Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / platform / intel-mid / pwr.c
blob49ec5b94c71f958868711ebc048cd068c3fbec23
1 /*
2 * Intel MID Power Management Unit (PWRMU) device driver
4 * Copyright (C) 2016, Intel Corporation
6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * Intel MID Power Management Unit device driver handles the South Complex PCI
13 * devices such as GPDMA, SPI, I2C, PWM, and so on. By default PCI core
14 * modifies bits in PMCSR register in the PCI configuration space. This is not
15 * enough on some SoCs like Intel Tangier. In such case PCI core sets a new
16 * power state of the device in question through a PM hook registered in struct
17 * pci_platform_pm_ops (see drivers/pci/pci-mid.c).
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/delay.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/pci.h>
30 #include <asm/intel-mid.h>
32 /* Registers */
33 #define PM_STS 0x00
34 #define PM_CMD 0x04
35 #define PM_ICS 0x08
36 #define PM_WKC(x) (0x10 + (x) * 4)
37 #define PM_WKS(x) (0x18 + (x) * 4)
38 #define PM_SSC(x) (0x20 + (x) * 4)
39 #define PM_SSS(x) (0x30 + (x) * 4)
41 /* Bits in PM_STS */
42 #define PM_STS_BUSY (1 << 8)
44 /* Bits in PM_CMD */
45 #define PM_CMD_CMD(x) ((x) << 0)
46 #define PM_CMD_IOC (1 << 8)
47 #define PM_CMD_CM_NOP (0 << 9)
48 #define PM_CMD_CM_IMMEDIATE (1 << 9)
49 #define PM_CMD_CM_DELAY (2 << 9)
50 #define PM_CMD_CM_TRIGGER (3 << 9)
52 /* System states */
53 #define PM_CMD_SYS_STATE_S5 (5 << 16)
55 /* Trigger variants */
56 #define PM_CMD_CFG_TRIGGER_NC (3 << 19)
58 /* Message to wait for TRIGGER_NC case */
59 #define TRIGGER_NC_MSG_2 (2 << 22)
61 /* List of commands */
62 #define CMD_SET_CFG 0x01
64 /* Bits in PM_ICS */
65 #define PM_ICS_INT_STATUS(x) ((x) & 0xff)
66 #define PM_ICS_IE (1 << 8)
67 #define PM_ICS_IP (1 << 9)
68 #define PM_ICS_SW_INT_STS (1 << 10)
70 /* List of interrupts */
71 #define INT_INVALID 0
72 #define INT_CMD_COMPLETE 1
73 #define INT_CMD_ERR 2
74 #define INT_WAKE_EVENT 3
75 #define INT_LSS_POWER_ERR 4
76 #define INT_S0iX_MSG_ERR 5
77 #define INT_NO_C6 6
78 #define INT_TRIGGER_ERR 7
79 #define INT_INACTIVITY 8
81 /* South Complex devices */
82 #define LSS_MAX_SHARED_DEVS 4
83 #define LSS_MAX_DEVS 64
85 #define LSS_WS_BITS 1 /* wake state width */
86 #define LSS_PWS_BITS 2 /* power state width */
88 /* Supported device IDs */
89 #define PCI_DEVICE_ID_PENWELL 0x0828
90 #define PCI_DEVICE_ID_TANGIER 0x11a1
92 struct mid_pwr_dev {
93 struct pci_dev *pdev;
94 pci_power_t state;
97 struct mid_pwr {
98 struct device *dev;
99 void __iomem *regs;
100 int irq;
101 bool available;
103 struct mutex lock;
104 struct mid_pwr_dev lss[LSS_MAX_DEVS][LSS_MAX_SHARED_DEVS];
107 static struct mid_pwr *midpwr;
109 static u32 mid_pwr_get_state(struct mid_pwr *pwr, int reg)
111 return readl(pwr->regs + PM_SSS(reg));
114 static void mid_pwr_set_state(struct mid_pwr *pwr, int reg, u32 value)
116 writel(value, pwr->regs + PM_SSC(reg));
119 static void mid_pwr_set_wake(struct mid_pwr *pwr, int reg, u32 value)
121 writel(value, pwr->regs + PM_WKC(reg));
124 static void mid_pwr_interrupt_disable(struct mid_pwr *pwr)
126 writel(~PM_ICS_IE, pwr->regs + PM_ICS);
129 static bool mid_pwr_is_busy(struct mid_pwr *pwr)
131 return !!(readl(pwr->regs + PM_STS) & PM_STS_BUSY);
134 /* Wait 500ms that the latest PWRMU command finished */
135 static int mid_pwr_wait(struct mid_pwr *pwr)
137 unsigned int count = 500000;
138 bool busy;
140 do {
141 busy = mid_pwr_is_busy(pwr);
142 if (!busy)
143 return 0;
144 udelay(1);
145 } while (--count);
147 return -EBUSY;
150 static int mid_pwr_wait_for_cmd(struct mid_pwr *pwr, u8 cmd)
152 writel(PM_CMD_CMD(cmd) | PM_CMD_CM_IMMEDIATE, pwr->regs + PM_CMD);
153 return mid_pwr_wait(pwr);
156 static int __update_power_state(struct mid_pwr *pwr, int reg, int bit, int new)
158 int curstate;
159 u32 power;
160 int ret;
162 /* Check if the device is already in desired state */
163 power = mid_pwr_get_state(pwr, reg);
164 curstate = (power >> bit) & 3;
165 if (curstate == new)
166 return 0;
168 /* Update the power state */
169 mid_pwr_set_state(pwr, reg, (power & ~(3 << bit)) | (new << bit));
171 /* Send command to SCU */
172 ret = mid_pwr_wait_for_cmd(pwr, CMD_SET_CFG);
173 if (ret)
174 return ret;
176 /* Check if the device is already in desired state */
177 power = mid_pwr_get_state(pwr, reg);
178 curstate = (power >> bit) & 3;
179 if (curstate != new)
180 return -EAGAIN;
182 return 0;
185 static pci_power_t __find_weakest_power_state(struct mid_pwr_dev *lss,
186 struct pci_dev *pdev,
187 pci_power_t state)
189 pci_power_t weakest = PCI_D3hot;
190 unsigned int j;
192 /* Find device in cache or first free cell */
193 for (j = 0; j < LSS_MAX_SHARED_DEVS; j++) {
194 if (lss[j].pdev == pdev || !lss[j].pdev)
195 break;
198 /* Store the desired state in cache */
199 if (j < LSS_MAX_SHARED_DEVS) {
200 lss[j].pdev = pdev;
201 lss[j].state = state;
202 } else {
203 dev_WARN(&pdev->dev, "No room for device in PWRMU LSS cache\n");
204 weakest = state;
207 /* Find the power state we may use */
208 for (j = 0; j < LSS_MAX_SHARED_DEVS; j++) {
209 if (lss[j].state < weakest)
210 weakest = lss[j].state;
213 return weakest;
216 static int __set_power_state(struct mid_pwr *pwr, struct pci_dev *pdev,
217 pci_power_t state, int id, int reg, int bit)
219 const char *name;
220 int ret;
222 state = __find_weakest_power_state(pwr->lss[id], pdev, state);
223 name = pci_power_name(state);
225 ret = __update_power_state(pwr, reg, bit, (__force int)state);
226 if (ret) {
227 dev_warn(&pdev->dev, "Can't set power state %s: %d\n", name, ret);
228 return ret;
231 dev_vdbg(&pdev->dev, "Set power state %s\n", name);
232 return 0;
235 static int mid_pwr_set_power_state(struct mid_pwr *pwr, struct pci_dev *pdev,
236 pci_power_t state)
238 int id, reg, bit;
239 int ret;
241 id = intel_mid_pwr_get_lss_id(pdev);
242 if (id < 0)
243 return id;
245 reg = (id * LSS_PWS_BITS) / 32;
246 bit = (id * LSS_PWS_BITS) % 32;
248 /* We support states between PCI_D0 and PCI_D3hot */
249 if (state < PCI_D0)
250 state = PCI_D0;
251 if (state > PCI_D3hot)
252 state = PCI_D3hot;
254 mutex_lock(&pwr->lock);
255 ret = __set_power_state(pwr, pdev, state, id, reg, bit);
256 mutex_unlock(&pwr->lock);
257 return ret;
260 int intel_mid_pci_set_power_state(struct pci_dev *pdev, pci_power_t state)
262 struct mid_pwr *pwr = midpwr;
263 int ret = 0;
265 might_sleep();
267 if (pwr && pwr->available)
268 ret = mid_pwr_set_power_state(pwr, pdev, state);
269 dev_vdbg(&pdev->dev, "set_power_state() returns %d\n", ret);
271 return 0;
274 pci_power_t intel_mid_pci_get_power_state(struct pci_dev *pdev)
276 struct mid_pwr *pwr = midpwr;
277 int id, reg, bit;
278 u32 power;
280 if (!pwr || !pwr->available)
281 return PCI_UNKNOWN;
283 id = intel_mid_pwr_get_lss_id(pdev);
284 if (id < 0)
285 return PCI_UNKNOWN;
287 reg = (id * LSS_PWS_BITS) / 32;
288 bit = (id * LSS_PWS_BITS) % 32;
289 power = mid_pwr_get_state(pwr, reg);
290 return (__force pci_power_t)((power >> bit) & 3);
293 void intel_mid_pwr_power_off(void)
295 struct mid_pwr *pwr = midpwr;
296 u32 cmd = PM_CMD_SYS_STATE_S5 |
297 PM_CMD_CMD(CMD_SET_CFG) |
298 PM_CMD_CM_TRIGGER |
299 PM_CMD_CFG_TRIGGER_NC |
300 TRIGGER_NC_MSG_2;
302 /* Send command to SCU */
303 writel(cmd, pwr->regs + PM_CMD);
304 mid_pwr_wait(pwr);
307 int intel_mid_pwr_get_lss_id(struct pci_dev *pdev)
309 int vndr;
310 u8 id;
313 * Mapping to PWRMU index is kept in the Logical SubSystem ID byte of
314 * Vendor capability.
316 vndr = pci_find_capability(pdev, PCI_CAP_ID_VNDR);
317 if (!vndr)
318 return -EINVAL;
320 /* Read the Logical SubSystem ID byte */
321 pci_read_config_byte(pdev, vndr + INTEL_MID_PWR_LSS_OFFSET, &id);
322 if (!(id & INTEL_MID_PWR_LSS_TYPE))
323 return -ENODEV;
325 id &= ~INTEL_MID_PWR_LSS_TYPE;
326 if (id >= LSS_MAX_DEVS)
327 return -ERANGE;
329 return id;
332 static irqreturn_t mid_pwr_irq_handler(int irq, void *dev_id)
334 struct mid_pwr *pwr = dev_id;
335 u32 ics;
337 ics = readl(pwr->regs + PM_ICS);
338 if (!(ics & PM_ICS_IP))
339 return IRQ_NONE;
341 writel(ics | PM_ICS_IP, pwr->regs + PM_ICS);
343 dev_warn(pwr->dev, "Unexpected IRQ: %#x\n", PM_ICS_INT_STATUS(ics));
344 return IRQ_HANDLED;
347 struct mid_pwr_device_info {
348 int (*set_initial_state)(struct mid_pwr *pwr);
351 static int mid_pwr_probe(struct pci_dev *pdev, const struct pci_device_id *id)
353 struct mid_pwr_device_info *info = (void *)id->driver_data;
354 struct device *dev = &pdev->dev;
355 struct mid_pwr *pwr;
356 int ret;
358 ret = pcim_enable_device(pdev);
359 if (ret < 0) {
360 dev_err(&pdev->dev, "error: could not enable device\n");
361 return ret;
364 ret = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
365 if (ret) {
366 dev_err(&pdev->dev, "I/O memory remapping failed\n");
367 return ret;
370 pwr = devm_kzalloc(dev, sizeof(*pwr), GFP_KERNEL);
371 if (!pwr)
372 return -ENOMEM;
374 pwr->dev = dev;
375 pwr->regs = pcim_iomap_table(pdev)[0];
376 pwr->irq = pdev->irq;
378 mutex_init(&pwr->lock);
380 /* Disable interrupts */
381 mid_pwr_interrupt_disable(pwr);
383 if (info && info->set_initial_state) {
384 ret = info->set_initial_state(pwr);
385 if (ret)
386 dev_warn(dev, "Can't set initial state: %d\n", ret);
389 ret = devm_request_irq(dev, pdev->irq, mid_pwr_irq_handler,
390 IRQF_NO_SUSPEND, pci_name(pdev), pwr);
391 if (ret)
392 return ret;
394 pwr->available = true;
395 midpwr = pwr;
397 pci_set_drvdata(pdev, pwr);
398 return 0;
401 static int mid_set_initial_state(struct mid_pwr *pwr, const u32 *states)
403 unsigned int i, j;
404 int ret;
407 * Enable wake events.
409 * PWRMU supports up to 32 sources for wake up the system. Ungate them
410 * all here.
412 mid_pwr_set_wake(pwr, 0, 0xffffffff);
413 mid_pwr_set_wake(pwr, 1, 0xffffffff);
416 * Power off South Complex devices.
418 * There is a map (see a note below) of 64 devices with 2 bits per each
419 * on 32-bit HW registers. The following calls set all devices to one
420 * known initial state, i.e. PCI_D3hot. This is done in conjunction
421 * with PMCSR setting in arch/x86/pci/intel_mid_pci.c.
423 * NOTE: The actual device mapping is provided by a platform at run
424 * time using vendor capability of PCI configuration space.
426 mid_pwr_set_state(pwr, 0, states[0]);
427 mid_pwr_set_state(pwr, 1, states[1]);
428 mid_pwr_set_state(pwr, 2, states[2]);
429 mid_pwr_set_state(pwr, 3, states[3]);
431 /* Send command to SCU */
432 ret = mid_pwr_wait_for_cmd(pwr, CMD_SET_CFG);
433 if (ret)
434 return ret;
436 for (i = 0; i < LSS_MAX_DEVS; i++) {
437 for (j = 0; j < LSS_MAX_SHARED_DEVS; j++)
438 pwr->lss[i][j].state = PCI_D3hot;
441 return 0;
444 static int pnw_set_initial_state(struct mid_pwr *pwr)
446 /* On Penwell SRAM must stay powered on */
447 static const u32 states[] = {
448 0xf00fffff, /* PM_SSC(0) */
449 0xffffffff, /* PM_SSC(1) */
450 0xffffffff, /* PM_SSC(2) */
451 0xffffffff, /* PM_SSC(3) */
453 return mid_set_initial_state(pwr, states);
456 static int tng_set_initial_state(struct mid_pwr *pwr)
458 static const u32 states[] = {
459 0xffffffff, /* PM_SSC(0) */
460 0xffffffff, /* PM_SSC(1) */
461 0xffffffff, /* PM_SSC(2) */
462 0xffffffff, /* PM_SSC(3) */
464 return mid_set_initial_state(pwr, states);
467 static const struct mid_pwr_device_info pnw_info = {
468 .set_initial_state = pnw_set_initial_state,
471 static const struct mid_pwr_device_info tng_info = {
472 .set_initial_state = tng_set_initial_state,
475 /* This table should be in sync with the one in drivers/pci/pci-mid.c */
476 static const struct pci_device_id mid_pwr_pci_ids[] = {
477 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL), (kernel_ulong_t)&pnw_info },
478 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER), (kernel_ulong_t)&tng_info },
482 static struct pci_driver mid_pwr_pci_driver = {
483 .name = "intel_mid_pwr",
484 .probe = mid_pwr_probe,
485 .id_table = mid_pwr_pci_ids,
488 builtin_pci_driver(mid_pwr_pci_driver);