of the following conditions are met:
626 * - MTRRs are disabled, or
628 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
630 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
631 * has no effect on the requested PAT memory type.
633 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
634 * page mapping attempt fails.
636 * Returns 1 on success and 0 on failure.
638 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
640 u8 mtrr, uniform;
642 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
643 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
644 (mtrr != MTRR_TYPE_WRBACK))
645 return 0;
647 /* Bail out if we are we on a populated non-leaf entry: */
648 if (pud_present(*pud) && !pud_huge(*pud))
649 return 0;
651 prot = pgprot_4k_2_large(prot);
653 set_pte((pte_t *)pud, pfn_pte(
654 (u64)addr >> PAGE_SHIFT,
655 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
657 return 1;
661 * pmd_set_huge - setup kernel PMD mapping
663 * See text over pud_set_huge() above.
665 * Returns 1 on success and 0 on failure.
667 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
669 u8 mtrr, uniform;
671 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
672 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
673 (mtrr != MTRR_TYPE_WRBACK)) {
674 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
675 __func__, addr, addr + PMD_SIZE);
676 return 0;
679 /* Bail out if we are we on a populated non-leaf entry: */
680 if (pmd_present(*pmd) && !pmd_huge(*pmd))
681 return 0;
683 prot = pgprot_4k_2_large(prot);
685 set_pte((pte_t *)pmd, pfn_pte(
686 (u64)addr >> PAGE_SHIFT,
687 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
689 return 1;
693 * pud_clear_huge - clear kernel PUD mapping when it is set
695 * Returns 1 on success and 0 on failure (no PUD map is found).
697 int pud_clear_huge(pud_t *pud)
699 if (pud_large(*pud)) {
700 pud_clear(pud);
701 return 1;
704 return 0;
708 * pmd_clear_huge - clear kernel PMD mapping when it is set
710 * Returns 1 on success and 0 on failure (no PMD map is found).
712 int pmd_clear_huge(pmd_t *pmd)
714 if (pmd_large(*pmd)) {
715 pmd_clear(pmd);
716 return 1;
719 return 0;
722 #ifdef CONFIG_X86_64
724 * pud_free_pmd_page - Clear pud entry and free pmd page.
725 * @pud: Pointer to a PUD.
726 * @addr: Virtual address associated with pud.
728 * Context: The pud range has been unmapped and TLB purged.
729 * Return: 1 if clearing the entry succeeded. 0 otherwise.
731 * NOTE: Callers must allow a single page allocation.
733 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
735 pmd_t *pmd, *pmd_sv;
736 pte_t *pte;
737 int i;
739 if (pud_none(*pud))
740 return 1;
742 pmd = (pmd_t *)pud_page_vaddr(*pud);
743 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
744 if (!pmd_sv)
745 return 0;
747 for (i = 0; i < PTRS_PER_PMD; i++) {
748 pmd_sv[i] = pmd[i];
749 if (!pmd_none(pmd[i]))
750 pmd_clear(&pmd[i]);
753 pud_clear(pud);
755 /* INVLPG to clear all paging-structure caches */
756 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
758 for (i = 0; i < PTRS_PER_PMD; i++) {
759 if (!pmd_none(pmd_sv[i])) {
760 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
761 free_page((unsigned long)pte);
765 free_page((unsigned long)pmd_sv);
766 free_page((unsigned long)pmd);
768 return 1;
772 * pmd_free_pte_page - Clear pmd entry and free pte page.
773 * @pmd: Pointer to a PMD.
774 * @addr: Virtual address associated with pmd.
776 * Context: The pmd range has been unmapped and TLB purged.
777 * Return: 1 if clearing the entry succeeded. 0 otherwise.
779 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
781 pte_t *pte;
783 if (pmd_none(*pmd))
784 return 1;
786 pte = (pte_t *)pmd_page_vaddr(*pmd);
787 pmd_clear(pmd);
789 /* INVLPG to clear all paging-structure caches */
790 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
792 free_page((unsigned long)pte);
794 return 1;
797 #else /* !CONFIG_X86_64 */
799 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
801 return pud_none(*pud);
805 * Disable free page handling on x86-PAE. This assures that ioremap()
806 * does not update sync'd pmd entries. See vmalloc_sync_one().
808 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
810 return pmd_none(*pmd);
813 #endif /* CONFIG_X86_64 */
814 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */